
TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 14, NO. 8, AUGUST 2017 1

On the Theory and Design of
Polynomial Division Circuits

Vadim Geurkov, Senior Member, IEEE

Abstract—We present a theory and design techniques for polynomial division circuits with the primary focus on testing of digital and
mixed-signal devices. We estimate the aliasing rate for the proposed circuits (signature analyzers) and show how to improve it. Two
types of design techniques are examined for mixed-signal circuit analyzers that are arithmetical by nature. The techniques are scalable
and valid for an arbitrary size and base of the number system. The proposed devices have both low hardware complexity and aliasing
rate. The design techniques and devices can also be used in general arithmetic/algebraic error-control coding, cryptography, digital
broadcasting and communication.

Index Terms—Polynomial division circuit, signature analyzer, algebraic error-control code, arithmetic error-control code, digital system
test, mixed-signal system test, cryptography, digital broadcasting.

F

1 INTRODUCTION

THE main objective of error-control coding is to insure
the reliable delivery of digital information over unreli-

able channels. Soon after its inception, error-control coding
proliferated to other fields of engineering and technology.
Further to safeguarding the communication and storage
channels, error-control codes have been applied to protect
data processing. This has resulted in various forms of fault
tolerant design and design for testability. Error-control tech-
niques have also been exploited in cryptography.

Error-control codes are divided into error-detecting and
error-correcting ones, according to the task they perform.
Normally, error-detection circuitry constitutes a part of
error-correction circuitry, implying that errors are first de-
tected and then corrected. One of the main units of the error-
detection circuitry is a polynomial division circuit (PDC). This
circuit computes a remainder after dividing one polynomial
by another (fixed) polynomial [1], [2]. The remainder is
then evaluated to detect errors in the first polynomial. Due
to good error detection capabilities and small hardware
overhead, PDCs have been widely used for digital and
mixed-signal systems testing [3]–[8]. Most of these PDCs
belong to a limited set of special cases. Design procedures
for them are well investigated and presentaed in [9]–[12].

A vast variety of test applications for contemporary VLSI
circuits utilize multiple scan chains with the objective to
detect a malfunction of the circuit. The output responses
received in the chains are subsequently compacted by an
algebraic PDC [13]–[17]. More advanced applications use
an error-correcting code to diagnose the faulty chains and
respective parts of the circuit under test [18]–[20]. PDCs are
utilized in both error-detecting and error-correcting codes.

Although PDCs have been well researched, their design
process can yet be improved leading to creation of new
circuits with useful properties. In contrast to existing meth-

• V. Geurkov is with the Department of Electrical and Computer Engineer-
ing, Ryerson University, Toronto, ON, Canada, M5B 2K3.
E-mail: vgeurkov@ee.ryerson.ca

Manuscript received March 16, 2017; revised July 29, 2017.

ods that are aimed toward special cases, we consider an
arbitrary PDC operating in an arbitrary radix.

PDCs can be classified into two types according to in-
terpretation of the data on which they operate, specifically
arithmetic and algebraic circuits. We will respectively refer
to these circuits as residue computing circuits (RsCCs) and
remainder computing circuits (RmCCs). The more econom-
ical RmCCs are mostly used to test logic devices, whereas
the RsCCs are aimed to arithmetic devices. As arithmetic
devices are built of logic gates, the RmCCs can potentially
be employed for arithmetic devices. However, arithmetic
devices contain carry propagating circuits that propagate
errors just as well as carries. Any single error arising in these
circuits instantly turns into a multifold error. If the objective
is to detect errors only, the complexity of the tester for single
and multifold errors is the same. But in case of self-recovery
applications, the tester realizes an error-correcting code. If
the code is algebraic and thus uses an RmCC, its complexity
grows significantly for multifold errors and may readily be-
come impractical. And if the code is arithmetic (and uses an
RsCC), the multifold error produced by a carry propagating
circuit can still be interpreted as a single (arithmetic) error,
which reduces the tester complexity. Clearly, both RmCCs
and RsCCs are essential for the use in testing applications
and it is important to know how to design them.

In this paper, we investigate the theory and design of
RsCCs and RmCCs. We also demonstrate similarity between
the two classes of circuits. While these circuits are primary
oriented to testing, they can also be employed in other error-
control coding applications. We focus on linear block codes
as most frequently used in testing. Since we apply coding
techniques to testing, we only consider error detection pro-
cedures.

The rest of the paper is organized as follows. Section 2
demonstrates how error-control codes are used in test/fault-
tolerance applications, and it also introduces error-control
coding model as applied to testing. Sections 3 and 4 present
theory and design methodologies for RmCCs and RsCCs
respectively. Conclusion summarizes the results.

TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 14, NO. 8, AUGUST 2017 2

2 APPLICATION OF LINEAR SYSTEMATIC BLOCK
CODES FOR TESTING

In a block data transmission model, the information sequence
from the source is divided into blocks of k q-ary symbols -
messages, u = (uk−1, . . . , u0). The encoder transforms each
message into a codeword, v = (vn−1, . . . , v0). The set of all
codewords is called an (n, k) block code. Since we use binary
signals, q = 2m, where m is the width of the system bus.
The codeword enters the channel and is corrupted by noise.
The decoder transforms the resulting received sequence ṽ =
(ṽn−1, . . . , ṽ0) into a sequence û = (ûk−1, . . . , û0) called the
estimated message. The decoding strategy ensures that û is
a replica of u. However, excessive noise may cause some
decoding errors, resulting into û 6= u. The implication may be
twofold: (i) some errors are not detected (aliasing occurs); (ii)
additional errors may be induced (this only happens during
error correction). We only focus on error-detecting codes.
For the circuits introduced, we estimate the probability of
aliasing and show how to minimize it.

To reduce the encoding/decoding complexity, we restrict
our consideration to linear systematic codes. A code is linear
iff a linear combination of codewords is also a codeword.
In a systematic code a codeword is divided into the k-digit
message part and the r = (n − k)-digit checking part. Such
a code is specified by a k × n generator matrix, G [21]. If
u = (uk−1, . . . , u0) is the message, then the codeword is

v = (uk−1, . . . , u0) ·G = (vn−1, . . . , v0)

= (uk−1, . . . , u0 | vr−1, . . . , v0)
(1)

The decoding procedure involves two steps. Let ṽ =
(ṽn−1, . . . , ṽ0) be the received sequence. At the first step,
the syndrome s of the sequence ṽ is computed with the use
of a r × n parity-check matrix H (specified by G):

s = (ṽn−1, . . . , ṽ0) ·HT = (sr−1, . . . , s0) (2)

If s = 0, the received sequence is assumed to be error-
free and û = (ṽn−1, . . . , ṽr) = u. If s 6= 0, at the second step,
the syndrome is used to compute the estimated message û.

Since we only consider error detection, the decoder gen-
erates the syndrome (2) without subsequent computation of
the estimated message.

The encoding/decoding complexity depends on the way
how the parity-check digits/syndrome digits are computed.
In time critical (e.g., self-checking) applications, the mul-
tiplication by G (HT) is implemented by a combinational
circuit. If time is not critical, a special form of the matrix G
(HT) can be used, which allows sequential execution (reduc-
ing complexity). Depending on the channel type, whether it
is algebraic (data transmission/storage system) or arithmetic
(data processing system), this special form of G (HT) de-
fines a polynomial algebraic code or a polynomial arithmetic
code. In a polynomial code, the codewords are divisible
by the generator polynomial. In case of arithmetic codes,
the generator polynomial turns into an integer called the
generator. A special case of a polynomial code is a cyclic code.
Multiplication by G (HT) in a cyclic algebraic/arithmetic
code is equivalent to polynomial division by the generator
polynomial/generator and is performed sequentially [1],
[2]. Because of the more economical implementation, we

assume cyclic codes for our applications. Consequently, the
subject of our research is a sequential PDC.

Cyclic codes use polynomial representation of sequences
of symbols, fn−1, . . . , f0:

f(x) = fn−1x
n−1 + . . .+ f1x+ f0 (3)

The coefficients of this polynomial are elements of a fi-
nite field,GF (2m),m being the system bus width. Likewise,
in arithmetic codes, the coefficients (or digits) are integers
from the set {0, 1, . . . , b − 1}, where b is the base of the
number system. We use the base b = 2m, so that the
system bus state is characterized by an integer from the set
{0, 1, . . . , 2m − 1}. Equation (3) then becomes:

f(b) = fn−1b
n−1 + . . .+ f1b+ f0 = f (4)

Here f is the integer value, 0 ≤ f ≤ bn − 1.
A code consists of a subset of polynomials that form a

ring. The ring can be constructed of type (3) polynomials (a
ring of polynomials over a field), or type (4) polynomials
(a ring of integers). Both ring types are special cases of a
Euclidean ring [1].

Using polynomial representations (3) and (4), the encod-
ing and decoding procedures (1) and (2) for systematic cyclic
algebraic and arithmetic codes become respectively

v(x) = u(x)xr ⊕ [u(x)xr] mod g(x)

s(x) = ṽ(x) mod g(x)
(5)

and
v(b) = u(b)br − [u(b)br] mod g(b)

s(b) = ṽ(b) mod g(b)
(6)

Equations (6) can be rewritten in terms of integer values:

v = ubr − (ubr) mod g

s = ṽ mod g
(7)

In equations (5) and (7), g(x) is the generator polynomial
of degree r, and g is the generator. Radix b representation of
the generator occupies r digits. Multiplication of a message
by xr or br is equivalent to shifting it left r times.

The properties of an algebraic or arithmetic error-control
code are defined by the structure of g(x) or g(b). Therefore,
it is important to know how to design the circuits that
implement operations (5) and (6) for an arbitrary form of
the polynomials, g(x) and g(b).

Along with the codes specified by equations (5) and (7),
there are other classes of codes that do not assume shifts
of the message digits and are more convenient for testing.
In these codes, the message digits and the parity-check
digits are separated. Therefore, the unit being tested and the
decoding unit operate independently. Such codes are called
separate codes. Examples of these codes are given below.

In a separate residue arithmetic code [2], the codeword v
for the message u is defined as

v = (u, ρ) (8)

where ρ = |u|g = u mod g is the residue and g is the modulus.
The syndrome s is defined as

s = |ũ− ρ̃|g (9)

where ũ and ρ̃ are received message and residue, respectively.

TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 14, NO. 8, AUGUST 2017 3

If the error control capability of a residue code is to
be improved, the number of moduli is increased. In a
multiresidue code [2], the codeword is defined analogously:

v = (u, ρ1, . . . , ρw) = (u, |u|g1 , . . . , |u|gw) (10)

s = (s1, . . . , sw) = (|ũ− ρ̃1|g1 , . . . , |ũ− ρ̃w|gw) (11)

In a residue number system (RNS) code, the message u is
not present in the codeword at all [22]. The codeword v is
formed of z residues, w of which are enough to uniquely
specify the message u. The remaining z − w residues are
redundant and used for error-control:

v = (ρ1, . . . , ρw, ρw+1, . . . , ρz) (12)

RNS codes drastically improve the system performance
(in addition to improving its fault-tolerance).

The codes analogous to the ones specified by equations
(8) - (12) have also been developed in algebraic domain. For
example, the polynomial RNS [23] are defined as follows:

v(x) = [|u(x)|g1(x), . . . , |u(x)|gz(x)] = [σ1(x), . . . , σz(x)]

The Reed-Solomon codes can be regarded as a special
case of polynomial RNS [23].

Polynomial multiresidue codes are defined as:

v(x) = [u(x), σ1(x), . . . , σw(x)]

s(x) = [|ũ(x)− σ̃1(x)|g1(x), . . . , |ũ(x)− σ̃w(x)|gw(x)]

Let us consider a polynomial residue code: v(x) = [u(x),
σ(x)], where σ(x) = |u(x)|g(x) is a remainder. The syn-
drome, s(x) = |ũ(x)− σ̃(x)|g(x) = |ũ(x)|g(x) − σ̃(x), where
σ̃(x) is the received remainder. If this code is used for testing
and the unit under test is fault free, s(x) = 0 and

|ũ(x)|g(x) = σ̃(x) (13)

Equation (13) applies to built-in (embedded) test sys-
tems. If the test system is external and its memory is reliable,
then (13) transfers to

|ũ(x)|g(x) = σ(x) (14)

Introducing σ̆(x) = |ũ(x)|g(x), we rewrite (13) and (14):

σ̆(x) =

{
σ̃(x) for internal tester
σ(x) for external tester (15)

The r-tuples composed of the coefficients of σ̆(x), σ(x)
and σ̃(x) are referred to as actual signature, reference signature
(fault-free circuit’s signature) and distorted reference signature:

σ̆ = (σ̆r−1, . . . , σ̆0); σ = (σr−1, . . . , σ0); σ̃ = (σ̃r−1, . . . , σ̃0)

In terms of signatures, equation (15) has the form:

σ̆ =

{
σ̃ for internal tester
σ for external tester (16)

If equation (16) does not hold, the circuit is certainly
faulty. Otherwise, it is assumed to be fault free. To improve
the aliasing rate, the number of residues can be increased
[24]. Alternatively, while retaining a single residue, the
degree r of the generator polynomial g(x) can be raised.

If an arithmetic (one)residue code is used for testing,
analogously to (15), for the fault-free circuit

ρ̆(b) =

{
ρ̃(b) for internal tester
ρ(b) for external tester (17)

Test Pattern
Generator

Fault-Free
Circuit

Under Test
Encoder

Coding
Channel

Decoder
'u u

Faults

v Pass

Fail

Discrete
Algebraic

Discrete
Arithmetic

Mixed-Signal
Arithmetic

Algebraic
Compactors

Arithmetic
Compactors

v~

)~,~(u

?~|~| gu

),(u

Fig. 1. Error-control coding model as applied to testing

where ρ̆(b) = |ũ(b)|g(b).
Similarly, we will refer to r-tuples composed of the coef-

ficients of ρ̆(b), ρ(b) and ρ̃(b) as arithmetic actual, reference
and distorted reference signatures:

ρ̆ = (ρ̆r−1, . . . , ρ̆0); ρ = (ρr−1, . . . , ρ0); ρ̃ = (ρ̃r−1, . . . , ρ̃0)

And, in terms of signatures, equation (17) is

ρ̆ =

{
ρ̃ for internal tester
ρ for external tester

The encoding/decoding procedures for all of the codes
examined above involve polynomial division. We only focus
on two representatives described by equations (15) and (17).
Polynomial division occurs both in the left and right parts of
these equations. We employ these codes for testing as shown
in Figure 1. The figure interprets the communication model
for testing (by residue codes). The test pattern generator
(TPG) applies k input test stimuli, u′ = (u′k−1, . . . , u

′
0), to

the fault-free circuit under test (CUT). The corresponding k
output responses (m-bit each), u = (uk−1, . . . , u0), form the
message that is encoded into the codeword, v = (u, |u|g).
While the message, u, comes from the CUT, the residue,
ρ = |u|g , arrives from the tester’s storage and may also
be perturbed. The codeword, v = (u, ρ), enters the symbolic
coding channel, where it is distorted by faults and turns into
the received message, ṽ = (ũ, ρ̃). The decoder generates the
residue of the received message, ρ̆ = |ũ|g , and compares it
with the received residue, ρ̃, verifying the validity of (17)
(respectively, (15)) and making a pass/fail decision.

For example, let the CUT be a finite state machine (FSM),
with a single input and output (see Figure 2). Any faults are
possible in the FSM (stuck-at faults, bridging faults, inter-
mittent faults, etc.). The sequence of input test stimuli that
detects all of these (single and multiple) faults is pseudo-
random and its length is 8 bits, u′ = 10110010. Let the
test response of a fault free FSM be u = 11010100. The
channel is discrete algebraic, so the encoder is a standard
single input signature analyzer, e.g., the 3-bit one, with
the polynomial g(x) = x3 + x + 1 (and the probability of
undetected error 1/23). The encoder encodes the sequence
u = 11010100, i.e., generates the fault-free circuit’s signa-
ture, σ(x) = |x7 + x6 + x4 + x2|g(x) = x2 + x (or σ = 110),
and appends it to the fault free response, v = 11010100, 110.
Let the faults occurring in the FSM modify the response to
ũ = 10101111 and the reference signature in the tester’s
memory is not corrupted, i.e. ṽ = 10101111, 110. The faulty
circuit’s signature (generated by the decoder) then becomes
σ̆(x) = |ũ|g(x) = |x7 + x5 + x3 + x2 + x + 1|g(x) = x (or
σ̆ = 010). Since σ̆ 6= σ, the decision is Fail.

TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 14, NO. 8, AUGUST 2017 4

Test Pattern
Generator

Fault-Free
FSM

ρ=|u(x)|g(x) Decoder
'u u

Faults

v Fail

Discrete
Algebraic

v~

),~(u),(u

10110010 11010100 11010100,110 10101111,110 010=110 ?

?

Coding
Channel

Fig. 2. Error-control coding model: an algebraic case example

Depending on the nature of the CUT, we consider three
different types of channels:

• a discrete algebraic channel refers to a CUT being an
FSM (including storage or combinational logic)

• a discrete arithmetic channel refers to a CUT being an
arithmetic data processing device

• a mixed-signal arithmetic channel refers to a CUT
being a mixed-signal system with discrete output:
analog-to-digital converter, measurement system,etc.

The channel type specifies the encoder/decoder struc-
ture. In the first case, this is an algebraic device. In the last
two cases, the encoder/decoder is arithmetic.

The principal difference of the mixed-signal channel
from the two others is that its input test stimuli are analogue
and the output responses are discrete finite intervals. In
contrast to a point (exact) value, an interval contains a range
of values and is defined by left and right endpoints [25].

It is important to note that the concept of polynomial
division is only applicable to off-line testing.

3 REMAINDER COMPUTING CIRCUITS

In this section, we consider the first of the three channels
represented in Figure 1, a discrete algebraic channel.

3.1 Discrete Algebraic Channel
A remainder computing circuit (RmCC) is used as a part
of the encoder/decoder for a polynomial residue code. A
remainder is computed by dividing the message polyno-
mial, u(x), or the received message polynomial, ũ(x), by
the generator polynomial g(x), as shown in (14). Since the
two division operations are identical, we only consider the
encoding process, i.e. computation of |u(x)|g(x), where

u(x)=uk−1x
k−1 + . . .+ u0; g(x) = grx

r + . . .+ g0

Let us factor x in the polynomial u(x):

|u(x)|g(x) = |uk−1x
k−1 + . . .+ u0|g(x)

= |
k−r︷ ︸︸ ︷

x · · · (x(uk−1x
r−1 + . . .+ uk−r) + . . .+ u0|g(x)

= |x · · · |x[p(x)] + uk−r−1|g(x) + . . .+ u0|g(x)

(18)

Here, we introduced a degree r−1 partial remainder, p(x):

p(x) = uk−1x
r−1 + uk−2x

r−2 + . . .+ uk−r

According to (18), computation of |u(x)|g(x) consists of
repetitive operations of the form |x[p(x)] + uk−r−1|g(x). Set

p+(x) = |x[p(x)] + uk−r−1|g(x) (19)

then

|u(x)|g(x) = |x · · · p+(x) + . . .+ u0|g(x) (20)

0g

1ku 2ku

1
rg 1rg

rku 1rku

Fig. 3. Polynomial division in algebraic domain

2x 1x 0x

3u 2u 1u

2u

1u
3u

0u

1
3
g 2g1 11g 10g

1 1 1 1
1 0 0

0

Fig. 4. A length-3 binary SA

and (20) can be implemented using a finite state machine.
Indeed, p(x) serves as the present state, uk−r−1 is the input
and p+(x) is the next state. In these notations, each shift of
the register that holds p(x) is equivalent to multiplication of
its content by x mod g(x) with further addition of uk−r−1.

Equation (19) can be computed as follows:

⊕
uk−1x

r + . . .+ uk−r−1 grx
r + . . .+ g0

uk−1x
r + . . .+ uk−1g

−1
r g0 uk−1g

−1
r

0 + . . .+uk−1g
−1
r g0 + uk−r−1

(21)
The circuit that implements this computation is shown

in Figure 3. In testing applications, this circuit is called
an r-stage multiple-input signature analyzer (SA). The circuit
structure is specified by the degree r polynomial g(x) over
the fieldGF (2m). Herem is the system bus width. All of the
buses in Figure 3 (and the remaining figures) are depicted as
single lines, in compliance with the style adopted in error-
control coding; this simplifies perception of pictures. Also,
the circuits designed in this work are built of adders, XORs
and flip-flops. These restrictions insure that the overall
system is linear (note that we are considering linear codes).

Error-control capabilities of the codes defined by prim-
itive polynomials are better and their implementation is
simpler, therefore we will mostly select primitive polynomi-
als for our applications. To further save hardware (without
deteriorating error-control capabilities), the coefficient of the
highest power of g(x) will be 1:

g(x) = xr + gr−1x
r−1 + . . .+ g0 (22)

Example 3.1 (a 3-stage 1-input SA). Let us consider the
following polynomials (k = 4, r = 3):

u(x) = x3 + x2 + x+ 1; g(x) = x3 + x+ 1

The primitive generator polynomial, g(x), was taken
from the table of irreducible polynomials [1].

For our example, the partial remainder:

p(x) = x2 + x+ 1

After the shift, the analyzer’s content is (see Figure 4):

p+(x) = |x(x2 + x+ 1) + 1|g(x) = x2

Example 3.2 (a 1-stage 1-input SA). Set k = 2, r = 1 and:

u(x) = x; g(x) = x+ 1

TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 14, NO. 8, AUGUST 2017 5

10 g

1
1 0

0x

1u

1u

0u

11
1 g

(a)

0x

1u

1u

0u

6
2

4

(b)

Fig. 5. A 1-stage binary (a) and octal (b) signature analyzers

TABLE 1
Three representations for elements of the field GF (23)

Power Polynomial Vector

0 0 0 0 0
α0 α0 0 0 1
α1 α1 0 1 0
α2 α2 1 0 0
α3 α1 + α0 0 1 1
α4 α2 + α1 1 1 0
α5 α2 + α1 + α0 1 1 1
α6 α2 + α0 1 0 1

Then p(x) = 1, and after the shift, the content of the
analyzer is p+(x) = |x× 1 + 0|g(x) = 1.

The circuit is presented in Figure 5a and computes the
modulo 2 sum (or parity) of the incoming bit sequence.

Example 3.3 (a 1-stage 3-input SA). In a non-binary case, it
is convenient to represent polynomial coefficients as powers
of a primitive element of a field. For a 3-input analyzer,
the field, GF (23), can be constructed using a root α of the
primitive polynomial w(x) = x3 + x + 1. The relationship
between different representations of the field elements is
given in Table 1.

To determine a primitive irreducible generator polyno-
mial of degree r over GF (2m) we use procedure from [26]:

1) Select a primitive polynomial of degree mr over
GF (2) from the table of irreducible polynomials

2) Let α denote a root of the chosen polynomial and
set the correspondence rule between GF (2m) and
GF (2mr), denoted by powers of β and α:

β = αc; c = [(2m)r − 1]/[2m − 1]; βj = (αc)j

3) The primitive irreducible polynomial of degree r
over GF (2m) is an expansion of the following equa-
tion with (αi)’s expressed in terms of (βj)’s:

g(x) = (x − α(2m)0) . . . (x − α(2m)r−1

) (23)

Proposition 3.1.1. The degree 1 polynomial over GF (2m),
g(x) = x + α, α being a root of a binary degree m primitive
polynomial, is primitive.

Proof: The proof becomes evident if r = 1 in (23).
In this example, we consider a one-stage signature ana-

lyzer. The primitive (generator) polynomial of degree r = 1
over GF (23) is g(x) = x + α, α being a root of a prim-
itive polynomial of degree mr = 3 over GF (2), namely
w(x) = x3 + x+ 1 (see Table 1).

)1(
2u

)1(
1u

)1(
0u

)0(
2u

)0(
1u

)0(
0u

(a)

)1(
2u

)1(
1u

)1(
0u

)0(
2u

)0(
1u

)0(
0u

(b)

Fig. 6. Vector form of a 3-input SA

Similarly to the previous example, set k = 2, r = 1, and

u(x) = α2x+ α4; g(x) = x+ α

Then p(x) = α2, and after the shift, the content of the
analyzer is p+(x) = |x × α2 + α4|g(x) = α6. The circuit
that implements this operation is presented in Figure 5b. In
a vector form, this is equivalent to shifting in two vectors
u1 = u

(1)
2 u

(1)
1 u

(1)
0 = 100 and u0 = u

(0)
2 u

(0)
1 u

(0)
0 = 110 The

final result (signature) is σ = 101.
If we switch from the power representation of the field

elements to their vector representation, the circuit of Figure
5b will turn into the circuit of Figure 6a. We can continue to
shift in additional incoming vectors; each shift is described
by the same equation, (19).

The α-multiplier was designed according to the follow-
ing rule (for simplicity, we will omit the superscript (1)
of coefficients u). If the current value of a field element is
u(α) = u2α

2 + u1α+ u0, then

α(u2α
2 + u1α+ u0) = u1α

2 + (u2 + u0)α+ u2

The circuit of Figure 6a can be redrawn into the more
common form shown in Figure 6b.

One-stage non-binary RmCCs (like the one represented
in Figure 6b) are referred to as spacial (parallel, multiple input)
signature analyzers, while multi-stage binary RmCCs (like
the one represented in Figure 4) are referred to as temporal
(serial, single input) signature analyzers.

The primitive polynomial g(x) = x + α over GF (23)
was constructed using a root α of the binary polynomial
w(x) = x3 +x+1. It can be shown that if α is a root of w(x),
than α2, α3, α4, α5, α6 are also roots of w(x) [1]. Therefore,
each of the following polynomials can be used to design a
3-bit SA with identical error-control properties:

x+ α, x+ α2, x+ α3, x+ α4, x+ α5, x+ α6

In Figure 3, the right most stage of the analyzer contains
a multiplier by g0. If g0 = α, the α-multiplier has a form
of Figures 5b and 6a. Similarly, if g0 equals to one of the:
α2, α3, α4, α5, α6, we will obtain the following multipliers:

α2u(α) = (u2 + u0)α2 + (u2 + u1)α+ u1

α3u(α) = (u2 + u1)α2 + (u2 + u1 + u0)α+ (u2 + u0)

α4u(α) = (u2 + u1 + u0)α2 + (u1 + u0)α+ (u2 + u1)

α5u(α) = (u1 + u0)α2 + u0α+ (u2 + u1 + u0)

α6u(α) = u0α
2 + u2α+ (u1 + u0)

TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 14, NO. 8, AUGUST 2017 6

)1(
2u

)1(
1u

)1(
0u

)0(
2u

)0(
1u

)0(
0u

)1(
2u

)1(
1u

)1(
0u

)0(
2u

)0(
1u

)0(
0u

0 0 0

Fig. 7. 1-stage 3-input SA with 0-multiplier

Based on these equations, we conclude that the α-
multiplier and α6-multiplier have the lowest hardware com-
plexity. They only differ by the order of components.

The remaining degree r = 1 polynomial over GF (23),
g(x) = x + 1 is not primitive. Nevertheless, it can be used
for testing. This analyzer coincides with the one in Figure 6a,
where α-multiplier constitutes three straight lines. Clearly,
this circuit is a collection of three analyzers of Figure 5a
and can similarly be regarded as computing the parity of
the sequence of octal symbols. The circuit has low hardware
complexity but is unsusceptible to even number of errors.

Formally speaking, we have to also consider the gener-
ator polynomial with g0 = 0, that is g(x) = x. The circuit
does not have a feedback and only stores the last incoming
symbol. The circuit is depicted in Figure 7.

Using the same technique, we can design a signature
analyzer of any length and width. For example, any of the
following degree 1 primitive polynomials over GF (26) can
be used to construct a 1-stage 6-input analyzer (here w(x) =
x6 + x5 + 1, α ∈ GF (2m),m = 6, r = 1):

x+ α, x+ α2, x+ α4, x+ α8, x+ α16, x+ α31

x+ α32, x+ α47, x+ α55, x+ α59, x+ α61, x+ α62

The lowest hardware complexity is normally associated
with the first polynomial that is available for GF (2m) due
to Proposition 3.1.1.

Example 3.4. If the preliminary cleared analyzer of Figure
6 receives the responses α5, α6, α4, α2, α1, α0 from a CUT,
then after the 6-th shift its content becomes:

((((α5α+ α6)α+ α4)α+ α2)α+ α1)α+ α0 = α

The power representation of the field element α corre-
sponds to the vector representation 010 (see Table 1) which
is the CUT signature.

3.1.1 Aliasing Rate

In an optimal error-detecting (n, k) code, the number of
parity check digits, r = n − k, always matches the type
and character of the error pattern. Therefore, decoding error
never occurs. For example, if the message sequence contains
k = 1024 bits and only single errors are possible in the
communication channel, the (1025, 1024) code with a single
parity bit, r = 1, will detect any of these errors. However, if
this code is used for testing, the number of possible errors
rises to k = 1024. If the number of parity check digits is not
increased proportionally, the code ceases to remain optimal
and the decoding error may occur (i.e. some errors are not
detected). In situations like this, it is important to know the
probability of undetected error, Pnd (aliasing or error escape rate).

Aliasing occurs when the reference signature coincides with
a faulty circuit’s signature.

In order to facilitate computation of the aliasing rate, we
will assume from now on that all errors in the CUT output
response, including single, multiple, burst errors, etc., and
caused by stuck-at, bridging, intermittent, etc. faults inside
the CUT, are equally likely. The exploration of other error
models implies modification of the encoder/decoder and is
out of the scope of this work.

Proposition 3.1.2. The aliasing rate for the signature analyzer
presented in Figure 3 is estimated as

Pnd ≈ 2−mr (24)

provided that the sequence of k 2m-ary symbols to be compacted
into an r-symbol signature is sufficiently long and all error patters
in the sequence are equally likely (independent).

Proof: The aliasing rate is defined as the ratio of the
number of errors that are not detected by the chosen code, to
the total number of possible errors in the sequence of k 2m-
ary symbols (output responses). The total number of errors
in the sequence is 2mk− 1 (one sequence of symbols is error
free). The number of erroneous sequences that will produce
the signature that coincides with the reference signature (or
the number of errors that are not detected by the code with
r 2m-ary parity check digits) is 2mk/2mr − 1 = 2m(k−r)− 1.
Thus, the aliasing rate

Pnd = [2m(k−r) − 1]/[2mk − 1]

In testing applications k ≥ r, therefore

Pnd ≈ 2m(k−r)/2mk = 2−mr

The aliasing rate decreases with the growth of m and r.
Normally, in testing applications r = 1, therefore

Pnd ≈ 2−m (25)

If the width of the analyzer (which matches the width m
of the system bus), is not sufficient to achieve the required
aliasing rate, it can be increased to m + i. The output
responses are then interpreted as elements of the extension
field, GF (2m+i). Usually, this is not required, because the
system bus of contemporary systems contains 16 or more
lines and the aliasing rate is at most 1/216 = 0.0000153.

Equation (25) suggests that for the given m, the aliasing
rate does not depend on the structure of the generator, g(x).
Thus, any analyzer from the previous section (e.g. presented
in Figure 6 or 7) will ensure the same aliasing rate, 2−m.

Proposition 3.1.2 refers to the case when the reference
signature is uncorrupted. If the test system is built-in (em-
bedded), there is a chance that the signature is corrupted.

Proposition 3.1.3. The aliasing rate, P̃nd, for the embedded
analyzer of Figure 3 is estimated as

P̃nd = 2−mr

provided that all error patterns in the sequence of k 2m-ary digits
to be compacted into an r-digit signature are equally likely.

Proof: The aliasing rate is the ratio of the number of
errors that are not detected by the code, to the total number

TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 14, NO. 8, AUGUST 2017 7

0g

1rkurku 1ku 2ku

Fig. 8. Low cost algebraic polynomial division circuit

of errors in the sequence of symbols (output responses).
Error-detection is performed by verifying equation (13). An
error is being detected if this equation does not hold. If
equation (13) holds, then either there are no errors at all,
or an undetectable error pattern is present.

The total number of errors in the sequence is 2mk−1. The
number of errors that produce the signature that matches
σ̃(x) is 2mk/2mr . The number of possible σ̃(x) patterns
is 2mr . Therefore, the number of undetectable errors is
[(2mk/2mr) · 2mr] − 1 (one of the σ̃(x) patterns is, actually,
the undistorted reference signature).

Equation (13) is verified for each σ̃(x) pattern, so the
total number of possible errors will increase to (2mk − 1) ·
2mr . Thus, the aliasing rate

P̃nd =
[(2mk/2mr) · 2mr]− 1

(2mk − 1) · 2mr
= 2−mr (26)

Comparing equations (24) and (26), we conclude that
for embedded analyzers the equality holds even for small
values of k.

3.1.2 Low Cost Circuits
Given the aliasing rate, Pnd, the analyzer must have the low-
est complexity. This objective can be achieved by analysis
of the circuit in Figure 3 and expression (21). The imple-
mentation complexity depends on the number of nonzero
coefficients of the generator, g(x). This number should be
kept low, while preserving the polynomial degree (not to
deteriorate the aliasing), which results in the following:

g(x) = xr + g0 (27)

The corresponding low cost circuit is shown in Figure 8.
If all errors are equally likely, then the coefficient g0 can be
chosen any element of GF (2m). If g0 = 0, then

|uk−1x
k−1 + . . .+ urx

r + ur−1x
r−1 + . . .+ u0|xr

= ur−1x
r−1 + . . .+ u0 (28)

This circuit is an r-stage shift register with no feedbacks.
The remainder (28) only depends on the last r symbols of
the sequence of k 2m-ary symbols. Since r � k, only a small
portion of all possible errors in the sequence is detected.
Therefore, this analyzer is normally not used in practice.

Clearly, all 1-stage (r = 1) signature analyzers are low
cost circuits. Some of these analyzers were presented in
examples 3.2 and 3.3 (figures 5a and 5b, respectively).

Example 3.5 (a 2-stage 3-input low cost SA). Let r = 2 and
the generator polynomial overGF (23) is g(x) = x2+g0. Let
g0 = α, where α is a root of a primitive binary polynomial,
w(x) = x3 +x+ 1 (see Table 1). Two equivalent circuits that
implement this analyzer are presented in Figure 9.

Note that the polynomial w(x) could also be chosen low
cost, for example, w(x) = x3 + 1. The middle feedback in
Figure 9b would then disappear.

)1(
2u

)1(
1u

)1(
0u

)0(
2u

)0(
1u

)0(
0u

)2(
2u

)2(
1u

)2(
0u

(a)

)0(
2u)0(

1u)0(
0u

)2(
2u)1(

2u)2(
1u)1(

1u)2(
0u)1(

0u

(b)

Fig. 9. A 2-stage 3-input low cost SA

4 RESIDUE COMPUTING CIRCUITS

In the previous section, we discussed a discrete algebraic
channel. In this section, we consider two other channel types
presented in Figure 1, namely a discrete arithmetic channel
and a mixed-signal arithmetic channel.

4.1 Discrete Arithmetic Channel

For the arithmetic channel (see Figure 1), the coefficients of
the polynomial, u(b), that represents the output response,
are integer numbers. Therefore, all (arithmetic) operations
on the polynomial will produce carries. This increases the
hardware complexity of the arithmetic residue computing
circuit compared to a similar algebraic remainder comput-
ing circuit. Although we consider sequential implementa-
tion of the decoder for a residue code (implying off-line
testing), the results can be used in a combinational design
(i.e. for on-line testing). Residue codes can protect a single
processing unit or the entire computer [27].

The design methodology for a residue computing circuit
(RsCC) was developed in arithmetic error-control coding,
but it has mainly been oriented to binary case [1]. A non-
binary design techniques have been limited to a special type
of modulus [2]. We design a residue computing circuit with
an arbitrary modulus and base of the number system.

As in the case of the remainder computing circuit, the
residue, |u(b)|g(b), is computed by dividing the polynomials
u(b) = uk−1b

k−1 + . . .+ u0 and g(b) = gr−1b
r−1 + . . .+ g0.

Factoring b in u(b), we obtain

|u(b)|g(b) = |b · · · |b[p(b)] + uk−r−1|g(b) + . . .+ u0|g(b) (29)

where p(b) is a degree r − 1 partial residue polynomial:

p(b) = uk−1b
r−1 + uk−2b

r−2 + . . .+ uk−r

According to (29), computation of |u(b)|g(b) consists of
recursive operations

p+(b) = |b[p(b)] + uk−r−1|g(b) (30)

Consequently

|u(b)|g(b) = |b · · · p+(b) + . . .+ u0|g(b) (31)

TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 14, NO. 8, AUGUST 2017 8

Similarly to equation (20), equation (31) can be imple-
mented using a finite state machine, if p(b) serves as the
present state, p+(b) is the next state, and uk−t−1 is the input.
Each shift of the register that holds p(b) is equivalent to
multiplication of its content by b mod g(b) with further ad-
dition of uk−r−1. Note that multiplication and addition are
performed over integers; these operations produce carries.

Manipulating (30), we obtain

p+(b) = |b[p(b) + uk−r−1b
−1]|g(b)

= |b(uk−1b
r−1 + . . .+ uk−rb

0 + uk−r−1b
−1)|g(b)

(32)

Equation (32) states that the radix b fraction, uk−1uk−2

. . . uk−r.uk−r−1, is multiplied by b and divided by g(b). The
residue is computed by subtraction of a multiple of g(b)
from the result of the multiplication (actually, subtraction
of a multiple of g(b)/b from the content of the analyzer
before the multiplication). The value of the subtrahend
is computed by a comparator and depends on the value
of the fraction uk−1uk−2 . . . uk−r.uk−r−1. The comparator
implements a truth table and is constructed on combina-
tional logic. We have transformed (30) to (32), because the
subtraction decision must be made before the shift. The
complexity of the comparator depends on the polynomial,
g(b), as well as the base of the number system, b.

Proposition 4.1.1. The number of times, q, that the polynomial
g(b) is subtracted from bp(b) + uk−r−1 in order to compute the
residue |b[p(b)] + uk−r−1|g(b), is upper bounded by b− 1:

q ≤ b− 1

Proof: Because uk−1b
r−1+. . .+uk−rb

0 is a remainder,
it is less than g(b), that is, uk−1b

r−1+. . .+uk−r−1b
−1 < g(b).

Further, because p+(b) = |b(uk−1b
r−1 + . . . + uk−rb

0 +
uk−r−1b

−1)|g(b) and the expression in parentheses is less
than g(b), q can’t be equal to b, that is q ≤ b− 1.

Corollary 4.1.1. The number of times, q, that the binary polyno-
mial g(2) is subtracted from another binary polynomial 2[p(2)]+
uk−r−1 in order to compute the residue |2[p(2)] + uk−r−1|g(2),
is upper bounded by 1: q ≤ 1

Proof: Based on 4.1.1 above: q ≤ b− 1 = 2− 1 = 1
The number q serves as a measure of complexity of the

residue computing circuit. Corollary 4.1.1 states that the
hardware complexity of a binary comparator is less than
that of a non-binary comparator.

The division operation (33) demonstrates how to com-
pute the right part of equation (32).

+
uk−1b

r + . . .+uk−r−1 gr−1b
r−1 + . . .+ g0

µ̇rb
r + . . .+ µ̇0 q

p+
k−1b

r−1 + . . .+ p+
k−r

(33)

In this equation, subtraction is substituted with addition
to b’s complement. Here q is the quotient, µ = q × g is the
multiple of g, and µ̇ is the b’s complement of µ:

µ = µrb
r + . . .+ µ0; µ̇ = µ̇rb

r + . . .+ µ̇0

The implementation of (33) is shown in Figure 10. The
symbol Σkdenotes an arithmetic adder, and the adder inputs
that equal to 0 are removed. The red arrows indicate the
carry propagation path. We call this circuit arithmetic r-stage

1ku rku 1rku

1r 0
1rb 0b 1b

∑∑ ∑

1

Comparator

Fig. 10. Polynomial division in arithmetic domain

3u
0u1 1

10

01

22 12

1

1

0

11
∑

2u 0

12

∑
1u 0

02

∑

1

2 1 0 10 1

Fig. 11. Arithmetic length-3 binary SA; g = 5

)1(
2u

)1(
1u

)1(
0u

)0(
2u

)0(
1u

)0(
0u1

0

1

1

0

0

Comparator

∑

∑

∑

2c 1c 0c 01 1
08 18

Fig. 12. Arithmetic 1-stage 3-input SA; g = 5

multiple-input signature analyzer. The value g of the generator
polynomial g(b) is called the generator or modulus. In our
applications we will prefer prime integers g due to better
error-control capabilities and simpler implementation.

Example 4.1 (an arithmetic 3-stage 1-input SA). Let us
choose the following polynomials (k = 4, r = 3):

u(2) = 1 · 23 + 1 = 9; g(2) = 1 · 22 + 1 = 5

The partial residue polynomial is: p(2) = 1 · 22 = 4. And
after the shift, the content of the analyzer is

p+(2) = |2(1 · 22 + 0 · 2 + 0 + 1 · 2−1)|g(2)

If the analyzer content before the shift is greater than or
equal to g/2 = 5/2 = 2.510, the comparator must initiate
subtraction of 2.510 from this content. In our case

1 · 22 + 0 · 2 + 0 + 1 · 2−1 ≥ g/2 (34)

Because (34) holds, the 2’s complement of 10.12 (i.e.
01.12) is added to the content and the result is shifted left:

p+ = 2(1 · 22 + (0 + 0) · 2 + (0 + 1) + (1 + 1) · 2−1) = 1|1002

Indeed, 9 mod 5 = 4. The logic expression for the signal
c that adds 01.12, if (34) holds, is: c = u3 + u2(u1 + u0).

This analyzer is depicted in Figure 11.

Example 4.2 (a 1-stage 1-input SA). Set k = 2, r = 2 and
u(2) = 1 ·2 + 1 = 3, g(2) = 1 ·2 + 0 = 2. Then p(2) = 1, and
after the shift p+(2) = |2 · 1 + 1|g(2) = |2(1 + 1 · 2−1)|g(2).

TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 14, NO. 8, AUGUST 2017 9

1u

02

1 0u 1

12

(a)

)1(
2u

)1(
1u

)1(
0u

)0(
2u

)0(
1u

)0(
0u

1

1

1 0

1

1

08 18

(b)

Fig. 13. Arithmetic 1-stage binary (a) and octal (b) signature analyzers

As 1 + 1 · 2−1 = 1.12 = 1.510 is greater than g(2)/2 =
1.02 = 110, the 2’s complement of 1.02 (i.e. 1.02), must be
added to the register content and the result must be shifted
left. The same would have happened, if the register content
were 1.02 = 110. However, there is only 1 flip-flop available
in the analyzer (as modulo 2 residue is either 0 or 1). There
is no need to add a 1 to the content of this flip-flop, u1, since
the result will be lost anyway. On the other hand, if the data
were 0.02 = 010 or 0.12 = 0.510, a 0 must have been added
to the content. Thus, a 0 should be added to the content in all
cases, i.e. the feedback in the analyzer disappears. The value
of u0 = 1 will pass to the flip-flop. Indeed, 3 mod 2 = 1.

The circuit is presented in Figure 13a. It computes the
parity of the binary integer formed by the incoming bits.
Apparently, the parity equals to the value of the last bit.

Example 4.3 (a 1-stage 3-input SA). Let b = 23, k = r = 2:
u(8) = 7·23+6 = 62, g(8) = 1·23+0 = 8 Then p(b) = 7, and
after the shift, the analyzer contains p+(8) = |8 · 7 + 6|8 =
|8(7 + 6 · 8−1)|8. As 7 + 6 · 8−1 = 7.68 = 7.7510 is greater
than 8/8 = 1.08 = 110, the 8’s complement of q × 1.0 = 7×
1.0 = 7.08 (i.e. 1.08), must be added to the register content
and the result must be shifted left. The least significant digit
of the addend is the only essential digit that is used for
addition. If we similarly consider the 8’s compliments of all
possible cases of the subtrahend (ranging from 0.08 to 7.78),
this essential digit will always be 0. Therefore, the feedback
in the analyzer disappears. The value u0 = 6 will be passed
to the register. Indeed, 62 mod 8 = 6.

The circuit is presented in Figure 13b. We can consider
this circuit as computing the octal parity of the octal integer
formed by the incoming octal symbols. Clearly, the octal
parity equals to the value of the last symbol.

Absence of the feedback (examples 4.2 and 4.3) may
lower the error detecting capability. Therefore, the moduli
equal to powers of b should be avoided. A better choice
would be prime moduli (as mentioned earlier).

The circuit of figure 13b is an arithmetic equivalent
of the algebraic circuit presented in Figure 7. This is the
consequence of the identical polynomial formats:

g(x) = x+ 0; g(b) = b+ 0

Example 4.4 (an arithmetic 1-stage 3-input SA with prime
modulus). Let us consider an analyzer that uses the same
modulus, g = 5, as the one represented in Figure 11, but is 1-
stage. Note that the incoming symbols are octal numbers, i.e.
they may exceed the modulus 5. When designing the circuit,
we therefore distinguish two cases: (a) the content of the 3-
bit analyzer is always less than 5, and (b) the content of the
3-bit analyzer may range from 0 to 7; however, if it exceeds

4, it must be interpreted as follows: 5→ 0, 6→ 1, 7→ 2. Es-
sentially, this means that in case (a), the analyzer transforms
all incoming integers into real residues, whereas in case (b)
this is done by the observer. The hardware complexity of the
circuits (b) might be lower, since they are less restricted.

Set b = 23, k = 2, r = 1, u(b) = 1 · 23 + 5 = 13, g(b) = 5.
Then p(b) = 1, and after the shift, the analyzer contains
p+(23) = |1 · 8 + 5|5 = |8(1 + 5 · 8−1)|5. As 1 + 5 · 8−1 =
1.58 = 1.62510 is greater than 5/8 = 0.58 = 0.62510, the 8’s
complement of q × 0.58 = 2 × 0.58 = 1.28 = 1.2510 (i.e.
6.68), must be added to the register content, 1.58, and the
result, 0.38, must be shifted left. After the shift, the content
of the analyzer becomes 38 = 310. Indeed, 13 mod 5 = 3.

The circuit is presented in Figure 12, where the signals
c2, c1, c0 that initiate addition of the 8’s complement are
defined as follows (with ū(i)

j being inversion of u(i)
j):

c2 = u
(1)
0 (u

(0)
2 ⊕ u

(0)
1) + u

(1)
1 ū

(1)
0 u

(0)
2 + u

(1)
2 u

(0)
1 u

(0)
0

+ u
(1)
2 u

(0)
2 + ū

(1)
1 u

(1)
0 u

(0)
1 ū

(0)
0 + u

(1)
1 u

(1)
0 ū

(0)
1

c1 = u
(1)
2 ū

(0)
2 (ū

(0)
1 + ū

(0)
0) + u

(1)
1 u

(1)
0 u

(0)
2

+ u
(1)
0 u

(0)
1 ū

(0)
0 + ū

(1)
2 ū

(1)
1 ū

(1)
0 u

(0)
2 (u

(0)
1 + u

(0)
0)

+ ū
(1)
1 u

(1)
0 ū

(0)
1 + u

(1)
0 ū

(0)
2 u

(0)
0

c0 = ū
(1)
1 ū

(1)
0 u

(0)
2 (u

(0)
0 + u

(0)
1) + ū

(1)
1 u

(1)
0 ū

(0)
2 ū

(0)
1

+ ū
(1)
1 u

(0)
2 u

(0)
1 u

(0)
0 + u

(1)
1 ū

(0)
2 (ū

(1)
0 + u

(0)
1 + u

(0)
0)

+ u
(1)
1 ū

(0)
2 u

(0)
1 + u

(1)
1 u

(1)
0 u

(0)
2 ū

(0)
1 + u

(1)
2 u

(0)
1 u

(0)
0

+ u
(1)
2 u

(0)
2

As evident from these examples, the architecture and
design procedure for arithmetic circuits are more complex
compared to algebraic circuits. In the next section, we con-
sider conditions under which this complexity is reduced.

4.1.1 Aliasing Rate
The aliasing rate for arithmetic codes can be derived in the
way similar to algebraic codes.

Proposition 4.1.2. The aliasing rate for the modulo g signature
analyzer represented in Figure 10 is upper bounded by g−1:

Pnd ≤ g−1

provided that the sequence of k 2m-ary symbols to be compacted
into an r-symbol signature is long and all error patterns in the
sequence are equally likely.

Proof: The total number of errors in the sequence
of k 2m-ary symbols (output responses) is 2mk − 1. The
compaction modulus is g = gr−1(2m)r−1 + gr−2(2m)r−2 +
. . . + g0, gi < 2m, i = 0, . . . , r − 1. The number of errors
which are not detected by the code that uses modulus g is
b2mk/gc − 1, where bxc means the largest integer less than
or equal to x. Thus, the aliasing rate is

Pnd = (b2mk/gc − 1)/(2mk − 1)

For large k, Pnd ≈ b2
mk/gc
2mk ≤ 2mk/g

2mk = g−1.

Corollary 4.1.2. The aliasing rate decreases with the growth of
modulus g and reaches its minimum when g = 2mr − 1 (with m
and r being the analyzers width and length respectively):

min(Pnd) = (2mr − 1)−1 (35)

TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 14, NO. 8, AUGUST 2017 10

Proof: The proof becomes evident if take into consid-
eration the fact that the maximum value for g is 2mr − 1.
Indeed, if we select the higher modulus (yet available with
the m-bit bus), g = 2mr = br , then, similarly to (28),

|uk−1b
k−1 + . . .+ u0|br = ur−1b

r−1 + . . .+ u0 (36)

The residue (36) only depends on the last r symbols of
the sequence of k 2m-ary symbols. Since r � k, only a
small portion of errors in the sequence of k symbols can
be detected. The appropriate circuit coincides with the one
shown in Figure 8 with no feedback. Because of high error
escape rate, this circuit is not used in practice.

For testing applications r = 1 and

min(Pnd) = (2m − 1)−1 (37)

For larger values ofmr, we can ignore subtrahend in (35)
and (37). Then, the lowest values for the aliasing rate are

Pnd ≈ 2−mr; Pnd ≈ 2−m

These expressions correlate respectively with expres-
sions (24) and (25) for an algebraic signature analyzer.

In the case of an algebraic analyzer, the degree m of
the polynomial defines the aliasing rate. This rate does not
depend on the structure of the polynomial (provided that all
errors in the stream under compression are equally likely).

In the case of an arithmetic analyzer, the aliasing rate
depends on the modulus, g. However, the moduli formed
by distinct polynomials of the same degree, differ from each
other. Accordingly, the error escape rates will be different.
As it follows from Corollary 4.1.2, the aliasing rate reaches
its minimum, (37), for the following degree m polynomial:
g = 2m − 1. Under certain conditions, this modulus can be
further increased (and the minimum (37) further reduced).

Example 4.5. The aliasing rates for the parallel (r = 1)
algebraic signature analyzers based on the degree 3 (m = 3)
algebraic polynomials, g1(x) = x3+x+1 and g2(x) = x3+1,
are the same: Pnd = 2−mr = 2−3 = 0.125. And the
aliasing rates for the parallel (r = 1) arithmetic signature
analyzers based on degree 2 (note that the number of lines
m in the bus is the same, m = 3) arithmetic polynomials,
g∗1(2) = 22 +1 = 5 and g∗2(2) = 22 +2+1 = 7, are different:
P1nd = (g∗1)−1 = 0.2 and P2nd = (g∗2)−1 = 0.143. The latter
value signifies the lowest aliasing rate for a 3-bit arithmetic
analyzer: min(Pnd) = (2mr − 1)−1 = (21·3 − 1)−1 = 0.143,
which is higher than that for the equivalent algebraic ana-
lyzer, 2−3 = 0.125. Under certain conditions, the aliasing
rate for the 3-bit arithmetic analyzer can be further reduced
to that of the 3-bit algebraic analyzer, i.e. (21·3)−1 = 0.125
(no feedback is removed in the analyzer).

The algebraic analyzers based on the polynomials g1(x)
and g2(x) are respectively shown in Figures 6 and 14 (note
that |x(u2x

2 + u1x+ u0)|x3+1 = u1x
2 + u0x+ u2).

The modulo g∗1(2) = 5 analyzer is presented in Figure 12.
The analyzer with g∗2(2) = 7 is shown in the next example.

Likewise to an algebraic analyzer case, we can state the
following proposition for an arithmetic analyzer.

Proposition 4.1.3. The aliasing rate for the modulo g embedded
analyzer of Figure 10 is upper bounded by g−1:

P̃nd ≤ g−1

)1(
2u

)1(
1u

)1(
0u

)0(
2u

)0(
1u

)0(
0u

(a)

)1(
2u

)1(
1u

)1(
0u

)0(
2u

)0(
1u

)0(
0u

(b)

Fig. 14. 3-input SA with g2(x) = x3 + 1

provided that all error patterns in the sequence of k 2m-ary digits
to be compacted into an r-digit signature are equally likely.

Proof: Error-detection is performed by verifying equa-
tion (17) (internal tester part). If it holds, then there are no
errors or an undetectable error occurred.

The total number of errors in the sequence is 2mk−1. The
number of errors that produce the signature that matches
ρ̃(b) is b2mk/gc − 1. The number of possible ρ̃(b) patterns
is g. Therefore, the total number of undetectable errors is
[b2mk/gc · g]− 1 ≤ [(2mk/g) · g]− 1 = 2mk − 1.

Equation (17) is verified for each ρ̃(b) pattern, so the total
number of possible errors will increase to (2mk − 1) · g.

Thus, P̃nd = [b2mk/gc·g]−1
(2mk−1)·g ≤ 2mk−1

(2mk−1)·g = g−1

4.1.2 Choice of a Compaction Modulus
Let us synthesize an m-input analyzer of Figure 10 that
would have the lowest aliasing rate.

According to Corollary 4.1.2, the aliasing rate reaches
its minimum if modulus g = 2mr − 1. The same modulus
ensures low complexity. Indeed, the complexity depends on
the number of nonzero coefficients in base b representation
of the modulus, which is the smallest for our choice:

g(b) = gr−1b
r−1 + . . .+ g0 = br − 1

Using equation (30) and taking into consideration that
|br|br−1 = 1, we derive

p+(b) = |b(uk−1b
r−1 + . . .+ uk−r) + uk−r−1|g(b)

= |uk−2b
r−1 + . . .+ (uk−1 + uk−r−1)|br−1

The appropriate circuit is shown in Figure 15. It is a low
cost residue computing circuit. The red arrows “compen-
sate” for the possible overflow (they implement the part
shown in red in the above equation). Indeed, the carry out
bit that may appear from the last adder represents the coutbr

term, which, if not fed anywhere, will introduce an error.
In order to rectify this error, the truncated part of the term
(|coutbr|br−1 = cout) is fed back into the circuit:

p+(b) = |coutbr + uk−2b
r−1 + . . .+ uk−r−1|br−1

= |uk−2b
r−1 + . . .+ (uk−1 + uk−r−1 + cout)|br−1

For the circuits of Figure 15, where g(b) = br − 1, the
red feedback is always a single-bit signal, whereas the black
feedback may be a single-bit signal or a multiple-bit signal
(depending on the size m of the system bus).

TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 14, NO. 8, AUGUST 2017 11

1rkurku 1ku 2ku ∑∑ ∑ ∑

Fig. 15. Low cost residue computing circuit

1rkurku 1ku 2ku ∑∑ ∑ ∑

0g∏

∏ g0

Fig. 16. Generic low cost residue computing circuit

In general, the circuit that uses the following modulus
can be regarded as a low cost circuit:

g(b) = br − g0 (38)

where 0 ≤ g0 < b. This equation correlates with equation
(27) that we used for an algebraic analyzer. In order to save
hardware, the polynomial (38) is chosen monic.

Analogously, |coutbr|br−g0 = coutg0, where cout is a
single-bit signal. Respectively,

p+(b) = |b(uk−1b
r−1 + . . .+ uk−r) + uk−r−1|g(b)

= |coutbr + uk−1b
r + uk−2b

r−1 + . . .+ uk−r−1|br−g0
= |uk−2b

r−1 + . . .+ coutg0 + uk−1g0 + uk−r−1|br−g0
This analyzer is shown in Figure 16. Note the similarity

with the algebraic low cost analyzer presented in Figure 8.
The g0 multiplier is denoted by Πkto reflect its difference
from the algebraic multiplier. The feedback colored in red
ensures the correctness of the modular operation.

The red feedback in Figure 16 (including the g0 mul-
tiplier) is asynchronous by nature, and if g0 > 1, a race
condition may occur. To make the circuit operation more
stable, we can feed the most significant carry out signal
(along with the g0 multiplier) forward into the input of the
subsequent registered digits, e.g. uk−1. This may, however,
increase the hardware complexity of the design.

Equation (38) can be extended to modulus of the form:

g(b) = br − gr−1b
r−1 − . . .− g0

Note the similarity with the respective algebraic genera-
tor polynomial (22).

By the same reasoning, taking into account that |br|gb =
gr−1b

r−1 + . . .+ g0, we can write:

p+(b) = |b(uk−1b
r−1 + . . .+ uk−r) + uk−r−1|g(b)

= |coutbr + uk−1b
r + . . .+ uk−r−1|g(b)

= |(coutgr−1 + uk−1gr−1 + uk−2)br−1 + . . .

+ (coutg0 + uk−1g0 + uk−r−1)b0|g(b)

The implementation of this expression is shown in Fig-
ure 17. This is not a low cost circuit anymore. Note the
similarity with the circuit of Figure 3. The chosen (generic)
form of modulus increases the number of feedbacks and
complicates the structure of the analyzer (bringing it closer
to the complexity of the one in Figure 10). As well, the feed-
backs that propagate carries may increase the operational

g1g2gr-2

1rkurku 1ku 2ku ∑∑ ∑ ∑

0g∏

∏

2ku∑

∏∏∏ g1g2gr-2

∏∏∏∏ gr-1

g0∏ gr-1

Fig. 17. Generic residue computing circuit

)1(
2u

)1(
1u

)1(
0u

)0(
2u

)0(
1u

)0(
0u

∑

∑

∑

08 18

Fig. 18. Low cost mod 7 arithmetic 1-stage 3-input signature analyzer

delay. The optimal choice between this structure and the
one of Figure 10 depends on the values of g, r and m.

Example 4.6 (a 1-stage 3-input low cost mod 7 SA). Here
r = 1 and g(b) = 23·1− 1 = 7. The circuit implementing the
analyzer is shown in Figure 18. It constitutes an arithmetic
counterpart of the one in Figure 6a with ×α0 multiplier.

Example 4.7 (a 1-stage 3-input low cost mod 5 SA). Here
r = 1, g = 2m·r − g0 = 23·1 − 3 = 5, and

p+ = |23u1 + u0|5 = |(2 + 1)u1 + u0|5
= |cout23 + (u

(1)
2 + u

(1)
1)22 + (u

(1)
2 + u

(1)
1 + u

(1)
0)2

+ (u
(1)
2 + u

(1)
0) + u

(0)
2 22 + u

(0)
1 2 + u

(0)
0 |5

= |(u(1)
2 + u

(1)
1 + u

(0)
2)22 + (u

(1)
2 + u

(1)
1 + u

(1)
0

+ u
(0)
1 + cout)2 + (u

(1)
2 + u

(1)
0 + u

(0)
0 + cout)|5

One implementation of this expression is shown in Fig-
ure 19. This circuit is redrawn in Figure 20 in the way that is
more consistent with the scheme of Figure 16. The upper×3
multiplier can also be implemented as ×3 mod 5 multiplier.
Both multipliers can be designed as arithmetic or logical
circuits. In the latter case, the expressions for the upper
×3 mod 5 multiplier are:

o2 = ū
(1)
2 u

(1)
1 u

(1)
0

o1 = ū
(1)
2 ū

(1)
1 u

(1)
0 + u

(1)
2 ū

(1)
0

o0 = ū
(1)
2 ū

(1)
1 u

(1)
0 + u

(1)
1 ū

(1)
0 + u

(1)
2 u

(1)
1

This greatly improves the hardware complexity (see
Figure 21). And the red feedback (actually, feed-forward)
signal becomes a single-line signal. Essentially, the circuit
performs the following operation:

p+ = |8cout + 8u1 + u0|5 = |3cout + |3u1|5 + u0|5
The use of the feed-forward signal decreases complexity

of the circuit and improves its stability.
The circuits of Figures 19 - 21 constitute alternative

implementations of the mod 5 computing circuit presented
in Figure 12. These circuits are more structured and thus
easier to design and program by a hardware description

TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 14, NO. 8, AUGUST 2017 12

)0(
1u

∑

∑

∑

∑

∑

∑

)1(
2u

)1(
1u

)1(
0u

∑

∑

∑

∑

∑

∑

∑

∑

)0(
2u

)0(
0u

Fig. 19. Low cost mod 5 arithmetic 1-stage 3-input signature analyzer

)0(
1u

∑

∑

∑

∑

∑

∑

)1(
2u

)1(
1u

)1(
0u

∑

∑

∑

∑

)0(
2u

)0(
0u

∑

3

5mod3

Fig. 20. Alternative form of the circuit of Figure 19

)0(
1u

∑

∑

∑

)1(
2u

)1(
1u

)1(
0u

∑

∑

∑

)0(
2u

)0(
0u

2o 1o 0o

Fig. 21. Combinational implementation of the upper×3 mod 5 multiplier
in Figure 20

language. However, their operational cycle is longer (due to
carry propagation delays) and they may require more gates.

Figure 22 demonstrates simulation results for all of the
alternative choices. Here, u0 pres signifies the present in-
put, u(0) = (u

(0)
2 22 + u

(0)
1 2 + u

(0)
0); u1 pres signifies the

present state of the register, u(1) = (u
(1)
2 22 + u

(1)
1 2 + u

(1)
0);

and u1 next signifies its next state. The circuit performs the
following operation: u1 next = |u1 pres× 8 + u0 pres|5.

Example 4.8 (a 2-stage 3-input low cost mod 63 SA). Here
r = 2 and g(b) = 23·2 − 1 = 63. The circuit is presented in
Figure 23. The feedback colored in red insures the correct-
ness of mod 63 operation.

Example 4.9 (a 2-stage 3-input low cost mod 59 SA). Here
r = 2 and g(b) = 23·2 − 5 = 59. The modular operation

Fig. 22. Simulation of the combinational part of the mod 5 residue
generator performing the operation u1 next = |u1 pres×8+u0 pres|5

)1(
2u

)1(
1u

)1(
0u

)0(
2u

)0(
1u

)0(
0u

∑

∑

∑

08 18

)2(
2u

)2(
1u

)2(
0u

18

∑

∑

∑

Fig. 23. Low cost mod 63 arithmetic 2-stage 3-input signature analyzer

performed by the circuit can be written as:

p+ = |8(8u2 + u1) + u0|59 = |5u2 + u0 + 8u1|59

We can implement this operation in the few steps shown
below in different colours. These operations are performed
in the sequence: blue, green, magenta. The sum is split into
two parts, h = h222 + h12 + h0 and s = s222 + s12 + s0,
which represent the next state of the circuit (actually, u+

2 and
u+

1 , or, more precisely, p+ = 8u+
2 + u+

1).
The circuit (with the feed-forward carry out signal) is

presented in Figure 24. The feedback colored in red insures
the correctness of mod 59 operation. When implementing
the g0 = 5 multiplier, we took into account that

u25 = (u
(2)
2 22 + u

(2)
1 2 + u

(2)
0)5 = u

(2)
2 24

+ u
(2)
1 23 + (u

(2)
0 + u

(2)
2)22 + u

(2)
1 2 + u

(2)
0

c
′′′

3 26 = c
′′′

3 5 mod 59

where c
′′′

3 is the carry-out signal produced by the most
significant digit of the mod 59 adder.

- -

26 25 24 23 22 21 20

c
′′′

3 c
′′′

3

c
′′′

3 c
′′′

2 c
′′′

1 c
′′

3 c
′′

2 c
′′

1

c
′

5 c
′

4 c
′

3

+ u
(2)
2 u

(2)
1 u

(2)
0

u
(2)
2 u

(2)
1 u

(2)
0

u
(1)
2 u

(1)
1 u

(1)
0 u

(0)
2 u

(0)
1 u

(0)
0

h2 h1 h0 s2 s1 s0

Feeding the carry out signal forward eliminates the race
condition, but it results into two extra adders. If the carry
out signal is fed back, the circuit becomes more compact (see
Figure 25). However, the simulation software (such as, Al-
tera Quartus II) refuses to simulate the combinational part of

TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 14, NO. 8, AUGUST 2017 13

)1(
2u

)1(
1u

)1(
0u

)0(
2u

)0(
1u

)0(
0u

∑

∑

∑

08 18

)2(
2u

)2(
1u

)2(
0u

18

∑

∑

∑

∑

∑

∑

∑

∑

∑

∑

∑

∑

Fig. 24. Low cost mod 59 arithmetic 2-stage 3-input SA

c3
’’c3

’’’

c5
’

)1(
2u

)1(
1u

)1(
0u

)0(
2u

)0(
1u

)0(
0u

∑

∑

∑

08

18

)2(
2u

)2(
1u

)2(
0u

18

∑

∑

∑

∑

∑

∑

Fig. 25. The mod 59 generator with feedback

Fig. 26. Simulation results for the combinational part of the circuit of
Figure 25 performing the operation |(u(2) × 8 + u(1))× 8 + u(0))|59

this circuit. To resolve the problem, a flip-flop was inserted
in the feedback. The simulation results completely matched
those for Figure 24. They are partially presented in Figure 26.
The combinational circuit computes the next state of the
two-digit octal register by performing the following opera-
tion: |(u(2)×8 +u(1))×8 +u(0))|59. The simulation demon-
strated the perfect match between the true (desired) values
of the mod 59 residues and the actual values produced by
the circuit. For example, |(7× 8 + 4)× 8 + 3 = 1× 8 + 3|59.

The entire circuit presented in Figure 25 (including the
registers, u2 and u1) was simulated with the inclusion of a
flip-flop into the feedback. The simulation results are pre-
sented in Figure 27. The flip-flop is triggered by the falling
edge of the clock; and the input data are updated at the
rising edge. As it can be seen from the diagram, after shifting
in the sequence of octal numbers, 5321407601234567, the
result of the modulo division is u+

2 = u+
1 = 4, i.e. 4×8+4 =

Fig. 27. Simulation results for the entire circuit of Figure 25 with a flip-flop
in the feedback

∑∑3u 2u 1u 0u∑

∑12
02

22

Fig. 28. Arithmetic length-3 binary SA revised; g = 5

Fig. 29. Simulation results for the circuit of Figure 28: the sequence
1001011101000101 is shifted in (with each shift equivalent to multipli-
cation of the entire register content by 2 mod 5) resulting in |0|5

3610. Indeed, 53214076012345678 mod 5910 = 3610.

Example 4.10 (an arithmetic 3-stage 1-input SA - Exam-
ple 4.1 revised). We will now re-design the mod 5 generator
circuit (introduced in Example 4.1) using the approach of
Figure 17. Once again, r = 3 and g(b) = 5.

The operation performed by the circuit is:

p+ = |2(4u3 + 2u2 + u1) + u0|5 = |3u3 + 4u2 + 2u1 + u0|5
This operation is implemented by the circuit shown in

Figure 28 (note the similarity with the circuit of Figure 4).
The simulation results for the circuit of Figure 28 are pre-
sented in Figure 29. The following binary sequence is shifted
in to the circuit: 10010111010001012 = 3872510. Each shift is
equivalent to the multiplication of the entire register content
by 2 mod 5. The final result of this modulo operation is
u+

3 u
+
2 u

+
1 = 1012 = 510. Indeed, 3872510 mod 510 = 0.

The hardware complexity of the circuit in Figure 28
slightly exceeds the complexity of the circuit of Figure 11.
However, the circuit of Figure 28 is more structured and
easier to describe in a hardware description language.

Simulation results for the circuits of Figures 28 and
11 complitely match each other (this can be verified by
observing the register content in Figure 29 after shifting in
only 4 bits of the sequence, i.e. 1001; the residue left in the
register is, indeed, 4 = 9 mod 5).

4.1.3 Further Improvement of Aliasing Rate
According to Corollary 4.1.2, the aliasing rate for a 1-stage
low cost residue computing circuit with g = (2m)r − 1 =

TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 14, NO. 8, AUGUST 2017 14

1rkurku 1ku 2ku ∑∑ ∑ ∑

Fig. 30. Low cost mod [(b+ 1)r − 1] SA

)1(
2u

)1(
1u

)1(
0u

)0(
2u

)0(
1u

)0(
0u

∑

∑

∑

09 19

Fig. 31. 3-bit mod 8 checksum generator: (u1 × 9 + u0) mod 8

br − 1 equals to (br − 1)−1. To further improve the aliasing
rate, we could increase the modulus from br − 1 to br .
However, as it was observed earlier, this type of modulus
is not preferable due to low error detecting capabilities (the
corresponding signature analyzer does not have feedbacks).
In order to preserve error detecting capabilities while ex-
tending the modulus size, we can increase the base of the
system by 1. That is, we use the following number system:

u = uk−1(b+ 1)k−1 + uk−2(b+ 1)k−2 + . . .+ u0

g = (b+ 1)r − 1

p = uk−1(b+ 1)r−1 + uk−2(b+ 1)r−2 + . . .+ uk−r

where the polynomial coefficients range from 0 to b. And
p+ = |(b+ 1)p+uk−r−1|(b+1)r−1 = |uk−2(b+ 1)r−1 + . . .+
(uk−1 + uk−r−1)|g .

The circuit implementing this expression is shown in
Figure 30. It does not have a carry-out feedback.

If r = 1, the circuit transfers to the device known as a
modulo adder, checksum generator, accumulator, integrator.

Example 4.11 (a 3-input checksum generator). Let r = 1
and g = (b+ 1)r − 1 = (23 + 1)1 − 1 = 8. A 3-bit checksum
generator is shown in Figure 31. Each shift is equivalent to
multiplication of its content by 9 mod 8.

Proposition 4.1.4. All properties of a checksum generator are
inherited from the properties of the corresponding residue code.

Proof: The proof directly follows from the above dis-
cussion.

We can choose a more general form of the base, such as
b + g∗0 = 2m + g∗0 , where 0 ≤ g∗0 < 2m. Then, the modulus
g equals: g = (b + g∗0)r − g0. And, the partial residue is:
p+ = |(b+ g∗0)p+ uk−r−1|(b+g∗0)r−g0 = |uk−2(b+ g∗0)r−1 +
. . .+ (uk−1g0 + uk−r−1)|g .

The implementation of this analyzer is the same as
represented in Figure 16 with the only difference that each
shift of the register is equivalent to multiplication by 2m+g∗0 .

Based on the above expression, we can introduce a few
more novel circuits.

Case 1. If g∗0 = g0 and r = 1, then p+ = |uk−1g0 +
uk−r−1|2m . This will lead to the circuit of Figure 16, but
without the red carry-out feedback. And if g0 = 1 the upper
g0-multiplier will turn into a straight line. The circuit also

1rkurku 1ku 2ku ∑∑ ∑ ∑

Fig. 32. Low cost mod [(b− 1)r + 1] SA

has the lowest aliasing rate, since the modulus 2m ensures
the largest possible range for m-bit residues.

Case 2. If g∗0 = g0 = 1 and r ≥ 1, then p+ = |uk−2(b +
1)r−1 + . . . + (uk−1 + uk−r−1)|(b+1)r−1. The equality |(b +
1)r|(b+1)r−1 = 1 will then lead to the circuit of Figure 15.

Case 3. The coefficients g0 and g∗0 are negative. That is,
the base is b− g∗0 and the modulus is g = (b− g∗0)r + g0.

Respectively

p+ = |(b− g∗0)p+ uk−r−1|(b−g∗0)r+g0

= |uk−2(b− g∗0)r−1 + . . .+ (−uk−1g0 + uk−r−1)|g
We only consider the case g∗0 = g0 = 1, since it ensures

the lowest hardware complexity and aliasing rate. Then,
p+ = |uk−2(b − 1)r−1 + . . . + (−uk−1 + uk−r−1)|(b−1)r+1.
Taking into account that |(b− 1)r|(b−1)r+1 = −1, the above
equation leads to the implementation shown in Figure 32.
Because CMOS logic gates are realized with inverted out-
puts, the proposed circuit may save hardware.

If r = 1, then the base equals to 2m. The red carry-out
feedback in Figure 32 disappears and the carry-in signal to
the right most digit becomes a constant “1”.

Another useful property of this circuit can be derived
from the following observation. For simplicity, we assume
that the information sequence contains k = 3r digits. Then,
introducing notation B = b−1 and taking into account (31),

|u(B)|g(B) = |u3r−1B
3r−1 + . . .+ u0|Br+1 = |u3r−1B

r−1

+ . . .+ u2r − u2r−1B
r−1 − . . .− ur + ur−1B

r−1

+ . . .+ u0|Br+1 = |(u3r−1 − u2r−1 + ur−1)Br−1

+ . . .+ (u2r − ur + u0)|Br+1

This equation shows that the analyzer adds the distant
r symbols with alternating signs. One possible use of this
property is that if the sequence of digits is disturbed by an
additive noise, the overall effect of the noise to the signature
will be neutralized (provided that the number of r-digit sets
in the incoming sequence is even).

Example 4.12 (a low cost 1-stage mod 7 SA). Let r = 1 and
g = br + g0 = 61 + 1 = 7. The circuit that implements
this analyzer is presented in Figure 33a. Each shift of this
circuit/register is equivalent to multiplication of its content
by 6 mod 7. Or, more precisely, |u1×6+u0|7 = |−u1 +u0|7.

If we feed this analyzer, for example, by the sequence
101, 110, 011, the signature will be 010. The binary inte-
gers 101, 110, 011 correspond, respectively, to the decimal
integers −2,−1, 3. Thus, the resulting signature (in decimal
form) will be: (−2)− (−1) + 3 = 2 (or 010 in binary).

If the sequence was 101, 110, 011, 000, the result would
be 101. Indeed, −(−2) + (−1) − 3 + 0 = −2, and −2 =
5 mod 7. And if this sequence is disturbed by additive noise,
e.g., +1, the signature will be the same: −(−2 + 1) + (−1 +
1)− (3 + 1) + (0 + 1) = −2.

TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 14, NO. 8, AUGUST 2017 15

)1(
2u

)1(
1u

)1(
0u

)0(
2u

)0(
1u

)0(
0u

∑

∑

∑

06 16

(a)

)1(
2u

)1(
1u

)1(
0u

)0(
2u

)0(
1u

)0(
0u

∑

∑

∑

07 17

1

(b)

Fig. 33. Low cost 1-stage SAs with (a) mod 7 and (b) mod 8

∑ ∑2u 1u 0u
2c

1c 0c

Fig. 34. (−2)i = 5i mod 7 - multiplier used as a pseudo-random number
generator; any non-zero 3-bit number placed into this register will go
through all 6 possible combinations when the register is clocked

Fig. 35. Simulation of ×5 mod 7 residue generator shown in Figure 34
with the seed value of 001; for example, |110× 5 = 010|7

Example 4.13 (a low cost 1-stage mod 8 SA). Let r = 1 and
g = (b−1)r + 1 = (23−1)1 + 1 = 8. This analyzer is shown
in Figure 33b. Each shift of this analyzer is equivalent to the
following operation: |u1 × 7 + u0|8 = | − u1 + u0|8.

If we feed this analyzer by the sequence used in the
previous example, 101, 110, 011, 000, the signature will be
110. Indeed, −(−3) + (−2)− 3 + 0 = −2 = 6 (mod8).

Example 4.14 (a pseudo-random number generator). If α is
a primitive element of a finite field GF (q), then each field
element can be written as αi for some integer i. That is,
consecutive powers of a primitive element will generate all
the non-zero elements of a field. Integer −2 is a primitive
element in GF (7). Note that (−2)i = (+5)i mod 7. We
will now build a circuit, where each shift is equivalent by
multiplication of its content by (−2) mod 7. The circuit is
able to generate all the non-zero GF (7) field elements by
rising the content into consecutive powers. We can start
from a primitive element itself, or from any other field
element. The circuit is presented in Figure 34.

The logic expressions for the signals c2, c1, c0 are:

c2 = ū0(u1 + u2); c1 = u0 + u1 + u2; c0 = ū2(u0 + u1)

Simulation results for the circuit of Figure 34 are pre-
sented in Figure 35. Here q(2)q(1)q(0) is the (octal) signal at
the outputs u2u1u0.

Fig. 36. Simulation of a pseudo-random number generator: each shift is
equivalent to multiplication by 3 mod 5

Apparently, this circuit is a pseudo-random (octal) num-
ber generator. We can also call it a [(−2)i mod 7]-multiplier.

Note that the fieldGF (7) contains q = 7 elements, where
q is a prime number and not a power of 2. So that algebraic
polynomials can not be utilized here.

Generally, we can select any modulo computing circuit,
place a primitive element into it and start shifting it. The
circuit will then generate pseudo-random numbers. For
example, if we select the circuit of Figure 28, it will produce
the following sequence of numbers: 3, 1, 2, 4, 3, 1, 2, 4,
This is shown in Figure 36. Here the primitive element is
the same, −2 = 3 mod 5. The first two clocks are used to
shift in two 1′s resulting in 3(= −2). Then the register input
turns into 0 and the content is shifted left: |3× 2 = 6 = 1|5,
|6× 2 = 7 = 2|5, |2× 2 = 4|5, |4× 2 = 3|5, |3× 2 = 6 = 1|5.

4.2 Mixed-Signal Arithmetic Channel
Among all mixed-signal devices (carrying both continuous
and discrete signals), we consider only those having discrete
outputs (such as analog-to-digital converters, measurement
instruments, etc.). These devices can potentially be tested by
any of the analyzers introduced in sections 3.1 and 4.1.

In contrast to digital circuits, the output response of a
mixed-signal CUT that is fed by a test stimulus is distorted
even for the fault free CUT. This, in turn, distorts the fault
free circuit’s signature into a range of reference signatures.
We determine the operational status of the CUT by verifying
whether or not the actual signature drops into this range.

If we employ algebraic signature analyzers of section 3.1,
the range of reference signatures will contain gaps. This in-
creases complexity of the verifying device (further referred
to as a comparator) which must now contain a memory to
store all the reference signatures. If the range was contigu-
ous, we could use a window comparator (that only requires
two signatures, lower and upper ones) to verify that the
actual signature drops into the range. One solution to make
the range contiguous is to rearrange the set of reference
signatures [28]. Another solution is the use of any arithmetic
signature analyzers examined in section 4.1. Under certain
conditions, these analyzers produce a contiguous signature
range. In this section, we will focus on this particular case.
Two questions of interest arise thereupon: what is the alias-
ing rate and what is the reference signature range?

4.2.1 Aliasing Rate
Proposition 4.2.1. The aliasing rate of the modulo g signature
analyzer (Figure 10 or Figure 17) used for compaction of output
signals of a mixed-signal circuit, is upper bounded by g−1:

Pnd ≤ g−1

TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 14, NO. 8, AUGUST 2017 16

g
m

km

u
12

1)2(

0
g

m

km

u
12

1)2(

1g

u

1

(a)

058

45 14

1

u

(b)

Fig. 37. Reference signature ring for (a) general case (b) Example 4.15

provided that the sequence of k 2m-ary symbols to be compacted
into an r-symbol signature is long and all error patterns in the
sequence are equally likely.

Proof: The polynomial to be compacted and the com-
paction modulus are: u = uk−1(2m)k−1 + uk−2(2m)k−2 +
. . . + u0 and g = gr−1(2m)r−1 + gr−2(2m)r−2 + . . . + g0,
where gj < 2m, j = 0, . . . , r − 1.

For a fault-free mixed-signal circuit, the actual value of
the digit, uai , i = 0, . . . , k − 1, must fall into the predefined
interval, ui + δ̌ ≤ uai ≤ ui + δ̂, where ui is the nominal value
of the digit, and δ̌, δ̂ are, respectively, the lower and upper
tolerance bounds: δ̌ ≤ 0 ≤ δ̂. Then, the total number of
errors in the sequence of k 2m-ary digits (output responses)
is 2mk − (|δ̌|+ δ̂ + 1)k. The number of errors which are not
detected by the code that uses modulus g is b2mk/gc−(|δ̌|+
δ̂ + 1)k. Therefore, the aliasing rate,

Pnd ≤
1/g · [2m/(|δ̌|+ δ̂ + 1)]k − 1

[2m/(|δ̌|+ δ̂ + 1)]k − 1

Taking into account that |δ̌|, δ̂ are small compared to 2m,
k is large and g is relatively small, we obtain Pnd ≤ g−1.

It follows from this proposition that aliasing rate de-
creases with the grows of the compaction modulus, g.

4.2.2 Reference Signature Range
Proposition 4.2.2. Let ui, i = 0, . . . , k−1 be a nominal 2m-ary
digit and let u∗i be the interval digit defined as u∗i = ui+δ, where
δ is the interval (called a deviation) defined by the left and right
endpoints δ̌ and δ̂, δ = [δ̌, δ̂].

Then, the range of the reference signatures is the interval, ρ,
with the left and right endpoints ρ̌, ρ̂, ρ = [ρ̌, ρ̂], where:

ρ̌ =

∣∣∣∣∣u+ δ̌
(2m)k − 1

2m − 1

∣∣∣∣∣
g

, ρ̂ =

∣∣∣∣∣u+ δ̂
(2m)k − 1

2m − 1

∣∣∣∣∣
g

Proof: The reference signature is computed as follows:
ρ = |(uk−1 + δ)(2m)k−1 + . . .+ (u1 + δ)2m + (u0 + δ)|g =

|u+δ(2m)k−1+δ(2m)k−2+. . .+δ2m+δ|g =
∣∣∣u+ δ (2m)k−1

2m−1

∣∣∣
g

Hence, the reference signatures interval, ρ = [ρ̌, ρ̂], and
ρ̌ =

∣∣∣u+ δ̌ (2m)k−1
2m−1

∣∣∣
g
, and ρ̂ =

∣∣∣u+ δ̂ (2m)k−1
2m−1

∣∣∣
g

The endpoints of the reference signature interval are
shown in Figure 37a. The ring appears because of modular
operations. If the actual signature, ua, falls into the red
region, the circuit is faulty. Otherwise, it is considered to
be fault-free (with the aliasing defined in Proposition 4.2.1).

Example 4.15 (signature range for mod 59 SA). Let us
choose the signature analyzer of Figure 25 with g = 59. We

will shift in k = 3 octal digits, and assume that the nominal
signature for these digits is u = 0. Set |δ̌| = δ̂ = 1, then,
based on Proposition 4.2.2:

ρ̌ =

∣∣∣∣0− (23)3 − 1

23 − 1

∣∣∣∣
59

= 45; ρ̂ =

∣∣∣∣0 +
(23)3 − 1

23 − 1

∣∣∣∣
59

= 14

The end points of the reference signatures interval are
shown in Figure 37b. The sets of reference signatures occupy
the following symmetrical (with respect to 0) intervals on
the ring: 1− 9, 12− 14 and 45− 47, 50− 58.

Corollary 4.2.1. For a low cost analyzer with g = 2mr − 1, the
end points of the interval of reference signatures are:

ρ̌ =

∣∣∣∣u+ δ̌
k

r

(2m)r − 1

2m − 1

∣∣∣∣
g

, ρ̂ =

∣∣∣∣u+ δ̂
k

r

(2m)r − 1

2m − 1

∣∣∣∣
g

Proof: The signature is computed as:

|u|g = |uk−1(2m)k−1 + . . .+ u0|g
= |(2m)k−r[uk−1(2m)r−1 + . . .+ uk−r] + . . .

+ (2m)0[ur−1(2m)r−1 + . . .+ u0]|g
For simplicity, we assume that k is multiple of r, that is

k = λr, where λ is an integer. Then, the signature |u|g is:

|(2m)r(λ−1)[uk−1(2m)r−1 + . . .+ uk−r] + . . .

+ (2m)0[ur−1(2m)r−1 + . . .+ u0]|2mr−1

= |(uk−1 + uk−r−1 + . . .+ u2r−1 + ur−1)(2m)r−1

+ . . .+ (uk−r + uk−2r + . . .+ ur + u0)|2mr−1

Introducing notations:

Ui = u(λ−1)r+i + . . .+ u2r+i + ur+i + ui

for i = 0, . . . , r − 1, we obtain:

|u|g = |Ur−1(2m)r−1 + . . .+ U12m + U0|2mr−1 (39)

The modular operation here only handles the effect of
the carry out signal.

By the same reasoning, introducing ∆ = δλ, we obtain:

|δ|g = |∆(2m)r−1 + . . .+ ∆2m + ∆|2mr−1 = |δλ[(2m)r−1+

. . .+ 2m + 1]|2mr−1 =

∣∣∣∣δ kr (2m)r − 1

2m − 1

∣∣∣∣
2mr−1

Taking into account this equation and equation (39),

ρ = |u+ δ|2mr−1 =

∣∣∣∣u+ δ
k

r

(2m)r − 1

2m − 1

∣∣∣∣
2mr−1

(40)

where u is computed using equation (39). Then, the proof
directly follows from equation (40).

Example 4.16 (signature range for mod 63 SA). Let us
choose the signature analyzer of Figure 23 with g = 63,
and r = 2. We shift in k = 4 octal digits, and assume again
that the nominal signature for these digits is u = 0. Set
|δ̌| = δ̂ = 1, then, based on Corollary 4.2.1, we obtain the
following estimates: ρ̌ = 45 and ρ̂ = 18.

The sets of reference signatures occupy the following
intervals: 1− 2, 6− 10, 14− 18 and 45− 49, 53− 57, 61− 62.

As we have seen, the range [ρ̌, ρ̂] is not always contigu-
ous, which complicates the testing device (bringing the com-
plexity closer to the algebraic analyzer case). The contigu-
ousness is certainly achieved for the modulus g = 2mr − 1,

TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 14, NO. 8, AUGUST 2017 17

with r = 1 (i.e., one-stage analyzers). For example, if m = 3,
k = 2, |δ̌| = δ̂ = 1, then ρ̌ = 5, ρ̂ = 2, and the reference
signatures interval is 5, 6, 0, 1, 2. However, the analyzer with
these parameters (as the one of Figure 18) does not detect
error patterns of the form +t,−t, where t < 2m. The
same is true for the algebraic analyzer with the generator
polynomial over GF (2m) of the form g(x) = xr + 1, r = 1
(like the one in Figure 6a). This follows from the fact that
|2m|2m−1 = 1 and |x|x+1 = 1. For example, if the first and
second digits of the following octal polynomial are, respec-
tively, corrupted by +2 and -2, the code with the generator
g = 7 (Figure 18) will not detect the errors, while the one
with g = 5 and almost the same hardware complexity (Fig-
ure 28) will do: |5·82+3·8+4|7 = 5, and |5·82+3·8+4|5 = 3.
While, in case of errors: |5 · 82 + (3 + 2) · 8 + (4− 2)|7 = 5,
and |5 · 82 + (3 + 2) · 8 + (4− 2)|5 = 2.

4.2.3 Bound on Number of Responses to be Compacted
The validity of a pass/fail decision by an arithmetic signa-
ture analyzer, depends on the number of digits to be com-
pacted. It is important to estimate the maximum number of
digits that can be shifted into the analyzer, while a reliable
pass-fail decision can yet be made.

Proposition 4.2.3. The maximum number of digits, k, that can
be shifted into a mod g signature analyzer used for testing of the
[δ̌, δ̂] mixed-signal channel, is defined as:

k = blog|δ̌|+δ̂+1 gc

Proof: Each “fault-free” digit shifted into the analyzer
produces one of the |δ̌|+δ̂+1 possible reference signatures (1
in this expression corresponds to the “nominal” signature).
If k digits are shifted in, the number of possible reference
signatures is (|δ̌|+ δ̂+1)k. This number must not exceed the
modulus: (|δ̌|+ δ̂ + 1)k ≤ g. Or, k = blog|δ̌|+δ̂+1 gc

It follows from this Proposition that the number, k, of
digits that could be reliably compacted increases with the
growth of the modulus and contraction of the tolerance
bounds. In this regard, when testing an analog-to-digital
converter, it is suggested to apply the test stimuli that
coincide with the transition points between code levels of
the converter’s transfer function. The tolerance bounds will
then shrink from [δ̌, δ̂] to [0, δ̂].

Example 4.17 (an estimate of the maximum number of octal
digits to be compacted by a mod 59 SA). Let us consider the
mixed-signal channel with the parameters of Example 4.15.

Using Proposition 4.2.3, we derive: k = blog3 59c = 3,
meaning that we can safely shift 3 digits into the analyzer.
The number of possible reference signatures after this shift
becomes 33 = 27, which is less than 59. So that, the “fault-
free” and “faulty” signature sets can still be distinguished.

If we selected 4 digits, the number of reference signa-
tures would increase to 34 = 81, which overlaps the modu-
lus 59. Therefore, no true pass/fail decision is possible.

Note that Proposition 4.2.3 defines the bound on the
maximum number of digits that can be safely shifted into
the analyzer. The actual number of allowable digits may be
higher (depending on the concrete values of m, r, g, k). For
example, if m = 3, g = 7, |δ̌| = δ̂ = 1, then it follows from
the Proposition that k = blog3 7c = 1. However, as we have

seen, if the number of digits is 2, then the set of reference
signatures is 5, 6, 0, 1, 2 and they are still distinguishable
from the faulty circuit signatures. This happens because
some of the reference signatures overlap with others, thus,
narrowing the reference signature range and allowing the
number of digits, k, to be increased.

5 CONCLUSION

A polynomial division circuit is an important part of any
technical system that exercises principles of the theory of
error-control coding. These circuits are used in high reli-
ability communication, computing, test, cryptography and
other systems. All the variety of polynomial division circuits
is split into two classes, algebraic and arithmetic circuits.
The design procedures for them are distinct and considered
separately. In our work, we investigated these two classes of
circuits from common perspective and presented the theory
and design techniques for them. The similarity between the
two circuit classes was revealed. One of the benefits of this
similarity is that arithmetic signature analyzers can be de-
signed directly by observing the modulus polynomial, much
in the same way as for algebraic analyzers. We showed how
to utilize the polynomial division circuits for testing digital
and mixed-signal devices. The approach is applicable to
an arbitrary algebraic/arithmetic system with any number
base. We also demonstrated how to eliminate the race con-
dition in the arithmetic circuits, which may occur because of
the asynchronous feedback introduced by the carry propa-
gation circuitry. Several numeric characteristics/bounds for
polynomial division circuits were introduced and estimated
(including the aliasing rate for mixed-signal systems).

Although the main objective of this work was the ap-
plication of the polynomial division circuits for testing,
the proposed circuits can also be used in communication
channels as a part of coders/decoders. As well, they can
be utilized in arithmetic devices protected by arithmetic
error-control codes (including computing systems, analog-
to-digital converters and digital filters implemented in a
residue number system).

While the design procedures for algebraic and arithmetic
polynomial division circuits elaborated in this work look
similar, they are yet distinct. The future work carried out in
this area could result in the development of a unified design
procedure applicable to both types of circuits.

The other anticipated implications include the following:

• Since the operation of arithmetic polynomial division
circuits is similar to the operation of digital filters, the
development of a unified digital systems processing
algorithm for designing both of these devices could
be considered. The filter based approach has been
used for designing algebraic encoders/decoders. The
counterpart for arithmetic devices is yet to be devel-
oped.

• As it follows from the work, it is more difficult
to design an arithmetic polynomial division circuit
rather than an algebraic one. It is anticipated, that
simpler and lower-cost arithmetic circuits with a
good aliasing rate will be developed in the future.
It is also anticipated that the aliasing rate bounds

TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 14, NO. 8, AUGUST 2017 18

will be ”narrowed”, making the rate estimates more
accurate.

• When arithmetic polynomial division circuits are
utilized for mixed-signal systems testing, the aliasing
rate rapidly increases with the growth of the number
of patterns to be compressed (due to the unavoidable
quantization error). It may become more economical
to ”shift” the execution of modular operations from
a digital to an analog part of the circuit. This will
lead to the development of analog filters working in
a residue number system. These filters could possess
improved characteristics (like speed, accuracy, etc.).

• We gradually demonstrate how to use error-control
codes for testing and propose the appropriate model.
In our work, we only consider error-detection block
codes. However, other codes could also be in-
vestigated (e.g., non-block convolutional codes, or
block error-locating codes that would locate faulty
units/scan chains in a device under test).

• It is expected that the work will narrow down the
gap between the abstract math and practical engi-
neering.

The outcomes of the work are anticipated to have an im-
pact on the researchers and engineers working in the fields
of reliable digital computing (including re-configurable
computing), noise-immune data communication, built-in
self-test, cryptography, and test & measurement area.

ACKNOWLEDGMENT

This research has been supported by the Ryerson University
Faculty of Engineering and Architectural Science Dean’s
Research Fund.

The author would like to thank Dr. V. Kneller and Dr. V.
Dyn’kin, Institute of Control Science, RAS, for their creative
ideas, boundless inspiration and invaluable advise.

REFERENCES

[1] W. Peterson and E. Weldon, Error Correcting Codes. Cambridge,
MA: The MIT Press, 1972.

[2] T. Rao, Error Coding for Arithmetic Processors. New York, NY:
Academic Press, 1974.

[3] G. Starr, Q. Jie, B. Dutton, C. Stroud, F. Dai, and V. Nelson, “Au-
tomated generation of built-in self-test and measurement circuitry
for mixed-signal circuits and systems,” in Proc. 15th IEEE Inter-
national Symposium on Defect and Fault Tolerance in VLSI Systems,
2009, pp. 11–19.

[4] J. Rajski and J. Tyszer, “The analysis of digital integrators for test
response compaction,” IEEE Trans. Circuits Syst., vol. 39, no. 5, pp.
293–301, 1992.

[5] L. Wei and L. Jia, “An apprach to analong and mixed-signal BIST
based on pseudo-random testing,” in Proc. International Conference
on Communications, Circuits and Systems, 2008, pp. 1192–1195.

[6] M. Poolakkaparambil, J. Mathew, A. Jabir, D. Pradhan, and S. Mo-
hanty, “BCH code based multiple bit error correction in finite field
multiplier circuits,” in Proc. Int. Symp. Quality Electronic Design,
2011, pp. 1–6.

[7] K. Chakrabarty, “Low-cost modular testing and test resource par-
titioning for SOCs,” Proc. IEE Comput. Digit. Techn, vol. 152, no. 3,
pp. 427–441, 2005.

[8] I. Voyiatzis, A. Paschalis, D. Gizopoulos, N. Kranitis, and C. Ha-
latsis, “A concurrent built-in self-test architecture based on a self-
testing RAM,” IEEE Trans. Rel., vol. 54, no. 1, pp. 69–78, 2005.

[9] K. Tsoumanis, C. Efstathiou, and N. Moschopoulos, “On the
design of modulo 2n ± 1 residue generators,” in Proc. IFIP/IEEE
21st Int. Conf. on VLSI-SoC, 2013, pp. 33–38.

[10] S. Piestrak, “Design of residue generators and multioperand mod-
ular adders using carry-save adders,” IEEE Trans. Comput., vol.
423, no. 1, pp. 68–77, 1994.

[11] G. Redinbo, “Protecting data compression: arithmetic coding,”
Proc. IEE Comput. Digit. Techn, vol. 147, no. 4, pp. 221–228, 2000.

[12] A. Ahmad and L. Hayat, “On design of 16-bit signature analyzer
circuits equipped with primitive characteristic polynomials,” in
Proc. 1st Taibah University Int. Conf. Computing and Information
Technology, 2012, pp. 660–664.

[13] P. Wohl, J. Waicukauski, S. Patel, C. Hay, E. Gizdarski, and
B. Mathew, “Hierarchical compactor design for diagnosis in de-
terministic logic BIST,” in Proc. VLSI Test Symposium, 2005, pp.
359–365.

[14] T. Indlekofer, “Signature rollback with extreme compaction - a
technique for testing robust VLSI circuits with reduced hardware
overhead,” Annales Univ. Sci. Budapest., Sect. Comp., vol. 39, pp.
161–180, 2013.

[15] N. Badereddine, Z. Wang, P. Girard, K. Chakrabarty, A. Virazel,
S. Pravossoudovitch, and C. Landrault, “A selective scan slice en-
coding technique for test data volume and test power reduction,”
J Electron Test, vol. 24, pp. 353–364, 2008.

[16] T. Hiraide, K. Boateng, H. Konishi, K. Itaya, M. Emori, H. Ya-
manaka, and T. Mochiyama, “BIST-aided scan test - a new method
for test cost reduction,” in Proc. VLSI Test Symposium, 2003, pp.
359–364.

[17] K. Namba, Y. Matsui, and H. Ito, “Test compression for IP core
testing with reconfigurable network and fixing-flipping coding,” J
Electron Test, vol. 25, pp. 97–105, 2009.

[18] X. Tang and S. Wang, “A low hardware overhead self-diagnosis
technique using Reed-Solomon codes for self-repairing chips,”
IEEE Trans. Comput., vol. 59, no. 10, pp. 1309–1319, 2010.

[19] C. Liu and K. Chakrabarty, “Design and analysis of compact
dictionaries for diagnosis in scan-BIST,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 13, no. 8, pp. 979–984, 2005.

[20] S. Wichlund, F. Berntsen, and E. Aas, “Scan test response com-
paction combined with diagnosis capabilities,” J Electron Test,
vol. 24, pp. 235–246, 2008.

[21] S. Lin and D. Costello, Error Control Coding. Upper Saddle River,
NJ: Pearson Education, Inc., 2004.

[22] N. Szabo and R. Tanaka, Residue Arithmetic and Its Application
to Computer Technology. New York, NY: McGraw-Hill Book
Company, 1967.

[23] J. Stone, “Multiple-burst error correction with the Chinese Re-
mainder theorem,” J. SIAM, vol. 11, pp. 74–81, 1963.

[24] S. Hassen and E. McCluskey, “Increased fault coverage through
multiple signatures,” in Proc. International Fault-Tolerant Computing
Symposium, 1984, pp. 354–359.

[25] G. Alefeld and G. Mayer, “Interval analysis: Theory and applica-
tions,” Journal of Computational and Applied Mathematics, vol. 121,
no. 1-2, pp. 421–464, 2000.

[26] S. Chang and L. Weng, “Error-locating codes,” in IEEE International
Convention Record, 1965, Part 7, pp. 252–258.

[27] U. Sparmann and M. Reddy, “On the effectiveness of residue code
checking for parallel two’s complement multipliers,” IEEE Trans.
VLSI Syst., vol. 4, no. 2, pp. 227–239, 1996.

[28] V. Geurkov and L. Kirischian, “On the use of an algebraic sig-
nature analyzer for mixed-signal systems testing,” VLSI Design,
Hindawi Publishing Corporation, vol. 2014, no. 465907, pp. 1–8, 2014.

Vadim Geurkov received the M.S. degree in
computer engineering from Georgian Polytech-
nic University, Tbilisi, Georgia, in 1981, and the
Ph.D. degree in computer engineering from the
Institute of Control Science, Moscow, Russia,
in 1993. He is currently an Associate Profes-
sor with the Department of Electrical and Com-
puter Engineering, Ryerson University, Toronto,
Canada. His research interests include design-
for-test and built-in self-test for digital and mixed-
signal systems.

