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ABSTRACT Smart TVs allow consumers to watch TV, interact with applications, and access the Internet,
thus enhancing the consumer experience. However, the consumers are still unable to seamlessly interact with
the contents being streamed, as it is highlighted by TV-enabled shopping. For example, if a consumer is
watching a TV show and is interested in purchasing a product being displayed, the consumer can only go to
a store or access the Web to make the purchase. It would be more convenient if the consumer could interact
with the TV to purchase interesting items. To realize this use case, products in the content stream must be
detected so that the TV system notifies consumers of possibly interesting ones. A practical solution must
address the detection of complex products, i.e., those that do not have a rigid form and can appear in various
poses, which poses a significant challenge. To this end, a multicue product detection framework is proposed
for TV shopping. The framework is generic as it is not tied to specific object detection approaches. Instead,
it utilizes appearance, topological, and spatio-temporal cues that make use of a related, easier to detect object
class to improve the detection results of the target, more difficult product class. The three cues are jointly
considered to select the best path that occurrences of the target product class can follow in the video and
thus eliminate false positive occurrences. The empirical results demonstrate the advantages of the proposed
approach in improving the precision of the results.

INDEX TERMS Smart TV, TV shopping, spatio-temporal information, multimedia content analysis,
dynamic programming.

I. INTRODUCTION
Recently, smart TVs have raised the TV experience to a new
level by combining the TV, Internet, and PC technologies.
Consumers are able to browse the web, interact with a variety
of applications, and watch TV channels. Nevertheless, smart
TVs still do not allow consumers to seamlessly interact with
the contents being streamed. One example of such a drawback
is TV shopping. In this use case, the consumer interacts with
the TV to purchase an interesting product that is displayed
in the current show. For instance, consider the consumer is
watching a fashion show. The TV system detects hand bags
and apparel in the content stream and notifies the consumer
via a non-intrusive notification. When the consumer sees the
notification, he or she can activate it and is then presented
with the list of products detected in the show over a time
window. If the consumer is interested in an item, he or she
selects the item and proceeds to purchase it. The purchase

can be realized, for example, by providing the detected items
as search input in an online store. Clearly, such a content-
enabled application is of commercial value and would
significantly enrich the interaction of consumers with their
TV systems.

The fundamental challenge to realize TV shopping is
detecting objects in the content stream to be able to signal
consumers of interesting products. Particularly, the system
must be able to detect complex objects, i.e., those that do not
have a rigid form or can appear in a variety of poses. In the
fashion show use case, detecting hand bags is very difficult
as hand bags do not have a definitive shape, can present
deformations, be occluded by hands or arms, and appear in
many poses. The object detection task can be addressed by
considering the video as an unrelated sequence of frames
and perform static object detection [1]–[5]. On the other
hand, it can be tackled by utilizing the additional information

VOLUME 3, NO. 2, JUNE 2015

2168-6750 
 2015 IEEE. Translations and content mining are permitted for academic research only.
Personal use is also permitted, but republication/redistribution requires IEEE permission.

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information. 161



IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING Fleites et al.: Enhancing Product Detection With Multicue Optimization

offered by the progression of the video sequence [6]–[12].
Nevertheless, most of these approaches fail to detect complex
objects and perform well only on ideal conditions. In the case
of video based approaches, these mostly concentrate on using
motion information to detect moving objects, which may not
work well for difficult objects; in the case of hand bags, the
motion of the bag would be masked by the motion of the
person carrying the bag.

The significant challenge posed by complex objects gives
rise to using additional information to improve the detection
results. For still images, most approaches employ additional
information from co-occurrence and/or spatial relationships
between object labels [13]–[20], but these do not incorporate
the temporal information embedded in video sequences. Very
few approaches do address the temporal information as an
additional cue [21]–[23]. However, most of these are meant
for surveillance applications, which have different require-
ments and scene characteristics than those of fashion shows.
The latter are characterized by many shots with varying back-
ground motion, making very difficult the differentiation of
foreground motion.

Building upon the idea of utilizing additional information
to improve detection results, this article proposes a generic,
multi-cue product detection framework for TV shopping. The
approach is generic as is not tied to a specific detection
approach. It makes use of multi-cue information to enhance
the detection of complex objects in unconstrained video
sequences, i.e., no assumptions are made about foreground
or backgroundmotion in the video. Three cues are considered
to detect objects of a target product class. The first one is the
appearance cue, which dictates that the visual appearance of
an object must represent the target product class. The second
and third are topological and spatio-temporal cues, which
consider the relationship between the target product class and
a related, easier-to-detect object class. Within a video frame,
the topological cue enforces a spatial relationship between
detections of both classes. Across consecutive frames, the
spatio-temporal cue assumes there is a correlation between
the spatial positions of detections in both classes. The three
cues are jointly considered to formulate an optimization prob-
lem that selects the best path objects of the target product class
can follow in the video. Then, detections that do not belong
to the selected path are regarded are false positive detections.
To the be best of our knowledge, the proposed approach is
the first attempt to combine appearance, spatio-temporal, and
topological information into a path-optimization problem to
enhance object detection in unconstrained video sequences.

The rest of the paper is organized as follows. Section II
discusses the related work. Section III presents the proposed
multi-cue product detection framework. Section IV describes
the experiments and results. Finally, Section V concludes this
article.

II. RELATED WORK
The utilization of additional information has been approached
in recent years to try to overcome the challenges posed by

object detection. Plenty of approaches tackle this task in
static images utilizing co-occurrence and/or spatial relation-
ships [13]–[20], [24], [25]. However, very few approaches
address this problem for videos. These additionally include
temporal relationships to exploit the inherent spatio-temporal
information [21]–[23].

A. CO-OCCURRENCE AND SPATIAL RELATIONSHIPS
Even though they utilize additional information to aid object
detection, the following approaches are intended for image
data and thus do not take into consideration temporal
information.

Galleguillos et al. [15] present an object detection frame-
work that utilizes co-occurrence and spatial relationships
as an additional source of information. Their framework is
called CoLA for co-occurrence, location, and appearance.
It first segments the objects based on their appearance,
and the contextual information is integrated via a condi-
tional random field (CRF) that aims at maximizing the
agreement between object labels. The spatial information
consists of four relationships: above, below, inside, and
around, where each relationship is represented via a
context matrix that encodes corresponding co-occurrence
information.

Heitz et al. [14] propose a probabilistic framework that
models contextual information to enhance the detection
results of off-the-shelf detectors. It does so by rescoring the
detections scores with the intent of lowering the scores of
false-positive detections. The framework captures contextual
relationships between ‘‘stuff’’ (i.e., regions with homoge-
neous or repetitive patterns) and ‘‘things’’ (i.e., monolithic
objects) and does not require manual labeling of the ‘‘stuff’’
regions, only limited ground-truth labeling of object detec-
tions. In this sense, this approach combines co-occurrence
and spatial relationships. Image regions (‘‘stuff’’) are pro-
vided as input to this approach, and the framework clusters
the regions based on their ability to serve as context for
object detection. A probabilistic model is then learned to link
detections with ‘‘stuff’’ clusters.

Zheng et al. [20] propose a context-modeling framework
that extends the idea of Heitz et al. [14]. The authors cat-
egorize types of context as ‘‘Scene-Thing’’, ‘‘Stuff-Stuff’’,
‘‘Thing-Thing’’, and ‘‘Thing-Stuff’’, and their framework
models ‘‘Thing-Thing’’ and ‘‘Thing-Stuff’’ contexts by
learning co-occurrence and spatial contextual relationships.
Contextual information is represented via a polar geometric
context descriptor. The framework then utilizes a maximum
margin context (MMC) model to evaluate the usefulness of
contextual information and fuse context information with
appearance information. It does so by discriminatively learn-
ing a context risk function that measures the rank infor-
mation between true positive and false positive detections.
The empirical results on several PASCAL VOC datasets
show that the framework outperforms that of Heitz et al. [14]
for some concepts and achieves similar performance for
others.
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B. ADDITIONAL TEMPORAL RELATIONSHIP
The following approaches target video data and include
temporal information.

However, most of them target surveillance applica-
tions, which have different requirements and assumptions
(e.g., fixed camera) that are invalid in the TV shopping use
case.

Sheikh et al. [21] introduce an object detection frame-
work for surveillance videos that is able to model dynamic
backgrounds. Different from previous approaches, the frame-
work does not model pixel intensities as independent random
variables; instead, the framework models the background
as a single probability density using non-parametric kernel
density estimation over joint location-color representation of
image pixels. Object detection is approached by also main-
taining a foreground model that is modeled similarly to that
of the background and using both models competitively in
a decision framework. The foreground model is enhanced
with a temporal criterion, under which foreground objects are
assumed to maintain small frame-to-frame color transforma-
tions and spatial changes. The decision framework is based on
a maximum a posteriori Markov Random Field (MAP-MRF),
which transforms the problem of object detection into a
pixel-level binary classification problem that combines the
foreground and background probability models in the like-
lihood function for each pixel. Even though this approach
models dynamic backgrounds, it does so specifically for
surveillance videos and thus assumes a fixed camera. Hence,
it cannot be applied in completely unconstrained videos.

Yan et al. [22] propose to use pairwise constraints to aid
video object classification with insufficient labeled data in
surveillance videos. Indicating whether two examples are of
the same class or not, pairwise constraints exploit the spatio-
temporal continuity of video streams. As an example, the
authors illustrate their method with the use case of classify-
ing people’s identities. In this task, two overlapping objects
from consecutive frames can be considered to have the same
identity, but two objects that appear in the same video frame
cannot. Moreover, identities can be differentiated using a face
comparison mechanism, which represents another source of
pairwise constraints, instead of building statistical models for
every possible subject. The authors present three discrimina-
tive learning methods that minimize the regularized empir-
ical risk and incorporate pairwise constraints by penalizing
their violation. This approach focuses on a use case that is
different from TV shopping, where the definition of pairwise
constraints is not directly applicable. In addition, it is meant
for surveillance videos.

Yang et al. [23] introduce an object tracking framework
that utilizes additional information to diminish the possibility
of drifting. Their idea is to automatically mine auxiliary
regions that have high co-occurrence and motion correla-
tion, at least for a short period of time, with the target
object and use their collaborative tracking to prevent the
target tracker from drifting. Such auxiliary regions consist
of ‘‘significant’’ color regions that are obtained using the

classical split-merge quad-tree color segmentation and are
represented via color histograms. Using simple histogram
matching, coherent color regions are matched as the frame
sequence progresses, a transaction set is constructed, and
regions with high co-occurrence with the target object are
chosen as candidate auxiliary regions. Such candidate regions
are then tracked using a mean-shift tracker. The framework
determines the candidate regions that havemotion correlation
with the target object via a subspace analysis on an assumed
affine model between the candidate auxiliary regions and the
target object. Once co-occurrent, motion-correlated auxiliary
regions are determined, collaborative tracking is achieved by
modeling a random field among the auxiliary regions and
the target object. The random field is formulated under a
Markov network with a star topology, and a two-step belief
propagation algorithm is used to estimate the posterior prob-
abilities of the network. Lastly, the framework includes a
mechanism to detect inconsistent tracking estimates, which
are regarded as outliers. If the outlier is an auxiliary object,
then it is removed from the collaborative tracking; however,
if the outlier is the target object, then it is considered to be
experiencing occlusion or drift, and it is suspended from the
tracking temporarily. This approach uses auxiliary regions to
improve object tracking, which can be considered to have
the same purpose as the occurrences of the related object
class in the proposed framework. However, the method is
different than the proposed one and assumes that auxiliary
regions can be both obtained via color segmentation and
tracked by a simplemean-shift tracker, which are not practical
assumptions in the TV shopping use case.

III. MULTI-CUE PRODUCT DETECTION
As previously introduced, effectively addressing the TV
shopping use case requires the detection of possibly complex
objects of a target product class C in an unconstrained video
sequence V = {Fi}, whereFi is the ith frame in V . Hence, the
problem at hand consists of obtaining the product occurrences
of class C in V . This article proposes to solve the stated prob-
lem by dividing D into shots {Sk}, followed by detecting all
product occurrences of class C in each shotSi using additional
cues. More specifically, the approach consists of two steps
that are applied on Si. Firstly, an object detector is executed
on each frame. The detection threshold of the particular object
detector is lowered to increase the changes of detecting com-
plex objects, at the expense of increasing the number of false
positive detections but increasing the changes of detecting
complex product occurrences. Secondly, additional cues are
utilized to obtain the optimal path product occurrences should
follow across Si. The optimal path identifies the true positive
occurrences and serves to weed out false positive detections.
Since the video is divided into shots, it is assumed the shot-
boundary method employed for this task will not fragment a
continuous scene into many separate shots.

The additional cues consist of appearance, topological, and
spatio-temporal relationships. The appearance cue refers to
the visual appearance of the target product class, i.e., how
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FIGURE 1. Example of how the appearance cue helps discern
between possible object detections.

much influence has the visual appearance of the object in
determining its class. An example of this cue is depicted
in figure 1. It represents the task of detecting bags in fashion
shows, where the target product class is ‘‘bags’’. An object
detector for bags could generate the three bounding boxes
shown in the figure. However, the visual features of the red
bounding box should indicate that indeed this is the correct
detection. The detection score of each bounding box can be
used to quantify the visual information. Additionally, besides
analyzing a frame in a vacuum, the appearance cue applies
to nearby frames. Product occurrences in a neighborhood
of frames must have similar visual appearance as the same
object should have small changes in appearance from frame
to frame.

In contrast, the topological and spatio-temporal cues refer
to relations the target product class has with a related object
class CR. An implicit requirement is the related object class
must be easier to detect in the sense there is a mature tech-
nology that robustly detects objects of CR. For example, for
the task of detecting bags in fashion shows, the related object
class is ‘‘faces’’. The technology for face detection is quite
robust, and thus it is possible to use face detection results
to enhance the detection of objects of the class ‘‘bags’’.
Nonetheless, false positive detections of the related object
class can still occur. The topological relationship constricts
the possible locations for occurrences of the target product
class with respect to locations of occurrences of the related
object class. Resuming the fashion show example, in the
case the model is carrying a bag as depicted in figure 2,
there is a clear positional relationship between the model’s
face and the bag. Based on this topological relationship, it
is clearly possible to use the position of the model’s face
to restrict the possible locations for the bag. Lastly, the pro-
gression of video frames creates a spatio-temporal correlation
between consecutive positions of the target product class and
consecutive positions of the related object class, as depicted
in figure 3a. Another example suitable for the related object
class in fashion shows is ‘‘persons’’. Figure 4 depicts the
positional relationship between the bag and the model.

Based the multiple cues, the proposed approach analyzes
the best path occurrences of the target product class can

FIGURE 2. Example of topological relationship between ‘‘bags’’
and ‘‘faces’’ in a fashion show. Yellow bounding boxes
depict object detections.

FIGURE 3. Illustration of the optimal path. (a) Spatio-temporal
correlation between paths of the target product class and the
related object class. (b) The optimal path according to the
multiple cues is selected, pruning false positive detections of
the target product class.

follow in a video shot. Figure 3b depicts how the optimal path
weeds out false positive detections. In a succession of video
frames {Fi}

M
i=1, let a possible path be P = {Oi}

M
i=1, where

Oi is an occurrence of the target product class in Fi; Q(P) be
the quality of P; andRi is an occurrence of the related object
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FIGURE 4. Example of topological relationship between ‘‘bags’’
and ‘‘persons’’ in a fashion show.

class in Fi. The definition of Q(P) is based on the following
criteria imposed by the aforementioned cues.

A. APPEARANCE
The appearance cue is modeled as the probability P(Oi|C),
which can be obtained by training an object detector to detect
occurrences of the target product class. Any object detection
can be utilized, but it is recommended a robust one that
can detect occlusions and pose variations. The trained object
detector must provide P(Oi|C) as well as the corresponding
bounding box, i.e., the location and size of Oi. Moreover,
consecutive product occurrences in the path must have a high
appearance similarity, which is defined by

�(Oi,Oj) =

{
0 if i ≤ 0
s(τ (Oi), τ (Oj)) otherwise

(1)

where i < j, τ (.) is the feature vector representation of a
product occurrence’s bounding box, and s(.) is a function that
measures the similarity between the feature vectors of two
occurrences, where the image of s(.) is [0, 1].

B. TOPOLOGICAL
Based on the location of the related object class, the topolog-
ical cue specifies the set of locations from which a product
occurrence should not deviate in a frame. With respect to the
example of detecting bags in a fashion show, occurrences of
‘‘bags’’ should not be located too far from the location of the
model’s face. This requirement is modeled via the following
function:

9(Oi) =
dl(l(Oi), l(Ri))

bm
(2)

where l(.) provides the location of a detection in the video
frame, dl(.) is the Euclidean distance between two positions
in the frame, and bm is a constant that measures the diagonal
length of the video frames. Hence, 9(Oi) assigns larger
values the farther the product occurrence is from the related
object, and its image is in [0, 1]. It is important to highlight
that9(.) can be defined differently depending on the use case.

C. SPATIO-TEMPORAL
With respect to the path of the related object class, the
spatio-temporal cue imposes a similar within-path deviation
in the trajectory of the target product class. This constraint is
modeled via the function:

0(Oi,Oj)

=

0 if i ≤ 0
min(dl(Oi,Oj), dl(Ri,Rj))

max(dl(Oi,Oj), dl(Ri,Rj))+ ε
otherwise

(3)

where i < j and ε is a small constant ≥ 0 to avoid dividing
by zero. The function 0(.) is proportional to the translational
difference between the target product class and the related
object class, and its image is in [0, 1].

The best path P∗ that occurrences of the target product
class can follow in {Fi}must have the highest

∑M
i=1 P(Oi|C),

the highest
∑M

i=1�(Oi−1,Oi), the lowest
∑M

i=19(Oi), and

the highest
∑M

i=1 0(Oi−1,Oi). The optimal path can then be
obtained by solving the following optimization problem:

maximize Q(P)

=

M∑
i=1

{
αP(Oi|C)+ β�(Oi−1,Oi)γ

[
1−9(Oi)

]
+ (1− α − β − γ )0(Oi−1,Oi)

}
(4)

where α, β, and γ are weight parameters in [0, 1].
For practical considerations, it is worth discussing the case

where there are no occurrences of the related object class in
a video shot. This scenario can be handled by equation (4)
by setting γ = 0 and α + β = 1, such that the influence
of the topological and spatio-temporal cues becomes nil. The
optimization problem then equates to

maximize Q(P) =
M∑
i=1

{
αP(Oi|C)+ β�(Oi−1,Oi)

}
(5)

Equation (5) is a specific case of equation (4) that only
considers the appearance cue, and thus the accuracy of the
results largely depends on the performance provided by the
detector of the target product class.

The optimal solution to equation (4) can be efficiently
obtained using dynamic programming (DP). Let Pk denote
the path formed by the first k elements in P . Firstly, the cost
function Gk (Pk ) is created to represent the maximum cost
solution for the first k elements ofP subject to the kth element
is Ok :

Gk (Pk ) = maximize Pk−1Q(Pk ) (6)

It is clear that maximizing GM (PM ) implies maximizing
Q(P). In addition, Gk+1(Pk+1) can be written as:

Gk+1(Pk+1)

= Gk (Pk )+
{
αP(Ok+1|C)+β�(Ok ,Ok+1)γ

[
1−9(Ok+1)

]
+ (1− α − β − γ )0(Ok ,Ok+1)

}
(7)

VOLUME 3, NO. 2, JUNE 2015 165



IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING Fleites et al.: Enhancing Product Detection With Multicue Optimization

which shows that the selection of the k + 1 occurrence in the
path does not depend on the previously selected occurrences.
This recursive representation makes the next step of the opti-
mization process independent of the previous step, which is
the foundation of DP.

Therefore, the problem can be interpreted as finding the
longest path in a weighted, directed acyclic graph (DAG)
G = (V ,E,w), where V is the set of vertices consisting of
all the product occurrences found in {Fi}

M
i=1, E is the set of

edges {(Oi,Oi+1)}whereOi is a product occurrence inFi and
Oi+1 in Fi+1, and w : E → (R) is an edge-weight function
that assigns a weight to each edge as follows:

w(Oi,Oi+1)

=

{
αP(Oi+1|C)+ β�(Ok ,Oi+1)γ

[
1−9(Ok+1)

]
+ (1− α − β − γ )0(Oi,Oi+1)

}
(8)

Obtaining the longest path in the DAG via DP takes
O(Mt2max), where tmax where tmax is the maximum number
of object appearances in a frame of {Fi}.

IV. EXPERIMENTS AND RESULTS
This section presents and analyzes experiments that demon-
strate the advantages of the proposed multi-cue product
detection approach. The experiments were conducted in
a MacBook Pro with 4GB of RAM, 200GB of HDD, a
dual core Intel(R) Core(TM) i7 CPU, and 512MB of video
memory. The proposed approach was implemented using
Matlab 2012a [26] and OpenCV 2.4.5 [27].

The evaluation was performed on fashion shows as they
provide commercial value to a prototype TV shopping
system. Three fashion show videos were obtained from
YouTube [28]with high resolution. Figure 5 shows a few sam-
ple frames. Given the requiredmanual labeling and evaluation
efforts, a 2,074-frame clip was extracted from each video, for
a total of 6,222 frames with a resolution of 576 × 324. The
extracted clips from the videos are referred to as VC1, VC2,
and VC3. The target product class consists of hand bags,
which represent a significant detection challenge as described
in the introduction, and the models’ faces make up the related
object class. Figure 2 shows bounding boxes for these two
classes.

Color histograms were utilized as the feature representa-
tion τ (.) required in equation (1), with histogram intersection
used as the similarity function s(.). In addition, to detect
occurrences of the target and related classes, the following
object detectors were utilized:
• The widely utilized Viola-Jones object detector [29] was
used to detect the models’ faces. The implementation
and trained models that are provided by OpenCV 2.4.5
were incorporated into the Matlab implementation of
the proposed approach via the mexopencv [30] library,
which provides Matlab mex functions for the OpenCV
library.

FIGURE 5. Sample frames from test videos.

• The discriminatively trained object detector based on
deformable part models of Felzenszwalb et. al [1], [31]
was utilized to detect hand bags. It represents variable
object classes by using mixtures of deformable part
models at different scales. This detector has achieved
state-of-the-art results in the PASCAL object detection
challenges [32], and its ability to detect non-rigid defor-
mations and partial occlusions in the objects makes it
a suitable approach for detecting hand bags. Moreover,
a Matlab implementation of this approach is available
online [31], which was directly incorporated into the
proposed approach. To train this detector, 500 frames
were extracted from the three fashion show videos
(excluding the extracted clips). Out of the 500 frames,
250 were positive frames (i.e., contained hand bags),
while the other 250 were negative frames (i.e., no hand
bags). The bounding boxes for the hand bags in the
positive set were manually labeled, thus creating the
ground-truth set of bounding boxes.

The experiments consisted in comparing the detection
performance of the proposed approach with three other
approaches.

The first comparison is with the approach of
Sheikh et al. [21], referred to as the surveillance-application
approach. It is representative of the majority methods that
use temporal information, which are meant for surveillance
videos. Since they assume a fixed camera, these approaches
are not suitable for fashion shows that are characterized by
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many shots and varying background motion. Nevertheless,
the comparison with the proposed approach is made to vali-
date this claim. To make a proper comparison, the clips VC1,
VC2, and VC3 were divided into shots, and the approach
of Sheikh et al. was executed for each shot. The code
was obtained from the project’s web site.1 It generates a
detection mask for each frame, which was post-processed
using morphological operators. The resulting regions were
then represented by bounding boxes. For this and following
comparisons, the proposed approach was executed with the
weight parameters α, β, and γ of equation (1) set to 1

4 ; i.e., it
equally utilized all the equations derived from the three cues.

TABLE 1. Detection results for the surveillance-application
approach.

TABLE 2. Detection results for the proposed approach.

Tables 1 and 2 show the detection results in terms of
precision and recall values. Precision is defined as the fraction
of predicted bounding boxes that are true positives, and recall
is defined as the fraction of ground-truth bounding boxes that
are predicted. A bounding box is considered true positive
if it overlaps more than 50% of the ground-truth bounding
box; otherwise, it is considered a false positive. Moreover,
if multiple bounding boxes are predicted that overlap with
the same ground-truth bounding box, only one is considered
correct, and the other ones are labeled as false positives.
Precision-recall curves were not generated as the approach
of Sheikh et al. does not generate detection scores.

As shown in the tables, the proposed approach significantly
outperforms the surveillance-application approach. For all
three clips, the proposed approach achieved higher recall
values as well as precision values over 0.90. On the other
hand, the maximum values achieved by the surveillance-
application approach were 0.14 precision and 0.21 recall.
Such a difference in performance highlights the claim that
approaches meant for surveillance videos are not appropri-
ate for unconstrained video sequences. Additionally, some
complex object classes such as hand bags are very difficult
to detect using mainly motion estimation as these are likely
to be immersed in the motion of the person carrying them.

The other comparisons are with the following three
approaches, which assume nothing about background motion
in the video sequences. The first one is a ‘‘plain’’ prod-
uct detection approach, which does not use any additional

1http://crcv.ucf.edu/projects/backgroundsub/

cues and consists of performing object detection on each
frame of the video sequence. The second approach is that of
Heitz et al. [14] that uses a things-and-stuff (TAS) context
model as described in section II. This approach is represen-
tative of methods that do not use temporal cues. They can
be applied to the TV shopping use case by processing each
frame of the video sequence individually. The TAS approach
was chosen as its goal is in line with the proposed approach.
That is, it is not tied to a specific detection approach but
rather utilizes contextual information to enhance the detection
results of object detectors. The code was obtained online,2 the
CEDD features [33] were used to represent the image regions
this approach uses for context, and the code was trained using
the same ground-truth bag data used to train object detector of
Felzenszwalb et. al. Finally, the third approach consists of one
sub-optimal version of the proposed approach. This version
sets the weight parameters α and β to 0.5, thus effectively
disabling both the topological and spatio-temporal cues to
be able to analyze their combined effect. For each frame,
each approach predicts bounding boxes of the hand bags
alongwith corresponding detection scores. These scores were
thresholded to then obtain precision-recall curves for each
clip.

FIGURE 6. Precision-recall curve for VC1.

Figures 6, 7, and 8 depict the precision-recall curves for
VC1, VC2, and VC3, respectively. As shown, the proposed
approach significantly outperforms both the plain product
detection and TAS detection approaches in terms of precision.
The advantage is achieved by removing a significant number
of false positive detections and thus improving the precision
for the same recall value. For VC1, the maximum recall
achieved is 0.38, at which the proposed approach obtains
a precision of 0.94 vs 0.56 for the plain object detector
(67.86% improvement) and 0.57 for the TAS approach
(64.91% improvement). For VC2, the maximum recall
achieved is 0.54, at which the proposed approach obtains
a precision of 0.92 vs 0.43 for the plain object detection

2http://ai.stanford.edu/~gaheitz/Research/TAS/
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FIGURE 7. Precision-recall curve for VC2.

FIGURE 8. Precision-recall curve for VC3.

(113.56% improvement) and 0.36 for the TAS approach
(155.56% improvement). For VC3, the maximum recall
achieved is 0.31, at which the proposed approach obtains
a precision of 0.97 vs 0.66, (47.07% improvement) and
0.63 for the TAS approach (53.97% improvement). Sample
bounding boxes generated by the proposed and sub-optimal
approaches in VC1 are depicted in figure 9. The sub-optimal
detector generates both true positive (red bounding boxes)
and false positive (yellow bounding boxes) detections due
to the difficulty of detecting hand bags. On the other hand,
the proposed approach is able to eliminate the false positive
boxes. This result empirically proves the claim that the pro-
posed approach can be used with a low detection threshold to
increase the recall of complex objects but still achieve high
precision values.

Figure 10 highlights the improvement in precision of
the proposed approach compared to that of the sub-optimal
version. As shown, the improvement is zero for low recall
values but rises as the recall increases. A maximum improve-
ment of 8.15% is achieved for VC1, 14.80% for VC2,
and 8.92% for VC3. The reason for a larger improvement
in VC2 is that more false positive detections were corrected

FIGURE 9. Examples of predicted bounding boxes for hand bags
in clip VC1. The plain product detection approach predicts all
bounding boxes (both yellow and red ones), whereas the
proposed multi-cue approach only predicts the red boxes and
eliminates the yellow boxes as false positives.

FIGURE 10. Precision improvement (%) of the proposed
approach vs. the sub-optimal version.

by using the topological and spatio-temporal cues. Moreover,
this result underlines the importance of utilizing the related
object class in achieving higher precision at larger recall
values.

Another aspect worth discussing is the improved perfor-
mance of the plain detection approach over that of the TAS
approach, in all three video clips. The TAS approach failed
to correctly rescore a significant portion of the detections.
An example of which is depicted in figure 11, where the red
bounding box is the one that was scored the highest by the
TAS approach in that frame. The explanation is that the image
regions used by the TAS approach as context around the hand
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FIGURE 11. Example of incorrect rescoring by TAS approach.

bags are very similar to those around other parts of the model,
which makes it difficult for the TAS approach to correctly
rescore the detections.

TABLE 3. Maximum recall achieved.

Moreover, it is important to highlight that the relatively
low recall values reported in the precision-recall curves do
not detriment the applicability of the proposed approach on
fashion shows. These values can be considered to be on a
‘‘per occurrence’’ basis, i.e., computed for each true positive
bounding box. However, for the purpose of TV shopping, the
important criterion is to detect each particular bag at least
once, and not necessarily on all the frames the bag appears on.
For example, if a bag appears consecutively from frames 1
through 100 as the model walks through the stage, it can
be considered a successful product detection if the bag is
detected on a subset of the 100 frames, even if it is detected
only once or twice. The rationale is that the consumer will
still be notified of the existence of a possibly interesting bag.
Hence, it can be stated that recall on a ‘‘per product’’ basis
is more important. Table 3 compares the per-occurrence and
per-product recall values for the three clips. It shows that
on a per-product basis, the recall is very high, achieving 1.0
for both VC1 and VC2, and 0.9 for VC3. Precision, on the
contrary, still should be considered on a per-occurrence basis
as having to many false-positive occurrences has a negative
impact on the usability of the system.

V. CONCLUSION AND FUTURE WORK
The lack of content understanding does not allow smart TVs
to provide consumers with a seamless TV shopping experi-
ence. To purchase interesting items displayed in the current
TV show, consumers must inconveniently resort to a store or
the Web. Object detection is one of the tasks that is required
for realizing the TV shopping use case, but the detection of
complex objects poses a significant challenge. To this end,
this article proposes a multi-cue product detection framework
for TV shopping. Three main characteristics define the pro-
posed approach. Firstly, it is generic in the sense that it is

not tied to a specific object detection approach. Secondly, it
does not make any assumption about motion in the video.
Thirdly, it utilizes three cues as additional information to
improve the detection results of a target product class. The
appearance cue is related to the probability of a product
occurrence of corresponding to the target class. The other
two consists of topological and spatio-temporal relationships
between the target product class and a related, easier-to-
detect object class. These enforce spatial relationships within
a video frame and across consecutive frames, respectively.
The proposed approach jointly considers the three cues as a
path-optimization problem that aims at selecting the correct
product occurrences and weed out false positive detections.
The empirical results demonstrate the advantages of the pro-
posed framework in improving the detection results.

Future work comprises three aspects. The first one is
extending the experimental results with three scenarios:
(a) using another related object class, e.g., ‘‘persons’’ for
which robust detectors exist in the literature; (b) handling
other target product classes such as apparel, shoes, and/or
watches, and (c) employing different detectors for the target
product class. Since the proposed detection framework is
independent of the detectionmechanism utilized for the target
product class, handling other product classes entails training
detectors and plugging them into the framework. Accuracy
results for these may vary according to the chosen detec-
tor, but the proposed framework is likely to enhance the
performance via the additional information provided by the
related object class. Moreover, analyzing the performance
results produced by different detectors will yield important
conclusions on the benefits provided by the related object
class with respect to different accuracy levels obtained for the
target product class. The second aspect of future work is the
development of a distributed system that allows the real-time
application of the proposed product detection framework.
The computational performance of the proposed framework
mainly depends on the computational cost of detecting the
related objects and target products in each frame. Neverthe-
less, within a shot, frames can be processed in parallel, and
the proposed optimization problem can be efficiently solved
once all objects in the shot have been obtained. Hence, the
detection phase can be distributed and parallelized to achieve
the desired performance. The third one is the applicability of
the framework in other TV shopping use cases such as on-
demand movies. Such a use case involves the same functional
requirements as that of fashion shows, except that on-demand
movies can be batched-processed offline and the results saved
for future retrieval.

REFERENCES

[1] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan,
‘‘Object detection with discriminatively trained part-based models,’’ IEEE
Trans. Pattern Anal.Mach. Intell., vol. 32, no. 9, pp. 1627–1645, Sep. 2010.

[2] B. Leibe, A. Leonardis, and B. Schiele, ‘‘Robust object detection
with interleaved categorization and segmentation,’’ Int. J. Comput.
Vis., vol. 77, nos. 1–3, pp. 259–289, May 2008. [Online]. Available:
http://dx.doi.org/10.1007/s11263-007-0095-3

VOLUME 3, NO. 2, JUNE 2015 169



IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING Fleites et al.: Enhancing Product Detection With Multicue Optimization

[3] J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid, ‘‘Local features and
kernels for classification of texture and object categories: A comprehensive
study,’’ in Proc. Conf. Comput. Vis. Pattern Recognit. Workshop (CVPRW),
Jun. 2006, p. 13.

[4] P. Viola and M. Jones, ‘‘Rapid object detection using a boosted cascade of
simple features,’’ in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit. (CVPR), vol. 1. Dec. 2001, pp. 511–518.

[5] M. Weber, M. Welling, and P. Perona, ‘‘Towards automatic discovery of
object categories,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
vol. 2. Jun. 2000, pp. 101–108.

[6] A. Ayvaci and S. Soatto, ‘‘Detachable object detection: Segmentation and
depth ordering from short-baseline video,’’ IEEE Trans. Pattern Anal.
Mach. Intell., vol. 34, no. 10, pp. 1942–1951, Oct. 2012. [Online]. Avail-
able: http://dx.doi.org/10.1109/TPAMI.2011.271

[7] Y. Gurwicz, R. Yehezkel, and B. Lachover, ‘‘Multiclass object clas-
sification for real-time video surveillance systems,’’ Pattern Recognit.
Lett., vol. 32, no. 6, pp. 805–815, Apr. 2011. [Online]. Available:
http://dx.doi.org/10.1016/j.patrec.2011.01.005

[8] D. Liu, M.-L. Shyu, Q. Zhu, and S.-C. Chen, ‘‘Moving object detection
under object occlusion situations in video sequences,’’ in Proc. IEEE Int.
Symp. Multimedia (ISM), Dec. 2011, pp. 271–278. [Online]. Available:
http://dx.doi.org/10.1109/ISM.2011.50

[9] A. Vazquez-Reina, S. Avidan, H. Pfister, and E. Miller, ‘‘Multiple hypoth-
esis video segmentation from superpixel flows,’’ in Proc. 11th Eur.
Conf. Comput. Vis. (ECCV), 2010, pp. 268–281. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1888150.1888172

[10] J. Kim, G. Ye, and D. Kim, ‘‘Moving object detection under free-moving
camera,’’ in Proc. 17th IEEE Int. Conf. Image Process. (ICIP), Sep. 2010,
pp. 4669–4672.

[11] G. van Essen, S. Marsland, and J. Lewis, ‘‘Hierarchical block-based
image registration for computing multiple image motions,’’ in Proc. 24th
Int. Conf. Image Vision Comput. New Zealand (IVCNZ), Nov. 2009,
pp. 425–430.

[12] B. Qi, M. Ghazal, and A. Amer, ‘‘Robust global motion estimation oriented
to video object segmentation,’’ IEEE Trans. Image Process., vol. 17, no. 6,
pp. 958–967, Jun. 2008.

[13] S. Kumar and M. Hebert, ‘‘A hierarchical field framework for unified
context-based classification,’’ in Proc. 10th IEEE Int. Conf. Comput.
Vis. (ICCV), vol. 2. Oct. 2005, pp. 1284–1291. [Online]. Available:
http://dx.doi.org/10.1109/ICCV.2005.9

[14] G. Heitz and D. Koller, ‘‘Learning spatial context: Using stuff to find
things,’’ in Proc. 10th Eur. Conf. Comput. Vis. (ECCV), 2008, pp. 30–43.
[Online]. Available: http://dx.doi.org/10.1007/978-3-540-88682-2_4

[15] C. Galleguillos, A. Rabinovich, and S. Belongie, ‘‘Object categoriza-
tion using co-occurrence, location and appearance,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2008, pp. 1–8.

[16] C. Galleguillos and S. Belongie, ‘‘Context based object
categorization: A critical survey,’’ Comput. Vis. Image Understand.,
vol. 114, no. 6, pp. 712–722, Jun. 2010. [Online]. Available:
http://dx.doi.org/10.1016/j.cviu.2010.02.004

[17] A. Torralba, K. P. Murphy, and W. T. Freeman, ‘‘Using the forest to see
the trees: exploiting context for visual object detection and localization,’’
Commun. ACM, vol. 53, no. 3, pp. 107–114, Mar. 2010. [Online]. Avail-
able: http://doi.acm.org/10.1145/1666420.1666446

[18] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan,
‘‘Object detection with discriminatively trained part-based models,’’ IEEE
Trans. Pattern Anal.Mach. Intell., vol. 32, no. 9, pp. 1627–1645, Sep. 2010.

[19] L. Wang, Y. Wu, T. Lu, and K. Chen, ‘‘Multiclass object detection
by combining local appearances and context,’’ in Proc. 19th ACM Int.
Conf. Multimedia (MM), 2011, pp. 1161–1164. [Online]. Available:
http://doi.acm.org/10.1145/2072298.2071964

[20] W.-S. Zheng, S. Gong, and T. Xiang, ‘‘Quantifying and transferring con-
textual information in object detection,’’ IEEE Trans. Pattern Anal. Mach.
Intell., vol. 34, no. 4, pp. 762–777, Apr. 2012.

[21] Y. Sheikh and M. Shah, ‘‘Bayesian modeling of dynamic scenes for object
detection,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 11,
pp. 1778–1792, Nov. 2005.

[22] R. Yan, J. Zhang, J. Yang, and A. G. Hauptmann, ‘‘A discriminative learn-
ing framework with pairwise constraints for video object classification,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 4, pp. 578–593,
Apr. 2006.

[23] M. Yang, Y. Wu, and G. Hua, ‘‘Context-aware visual tracking,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. 31, no. 7, pp. 1195–1209, Jul. 2009.

[24] A. Torralba, ‘‘Contextual priming for object detection,’’ Int.
J. Comput. Vis., vol. 53, no. 2, pp. 169–191, Jul. 2003. [Online].
Available: http://dx.doi.org/10.1023/A:1023052124951

[25] P. Carbonetto, N. de Freitas, and K. Barnard, ‘‘A statistical model for
general contextual object recognition,’’ in Proc. 8th Eur. Conf. Comput.
Vis., 2004, pp. 350–362.

[26] MathWorks. (Feb. 2014). Mathworks Announces Release 2012a of the
MATLAB and Simulink Product Families. [Online]. Available: http://www.
mathworks.com / company / newsroom /MathWorks-Announces-Release-
2012a-of-the-MATLAB-and-Simulink-Product-Families.html

[27] OpenCV. (Feb. 2014). [Online]. Available: http://opencv.org,
[28] Youtube. (Mar. 2014). [Online]. Available: http://www.youtube.com/
[29] P. Viola and M. Jones, ‘‘Rapid object detection using a boosted cascade of

simple features,’’ in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit. (CVPR), vol. 1. Dec. 2001, pp. I-511–I-518.

[30] K. Yamaguchi. Mexopencv. [Online]. Available: http://www.cs.
stonybrook.edu/~kyamagu/mexopencv/, accessed Jun. 11, 2014.

[31] P. F. Felzenszwalb, R. B. Girshick, and D. McAllester. Discriminatively
Trained Deformable Part Models, Release 4. [Online]. Available: http://
people.cs.uchicago.edu/~pff/latent-release4/, accessed Jun. 11, 2014.

[32] M. Everingham, L. V. Gool, C. K. I. Williams, J. Winn, and
A. Zisserman. The PASCAL Visual Object Classes Challenge
2009 (VOC2009) Results. [Online]. Available: http://www.pascal-
network.org/challenges/VOC/voc2009/workshop/index.html, accessed
Jun. 11, 2014.

[33] S. A. Chatzichristofis and Y. S. Boutalis, ‘‘CEDD: Color and edge direc-
tivity descriptor: A compact descriptor for image indexing and retrieval,’’
in Proc. 6th Int. Conf. Comput. Vis. Syst. (ICVS), 2008, pp. 312–322.

FAUSTO C. FLEITES received the B.S., M.S.,
and Ph.D. degrees in computer science from
Florida International University, Miami, FL, USA,
in 2009, 2012, and 2014, respectively. His research
interests are in multimedia mining and indexing
and big data. He was an Intern with TCL Research
America, Santa Clara, CA, USA, where he was
involved in research on large-scale object detection
and mining.

HAOHONG WANG is currently the General
Manager of TCL Research America, Santa Clara,
CA, USA, the North America’s research arm of
TCL Corporation. Prior to joining TCL Research
America, he held various technical and manage-
ment positions with AT&T, Dallas, TX, USA,
Catapult Communications, Doylestown, PA, USA,
Qualcomm, San Diego, CA, USA, Marvell,
Hamilton, Bermuda, and Cisco, San Jose, CA,
USA. His research involves in the areas of mul-

timedia computing and communications, data mining, and recommender
systems. He has authored over 50 articles in peer-reviewed journals and
international conferences. He is the inventor of more than 50 patents and
pending applications. He has co-authored the books entitled 3-D Visual Com-
munications (JohnWiley& Sons, 2013), 4GWireless Video Communications
(JohnWiley & Sons, 2009), and Computer Graphics (1997). He received the
Ph.D. degree from Northwestern University, Evanston, IL, USA.

Dr. Wang is the Editor-in-Chief of the Journal of Communications, the
Vice President of the Asia-Pacific Signal and Information Processing Asso-
ciation, the Co-Chair of the IEEE Systems, Man, and Cybernetics Society
Technical Committee on Human Perception and Multimedia Computing,
and the Chair of the Steering Committee of the International Conference
on Computing, Networking and Communications. He served as the General
Chair of the IEEE ICME 2011 (Barcelona), the IEEE ICCCN 2011 (Maui),
and the IEEE ICCCN 2008 (US Virgin Island), and the Technical Program
Committee Chair of the IEEE GLOBECOME 2010 (Miami). He chaired
the IEEE Multimedia Communications Technical Committee (2010–2012).
He was a member of the Steering Committee of the IEEE TRANSACTION ON

MULTIMEDIA (2010–2013) and the IEEE ICME conference (2010–2012), and
an Editor of many journals. He has received the Distinguished Service Award
by the IEEE ComSoc MMTC in 2013.

170 VOLUME 3, NO. 2, JUNE 2015



Fleites et al.: Enhancing Product Detection With Multicue Optimization

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

SHU-CHING CHEN has been a Full Professor
with the School of Computing and Information
Sciences, Florida International University (FIU),
Miami, FL, USA, since 2009, where he has
been an Assistant/Associate Professor since
1999. He received the Ph.D. degree in electri-
cal and computer engineering and the master’s
degrees in computer science, electrical engineer-
ing, and civil engineering from Purdue University,
West Lafayette, IN, USA, in 1998, 1992, 1995, and

1996, respectively.
He is currently the Director of the Distributed Multimedia Informa-

tion Systems Laboratory with the School of Computing and Information
Sciences. His main research interests include content-based image/video
retrieval, distributed multimedia database management systems, multimedia
data mining, multimedia systems, and disaster information management.
He has authored or co-authored over 280 research papers in journals,
refereed conference/symposium/workshop proceedings, book chapters, and
four books.

Dr. Chen was a recipient of the ACM Distinguished Scientist Award in
2011 and the best paper award from the IEEE International Symposium
on Multimedia in 2006. He was a recipient of the IEEE Systems, Man, and

Cybernetics (SMC) Society’s Outstanding Contribution Award in 2005 and
a co-recipient of the IEEE Most Active SMC Technical Committee Award
in 2006. He was also a recipient of the Inaugural Excellence in Graduate
Mentorship Award from FIU in 2006, the University Outstanding Faculty
Research Award from FIU in 2004, the Excellence in Mentorship Award
from the School of Computing and Information Sciences, FIU, in 2010,
the Outstanding Faculty Service Award from the School of Computing and
Information Sciences, FIU, in 2004, and the Outstanding Faculty Research
Award from the School of Computing and Information Sciences, FIU, in
2002 and 2012. He is a fellow of the Society of Information Reuse and
Integration.

He has been the General Chair and Program Chair for more than 40 con-
ferences, symposiums, andworkshops. He is the Founding Editor-in-Chief of
the International Journal of Multimedia Data Engineering and Management
and an Associate Editor/Editorial Board Member for other 20 journals. He
is the Chair of the IEEE Computer Society Technical Committee on Multi-
media Computing and the Co-Chair of the IEEE SMC Society’s Technical
Committee on Knowledge Acquisition in Intelligent Systems. He has been
a Guest Editor for more than 10 journal special issues. He was a member of
three steering committees (including, the IEEE TRANSACTIONSONMULTIMEDIA)
and several panels for conferences and NSF. He served as a member of the
Technical Program Committee for more than 320 professional meetings.

VOLUME 3, NO. 2, JUNE 2015 171


