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ABSTRACT Wearable computing becomes an emerging computing paradigm for various recently
developed wearable devices, such as Google Glass and the Samsung Galaxy Smartwatch, which have
significantly changed our daily life with new functions. To magnify the applications on wearable devices
with limited computational capability, storage, and battery capacity, in this paper, we propose a novel
three-layer architecture consisting of wearable devices, mobile devices, and a remote cloud for code offload-
ing. In particular, we offload a portion of computation tasks from wearable devices to local mobile devices
or remote cloud such that even applications with a heavy computation load can still be upheld on wearable
devices. Furthermore, considering the special characteristics and the requirements of wearable devices, we
investigate a code offloading strategy with a novel just-in-time objective, i.e., maximizing the number of tasks
that should be executed on wearable devices with guaranteed delay requirements. Because of the NP-hardness
of this problem as we prove, we propose a fast heuristic algorithm based on the genetic algorithm to solve it.
Finally, extensive simulations are conducted to show that our proposed algorithm significantly outperforms
the other three offloading strategies.

INDEX TERMS Wearable computing, just-in-time, code offloading, cloud.

I. INTRODUCTION
Along with the popularity of various wearable devices,
such as Google glass [1] and Magic Ring [2], wearable
computing has attracted more and more attentions since it
facilitates a new form of cyber-physical interaction com-
prising small body-worn devices that are always powered
on and accessible [3]–[6]. Various emerging applications,
such as healthy monitoring, reality augmentation, and ges-
ture or object recognition, require wearable devices to
provide fast processing and communication capability in
an energy-efficient manner. On the other hand, hardware
equipped on wearable devices is usually with limited size and
weight, hardly to provide enough capability and power for
complicated applications.

To fill the gap between resource demand and supply
on wearable devices, we propose a novel architecture that
offloads some codes to nearby mobile devices with stronger
processing capability or a remote cloud with unlimited com-
putation resources. Specifically, we consider a three-layer
architecture as shown in Fig. 1.Wearable devices with limited
computation capability forms the first layer closest to users.

FIGURE 1. Architecture.

Several mobile devices, such as smartphones or tablets, are
in the middle layer, which can communicate with wear-
able devices using short-range communication technologies
like ZigBee or Bluetooth. Meanwhile, these mobile devices
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can communicate with remote cloud as the third layer via
WiFi or LTE networks.

Under this three-layer architecture, we investigate how to
efficiently offload codes from wearable devices in the first
layer to computation resources in the second and the third
layers. In this paper, wearable applications are represented
as task graphs, in which methods or functions are denoted
by nodes and their relationship by edges. Note that some
tasks like sensing or display cannot be offloaded, i.e., they
should be executed only on wearable devices. These tasks
are referred to as w-tasks in the rest of our paper. For other
non-w-tasks, we propose a code offloading algorithm to
schedule them on mobile devices or cloud. To guarantee a
certain level of user experience, we consider a just-in-time
objective for code offloading, i.e., maximizing the number
of w-tasks that are executed within a given delay from their
direct previous ones. It is motivated by the fact that w-tasks
directly interact with users who cannot tolerate long delay
between any two adjacent w-tasks.

The main contributions of this paper are summarized
as follows.

• We propose a novel three-layer architecture for code
offloading from wearable devices to local mobile
devices and remote cloud. Different layers have distinct
processing capability, and they communicate with
each other using different wireless communication
technologies.

• We consider an optimization problem for code offload-
ing with a just-in-time objective with respect to user
experience. This problem is proved to be NP-hard, and
we develop a formulation that deals with the challenges
of both task assignment and task scheduling, i.e., to
determine where and in which order these tasks should
be executed, respectively.

• We develop a fast algorithm based on genetic algo-
rithm to approximate the optimal solution. Instead of
directly applying the standard genetic algorithm with
high complexity, we propose an enhanced algorithm by
creating chromosomes for global scheduling only, and
leaving the determination of other variables to a
simplified optimization problem.

• Finally, extensive simulations are conducted to evalu-
ate the performance of our proposed algorithm. The
results show that our algorithm can quickly converge to
performance close to the optimal solution.

The rest of this paper is organized as follows. We review
some important related work in Section 2. The system model
is presented in Section 3. Section 4 formulates the problem,
whose hardness is analyzed in Section 5. Section 6 presents
our proposed algorithm. The performance evaluation is given
in Section 7. Section 8 finally concludes this paper.

II. RELATED WORK
Code offloading is a critical technique to enable mobile cloud
computing [7]–[10] that resource-constrained mobile devices

can outsource their computation and storage to the remote
cloud. Luo et al. [11] have proposed the idea of using cloud
computing to enhance the capabilities of mobile devices.
Hyrax [12] has been proposed as a mobile cloud computing
platform that allows mobile devices to use cloud computing
platforms for data processing. Oberheide et al. [13] have
proposed to outsource antivirus services from mobile devices
to the cloud.

However, these work simply offloads the whole appli-
cation to the cloud, which would lead to high commu-
nication cost. Thus, a partition scheme has emerged to
partially offload applications to cloud for achieving a better
performance. CloneCloud [14] seamlessly offloads parts of
applications from devices to their clones residing in virtual
machines at cloud. Li et al. [15] use the static partitioning
method to improve the battery lifetime of mobile devices.
Rudenko et al. [16] show the Gaussian application (i.e., to
solve a system of linear algebraic equations) can be offloaded
into the remote server. Later, several solutions have been
proposed to find the optimal decision for partitioning applica-
tions before offloading. In [17], the authors present a partition
scheme based on the profiling information about computation
time and data sharing at the level of procedure calls. The
scheme constructs a cost graph, onwhich a branch-and-bound
algorithm [18] is applied with the objective to minimize
the total energy consumption of computation and the total
data communication cost. The idea of this algorithm is to
prune the search space to obtain an approximated solution.
In [19], the authors present an approach to decide which
components of Java programs should be offloaded. The
approach first divides a Java program into methods and uses
input parameters to compute the execution costs for these
methods. Then, it makes an optimal execution decision by
comparing the local execution cost of each method with the
remote execution cost estimated based on status of the current
wireless channel condition. Wang et al. [20] present a com-
putation offloading scheme on mobile devices and propose
a polynomial time algorithm to find an optimal program
partition. The proposed scheme partitions a program into the
distributed subprograms by producing a program abstraction,
where all physical memory references are mapped into the
references of abstract memory locations. Yang et al. [21]
extend this work by focusing on the system throughput rather
than the makespan of the application. Moreover, they propose
a genetic algorithm that converges to the global optimal
partition running on the cloud side.

Different from existing work, we extend the idea of code
offloading to wearable computing by proposing a three-layer
architecture.Moreover, we focus on the just-in-time objective
with respect to user experience, which has been little studied
by existing work.

III. SYSTEM MODEL
A. NETWORK MODEL
We consider a network consisting of a wearable device (WD),
several local mobile devices (MD) and a remote cloud (RC),
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which can be represented by a graph Gn(V ,E), where
V denotes a set of nodes including all devices and cloud, and
E represents a set of communication links among nodes in V .
The processing capability of each node i ∈ V is denoted by ci.
Typically, we have cWD ≤ cMD ≤ cRC , i.e., the wearable
device has the weakest processing capability because of low-
end hardware, and the processing speed of mobile devices is
faster than wearable device, but slower than cloud.

Each edge (i, j) ∈ E is associated with a transmission
rate rij depending on the adopted communication technology.
Local mobile devices communicate with the wearable device
through short-range wireless technologies (e.g., Bluetooth
or ZigBee). On the other hand, mobile devices communicate
with each other through direct link (e.g., WiFi direct or
LTE direct) or wide area network (e.g., 3G networks).

B. APPLICATION MODEL
A wearable application can be represented by a directed
acyclic graph Ga = (N ,A), where set N = {1, 2, ..., n}
denotes a number of tasks, and each task i ∈ N is associated
with a weight si that represents the number of instructions to
be executed. An example of task graph is shown in Fig. 2. The
tasks in set N can be divided into two subsets NW and NnoW ,
which include w-tasks and non-w-tasks, respectively.
We haveNW ∪NnoW = N , andNW ∩NnoW = ∅. For example,
tasks 1, 6, and 8 in Fig. 2 are w-tasks, which may represent
user input, picture capture, and result display, respectively,
that must be executed on wearable devices. The relationship
among tasks is represented by directed links in set A. For a
directed link (i, j) ∈ A, we call task i is the predecessor of
task j, and task j is the successor of task i. A task can execute
only when all its predecessors have finished. In addition, each
link (i, j) ∈ A is associated with a weight eij that represents
the amount of intermediate data from task i to j. We use P(j)
to denote the set of predecessors of task j. For example,
P(5) = {2, 3} in Fig. 2.

FIGURE 2. An example of task graph.

IV. PROBLEM STATEMENT
Due to size and weight constraints, wearable devices are
usually equipped with low-end hardware and powered by

batteries with limited capacity. Therefore, they can run only
some simple applications with low computation requirement.
To support more advanced applications with improved energy
efficiency, we propose to offload some codes from wearable
devices to local mobile devices and cloud. In other words,
instead of executing all tasks in the task graph on the wearable
device, we assign some of them to nearbymobile devices with
more powerful hardware and more energy supply, or a remote
cloud without resource constraints.

In our system model, some tasks, e.g., display or
sensing, should be executed on wearable devices. To guar-
antee user experience, we target on a novel just-in-time
objective, i.e., the duration between any two w-tasks should
be within a threshold δ. In some cases, this requirement is
too strict to generate a feasible solution. For example, there
are too many non-w-tasks between two w-tasks, such that the
duration between them cannot satisfy the threshold δ under
any scheduling. Therefore, we investigate a code offloading
problem for wearable devices with a relaxed objective, i.e.,
seeking a task scheduling to maximize the number of w-tasks
that can be executed within δ time after the previous w-task.
The problem is formally defined as follows.
Definition 1 [The JCOW (Just-in-time Code Offloading for

Wearable Computing) Problem]: given a network consisting
of a wearable device, several mobile devices, and a remote
cloud, and an application represented by a task graph,
we attempt to find a code offloading scheme that maximizes
the number of w-tasks, each of which starts within δ time after
its previous w-task.
Theorem 1: The JCOW problem is NP-hard.
Proof: It is easy to see that the JCOW problem is in

NP class as the objective function associated with a given
task scheduling can be evaluated in a polynomial time.
The remaining proof is done by reducing the well-known
multiprocessor scheduling problem to the JCOW problem.
The multiprocessor scheduling problem can be formally
described as follows.

INSTANCE: Given a set T of n tasks, and a set P of m
processors. Each task t ∈ T has a length lt .

QUESTION: Is there a task scheduling such that all tasks
can be finished with time δ?
We now describe the reduction from multiprocessor prob-

lem to an instance of the JCOW problem. First, we create
a wearable device and a remote cloud. For each processor
in P, we create a corresponding local device with the same
processing capability. We also create a task graph as shown
in Fig. 3, which consists of two w-tasks, i.e., i and j, and a set
T of non-w-tasks that can be executed in parallel.

In the following, we show that the multiprocessor schedul-
ing problem has a solution if and only if the resulting
instance of JCOW problem has a scheduling scheme that
satisfies the delay requirement. First, we suppose that there
exists a feasible scheduling of multiprocessor scheduling
problem such that all tasks can be finished before time δ.
It is straightforward to verify that the corresponding solution
in JCOW problem guarantees that the delay between two
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FIGURE 3. An instance of task graph.

w-tasks is less than δ. Then, we suppose that the JCOW
problem has a feasible solution such that the delay between
w-tasks i and j is less than δ. We schedule the non-w-tasks
assigned to each local device to the corresponding processors,
which forms a solution of the multiprocessor problem. Based
on the above analysis, we conclude that the JCOW problem is
NP-complete. Since the decision form of JCOW problem is
NP-complete, we can further conclude that the optimization
form of the original problem is NP-hard. �

To solve the JCOW problem, we need to deal with the
challenges of both task assignment and task scheduling. Task
assignment determines on which device each task should
be executed. Except w-tasks that should be executed only
on the wearable device, other tasks can be offloaded to
mobile devices and cloud. Compared with cloud, mobile
devices have limited processing capability, but they are
closer to the wearable device, leading to small latency
for data delivery among tasks. In addition to the tradeoff
between processing speed and transmission delay, the exis-
tence of multiple mobile devices further complicates task
assignment.

Task scheduling determines the execution sequence
of tasks assigned to the same device. For example, if
tasks 2, 3 and 5 in Fig. 2 are assigned to the same mobile
device, we have two possible execution sequences, i.e.,
{2, 3, 5} and {3, 2, 5}, with different performance. When
tasks are executed according to {2, 3, 5}, task 4 can quickly
get its input data after task 2, and run in parallel with
task 3 or 5 on the other device. Alternatively, if execution
sequence {3, 2, 5} is chosen, we can start w-task 6 earlier
while delaying the execution of task 4. Therefore, task
scheduling on all devices should be jointly considered to
achieve the optimal performance.

V. PROBLEM FORMULATION
In this section, we develop an optimization framework for the
JCOW problem by jointly considering both task assignment
and task scheduling. First, we define a binary variable xik for
task assignment as follows:

xik =

{
1, if task i ∈ N is assigned to node k ∈ V ;
0, otherwise.

Since each task can be assigned to one and only one node
in the network, we have the following constraint:∑

k∈V

xik = 1, ∀i ∈ N . (1)

For task scheduling, we first define a global scheduling
that determines the execution sequence when all tasks are
assigned to the same node. When tasks are assigned to mul-
tiple devices, the ones in the same device cannot violate the
execution sequence defined by the global scheduling. On the
other hand, we do not impose any sequence requirement
for tasks on different devices. For example, we specify a
sequence of {1, 2, 3, 4, 5, 6, 7, 8} for tasks in Fig. 2, which
will generate three local scheduling {1, 6, 8}, {2, 3, 5}, and
{4, 7} when they are assigned to three devices. Only local
scheduling should be obeyed, e.g., task 3 starts after task 2,
but task 5 can start before task 4, although it is after task 4 in
the global scheduling.

We define a binary variable uij to specify the global
scheduling as follows,

uij =


1, if task j ∈ N is scheduled

immediately after task i ∈ N ,
0, otherwise.

If we consider a virtual task n′ as both the origin
and termination of a circular scheduling, then any task in
N ′ = {n′} ∪ N should have exactly one successor and one
predecessor. These can be described by the constraints:∑

j∈N ′
uij = 1, i ∈ N ′, (2)

∑
i∈N ′

uij = 1, j ∈ N ′. (3)

Now we only need to consider the scheduling of users in N
by removing n′. In order to guarantee the resulting scheduling
acyclic, we define an integer variable ai to denote that task i
is scheduled in the ai-th place in the global scheduling. Then,
we have the following constraints for ai:

1 ≤ ai ≤ n, ∀i ∈ N , (4)

nuij − n+ 1 ≤ aj − ai ≤ n− 1− (n− 2)uij,

∀i, j ∈ N . (5)

Note that constraint (5) becomes aj− ai = 1 if task i is the
predecessor of j, i.e., uij = 1, and otherwise 1−n ≤ aj−ai ≤
n−1 (i.e., |aj−ai| ≤ n−1), which is alway satisfied because
of (4).

To simplify the calculation of task execution time later,
we define another binary variable yij for task scheduling as
follows:

yij =

{
1, if task j ∈ N is scheduled after i ∈ N ,
0, otherwise.

We use an example to explain the differences between uij
and yij. In the global scheduling {1, 2, 3, 4, 5, 6, 7, 8}, task 3
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is before task 5, so we have y35 = 1, but u35 = 0 because
task 5 is not a direct successor of task 3. The relationship
between yij and scheduling variables aj can be represented by:

aj − ai
n
≤ yij ≤

aj
ai
, ∀i, j ∈ N . (6)

If task i is scheduled before task j, i.e., ai < aj, above
constraint leads to yij = 1 because 0 < aj−ai

n < 1 and aj
ai
> 1.

Otherwise, i.e., ai > aj, we have yij = 0 because aj−ai
n < 0

and 0 < aj
ai
< 1.

Any task j ∈ N can start to execute when two conditions
are satisfied. First, the assigned device should be available,
which means no other tasks are currently executing on it. The
device available time T aj of task j should satisfy the following
constraint:

T aj ≥
∑
k∈V

xjkxikyijtei , ∀i ∈ P(j),∀j ∈ N , (7)

where tei is the finish time of task i.
Second, task i should be ready, i.e., it has received data

from all its predecessors in the task graph. The task ready
time T rj can be calculated by:

T rj = max
i∈P(j)

{
tei +

∑
(k,l)∈E

eijxikxjl
rkl

}
, ∀j ∈ N . (8)

If task j and one of its predecessor i ∈ P(j) are assigned to
different devices k and l, respectively, we need to consider the
communication delay eij

rkl
. Otherwise, data delivery between

them can be implemented via shared memory without com-
munication delay. In this case, the second term in the right
hand of constraint (8) will be zero.

The execution start time tsj of task j is determined by:

tsj = max{T aj ,T
r
j }, ∀j ∈ N . (9)

The relationship between tsj and t
e
j can be expressed as:

tej = tsj +
∑
k∈V

xjksj
ck

, ∀j ∈ N . (10)

Finally, we define a binary variable zij to describe whether
w-task j starts within δ time from its previous w-task i, i.e.,

zij =


1, if w-task j starts within δ time from

the previous w-task j,
0, otherwise.

We have the following constraints for zij:

yij[δ − (tsj − t
s
i )]

T
≤ zij ≤

δyij
tsj − t

s
i
, ∀i, j ∈ NW , (11)

where T is a large constant. By defining a binary variable wj
to represent whether w-task j starts within δ time from any
previous w-task, the JCOW problem can be formulated as a

Algorithm 1 The Genetic Algorithm Framework
Input:

A task graph Ga, a network Gn, a threshold δ;
Output:

The scheduling of tasks on devices;
1: generate a set of feasible solutions as an initial popula-

tion.
2: while number of generations is not exhausted do
3: for each population do
4: randomly select two chromosomes and apply

crossover operation
5: randomly select one chromosomes and apply muta-

tion operation
6: end for
7: evaluate all chromosomes in the population and per-

form selection
8: end while

mixed-integer nonlinear programming (MINLP) problem as
follows.

JCOW: max
∑
j∈NW

wj

wj ≤
∑
i∈NW

zij, ∀j ∈ NW

s.t. (1)–(11). (12)

Note that the MINLP problem is in general NP-hard,
and no mathematical solvers are available because of non-
linear constraints. Thus, we are motivated to design a fast
heuristic algorithm to approximate the optimal solution in
next section.

VI. ALGORITHM
A. BASIC IDEA
In this section, we propose a fast algorithm based on genetic
algorithm [22] to solve the JCOW problem. The basic idea is
to start with a population consisting of a set of feasible solu-
tions that are represented by chromosomes. Chromosomes
in one population are randomly selected to produce a new
population by crossover and mutation operations. The chro-
mosomes in the new population, which are also referred to as
offspring, are selected for survival according to their fitness
that is evaluated using our objective function. This heuristic
selection mimics the process of natural selection, i.e., the
more suitable chromosomes are, the more chances they have
to reproduce. This process is repeated until some condition,
for example, number of populations or improvement of the
best solution, is satisfied. The pseudo codes of our proposed
algorithm are shown in Algorithm 1.

To apply the genetic algorithm, we need to first define
chromosomes that represent feasible solutions of our
problem. A straightforward method is to define a variable as
a gene, such that a chromosome contains all variables to form
a feasible solution of the problem. However, by including all
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kinds of variables, such as the ones for task assignment (xik )
and scheduling (uij, aj, and yij) in a chromosome, it would
be difficult to guarantee its feasibility after crossover and
mutation operations.

Instead of including all variables in a chromosome,
we propose to create chromosomes for global schedul-
ing only, and leave the determination of other variables
to a simplified optimization framework. We still use the
task graph example in Fig. 2 to illustrate our chromosome
construction. As shown in Fig. 4(a), we create two chromo-
somes {1, 2, 3, 4, 5, 6, 7, 8} and {1, 3, 2, 6, 5, 7, 4, 8}, which
represent two possible global scheduling sequences. In the
following, we give the detailed design of crossover and
mutation operations on our defined chromosomes.

FIGURE 4. An example of crossover operation. (a) Standard
crossover. (b) Order crossover.

B. DETAILED DESIGN
1) CROSSOVER OPERATION
To conduct crossover operations in the standard genetic
algorithm, we randomly select a point as the crossover point,
and exchange the portions beyond the crosspoint to generate
two new chromosomes. Unfortunately, this operation would
lead to infeasible scheduling that violates the precedence con-
straints imposed by our task graph. As an example shown in
Fig. 4(a), standard crossover operation generates two children
that are both infeasible because task 4 appears twice and
task 6 even does not show up in the generated chromosome
{1, 2, 3, 4, 5, 7, 4, 8}.
As standard crossover operations may violate the prece-

dence constraints, we adopt the order crossover opera-
tion [22], [23] that always generates valid scheduling lists
from two valid parent chromosomes. Specifically, given
any two parent chromosomes, we first randomly choose a
crossover point and pass the left segment from the first parent
to the child. Then, we construct the right fragment of the child
by taking the remaining parts of the first parent, but in the
order of the other parent. For example, we set the crossover
point in the middle of two chromosomes shown in Fig. 4(b).
Then, we create a child chromosome with {1, 2, 3, 4} as its
first 4 elements, and other tasks are scheduled according to
their order in parent 2, i.e., {6, 5, 7, 8}. The other child can be
constructed in a similar way.

2) MUTATION OPERATION
We conduct mutation operation by swapping two randomly
selected tasks in the global scheduling list. Note that such
a mutation operation may generate invalid scheduling. For
example, if we swap tasks 3 and 5 of the chromosome
in Fig. 5, the resulting scheduling {1, 2, 5, 4, 3, 6, 7, 8} is
invalid because task 5 cannot start before task 3 according to
the task graph. To guarantee the feasibility, we check every
chromosome after mutation and abandon invalid ones.

FIGURE 5. An example of mutation operation.

3) FITNESS EVALUATION
The fitness of each chromosome is evaluated by the number
of w-tasks that satisfy the just-in-time requirement. Since
each chromosome determines a task scheduling sequence,
we only need to deal with task assignment now, which can
be obtained by solving a simplified optimization framework.
Given a chromosome, variables related with task scheduling,
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i.e., uij, aj, and yij, can be fixed, which will significantly
reduce the complexity of solving the MINLP problem formu-
lated in last section. We use ûij, âj, and ŷij to denote the fixed
values of uij, aj, and yij, respectively, and the task assignment
problem can be formulated as:

max
∑
j∈NW

wj,

subject to: T aj ≥
∑
k∈V

xjkxik ŷijtei , ∀i ∈ P(j),∀j ∈ N , (13)

ŷij[δ − (tsj − t
s
i )]

T
≤ zij ≤

δŷij
tsj − t

s
i
, ∀i, j ∈ NW ,

(1), (8), (9), (10), and (12). (14)

Although many variables and constraints are eliminated,
above formulation is still difficult to solve because of non-
linear constraints (8) and (13). To linearise these constraints,
we define a new binary variable vklij as:

vklij = xikxjl, ∀i, j ∈ N ,∀k, l ∈ V , (15)

such that the constraint (8) can be written in a linear form as:

T rj ≥ t
e
i +

∑
(k,l)∈E

eijvklij
rkl

, ∀i ∈ P(j),∀j ∈ N . (16)

Constraint (15) can be equivalently replaced by the
following linear constraints:

0 ≤ vklij ≤ xik , ∀i, j ∈ N ,∀k, l ∈ V , (17)

xik + xjl − 1 ≤ vklij ≤ xjl, ∀i, j ∈ N ,∀k, l ∈ V . (18)

To linearize constraint (13), we define a binary
variable φkij as:

φkij = vkkij t
e
i , ∀i ∈ P(j),∀j ∈ N ,∀k ∈ V , (19)

which can be equivalently replaced by:

0 ≤ wkij ≤ t
e
i , ∀i ∈ P(j),∀j ∈ N ,∀k ∈ V , (20)

tei − T (1− v
kk
ij ) ≤ wkij ≤ Tv

kk
ij ,

∀i ∈ P(j),∀j ∈ N ,∀k ∈ V . (21)

In a similar way, the constraint (14) can be linearized by
introducing a new variable ψij = zij(tsj − tsi ), such that
task assignment problem can be formulated as follows.

max
∑
j∈NW

wj,

subject to: T aj ≥
∑
k∈V

wkijŷij, ∀i ∈ P(j),∀j ∈ N , (22)

ŷij(δ − tsj + t
s
i ) ≤ zijT , ∀i, j ∈ NW , (23)

ψij ≤ δŷij ∀i, j ∈ NW , (24)

0 ≤ ψij ≤ tsj − t
s
i , ∀i, j ∈ NW , (25)

tsj − t
s
i − T (1− zij) ≤ ψij ≤ Tzij, ∀i, j ∈ NW , (26)

(1), (9), (10), (16)−(18), (20), and (21).

Although above formulation is a mixed-integer linear
programming (MILP) that is generally NP-hard, it can be
quickly solved by advanced algorithms like branch-and-
bound and mathematical tools like CPLEX. Since we focus
on problem formulation and genetic-based algorithm design
in this paper, the discussion of solving the MILP problem is
omitted due to space limit.

VII. PERFORMANCE EVALUATION
In this section, we conduct extensive simulations to evaluate
the performance of our proposed algorithm. The simulation
settings will be first introduced, followed by simulation
results that demonstrate the advantages of our proposed
algorithm.

A. SIMULATION SETTINGS
We first describe a default simulation setting with a number
of parameters, and then study the performance by changing
one parameter while fixing others. We randomly generate
task graphs [21] with 15 tasks, whose node and link weights
are Gaussian distributed with mean 100 and variance 10.
Among these tasks, 40% of them are randomly selected as
w-tasks. We create random networks, each containing of a
wearable device, 3mobile devices and the cloud. The link rate
relationship can be described as rMM−MM = γ rMM−WD =
γ 2rMM−RC , and the default value of γ is 50. For comparison,
we also consider other three schemes as follows.
Offloading nothing (OLN): all tasks are executed at the

wearable device.
Offloading all to cloud (OLAC): we offload all tasks except

w-tasks to the cloud.
Simple greedy offloading (SGO): we start from the first

task in the task graph, and greedily assign one by one in the
following to the network node that results in the earliest finish
time.

Our proposed algorithm is denoted by OLGA in the
following. All simulation results are averaged over 30 random
instances.

B. SIMULATION RESULTS
We first investigate the influence of number of tasks, and
show the percent of w-tasks that satisfy the just-in-time
requirement in Fig. 6. As the number of tasks grows, the
performance of all algorithms decreases. For example, the
percent of just-in-time tasks under OLGA is 94.3% when
the total number of tasks is 5. As the number of tasks
increases to 25, the corresponding percent is 79.5%, leading
to 18% degradation. Meanwhile, the performance of OLN,
OLAC, and SGO is always lower than OLGA, and their
performance degradation is more obvious. For example, OLN
has about 28% performance degradation as the number of
tasks increases from 5 to 25. OLN shows poor performance
because the processing capability of wearable device is very
limited, and imposing all tasks to it will seriously delay
the execution of w-tasks. Although OLAC can improve the
performance of OLN, it is much lower than OLGA because
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FIGURE 6. Percentage of just-in-time w-task versus different
number of tasks.

when each w-task finishes, it delivers results to the cloud that
will later return data for next w-tasks. The frequent com-
munication between wearable device and cloud still incurs
significant delay.

We then study the effect of w-tasks portion by fixing the
number of total tasks to 15. As shown in Fig. 7, the perfor-
mance of all algorithm increases as number of w-tasks grows.
For example, when 10% w-tasks exist in the task graph,
the percentage of just-in-time w-tasks are 18.6%, 49.8%,
71.2% and 81.4% under OLN, OLAC, SGO and OLGA,
respectively. As the portion of w-tasks grows to 50%, their
performance increases to 39.6%, 60%, 75.1% and 92.4%,
respectively. The reason is that when more w-tasks exist,
there are less other tasks between any two w-tasks, and the
just-in-time requirement can be easily satisfied. Also, OLGA
always outperforms the other three algorithms because too
many tasks are assigned to the wearable device with low
processing speed in OLN, and frequent message exchange
happens between wearable device and cloud under OLAC.

FIGURE 7. Percentage of just-in-time w-task versus different
number of w-tasks.

The influence of mobile devices is investigated by
changing its number from 1 to 5. As shown in Fig. 8,
the performance of our proposed algorithm increases as the
number of mobile devices grows. For example, when there
is only one mobile device, the percentage of just-in-time
w-tasks is 25.5%. The performance increases to 87.5% as the
number of mobile device grows to 5. Moreover, we observe
that performance improvement becomes less as more mobile
devices join the network. For example, two devices brings
about 20% performance improvement compared with the
case with only one device. However, the performance gap
decreases to 6%when the number ofmobile devices increases
from 4 to 5. There are two reasons for this phenomenon.
First, the computation capability of mobile devices has been
fully exploited by our algorithm as more devices are added
into the network. Second, the overhead of data exchange
among mobile devices will overwhelm the benefits of code
offloading when more mobile devices are involved.

FIGURE 8. Percentage of just-in-time w-task versus different
number of mobile devices.

FIGURE 9. Percentage of just-in-time w-task versus different
value of γ .

We study the influence of γ by changing its value from
10 to 200. Since OLN is not affected by γ , we only show
the performance of OLAC and OLGA in Fig. 9. As the
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value of γ grows, the percentage of just-in-time w-tasks
increases under both algorithms. For example, when γ = 10,
there are 40% and 80% w-tasks that satisfy the just-in-time
requirement under OLAC and OLGA, respectively. As γ
grows to 200, the corresponding percentage increases to
84.8% and 96.7%, respectively. We also observe that the
performance gap between OLAC and OLGA decreases from
40% to 14% as γ grows from 10 to 200. That is because
the communication overhead becomes less under larger
value of γ .

FIGURE 10. Percentage of just-in-time w-task versus different
number of tasks.

FIGURE 11. Execution time versus different number of tasks.

Finally, we compare our proposed algorithm with tradi-
tional genetic algorithm (GA) that uses all binary variables as
genes. We apply the crossover operation by randomly select-
ing a crossover point for two chromosomes and exchang-
ing their portions after the point. The mutation operation
can be conducted by randomly mutating a binary variable.
If the generated chromosomes represent infeasible solutions,
we abandon them and repeat above crossover and mutation
operations until we obtain feasible chromosomes. As shown
in Fig. 10, our proposed algorithm always outperforms
traditional GA. On the other hand, the execution time of GA

is significantly higher than OLGA because GA spends a large
portion of time to generate feasible chromosomes. As shown
in Fig. 11, when there are 10 tasks, GA needs more then
2 minutes to guarantee 86% just-in-time w-tasks, while
OLGA achieves the percentage of 91.3% within 5 seconds.

VIII. CONCLUSION
In this paper, we investigate just-in-time code offloading for
wearable computing. Instead of offloading all codes directly
to the remote cloud, we employ mobile devices nearby to
form a local mobile cloud with low communication delay
with the wearable device. In such a three-layer architecture,
we study the problem of task assignment and scheduling for a
given task graph with the just-in-time objective, i.e., the time
interval between any two w-tasks that should be executed on
wearable device cannot be greater than a threshold. This prob-
lem is proved to be NP-hard, and an efficient code offloading
algorithm based on genetic algorithm is proposed. Extensive
simulation results show that our proposal outperforms other
three offloading strategies significantly.
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