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Distribution Based Workload Modelling of
Continuous Queries

Alireza Khoshkbarforoushha, Rajiv Ranjan, SMIEEE, Raj Gaire, Ehsan Abbasnejad, Lizhe Wang,
SMIEEE, Albert Y. Zomaya, FIEEE

Abstract—Resource usage estimation for managing streaming workload in emerging applications domains such as enterprise
computing, smart cities, remote healthcare, and astronomy, has emerged as a challenging research problem. Such resource
estimation for processing continuous queries over streaming data is challenging due to: (i) uncertain stream arrival patterns, (ii) need to
process different mixes of queries, and (iii) varying resource consumption. Existing techniques approximate resource usage for a query
as a single point value which may not be sufficient because it is neither expressive enough nor does it capture the aforementioned
nature of streaming workload. In this paper, we present a novel approach of using mixture density networks to estimate the whole
spectrum of resource usage as probability density functions. We have evaluated our technique using the linear road benchmark and
TPC-H in both private and public clouds. The efficiency and applicability of the proposed approach is demonstrated via two novel
applications: i) predictable auto-scaling policy setting which highlights the potential of distribution prediction in consistent definition of
cloud elasticity rules; and ii) a distribution based admission controller which is able to efficiently admit or reject incoming queries based

on probabilistic SLAs compliance goals.

Index Terms—Data Stream processing workload, Continuous query, Resource usage estimation, Predictable auto-scaling policy,

Distribution-based admission controller.

1 INTRODUCTION

E FFICIENT resource consumption estimation in response
to a query processing task is central to the design and
development of various workload management strategies
such as dynamic provisioning, workload scheduling, and
admission control [6], [31]. All of these strategies typically
possess a prediction module which can provide accurate
estimations guidance on run-time operations such as adding
more resources, reordering query execution, or admitting or
rejecting an incoming query.

The data stream processing workload mainly consists
of registered continuous queries and data arrival rate dis-
tribution models. The key to proper exploitation of elas-
ticity is to have intelligence to predict how changing data
velocity and mix of continuous queries will affect the per-
formance of the underlying virtualized resources (e.g. CPU
utilization). Therefore, building resource usage estimation
for continuous queries is vital, yet challenging due to: (i)
variability of the data arrival rates and their distribution
models (e.g. logistic); (ii) variable resource consumption of
data stream processing workload; (iii) the need to process
different mixes of continuous queries; and (iv) uncertainties
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(e.g. contention) of the underlying cloud resources.

These complexities challenge the task of efficiently pro-
cessing such streaming workloads on cloud infrastructures
where users are charged for every CPU cycle used and
every data byte transferred in and out of the datacenter. In
this context, cloud service providers have to intelligently
balance between various variables including compliance
with Service Level Agreements (SLAs) and efficient usage
of infrastructure at scales while handling simultaneous peak
workloads from many clients.

Recent work has studied SQL query resource estimation
and run-time performance prediction using machine learn-
ing (ML) techniques [2], [12], [20]. These techniques treat
the database system as a black box and try to predict based
on the training dataset provided. These techniques offer the
promise of superior estimation accuracy, since they are able
to account for factors such as hardware characteristics of the
systems as well as interaction between various components.
All these techniques approximate resource usage for each
query as a single point value.

Unlike standard SQL queries that may (not) execute
multiple times (often each execution is independent of the
previous one), continuous queries are typically registered in
stream processing systems for a reasonable amount of time
and streams of data flow through the graph of operators
over this period. Rapidly time-varying data arrival rates
and different query constructs (e.g. time and tuple-based
windows) cause the resource demand for a given query to
fluctuate over time. To illustrate how streaming workload
resource demands fluctuate with time, we executed the
following simple CurActiveCars query from a linear road
benchmark [5]:
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Fig. 1: (a) CPU usage of the query against 500 and 10K
tuple/sec arrival rates. (b) Normalized histogram and KDE
fitted to CPU usage of CurActiveCars query against 10K

data arrival rate.

SELECT DISTINCT car_id
FROM CarSegStr [RANGE 30 SECONDS];

Figure 1 (a) illustrates the CPU usage for this query
against two different arrival rates: 500 tuple/sec and 10K
tuple/sec. As expected, the data arrival rates affect the
stream processing system resource demand drastically over
time. For example, the fitted Probability Density Function
(PDF) of the CPU usage for the query (Fig. 1b), shows that
even though the query is highly likely to consume between
20% and 35% CPU, we need to allow for possible peak
demands (i.e. 90%) to avoid a performance hit. Under these
circumstances, how can we address questions such as: How
much memory and CPU share will the query require if the arrival
rates double?, What would be the shape of CPU usage for more
complex queries?

For problems involving the prediction of continuous
variables (e.g. resource consumption), the single point es-
timation which is, in fact, a conditional average, provides
only a very limited description of the properties of the
target variable. This is particularly true for a data stream
processing workload in which the mapping to be learned is
multi-valued and the average of several correct target values
is not necessarily itself a correct value. Therefore, single
point resource usage estimation [2], [12], [20] is often not
adequate for streaming workload, since it is neither expres-
sive enough nor does it capture the multi-modal nature of
the target data. Continuous queries and streaming workload
resource management strategies rather require techniques
that provide a holistic picture of resource utilization as
a probability distribution. To achieve this, we propose a
novel approach for resource usage estimation of data stream
processing workloads. Our approach is based on the mix-
ture density network (MDN) [7], which approximates the
probability distribution over target values.

To illustrate one of the possible advantages of using
the proposed approach, consider Figure 2. It displays a
sample predicted PDF and actual CPU usage in terms of
normalized histogram and fitted Kernel Density Estimation
(KDE) for one of the experiments on linear road benchmark
[5] queries. As we can see, the estimated PDF approximates
the actual resource usage PDF closely. The predicted PDF
provides a complete description of the statistical properties
of the CPU utilization through which we are not only able to
capture the observation point, but also the whole spectrum
of the resource usage. In contrast, a best approximation from
the existing resource estimation techniques [2], [12], [20]
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Fig. 2: Sample distribution prediction of CPU usage for
NegAccTollStr query. Actual PDF is a fitted KDE function
against the actual CPU usage which is used for clarity and
comparison with the prediction.

merely provides the point which is visualized by a solid
vertical line. Unlike PDFs, with such estimation we are not
able to directly calculate any valuable statistical measures
(e.g. variance, confidence interval) about the target data.

1.1 Summary of Contributions

In summary we make the following contributions:

Distribution-Based Prediction. This paper transfers the
solid technique that is MDN from other computer science
fields to the cloud and database community. Though other
approaches such as Conditional Density Estimation Net-
work and Random Vector Functional Link are also available
to estimate the PDF, the benefit of using MDN is its ability
to model unknown distributions. In addition, it has already
been successfully applied in other domains such as speech
synthesis.

Resource Modelling of Continuous Queries. We de-
velop black-box models for predicting CPU and memory us-
age of centralized data stream processing workloads based
on continuous query features and data arrival rates. We also
consider resource consumption estimation in the presence
of concurrent executions of a large number of queries. Note
that the approach makes no assumption of the final shape
of distribution which is the key in resource modelling of
streaming workload as distribution models can be of any
shape and are application specific.

Distribution Based Workload Management. As a con-
crete demonstration of exploiting the proposed models,
we develop two novel applications: i) predictable auto-
scaling policy setting; and ii) distribution based admission
controller. In the former, we put forward the claim that
the workload behaviour distribution prediction provides
reliable information enabling consistent auto-scaling policy
setting in public clouds. In the latter, we experimentally
take the first step towards developing an admission control
which is able to react as per the probabilistic SLA. We eval-
uate our models on a real stream processing system, using
both the linear road [5] and TPC-H (www.tpc.org/tpch)
benchmarks on both private and public cloud environments.

2 APPROACH OVERVIEW

Figure 3 shows the workflow of our approach as discussed
next. In the proposed approach, we use ML technique to
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train a model on the historical logs. Once the model is built,
the workload manager of the stream processing system is
able to employ it in order to predict the distribution of a
new incoming workload (i.e. query). The predicted PDFs
(or mixture models) are then used for different workload
management strategies such as admission control, auto-
scaling rule setting.

Resource Usage Distribution Prediction: For this pur-
pose, our approach combines the knowledge of continuous
query processing with the MDN statistical model. To do so,
we firstly execute the training query workload and pro-
file its resource usage values along with predefined query
features. Secondly, we input the query features and data
arrival rates to the MDN model for training. Following
this, the model statistically analyzes the input features’
values and actual observation of the resource consumption
of the training set and predicts the probability distribution
parameters (i.e. mean, variance, and mixing coefficients)
over target values. Once the model is built and materialized,
it can then be used to estimate the resource usage value of
new incoming queries based on the query features’ values.
Section 4 covers the details of the technique thoroughly.

Auto-scaling Policy Setting: Once the resource distribu-
tion prediction becomes available, its exploitation in data
stream processing workload management is yet another
challenge. Auto-scaling policy setting application demon-
strates that the distribution prediction provides a reliable
source of information for defining appropriate resource elas-
ticity rules. To do so, the probability of auto-scaling policy
activation is calculated. This estimation is then used as a
critical parameter for analysing and predicting the impacts
of the defined rules on the resources. This feature allows
us to define consistent auto-scaling policies or revisit the
existing thresholds if needed. More details of the application
will be given in Section 5.1.

Distribution based Admission Controller: As another
concrete application of the distribution prediction, we de-
velop an admission controller which is able to efficiently
admit or reject the incoming queries based on the predicted
resource usage PDFs. For this purpose, the SLA miss prob-
ability of the incoming workload is calculated. This estima-
tion is then evaluated against different predefined decision
making thresholds. This feature enables wise definition of
most-to-least probable thresholds simultaneously in order to
address different SLA compliances cost-effectively. We will
discuss more about the proposed admission controller in
Supplementary Section 1.

3 RELATED WORK

There are two lines of related work; one directly investigates
query performance prediction and the other uses estima-
tions for workload management. In this section, we will
discuss both and highlight the research gap.

Workload Performance Prediction. Query processing
run-time and resource estimation has been investigated in
recent years. This line of work explores the estimation of
run-time and also resource consumption of SQL queries in
the context of both interleaved [2], [10], [20] and parallel
execution [1], [10], [22], [28]. In the majority of related
work, different statistical ML techniques are applied for
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Fig. 3: Our approach builds an MDN model based on
the historical logs of queries to pedict distribution of new
incoming workloads. The predicted PDFs are then used for
developing two novel workload management strategies: a)
Distribution based admission control, and b) Auto-scaling
policy setting.

query performance estimation. Specifically, techniques such
as Kernel Canonical Correlation Analysis (KCCA), Multiple
Additive Regression-Trees (MART), and Support Vector Ma-
chines (SVM) have been respectively built upon query plan
features [12], operator level features [20], or both [2].

When it comes to concurrent workloads, the authors in
[1] describe an experimental modelling approach for cap-
turing interactions in query mixes. To do so, the interactions
are modelled statistically using different regression models.
Along similar lines, [10] argues that buffer access latency
measure is highly correlated with the query execution time,
and they use linear regression techniques for mapping
buffer access latency to the execution times. The authors
in [11] also use the k-nearest neighbors prediction technique
to identify spoiler model coefficients for the new template
based on similar ones. All of the above studies approximate
the performance of workload as a single point value.

Data Processing Workload Management. Workload
management and resource sizing for data and stream pro-
cessing systems use either reactive (e.g. using system load
dynamics monitoring) [8], or predictive techniques (e.g.
estimating the workload performance) [6], [9], [16], [30], [31]
for decision making. In all these predictive approaches, they
estimate the workload performance as a single point value
[6], [16], assume that the PDF for the workload execution
time is already available [31], or estimate (and not predict)
the PDF using sampling based techniques [9], [30].

Specifically, [6] proposes an input and query aware par-
titioning technique which relies on the input rate estimation
using time series forecasting. However, predicting workload
using a time series analysis is not adequate because event
rates usually change in an unpredictable way and a sin-
gle point estimate does not reflect the distribution. In this
regard, although the authors in [31] voiced the issue, they
assume that the PDF for the execution time of a query is
already available to the service provider. As the single point
estimation gives no clue of the confidence on the estimation,
they use a committee based ML model in the next work
[30]. Along similar lines, [9] approximates the probability
distribution using a histogram-based approach. However,
this approach is only a simple approximation of distribution
based on a number of already collected query execution
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times. This means it is incapable of predicting the PDF based
on the features of a new incoming query.

A number of inquiries [18], [21], [24] have been made
into the elasticity management of either data-intensive sys-
tems or single/multi-tier web applications using control
theory [21], [24], Queueing theory [25], fuzzy logic [18],
[19] and so on. For example, [26] emphasizes the resource
overbooking benefits in shared hosting platforms. In [21],
[24] the authors use control theory approach to allocate
required resources to web applications in an automatic
manner. Our work, in fact, creates the building block for
these resource allocation techniques and in particular those
that are employed for elasticity management of streaming
data workloads.

Concluding Remarks. Based on the above discussions,
readers may have noticed the broken link between the two
threads of work. Most of the existing techniques for query
resource or performance prediction contemplate the target
as a single point value, whereas the techniques proposed in
recent studies for workload management [9], [30], [31] rely
on the whole spectrum of performance or resource usage
because even in an OLTP workload, queries with the same
query time may follow different query time distributions
[31]. The authors in [27] propose a white-box technique
for quantifying the uncertainties of query execution time
prediction. It treats fixed constant values of operators se-
lectivities, unit cost of single CPU or I/O operation as
random variables and develop analytics techniques to infer
distribution of likely running times. Although the work
differs to ours as they do not target continuous queries
and resource usage distribution prediction, it does have
the following limitations. The technique is limited to the
PostgreSQL optimizer cost model, and more importantly it
does not consider concurrent query execution.

Our work attempts to address the above issues by
proposing a set of black-box models which are able to pre-
dict the distribution of resource usage of highly concurrent
workloads. Note that ML algorithms compared to white-box
approaches [27], [29] ease the task of cost model generation
for increasingly complex data management systems since
they are able to capture implicitly the internal behaviour
of components and their interaction with OS modules in
terms of their resource footprint. This complexity is further
intensified in clouds due to the heterogeneity of resource
types and uncertainties of the underlying infrastructure.

4 RESOURCE USAGE PREDICTION
4.1 Single Continuous Query

A streaming application is represented by a directed graph
whose vertices are operators and whose edges are streams.
In our approach, the continuous query feature set and data
arrival rate distribution models form the input vector. This
exploits an important observation, that data stream process-
ing workload behaviour is predominantly the function of
query features along with data arrival rates.

Key to the accuracy of a prediction model is the features
used to train the model. We identify a set of potential fea-
tures that affect the stream processing performance and the
query resource usage. The potential features are gathered
by analyzing those considered in related work [2], [12] and

TABLE 1: Feature input for training model. 4
Feature Name Description Collection
Source
avg_arrival_rate | Average arrival rate (tu- | Distribution
ple/sec) Model
stream_no # of data stream sources Query state-
ment
subquery_no # of nested subqueries Query state-
ment
agg_func_no # of aggregation functions Query state-
ment
join_predicate # of join predicates in query | Query state-
ment
project_size Projection size of query Query state-
ment
equ_predicate # of equality selection predi- | Query state-
cates ment
inequ_predicate | # of non_equality selection | Query state-
predicates ment
agg_column_no | # of columns involved in | Query state-
GROUP BY clause ment
opt_type_count # of each operator type in | Query plan
query plan

win_type_size The size of windows which | Query state-
is either time unit (sec) in | ment
time window or tuple unit

(number) in tuple window

type
win_type_slide The sliding value of the win- | Query state-
dow type ment

those we observed in various performance test analyses.
Intuitively, not all features have high-correlation with the
target of the model and thus we need to select only those
features with high predictive capability. To this end, we
use a correlation-based feature subset selection method [15]
along with best-first search for identifying the most effective
attributes from feature vector spaces.

Table 1 lists the feature set used as an input to the
model. The attributes are extracted from multiple sources
such as query statement text (e.g. win_type_size), distri-
bution model (e.g. avg_arrival_rate), or query plan (e.g.
opt_type_count). Although previous studies [2] showed that
the selectivity of operators and cardinality estimates are
useful features for execution time prediction, the reason why
they were not considered in our feature set is discussed in
section 4.2.1. Note that the above list is further customized
based on the target prediction, because attributes have dif-
ferent predictive impact on CPU and memory usage estima-
tion. A feature that highly correlates memory consumption
might have no correlation with CPU usage. For example,
the feature selection task shows that the window size has an
insignificant effect on CPU usage prediction, while it affects
memory usage prediction heavily.

4.2 Concurrent Workload

A streaming application typically consists of a number of
continuous queries simultaneously being processed by the
system. This means a resource usage modelling technique
has to consider resource consumption estimation in the pres-
ence of concurrent executions and the combined workload
of a large number of queries.

Queries running concurrently in a mix may either posi-
tively or negatively affect each other [1]. Therefore, to model
a concurrent workload, we need to study: i) the way a
system runs a batch of queries and applies optimizations
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to reflect possible positive interaction in the feature set,
and ii) the way queries compete for shared hardware re-
sources to identify possible negative effects on the mix
performance. These two issues are studied in the following
sub-subsections respectively.

4.2.1 Stream Processing Optimizations

The first step toward modelling concurrent workload is
feature set extension. This process is, in fact, adapting the
features for isolated query resource usage prediction to
include features from concurrent executions. Since the pro-
posed technique is based upon continuous query features,
the key to successful modelling of combined workloads is
the function of understanding the way the system applies
optimizations. The main optimization techniques are oper-
ator reordering, redundancy elimination, placement, state
sharing, and so on [17] that are somewhat supported by
today’s stream processing systems. For example, Odysseus
supports query rewrite (e.g. selection and projection push
down) and query sharing. Note that the mentioned opti-
mization strategies are not exclusive to multi-query execu-
tion. However, some strategies such as sub-graph sharing
or state sharing are more likely to be applied in the case of
concurrent workload.

According to the initial feature set selection (Table 1),
three optimization strategies including redundancy elimina-
tion, state sharing, and reordering need to be investigated
for feature set extension. Because the others are either i)
not applicable due to the scope of this study (e.g. opera-
tor placement which is for distributed stream processing
environment), ii) application specific (e.g. load shedding
that trades performance against accuracy of results), or iii)
related to system performance configuration (e.g. batching
which is a typical performance tuning option in stream
processing systems such as Oracle CEP).

Redundancy Elimination. In case of multiple-query
registration, a data stream processing system constructs
a global query graph, which contains all operators of all
currently active queries in the system. In this case, a query
optimization component is used to detect reusable operators
in different queries. For example, the Odysseus stream
processing system [3] applies query sharing which uses
one operator in case of existing multiple same operators in
different queries from the sources to the sinks. Therefore,
for concurrent workload we include a list of distinct query
execution plan nodes (i.e. operators) for all the queries in
our training set as opposed to a single continuous query.
This defines a global feature space to describe all concurrent
queries in the workload.

State Sharing. This strategy optimizes for space by
avoiding unnecessary copies of data. For example, contin-
uous query language (CQL) implements windows by non-
shared array of pointers to shared data items, such that a
single data item might be pointed to from multiple windows
[4]. Therefore, when there are multiple window operators
against the same source, we consider the largest window
size (i.e. win_type_size) in the feature list.

Operator Reordering. Reordering is profitable when
there is a chance to move selective operators before costly
ones. For example, Odysseus [3] applies selection and pro-
jection push-down which avoids unnecessary processing.

Transactions on Emerging Topics in Computing
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This optimization which is typically performed by the opti-
mizer affects the selectivity ratio (i.e. the number of output
data items per input data items) of the operator even in
single query execution. However we did not include the
selectivity ratio of the operator as a feature to our training
vector since in a stream processing environment we do not
have control over the selectivity of the operators due to con-
sistent data arrival rate fluctuations. Moreover, preliminary
investigation of the influence of operator selectivity using
a sampling approach in a set of experiments found that its
contribution to the accuracy of resource usage distribution
prediction is negligible.

4.2.2 Resource Contention

When multiple queries are registered on the same host,
the operators competing for common hardware resources
such as disk, memory, or CPU might negatively impact
performance. As we aim at resource usage modelling, the
resource contention is not a challenge because our models
capture the overall resource utilization. This means if there
is a contention we will encounter higher CPU utilization and
vice versa. Thus, the contention issue is implicitly handled
by our models.

Resource contention hits query performance such as
latency and throughput. Although prediction of these mea-
sures is not in the focus of this study, our approach to
resource usage modelling paves the way for scrutinizing
the concurrency impact on query performance prediction.
Specifically, distribution based prediction of resource uti-
lization for a given query when it runs either in isolation
or in a mix provides upper and lower bounds of resource
usage. Based on this information, analytical or statistical
models (e.g. correlation) are able to describe how query
performance varies under different resource availability sce-
narios.

4.3 Model Selection

The classic statistical ML techniques such as multilayer
perceptron (MLP) are able to model the statistical properties
of data generator. However, if the data has a complex
structure, for example it is a one-to-many mapping, then
these techniques are inadequate [23]. The scatter plot of
CPU usage against average arrival rates in CurActiveCars
query (Figure 4) illustrates the multi-valued mapping point
in which for the same arrival rate such as 10K (tuple/sec)
there are many CPU usage values which range from 20 to
90 percent. This means that the conditional distribution for
many input value such as 10K or 9998 is multi-modal. Such
a multi-modality can be poorly represented by the condi-
tional average. Therefore, we need a technique that is able
to capture the multi-modal nature of the target data density
function. Note that such behavior in data stream processing
workloads is common because the window construct has the
potential to impose such significant variations in resource
demands even if we disregard arrival rate fluctuations or
performance violation from other workloads.

Our approach employs MDN [7], a special type of Ar-
tificial Neural Network (ANN), in which the target (e.g.
CPU usage) is represented as a conditional PDF. The condi-
tional distribution represents a complete description of data

https://mc.manuscriptcentral.com/tetc-cs
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arrival rates showing the multi-valued mapping situation

from the same input.

generation. An MDN fuses a mixture model with an ANN.
We utilize a Gaussian Mixture Model (GMM) based MDN
where the conditional density functions are represented
by a weighted mixture of Gaussians. The GMM is a very
powerful way of modelling densities, since it is able to
fully describe models by three parameters that determine
Gaussians and their membership weights. From this density,
we can calculate the mean which is the conditional average
of the target data. Moreover, full densities are also used to
accurately estimate expectation and variance that are two
main statistics characterizing the distribution.

Figure 5 gives an overview of the approach. The main
input features of the model consists of collected query
features from the CQL statement and query plan. In this
process, the neural network is responsible for mapping the
input vector x to the parameters of the mixture model
(i, pi, 0%), which in return provides the conditional distri-
bution. In fact, Figure 5 shows a sketchy example MDN with
2 components that takes a feature set x of dimensionality
4 as input the vector and provides the conditional density
p(t|z) over target ¢ of dimensionality 1.

A number of other approaches such as Conditional
Density Estimation Network and Random Vector Functional
Link are also available to estimate the PDF. The benefit of
using MDN is due to its ability to model unknown distri-
butions as exhibited by continuous queries and streaming
workload.

4.3.1 Mixture Density Networks

The combined structure of feed-forward neural network and
a mixture model make an MDN. In MDN, the distribution
of the outputs ¢ is described by a parametric model. The
parameters of this model are determined by the output
of a neural network. Specifically, an MDN maps a set of
input features x to the parameters of a GMM including
mixture weights «;, mean p1;, and variance o2 which in turn
produces the full PDF of an output feature ¢, conditioned
on the input vector p(t|z). Thus, the conditional density
function takes the form of GMM as follows:

M
pltlr) = ai(@)ei(t|r) (1)
i=1

6

Query Plan:

CQL Query Statement: =

Aggregate
SELECT exp_way, dir, seg, AVG(speed) as speed

FROM CarSeqStr [RANGE 5 MINUTES]
GROUP BY exp_way, dir, seg

a

‘ Input Vector: {x,.X,,... X5} ‘_
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Fig. 5: Overview of the proposed approach for predicting
the resource usage distribution of continuous queries.

where M is the number of mixture components, ¢; is the
1th Gaussian component’s contribution to the conditional
density of the target vector ¢ as follows:

o) = e I @
The MDN approximates the GMM as:
e ) 5
> i1 exp(z5)
o; = exp(z]) @
H= A )

where z{*, 27, and z!" are the outputs of the neural network
corresponding to the mixture weights, variance, and mean
for the 7th Gaussian component in the GMM, given z [7].
To constrain the mixture weights to be positive and sum to
unity, the softmax function is used in Eq. (3) which relates
the output of corresponding units in the neural network to
the mixing coefficients. Likewise, the variance parameters
(Eq. 4) are related to the outputs of ANN which constrains
the standard deviations to be positive.

5 DISTRIBUTION-BASED WORKLOAD MANAGE-
MENT

Before presenting the experimental results about the per-
formance of the proposed technique, here we discuss its
applications to answer the following key question: Is the
proposed approach applicable to resource management
problems of stream processing systems in practice?

https://mc.manuscriptcentral.com/tetc-cs
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5.1 Predictable Auto-Scaling Policy Setting

Developing efficient and stable auto-scaling techniques in
cloud environments is a challenging task due to heteroge-
neous infrastructure and transient behaviour of workloads.
A number of studies approach this problem with the aid of
control theory [21], reinforcement learning [16], and the like.
The hard challenge is to determine a suitable policy for the
decision maker (e.g. resource provisioner), as poor policy
settings can lead to either resource inefficiency or instability.
For example, consider CPU utilization of the NegAccTollStr
and its corresponding auto-scaling policies, as shown in
Figure 6 (a). Note that these two policies are defined to avoid
SLA misses ! and resource dissipation respectively.

For the NegAccTollStr query, as the peaks go beyond
90% within 2 consecutive periods of 1 minute, the first
policy is triggered and an additional virtual server is in-
stantiated to process the workload (e.g. via stream redi-
rectory technique). However, the load may now drop far
below the predefined threshold of the second policy (i.e.
avg(cpu)<15%) as the combined capacity of two virtual
servers exceeds the current stream processing demands.
Therefore, the second policy is activated and the provisioner
decreases the number of instances to one. This oscillatory
behaviour can continue indefinitely depending on the vari-
ation in data stream arrival rate and continuous query
processing resource consumption pattern. [21] also reports
the same observations. To avoid oscillations, [21] develops
the proportional thresholding technique which in fact works
by dynamically configuring the range for the controller
variables. Though this technique can tackle the oscillatory
problem at run-time, it is incapable of anticipating the effects
of auto-scaling policies before workload execution which
can lead to SLA violations.

To circumvent the limitation of existing approaches, we
propose a novel approach as discussed next. We perceive
that the reason for the oscillations is due to defining in-
consistent policies that are agnostic to changes in work-
load behaviour. In our approach such inconsistencies are
avoided by exploiting the workload distribution prediction
for specifying and selecting auto-scaling policies. For exam-
ple consider SegToll resource usage behaviour as shown in
Figure 6 (b) in which only the first policy will be triggered.
Based on the workload distribution we do not expect to
meet the second policy and following instability even after
initial resource resizing.

Based on this observation, we claim that the workload
behaviour distribution prediction provides more reliable
advice for auto-scaling policy setting. In fact, having the un-
derstanding about the upper and lower bound of resource
utilization helps in anticipating auto-scaling policy effects
beforehand and adjust the configurations accordingly. In
other words, a workload-distribution driven auto-scaling
policy setting approach can help administrators in defining
more consistent auto-scaling policies.

To validate the hypothesis, we designed an experiment
to evaluate whether the predicted distribution is able to

1. We assume that CPU utilization above 90% leads to SLA misses.
We will discuss more about this relationship in Supplementary Section
1.
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Policy 1: “IF max(cpu) > 90% for 2 Consec. periods of 1 min
THEN #VM = #VM + 1” AND cool down for 60 Sec.

Policy 2: “IF Avg(cpu) < 15% for 2 Consec. periods of 1 min
THEN #VM = #VM — 1” AND cool down for 60 Sec.
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Fig. 6: The CPU utilization of (a) NegAccTollStr and (b) Seg-
Toll queries for 5 minutes. The sample auto-scaling policies
cause osiliation behaviour in NegAccTollStr workload, since
they have been defined irrespective of the workload CPU
usage distribution.

characterize the most/least probable auto-scaling policies before
the actual workload execution or not.

Workload: A representative workload was built based
on the Linear Road Benchmark (LRB), LRB Mix_EC2. The
workload contains 5507 execution traces for 17 query mixes.
The mixes are at multiprogramming level (MPL) range from
2 to 5. All the mixes were logged for about 4 minutes on
Amazon t2.micro instance. To make the test workload, we
randomly selected 32 mixes of queries — different from the
training set — at MPL range from 2 to 5.

Auto-scaling Policy Generation: In the next step, 128
random auto-scaling policies were generated. The 128 po-
lices were randomly split into 32 sets, each corresponds to a
test query mix. This means each mix (out of 32 mixes) is run
against a group of 4 auto-scaling policies. Therefore, before
running each of the query mixes, 4 auto-scaling policies
are defined on t2.micro EC2 instance. We developed all the
policies as per the Amazon EC2 template:

Policy Template: Take action A> whenever {Average, Max,
Min} of CPU Utilization is {>, >, <, <} than + for at least
{2, 5} consecutive periods of {1, 5} minutes.

where the threshold v was randomly generated in the range
(0,100) percent.

Training the Model: We trained the MDN classifier
based on the LRB Mix_EC2 training set. We then used
the trained model to predict the PDFs of CPU usage for
the query mixes of test dataset. In the next step, the
probabilities of the policies were calculated based on the
predicted PDFs before any workload execution takes place.
Once probabilities were calculated, all the query mixes were
run one after another against the predefined rules on the
EC2 instance and all the activated policies were recorded
over the experiment period. The experiment duration was
specified according to the policy monitoring period. In our
experiment it was twice the monitoring duration®. This
workflow was continued for all 32 mixes in test dataset.

We now discuss how to calculate the auto-scaling policy
probability. To do so, we first compute the probability of the

2. In our experiment it is a simple notification email.
3. For example, the experiment duration is 4 minutes for a policy
with a monitoring duration of 2 consecutive periods of 1 minute.

https://mc.manuscriptcentral.com/tetc-cs
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Fig. 7: The probabilities of the randomly generated auto-
scaling policies for 12 (out of 32) mixes of test queries.
Each query mix evaluated against 4 auto-scaling policies as
shown in the form of bright and dark coloured bars. The
bright and dark bars within each policy set respectively
show the activated and not activated rules at run-time. Our
technique has successfully characterized the highly possible
policies for all mixes but Mix 4, 8, and 12.

CPU utilization using the following equation:

b
Prla< X <] :/ fx(x)dx (6)

Where a random variable X has density fx and the vari-
ables a and b are the CPU utilization thresholds. Eq. 6
gives the probability of CPU (or memory) utilization within
the given thresholds. However, the auto-scaling policies are
also dependent on the consecutive occurrence of the events
(i-e. the condition). The events that lead to activation of
thresholds are independent of time. Based on the probability
theory, assuming independence (i.e., the probability of an
event such as a threshold activation at a given point of
time is independent from the past occurrence of the same
type of event), we can compute the probability of two or
more independent events by multiplying their individual
probabilities. Therefore, the probability of an auto-scaling
policy occurrence for m consecutive periods is calculated in
a general form as:

Probability(policy, m) = H Pry, [ak <X< bk] (7)
k=1

The above definition relaxes the constraint of hav-
ing the same thresholds for arbitrary consecutive peri-
ods, though existing auto-scaling frameworks (e.g. Amazon
Auto-Scaling Service, Azure Fabric Controller) do not offer
this important feature yet. We note that the PDFs do not
reflect the probability of workload behaviour across time.
However, we show in our experiment that extending the
probabilities to an arbitrary number of consecutive periods
works well in practice.

Before discussing the results, let us recap the purpose of
the experiment. There are 32 rule groups corresponding to
32 query mixes. Each group contains 4 auto-scaling policies
of which two are the most and least probable policies as
regards to the calculated probabilities. This means they
are highly likely and highly unlikely to be triggered after
workload execution. We now want to evaluate, for example,

8

What percentage of the rules with the highest probability values
are activated?

Based on the experimental results, we found that 62% of
rules with the highest probability were activated after work-
load execution. Moreover, 87% of rules that were character-
ized as unlikely to be triggered at run-time also held true
(i.e. they were not triggered). Figure 7 displays the results
for 12 out of 32 test query mixes. As the bar chart shows, the
proposed technique performs well in predicting the most
probable auto-scaling policies for each policy group. As we
can see, it only failed to characterize the highly possible
policies for Mixes 4, 8, and 12.

In summary, these findings clearly demonstrate that our
hypothesis held true and the distribution-based prediction
provides a reliable source of information for predictable
auto-scaling policy setting. Apart from its contribution to
oscillatory behaviour avoidance, we believe that this feature
helps users to use cloud infrastructure economically where
they are charged for every CPU cycle used and every data
byte transferred in and out of the datacenter.

6 EXPERIMENT

In this section we evaluate the performance of the approach
as regards to the state of the art single point prediction
techniques. We conduct our experiment on both public and
private clouds to evaluate the accuracy of estimations in the
presence of any possible performance variations. However,
as we obtained identical results from the experiment on
Amazon public cloud, those results are omitted.

6.1 Experimental Setup

Two virtual machine (VM) instances, one for load generation
and another as a host for the stream processing system, were
employed from CSIRO private cloud. The stream generator
system was a ml.medium size instance with 4GB RAM, 2
VCPU running Ubuntu 12.04.02 Server 64b. All queries were
executed on m1.large instance size with 8GB RAM, 4VCPU,
and the same OS. The hypervisor is KVM, and the nodes are
connected with 10GB Ethernet.

6.1.1 Dataset and Workload

To validate our approach we deployed both linear road
benchmark (LRB) [5] and slightly modified TPC-H in a
commercial centralized stream processing system X.

LRB Workload. This workload has primarily been de-
signed for comparing performance characteristics of stream-
ing systems. It contains 20 queries with different levels of
complexity in terms of execution plan. We treated them as
template queries. Excluding the ad-hoc query answering set
reduced them to 17 template queries. Various arrival rates
(e.g. from 100 to 100k tuple/second) along with random
substitution of window size (e.g. from 1 to 900 sec.) resulted
in 17289 execution traces. To generate data streams, 500MB
data (i.e. 3 hours simulated traffic management data) was
fed into the streaming system using the system’s built-
in load generator which played the role of data driver in
the LRB. Each query was registered and logged for more
than 3x of its window size to capture the impacts of time
windows on resource consumption properly.

https://mc.manuscriptcentral.com/tetc-cs
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LRB Mix Workload. To build a representative workload
of concurrent query executions, we collected 585 execution
traces for 18 query mixes. To generate the dataset, different
combinations of the queries at multiprogramming level
(MPL) range from 2 to 17 were randomly selected and
registered in the stream processing system. Once the mixes
start processing of the incoming data streams the CPU and
memory usage of the system are collected.

TPC-H Workload. In contrast to the LRB workload, TPC-
H has been designed primarily for DBMSs, though it has
also been used in stream processing research. In this context,
each relation is considered as a data stream source and the
tuples are sent toward the stream processing engine over the
network using a load generator. Therefore, each registered
query references a subset of the relations in the input over
time.

We created 0.1GB TPC-H database using the DBGen tool
as per the specification. To keep the overall experimentation
duration under control we did not use larger database
size (e.g. 1GB) because the tables are in fact the stream
source material in our experiment and we have to send each
tuple over the network. Quite simply, in 1GB database size,
LINEITEM table has 6001215 tuples and even with the 5000
tuple/sec rate, it takes more than 20 minutes to send all the
tuples over the network. With current hardware, this rate
is the maximum consumption rate for queries without any
join such as Q1 and Q6. This rate drops to less than 200 for
Q8 with 7 data stream sources. As the system X does not
support correlated sub-queries, we were forced to exclude
templates 4, 11, 15-18, 20-22. We generated 35 executable
query texts using QGen based on the remained 13 TPC-H
templates queries.

Furthermore, we slightly modified these queries for our
system to make them compatible with the stream processing
context. One of the key changes was adding a time window
for each stream source to let queries show the upper bound
of CPU and memory usage. Moreover, some query seman-
tics require that tuples not to leave the time window until
a certain period of time to be able to produce meaningful
results. In other words, we needed to keep the first tuple
that enters the time window until the load generator reads
and sends the last tuple from the relation source. To this end,
we set the time window range to the value of S if the load
generator needs S seconds to read and send all the tuples.

The load generator was not allowed to send duplicate
tuples. In addition, relations have different cardinalities
so that in case of multiple stream sources in one query,
we set all the time windows to the biggest one. This let
the relation at time t consist of tuples obtained from all
elements of stream up to t. For example, in a join between
LINEITEM (~600k tuples) and NATION (25 tuples) streams,
the latter requires as big a time window as the former to let
elements remain in the window until the last tuple from the
LINEITEM stream enters the window for processing.

The 35 generated executable queries were registered
separately in the system X and their performance measures
against the fluctuating arrival rates were logged. The ob-
tained workload consists of 8783 execution traces.

Performance measures of interests (i.e. CPU and mem-
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Fig. 8: Best fit of sent tuple per second against different
distribution models. The figures contain probability density
of average tuple sent per second for the speed rate of (a)
50K and (b)100K for two different queries.

ory) were collected using the dstat*. This is a lightweight
Python-based tool that collects OS and system statistics pas-
sively, without affecting performance. To guarantee healthy
and repeatable data gathering, the execution traces of all
queries were collected several times. Moreover, all queries
were run with cold start making sure the buffers were
flushed and we had a fresh JVM.

Note that all the models are trained and tested as per
varying data arrival rate distribution models. To this end,
after setting a certain data arrival rate, the generator typi-
cally tries to reach the specified velocity, while adjusting rate
based on engine consumption rate with the aid of a thread
sleep function. This means that a query (especially complex
ones) might be able to consume only 100 tuples per second
even when we set the load generation rate to 200 tuples
per second. Thus, a few seconds after commencement the
buffer of the stream processing engine is full and the load
generator thread sleeps for a few milliseconds to allow the
consumer to exhaust the queue. This situation inherently
emulates different load generation distribution, for example
for rate 50K and 100K the distribution is more fit to Weibull
and generalized extreme value distribution, as shown in
Figure 8.

6.1.2 Training and Testing Settings

To assess how the result of a predictive model would be
generalized to an independent unforeseen data set, we di-
vided the LRB workload randomly into training and testing
datasets with 66% and 34% split rates respectively. For TPC-
H workload we used k-fold cross-validation. As regards to
the workload size, 2-fold cross-validation was used to train
and test parameters. For each fold, we randomly assigned
data points to two equal size sets dsI and ds2. To do so,
we shuffled the data array and then divided it in to two
arrays. We then trained on ds1 and tested on ds2, followed
by training on ds2 and testing on ds1.

Before training and testing, the input and output features
were normalized using z-score and min-max normalization
with range (0.1-0.9). For conducting training and testing, we
used a Netlab toolbox [23] which is designed to provide
the central tools necessary for the simulation of theoretically
well founded neural network algorithms and related models
and in particular MDN. The implemented MDN model uses
a MLP as a feed forward neural network, though in general
any non-linear regressor can be utilized.

4. http:/ /dag.wiee.rs/home-made/dstat/
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Fig. 9: (a) predicted PDF and the observation (b) schematic
sketch of the CRPS as the difference between CDFs of
prediction and observation.

State of the Art Techniques. To compare the perfor-
mance of our approach with single point estimators, we
used REPTree and SVM as the alternative techniques. REP-
Tree and SVM are the main prediction techniques used in
[31] and [2] respectively. Note that [20] also uses a variant
of regression trees as a core predictor.

6.2 Evaluation: CPU and Memory Usage

To determine whether a probabilistic model performs well
we must set the goal of the model because if, for example,
a trained MDN assigns some probability to the actual ob-
servation, we should be able judge whether the prediction
is accurate or not. Therefore, in the following subsection we
first set the goals and then define appropriate metrics.

6.2.1 Error Metrics

The goal of a probabilistic prediction is to maximize the
sharpness of the predictive distributions subject to cali-
bration [13]. Sharpness refers to the concentration of the
predictive distributions. Calibration refers to the statistical
consistency between the PDFs. Our objective is to predict
calibrated PDFs that closely approximate the region in
which the target lies with proper sharpness. To this end,
the Continuous Ranked Probability Score (CRPS) [13] is a
proper metric to evaluate the accuracy of PDFs:

CRPS(F,t) = / [F(x)— O(w,t)]Q dx (8)
where F' and O are the Cumulative Distribution Function
(CDF) of prediction and observation distributions respec-
tively. O(x,t) is a step function that attains the value of 1 if
x > t and the value of 0 otherwise.

To calculate CRPS both the prediction and the observa-
tion are converted to CDF. The CRPS compares the differ-
ence between CDF of prediction and observation as given
by the hatched area in Figure 9. It can be seen that the
area gets smaller if the prediction distribution concentrates
probability mass near the observation, ie. the better it
approximates the step function. Moreover, the small CRPS
value shows that the prediction captures the sharpness of
prediction accurately. After calculating the CRPS for each
prediction, we need to average the values to evaluate the
complete input set:

1 "
CRPS =~ )» CRPS(F;,t;
; ; (Fi.ti) ©)
We are also interested in evaluating the spread of predic-
tive density in which our targets lie. The average Negative

10

Log Predictive Density (NLPD) [14] error metric is used for
evaluating this aspect:

1 "
NLPD=—-% -l t;|%; 10
n; 0g(p(til:)) (10)
where 7 is the number of observations. The NLPD evaluates
the amount of probability that the model assigns to targets
and penalizes both over and under-confident predictions.
The last metric is the Mean-Square Error (MSE):

1 "
MSE =~ t, —my)? 11
, ; m;) an
where m refers to the median of the PDFs as point predic-

tions for the MDNs. This metric allows us to compare the
proposed technique with single point competitors.

6.2.2 Evaluation Results

The results for both the proposed approach using MDN and
the single point estimators under CRPS, NLPD, and MSE
metrics are shown in Tables 2 to 4 respectively. Note that
different MDN architectures including 3, 5, and 8 mixture
components (M) were evaluated to analyse the influence of
this hyper-parameter in the model.

TABLE 2: Trained classifiers performance as per LRB work-
load.

MDN REPtree | SVM

Res. | M | CRPS | NLPD | MSE MSE MSE
3 | 0.036 -1.95 | 0.006

CPU | 5 | 0128 | -0.339 | 0.09 0.008 0.007
8 | 0.113 | -0.865 | 0.043
3 | 0.042 | -3.136 | 0.010

Mem.| 5 | 0.053 | -1.465 | 0.066 0.008 0.015
8 | 0.065 0.075 | 0.046

TABLE 3: Trained classitfiers performance as per LRB Mix
Workload.

MDN REPtree | SVM

Res. | M | CRPS | NLPD | MSE MSE MSE
3 | 0114 | -0.584 | 0.032

CPU | 5 | 0.106 | -0.544 | 0.085 0.038 0.013
8 | 0.099 -046 | 0.056
3 | 0.081 -1.96 | 0.010

Mem.| 5 | 0.042 -1.33 0.058 0.011 0.02
8 | 0.068 -1.18 0.042

TABLE 4: Trained classifiers performance as per TPC-H
workload.

MDN REPtree | SVM
Res. | M | CRPS | NLPD | MSE MSE MSE
3 | 0.034 -2.04 | 0.007
CPU | 5 0.16 -0.98 0.02 0.006 0.008
8 | 0.154 -0.9 0.02
3 | 0.057 -1.9 0.008
Mem.| 5 | 0.092 -091 0.094 0.006 0.011
8 | 0.097 -0.67 0.1

All three metrics are negatively oriented scores; hence
smaller value is better. Let us first evaluate the accuracy
of the MDN per se using CRPS and NLPD measures. As
we can see, in three workloads the error numbers are small
enough to suggest that the proposed model is an appropri-
ate one for distribution prediction of data stream process-
ing workloads. In LRB Mix workload, sophisticated MDN
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TABLE 5: Training times in seconds as regards to different
workload sizes for 1K iterations.

LRB LRB TPC-H LRB
Mix Mix_EC2
Workload Size 05K | 55K 87K 172K
Elapsed Time (s) 3.2 9.65 11.78 22.62

architecture with 8 and 5 components led to respectively
better CPU and memory utilization prediction under CRPS
metric. In contrast, both LRB and TPC-H workloads show
slightly worse performance as the architecture becomes
more complex.

The MDN shows slightly better performance in memory
utilization prediction of LRB compared with TPC-H in terms
of CRPS values, though its performance in CPU prediction
in both workloads is nearly identical. This is why the TPC-H
workload is more complex than LRB as the query templates
combine complicated query plans with various data sources.
Although the LRB workload has a wide complexity range of
queries, all deal with one data stream.

In terms of concurrent workload, as the results show the
model is a reliable predictor for workloads at MPL range
from 2 to 17. Specifically, we can see an exact CRPS and
MSE values (i.e. .042 and .010) for memory prediction in
both LRB and LRB Mix. However, the MDN has better
performance in CPU prediction of LRB compared with LRB
Mix. In this regard, the CRPS error reduces as the MDN
architecture becomes more complex. This is why the com-
bined workloads are much more complex, hence requires
more sophisticated architecture. We repeated the experiment
for another workload with 5.5K traces on Amazon EC2,
observing similar performance. Due to space limitations,
those are not reported.

To compare the proposed approach with the state of the
art techniques, we need to treat it as single point estimator
and therefore use MSE metric error for comparison. In terms
of memory utilization prediction, a closer look at the data
indicates that the MDN outperforms the SVM technique in
all the experiments. In LRB and TPC-H, the REPTree shows
less error, whereas in LRB Mix the opposite observation
holds true. When it comes to CPU prediction, our approach
is a better resource usage estimator compared with both
the REPTree and the SVM in LRB workload. In both LRB
Mix and TPC-H, the MDN performance is in between the
REPTree and SVM. To be more specific, in LRB Mix, our
approach outperforms the REPTree while it shows higher
MSE value compared with the SVM.

In summary, our approach outperforms the state of
the art single point techniques in 8 out of 12 experiments
conducted using the SVM and REPTree. This result is quite
promising because it shows that our approach is not only
able to predict the full distribution over targets accurately, it
is also a reliable single point estimator.

6.3 Training Times and Overhead

In this section we evaluate the training time complexity of
the proposed models, as well as the overhead of using them
at runtime. Table 5 shows the training times as regards to
different workload sizes. As we can see, the training cost is
very small and it grows linearly as per the training set size.

Prediction Cost. A crucial issue for the deployment of
the resulting estimation models is the overhead of invoking
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them at runtime. For this purpose, we measured the elapsed
time for evaluating an MDN model for a given input feature
set on a 2.80GHz Intel Core i7, and obtained an overhead of
about 0.2 ms for each call. These numbers show that the
MDN is quick enough to become as an integral part of any
workload management strategies at runtime.

6.4 Follow-up Applications of Distribution-Based Pre-
diction

We presented one of the main applications of our approach
in 5.1. To provide a clear picture of what more we can
get from the provided prediction technique, we have vi-
sualized some sample distribution predictions from a test
set of TPC-H workload. Figure 10 plots 14 random sample
predicted PDFs for CPU and memory consumption in which
they were selected from the model with 3 and 5 GMM
components respectively. The histograms of the resource
usage of the whole test dataset are also depicted. Each
PDF may (not) belong to different queries as they were
selected randomly from the test datasets, mean that they
are conditioned on different inputs. The dotted vertical line
shows the observation value.

As shown in 10(a) and 10(b), the PDFs successfully ap-
proximate the resource usage distributions which are within
the range [0.1, 0.6] and [0.1, 0.5] for CPU and memory usage
respectively. The models for CPU and memory resource us-
age above the values 0.6 and 0.5 are much more uncertain. In
other words, the tendency of all CPU and memory PDFs are
to the right hand side of the diagram and this is consistent
with the actual resource usage (i.e. plotted histograms) in
which we hardly face resource demand above 0.5. Unlike
others, the PDFs 2, 3, 13, and 14 are bimodal in which two
kernels have comparable priors. This means our model is
able to capture the multi-modal nature of the target.

These sample PDFs visually show that the MDN is also
a useful classifier in the classic point estimate sense. As
regards this point, the CPU PDFs compared to memory ones
perform better as the sharpness and the spread of predictive
density is more evenly distributed over the target zone.
Although the memory PDFs — particularly 8, 11, 12 and 14
— give inaccurate prediction of the target values, they are
successful in locating the shape of distributions.

Upper and lower bounds of resource usage simplifies
the task of performance isolation since, for example, our
predictions in all figures capture the dominant CPU and
memory usage precisely. SLA specifications and billing
management also become more applicable and reliable for
both clients and providers when there is an initial measure
of the actual contribution of each workload in terms of
the overall resource consumption. When it comes to perfor-
mance inspection, diagnosing abnormal behavior based on
the predicted numbers is also viable. For example, Figure
10 (b) reports that for a given set of queries we will not
face peak memory usage (>0.5) very often, hence superior
peak memory usage in the live environment signals the
presence of a fault in the stream processing system (e.g. VM
performance issues, memory leak in stream processor).

7 CONCLUSIONS

This paper presented a novel approach for resource us-
age estimation of data stream processing workloads. Our

https://mc.manuscriptcentral.com/tetc-cs
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Fig. 10: Sample PDF predictions for (a) CPU and (b) memory usage from TPC-H workload.

approach combined knowledge of continuous query pro-
cessing with mixture density networks that approximate
conditional PDF of resource usage. We demonstrated that
these models have the potential to become an integral com-
ponent of the automated workload management systems
via developing two novel applications: i) predictable auto-
scaling policy setting; and ii) a distribution-based admission
controller. We evaluated the models and their applications
using the linear road and TPC-H benchmarks.

REFERENCES

(1]

(2]

(3]

(4]

(5]

6]

(7]
(8]

(%]
(10]

(1]

[12]

[13]

M. Ahmad, A. Aboulnaga, S. Babu, and K. Munagala. Modeling
and exploiting query interactions in database systems. In CIKM,
pages 183-192. ACM, 2008.

M. Akdere, U. Cetintemel, M. Riondato, E. Upfal, and S. B. Zdonik.
Learning-based query performance modeling and prediction. In
ICDE, pages 390—401. IEEE, 2012.

H. Appelrath, D. Geesen, M. Grawunder, T. Michelsen, D. Nicklas,
et al. Odysseus: a highly customizable framework for creating
efficient event stream management systems. In DEBS, pages 367—
368. ACM, 2012.

A. Arasu, S. Babu, and J. Widom. The cql continuous query
language: semantic foundations and query execution. The VLDB
Journal, 15(2):121-142, 2006.

A. Arasu, M. Cherniack, E. Galvez, D. Maier, A. S. Maskey,
E. Ryvkina, M. Stonebraker, and R. Tibbetts. Linear road: a stream
data management benchmark. In VLDB, pages 480-491. VLDB
Endowment, 2004.

C. Balkesen, N. Tatbul, and M. T. Ozsu. Adaptive input admission
and management for parallel stream processing. In DEBS, pages
15-26. ACM, 2013.

C. M. Bishop. Mixture density networks. 1994.

J. Cervino, E. Kalyvianaki, J. Salvachua, and P. Pietzuch. Adaptive
provisioning of stream processing systems in the cloud. In ICDEW,
pages 295-301. IEEE, 2012.

Y. Chi, H. Haciglimiis, W.-P. Hsiung, and ]J. FE Naughton.
Distribution-based query scheduling. VLDB, 6(9):673-684, 2013.

J. Duggan, U. Cetintemel, O. Papaemmanouil, and E. Upfal.
Performance prediction for concurrent database workloads. In
SIGMOD, pages 337-348. ACM, 2011.

J. Duggan, O. Papaemmanouil, U. Cetintemel, and E. Upfal.
Contender: A resource modeling approach for concurrent query
performance prediction. In EDBT, pages 109-120, 2014.

A. Ganapathi, H. Kuno, U. Dayal, ]. L. Wiener, A. Fox, M. L. Jordan,
and D. Patterson. Predicting multiple metrics for queries: Better
decisions enabled by machine learning. In ICDE, pages 592-603.
IEEE, 2009.

T. Gneiting and A. E. Raftery. Strictly proper scoring rules, predic-
tion, and estimation. Journal of the American Statistical Association,
102(477):359-378, 2007.

[14]
[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

I.J. Good. Rational decisions. Journal of the Royal Statistical Society.,
pages 107-114, 1952.

M. A. Hall. Correlation-based feature selection for machine learning.
PhD thesis, The University of Waikato, 1999.

T. Heinze, V. Pappalardo, Z. Jerzak, and C. Fetzer. Auto-scaling
techniques for elastic data stream processing. In ICDEW, pages
296-302. IEEE, 2014.

M. Hirzel, R. Soulé, S. Schneider, B. Gedik, and R. Grimm. A
catalog of stream processing optimizations. ACM Computing
Surveys (CSUR), 46(4):46, 2014.

P. Jamshidi, A. M. Sharifloo, C. Pahl, A. Metzger, G. Estrada,
Self-learning cloud controllers: Fuzzy g-learning for knowledge
evolution, in: Cloud and Autonomic Computing (ICCAC), 2015
International Conference on, IEEE, 2015, pp. 208-211.

P. Lama, X. Zhou, Autonomic provisioning with self-adaptive
neural fuzzy control for percentile-based delay guarantee, ACM
Transactions on Autonomous and Adaptive Systems (TAAS) 8 (2)
(2013) 9.

J. Li, A. C. Konig, V. Narasayya, and S. Chaudhuri. Robust
estimation of resource consumption for sql queries using statistical
techniques. VLDB, 5(11):1555-1566, 2012.

H. C. Lim, S. Babu, and J. S. Chase. Automated control for elastic
storage. In ICAC, pages 1-10. ACM, 2010.

B. Mozafari, C. Curino, A. Jindal, and S. Madden. Performance
and resource modeling in highly-concurrent oltp workloads. In
SIGMOD, pages 301-312. ACM, 2013.

I. Nabney. NETLAB: algorithms for pattern recognition. Springer
Science & Business Media, 2002.

P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal,
A. Merchant, K. Salem, Adaptive control of virtualized resources
in utility computing environments, in: ACM SIGOPS Operating
Systems Review, Vol. 41, ACM, 2007, pp. 289-302.

B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, Dynamic provision-
ing of multi-tier internet applications, in: Autonomic Computing,
2005. ICAC 2005. Proceedings. Second International Conference
on, IEEE, 2005, pp. 217-228.

B. Urgaonkar, P. Shenoy, T. Roscoe, Resource overbooking and
application profiling in a shared internet hosting platform, ACM
SIGOPS Operating Systems Review 36.5I (2002): 239-254.

W. Wu, X. Wu, H. Haciglimiis, and J. F. Naughton. Uncertainty
aware query execution time prediction. VLDB, 7(14):1857-1868,
2014.

W. Wu, Y. Chi, H. Hacigiimiis, and J. F. Naughton. Towards pre-
dicting query execution time for concurrent and dynamic database
workloads. VLDB, 6(10):925-936, 2013.

W. Wu, Y. Chi, S. Zhu, ]. Tatemura, H. Hacigumus, and J. F.
Naughton. Predicting query execution time: Are optimizer cost
models really unusable? In ICDE, pages 1081-1092. IEEE, 2013.

P. Xiong, Y. Chi, S. Zhu, H. Moon, C. Pu, and H. Hacigumus.
Smartsla: Cost-sensitive management of virtualized resources for
cpu-bound database services. TPDS, 2014.

P. Xiong, Y. Chi, S. Zhu, J. Tatemura, C. Pu, and H. Hacigimi$.
Activesla: a profit-oriented admission control framework for
database-as-a-service providers. In SoCC, page 15. ACM, 2011.

https://mc.manuscriptcentral.com/tetc-cs

Page 12 of 12



