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Abstract—Cloud workloads are increasingly heterogeneous such that a single Cloud job may encompass one to several tasks, 

and tasks belonging to the same job may behave distinctively during their actual execution. This inherent task heterogeneity 

imposes increased complexities in achieving an energy efficient management of the Cloud jobs. The phenomenon of a few 

proportions of tasks characterising increased resource intensity within a given job usually lead the providers to over-provision all 

the encompassed tasks, resulting in majority of the tasks incurring an increased proportions of resource idleness. To this end, 

this paper proposes a novel analytics framework which integrates a resource estimation module to estimate the resource 

requirements of tasks a priori, a straggler classification module to classify tasks based on their resource intensity, and a 

resource optimisation module to optimise the level of resource provision depending on the task nature and various runtime 

factors. Performance evaluations conducted both theoretically and through practical experiments prove that the proposed 

methodology performs better than the compared statistical resource estimation methods and existing models of straggler 

mitigation, and further demonstrate the effectiveness of the proposed methodology in achieving energy conservation by 

postulating appropriate level of resource provisioning for task execution. 

Index Terms—Energy-aware systems, Interactive data exploration and discovery, Power Management, Servers 
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1 INTRODUCTION

N the Cloud Computing concept, user request arrives in 
the form of jobs encompassing one to several number of 

tasks. Such tasks are usually processed in various servers 
across the datacentres. Schedulers usually allocate the 
incoming tasks onto isolated containers with a pre-
defined level of CPU, memory and disk space resources 
for the LXCs (Linux Containers) or VMs (Virtual Ma-
chines) to consume of the physical resources. This prede-
fined level of resource provision is usually the maximum 
level of allowed resources for the LXCs or VMs to con-
sume. It is common that the resource requirements of the 
tasks are often over-estimated in an attempt to avail re-
sources at a level which does not compromise the task 
execution resulting from resource scarcity. There are two 
immediate implications - over-estimation of resource re-
quirements usually incurs a significant proportion of re-
source idleness and under-estimation usually leads to 
task terminations directly affecting the Quality of Service 
(QoS). While it is being argued that the level of provi-
sioned resources usually far exceed [1] the actual re-
quirements of the tasks, resource idleness resulting from 
over-estimation of resource requirements can be mini-
mised when the resource requirements of the jobs are 
estimated before execution. But accurately predicting the 
resource requirements of the jobs include various chal-
lenges, one of them is the inner heterogeneity of tasks 
within jobs in terms of their resource requirements, task 
duration, resource intensity etc. Completion of a given job 

can only be assured when all of its encompassing tasks 
are successfully executed. Thus, a task-level optimisation 
is of the interests of energy efficiency to achieve an over-
all energy optimisation of the entire job. 

Giving a special emphasis to this inherent task hetero-
geneity, this paper postulates the phenomenon of a few 
tasks within a single job exhibiting a resource intensive-
ness as an increased multiple of majority of the remaining 
co-located tasks as energy-aware straggling behaviour of 
tasks. Since these straggling behaviours of tasks are not 
previously known, all the encompassed tasks within a 
given job over-provisioned at a level that can guarantee 
termination-less execution of the energy-aware stragglers. 
The worse energy implication can occur when the energy-
aware stragglers are only a marginal proportion of the 
total tasks, thus leaving a larger proportion of resources 
allocated to the non-straggling tasks unutilised.  

Existing works to date addressing the inner task heter-
ogeneity [2-6] focused only on long tails, whereby a few 
tasks usually exhibit a duration as an increased multiple 
than those of the majority of the remaining tasks within 
the same job. Stragglers are of two types based on their 
locality, such as the node-level stragglers and the task 
level stragglers. Whilst the former is usually identified 
among the running physical servers the latter results de-
pending on the nature, characteristics and requirements 
of the tasks. Server nodes exhibiting poor performance 
and declining process capability can cause node-level 
stragglers, naturally tasks scheduled on to such node-
level stragglers suffer performance constraints, possible 
terminations and prolonged execution duration than an-
ticipated. Tasks-level stragglers naturally exhibit a varied 
execution behaviour than the other co-located tasks with-
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in the same job in terms of their resource consumption, 
execution duration etc. Whilst the node-level stragglers 
can be mitigated by avoiding scheduling jobs onto such 
poor nodes, task-level stragglers pose an increased man-
agement complexity since they can hardly be identified 
before they occur. Further the existence of the relation-
ship between node-level and stragglers is trivial, such 
that a common task-level straggler in two different execu-
tion instances of the same job can behave distinctly on 
alternative server nodes. Node-level long tail stragglers 
usually affect the overall completion time of the entire job 
but energy-aware stragglers, posing a significant energy 
implication, have not gained suffice importance so far.  

To this end, this paper proposes a novel analytics 
framework for mitigating the energy-aware stragglers 
within jobs to optimise the level of resource provisioning 
to reduce energy expenditures incurred in the form of 
idle resource proportions during task execution. The pro-
posed framework encompasses three cascaded modules. 
The novelty beyond the state-of-the-art models of strag-
gler mitigation lies in the fact that the inherent task heter-
ogeneity has been given primary importance and every 
individual task within a given job has been uniquely 
treated to optimise their resource provision. Important 
contribution of this paper includes the following: 

• Firstly, a resource estimation module has been devel-
oped to estimate the resource intensiveness of every 
individual task within jobs. This resource estimation 
module exploits the inherent periodical effects among 
the Cloud workloads and predicts the resource re-
quirements of every individual tasks within jobs with 
reliable level of accuracy. 

• Secondly, a straggler classification framework has 
been integrated to classify tasks within a given job as 
potential energy-aware stragglers and non-stragglers. 
This classification framework exploits the historical 
behaviours of the tasks from suitable execution in-
stances and classifies tasks based on their anticipated 
resource intensiveness and execution trend. 

• Finally, a resource optimisation module has been in-
corporated to optimise the level of resources availed 
to tasks within jobs to achieve termination-less execu-
tion with reduced proportion of resource idleness. 
This resource optimisation module considers various 
run-time execution factors and the nature of the tasks 
within jobs to recommend the most appropriate level 
of resource provision to conserve energy. 

The remainder of this paper is organised as follows: 
Section 2 reviews the related works of straggler mitiga-
tion techniques for energy efficiency and Section 3 details 
our proposed analytics framework. The resource estima-
tion module, the straggler classification module and the 
resource optimisation module are described in Section 4, 
5 and 6 respectively. Section 7 is covered with the per-
formance evaluations and discussions, and Section 8 con-
cludes this paper along with outlining our future works.  

2 RELATED WORKS 

Energy management has been approached from various 
perspectives [7-15] such as energy-aware resource sched-
uling, server switching, task allocation, live migration, 
VM consolidation etc. This paper focuses on approaches 
those aim to mitigate task heterogeneity, particularly the 
straggling behaviours of tasks within jobs. Straggler iden-
tification is growing importance as an integral component 
in the context of energy management in datacentres, since 
identifying the straggling tasks and treating them accord-
ingly benefits not only to ensure completion of the strag-
gling tasks but also to restrain the stragglers from con-
suming more server resources resulting from termination 
driven resubmissions and prolonged execution.  

Stragglers are usually identified based on a defined 
threshold to locate tasks exhibiting an abnormal execu-
tion behaviour than those of the other co-located tasks 
within the same job. One of the most commonly consid-
ered execution metrics is the task duration for characteris-
ing long tail stragglers [3, 16]. Most of the existing works 
adopts this duration threshold as a typical value of tasks 
exhibiting 50% longer [5] than the average duration for 
straggler classification. Static threshold for straggler iden-
tification based on their execution duration may not scale 
well for Cloud workloads because of the task heterogenei-
ty. Such static thresholds are computed as a temporal dif-
ference of the duration between a running task and the 
average task duration during execution. Computing this 
temporal difference is possible only during the run time.  

Existing strategies of mitigating stragglers during 
runtime include speculative execution, which is common-
ly being used in Hadoop and Map Reduce environments 
and in production clusters [5] such as Google and Bing. 
This strategy increases the probability of early completion 
of the straggling tasks by creating multiple replicas of the 
long tails, the replica completed first is stored for task 
completion and the remaining replicas are terminated. 
Though, duplicating the same execution instance de-
mands more resource allocation and hence incur excess 
energy consumption. Furthermore, resources spent on all 
other replicas other than the one completed first are need-
less energy expenditures. The execution of such replicas is 
not known a priori which doubts their completion rate in 
a way that the created replicas might be even execute 
longer and consume more resources than the actual 
stragglers. Another drawback of speculative execution is 
the definition of the threshold to trigger replicas. If the 
replicas are created earlier during the execution, there is 
still a possibility for the actual task to progress smoothly, 
in which case the created replicas are simply terminated 
without extracting any useful information services. If the 
replicas are created later in the execution, changes are the 
created replicas may not finish on time causing unneces-
sary delays in the actual job completion, whereby wasting 
not only the resources spent on the straggling task but 
also on the created replicas. Most of the existing works 
identifies runtime stragglers during the later stage [3] of 
the actual execution’s lifecycle, causing needless replicas. 
Since the threshold identification for creating replicas can 
only be achieved during runtime, a pro-active measure-
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ment is not possible with speculative execution. Further-
more, creating replicas when the system utilisation [5] is 
higher may pose threat of straggling the created replicas.  

A progress score based threshold [5] computes the task 
progress score as the ratio of proportions of tasks com-
pleted to the proportions remaining for execution, and 
classifies a task as straggler when its progress score falls 
behind a defined threshold than the average progress 
score of the given job. Hadoop scheduler [17] uses this 
progress score to classify tasks as stragglers when their 
progress score falls behind 80% of the average progress 
score of the job. Both the task progress rate and the pro-
cess bandwidth within an execution phase [18] have been 
utilised to identify straggling tasks. The process speed of 
tasks has been predicted during the runtime and the re-
maining task execution time has been computed [19] for 
triggering a new set of speculative execution for maximis-
ing the cost performance. When the progress rate, deter-
mined based on a slow-node threshold, of a given task 
falls behind 50% of the other co-located tasks then the 
corresponding task is reported as stragglers. Whilst a 
higher threshold delays straggler identification and may 
not identify any stragglers at all, a lower threshold might 
lead to false positives. LATE [19] speculates the tasks 
those are estimated to finish farther into the future for 
reducing the job response time. Since tasks within a single 
job do not progress at a stable rate, process bandwidth 
might not provide suffice inferences for accurate estima-
tion of stragglers. Furthermore, tasks within a single job 
may not start at the same time in the case of jobs with 
cascaded tasks, whereby a common progress rate cannot 
be applied to all the tasks within a single job. 

Straggler tasks are characterised as exhibiting a nor-
malised duration [20] as an increasing multiple of the 
median of the normalised duration of the other co-located 
tasks within the same job, with the normalised duration 
computed as the ratio of task execution time to the 
amount of work done, but assuming a static median may 
not scale well in spite of the task heterogeneity. Mantri is 
a straggler mitigation approach [6, 21] focused on con-
serving the computing resources of the server nodes. It 
employs a strategy of backing up tasks for multiple exe-
cution at an early stage and kills the original task instance 
when the cluster becomes busy and restarts the task in a 
different node instance. Though Mantri addresses con-
serving energy by an early speculation of straggling tasks, 
terminations are unavoidable at the process level. Fur-
thermore, the newly created instances of the terminated 
tasks are not often guaranteed to complete within a de-
fined time-scale, causing long tails of the created replicas.  

Addressing the issues of speculative execution, a co-
worker based scheme [22] has been proposed for mitigat-
ing stragglers to shorten the job completion time with less 
resource consumption. This approach transfers a portion 
of data from the straggling tasks to the co-worker, where-
by the workload is shared by the co-worker. Whilst ad-
dressing energy efficiency, data transfer and migration 
costs are unavoidable in this scheme. Another way of 
avoiding runtime stragglers is server blacklisting [2, 4, 
23], by avoiding scheduling tasks onto the nodes those 

spotted as stragglers in the past. Though this scheduling 
strategy helps to avoid node-level stragglers, it is not al-
ways true that a straggler node in the past should remain 
the same in the future, this increases the probability of 
classifying a non-straggling server node as straggler.  

Most of the existing works on straggler identification 
are focused on identifying and mitigating the stragglers 
only during the actual execution. It is commonly being 
argued that straggling tasks can only be identified after a 
few minutes of the task execution. Furthermore, the state-
of-the-art straggler identification techniques are focusing 
more towards long tails, leaving the resource intensity of 
the tasks unnoticed. Though identifying task-level strag-
glers before the actual execution might facilitate better 
management of stragglers, forecasting the task-level 
stragglers before the actual execution is still an aspiration 
to date which laid the foundation for this research paper, 
aimed at an energy management strategy driven by a 
prior estimation of the task behaviours at the datacentres.  

3 ANALYTICS FRAMEWORK 

The proposed analytics framework is illustrated in Fig. 1, 
which encompasses various components for functionali-
ties such as sample selection, imputation, execution trend 
analysis, resource estimation, straggler classification and 
resource level optimisation. The primary purposes of 
these encompassed functionalities are detailed as follows. 

Sample selection: The primary objective of the sample 
selection component is to choose the most appropriate 
samples from historical traces for analytics. Most suitable 
historical samples are chosen and validated based on a 
statistical similarity measure with the actual sample.  

Imputation: It is common that the extracted historical 
samples might be incomplete in such a way that the exe-
cution profile for certain tasks within a given job might 
not be available. The imputation module is responsible to 
obtain a complete execution profile for jobs by inferring 
and imputing the missing values. 

Execution trend analysis: An analysis in now conducted 
on the complete execution profile of the validated histori-
cal samples to observe the actual historical execution be-
haviours of the jobs.  

Resource estimation: Driven by the descriptive analytics 
of the historical execution instances, the anticipated re-
source consumption levels of every individual task within 
a given job are estimated for resource provision. 

Straggler classification: Based on their resource inten-
siveness, every task within a given job are subjected to a 
classification framework to forecast the anticipated execu-
tion behaviour of tasks within jobs. This classification is 
intended to isolate energy-aware stragglers within jobs 
from non-stragglers for further optimising their level of 
resource provisioning. 

Resource level optimisation: Based on the estimated re-
source levels and straggler classification, optimum level 
of resource provision for every individual task within a 
given job are determined by considering various runtime 
and execution factors. 
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RESOURCE ESTIMATION MODULE 

4.1 Sample Selection 

Firstly for a currently arrived job, similar execution pro-
files from historical instances are chosen for descriptive 
analytics by exploiting the inherent periodicity such as 
the time-of-the-day and day-of-the-week effects among 
the user behaviours, detailed information about this sam-
ple selection can be found in our earlier work [24, 25]. It is 
always recommended to choose the complete execution 
profile which can only be obtained from finished jobs, 
however, it is possible that jobs facing terminations may 
or may not be resubmitted again. In this event, the histor-
ical sample selection might return more than one execu-
tion instances. Thus, it is essential to validate the most 
suitable historical sample for a given job profile. A simi-
larity weight is computed for the chosen historical sam-
ples by measuring the quantitative association of the sta-
tistical properties between the current and historical sam-
ples in terms of the explicitly known number of tasks en-
compassed within the jobs, resource requests, job sched-
uling priorities and task priority levels and the termina-
tion pattern available from the historical execution traces. 
A Profile Information (PI) table for similarity measure is 
constructed based such statistical properties. The execu-

tion instances exhibiting a close quantitative association 
with the currently arrived job profile are validated by the 
PI table and are then utilised for further predictive analyt-
ics for respective jobs. 

The construction of the PI table, for a job named Job 0, 
arrived during 12 - 1 am on Day 10 Wednesday of Week 
2, is illustrated in Table 1. The statistical composite for the 
currently arrived job is extracted as 𝐽0 = {12.15 𝑎𝑚,
6323881198, 50, 0}, implying that Job 0 has been submit-
ted at 12.15 am and has been assigned with a job index of 
6323881198, encompasses a total of 50 tasks and has a 
scheduling priority of 0 (low latency sensitivity). The task 
profile, named T0, for the job J0 has been extracted as a 
statistical composite 𝑇0 = {𝑡𝑠𝑡,   6323881198,  (0.03125, 
0.007767), 4} implying that task 𝑇0 has arrived at a time 
𝑡𝑠𝑡 , belongs to the Job 6323881198 and characterise a CPU 
request of 0.03125 cores and a memory request of 
0.007767 bytes, and includes a task priority level of 4. 
Task profile is constructed for all the encompassed tasks 
within a given job. The sample selection component has 
returned three similar job profiles from the historical trac-
es for both the time-of-the-day and day-of-the-week sam-
ples. The PI table assigns a similarity weight for profile 
composite, identically associated metrics are assigned a 
weight of 1 and the metrics deviating from the current job 
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profile are assigned with corresponding deviation for 
similarity measure, for instance if the quantitative associ-
ation of the historical job is less than one than the current 
job, then the corresponding similarity weight will be -1. 
This computation also includes the measure of task ter-
mination proportions in the historical execution instances 
and assigns a weight of 1 for instances without any task 
terminations and -1 for evicts, -2 for kill and fail events 
accordingly in the historical execution traces. Kill [26, 27] 
is a user triggered termination of the executing tasks, 
usually it does not involve the intervention of the service 
providers, whereas fail is a natural event due to several 
runtime causes such as resource scarcity and resource 
level breaches. Evict is a provider triggered event, where 
the execution of the running instances are paused tempo-
rarily to accommodate jobs with more priority, and later 
resumed when resources become available. A similarity 
score is generated as the summation of all the individual 
parametric score for all the identified execution instances. 
Based on the association measure, all the six execution 
instances in Table 1 can be validated as different execu-
tion instances of the same job profile, but the similarity 
score helps to choose the execution instance with minimal 
measurable deviation from the currently arrived job pro-
file. Based on the similarity score, instance 1 of the day-of-
the-week sample and instance 2 of the time-of-the-day 
sample are validated as the representatives of the two 
periodical effects respectively. 

4.2 Imputation 

Imputation is a process of replacing or substituting miss-
ing data in statistical analysis, which is required for exe-
cution samples due to the higher probability of execution 
profiles suffering data ambiguity, missing data and pos-
sible anomalies. Missing values in incomplete profiles are 
estimated using Maximum Likelihood Estimation (MLE), 
as shown in equation 1. MLE assumes Xi to be normally 
distributed around a constant mean and variance for a 
random sample X1, X2,..., Xn. for estimating the value of 
missing Xi.  MLE substitutes or estimates the missing val-
ue with the predicted value that maximises the probabil-
ity of likelihood and minimises imputation error.  

 𝐿(𝜃) = 𝑃(𝑋1 = 𝑥1, 𝑋2 = 𝑥2,… , 𝑋𝑛 = 𝑥𝑛) = 𝑓(𝑥1; 𝜃) ⋅
                  𝑓(𝑥2; 𝜃)⋯ 𝑓(𝑥𝑛; 𝜃) = ∏𝑖 = 1𝑛𝑓(𝑥𝑖; 𝜃)          (1) 

The first equality is the definition of the joint probabil-
ity mass function and the second equality comes with the 
consideration that the sample is a random function, im-
plying Xi is independent. The last equality uses the short-
hand mathematical notation of the indexed sample val-
ues. Expectation-Maximisation (EM) algorithm is used to 
estimate the maximum likelihood. EM converges in n 
number of iteration, and estimates the unknown value 
through n number of equalities. 

4.3 Resource Estimation 

The estimation module exploits the validated historical 
samples as the baseline for usage estimation in terms of 
the total CPU consumption, anticipated duration and 
CPU usage rate for every individual task within a given 
job. The CPU usage rate of the tasks and their execution 

duration of the historical samples are used as input train-
ing sets for estimating the anticipated equivalents during 
the current execution. A dynamic weighing causal mov-
ing average (DWCMA) filter is proposed to estimate the 
CPU usage trend and duration of tasks. Traditional causal 
moving average filter assumes that a given output sample 
depends only on the corresponding inputs occurred earli-
er and usually assigns more weights to the most recent 
samples, as shown in equation 2.  

𝑦(𝑛) =  𝑏(1) ∗ 𝑥(𝑛) +  𝑏(2) ∗ 𝑥(𝑛 − 1)+ . . . + 𝑏(𝑁𝑏 + 1) ∗
                                                              𝑥(𝑛 − 𝑁𝑏)                         (2) 

where y(n) is the output response depending on the pre-
vious occurrences based on x(n), x(n-1) etc., and b(1), 
b(2)…b(n) are the exponentially assigned weight functions 
to past occurrences. It is obvious that such a filter is linear 
and shift-invariant such that y(n) is the output response 
to x(n), and y(n–k) is the response of the system to x(n–k). 

Definition. Linear shift-invariant. For input sets of varia-
bles X = {x1, x2, x3,…..xn} and Y = {y1, y3, y3,…..yn}, the response 
variables within the output Z = {z1, z2, z3,….zn} are internally 
independent such that the response zi depends only on its 
corresponding past instances xi and yi.  

Hypothesis: Though the task behaviours are dynamic 
within a given job in such a way that a given job might 
include energy-aware stragglers and tasks may not satisfy 
the usage rate-duration trade-off whereby the usage rate 
and duration are inversely proportional, it is initially as-
sumed that the tasks within a given job will behave nor-
mally as non-stragglers and will satisfy the usage rate 
duration trade-off, in such a way that tasks characterising 
a lower CPU usage rate runs longer and vice versa. 

The proposed resource estimation module adopts the 
above hypothesis for initially estimating the resource con-
sumption levels of tasks within jobs, however this hy-
pothesis may not necessarily be always true for job execu-
tions. Tasks failing to meet the hypothesis are moderated 
accordingly described as follows. Now from the two sets 
of historical inputs, the sample set exhibiting better asso-
ciation with the currently arrived job profile is naturally 
assigned more weights by the DWCMA filter. But this 
initially assigned weight is dynamically swapped for eve-
ry individual task execution profile depending on several 
runtime factors. Unlike the traditional casual moving av-

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. Dynamic Weight Assignment Protocol 
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erage filter, the proposed DWCMA filter assigns more 
weights to the most appropriate or (in-trend) sample for a 
given task execution from the two sets of historical pro-
files. The term in-trend refers to the satisfactory level of a 
task execution profile being a non-straggler and satisfying 
the usage rate-duration trade-off. As discussed earlier, 
usage rate and duration are inversely proportional to 
each other for a healthily executed task. Based on the ac-
tual usage behaviours of tasks within a given job, an op-
timal value for usage rate-duration trade-off 𝑜𝑝𝑡(𝑢, 𝑑) for 
tasks within a job J is defined as in equation 3. The health-
ily execution trend is unique for every job execution, 
which is calculated from the execution profile of jobs. 
                            𝑜𝑝𝑡(𝑢, 𝑑) =  𝑚𝑒𝑎𝑛⏟  

∀𝑡𝑖∈𝐽

 {𝑢𝑖 , 𝑑𝑖}                         (3) 

It is not a practical reality for every individual task ex-
ecution within a given job to exhibit the expected level of 
healthily execution trend. Hence measurable deviations 
are always evident among the individual task execution 
within a job, however the proportional relationship in this 
trade-off is not obvious. In addition to the execution 
trend, the task profiles extracted from the actual execu-
tion are treated with more weights than those imputed. 
The protocol for assigning weights to the two samples by 
DWCMA is presented in Fig. 2. The weight assignment is 
executed in three cascaded phases, Phase I verifies the 
Similarity Scores assigned by the PI table, Phase II verifies 
the correctness of the samples depending on the availabil-
ity of the actual execution profile and Phase III verifies 
the usage rate-duration trade-off for every task execution. 
The two samples sets are assigned with weights depend-
ing on the execution profile satisfying the three phases, 
task profiles within the respective two samples satisfying 
Phase I and Phase III are assigned with increasing 
weights and the weights are decreased with a degrada-
tion function when Phase II is violated. This is because 
the EM algorithm often imputes the missing values with 
an overestimated value. The weights are assigned to the 
sample sets based on equation 4, where n is the total 
number of sample sets.  

                  𝜔 = {

1

𝑛
,               𝑝ℎ𝑎𝑠𝑒 𝐼𝐼 𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑑

2

𝑛+1
,                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                 (4) 

The CPU usage rate and duration and the total CPU 
consumption for every individual task within a given job 
are estimated by the dynamic weighing CMA filter as a 
tuple shown in equation 5. Whilst the total CPU con-
sumption provides inferences for optimum level of re-
source provision, the estimated usage rate and duration 
are expected to provide inferences for straggler classifica-
tion, dealt in the following section. 

                                  𝑃𝑜𝑢𝑡[𝑖] = {𝑢𝑖 , 𝑑𝑖 , 𝑐𝑖}                               (5) 

where, 𝑃𝑜𝑢𝑡[𝑖] is the estimated tuple for task i, encompass-
ing its estimated values of CPU usage rate 𝑢𝑖 , duration 
𝑑𝑖 and total core consumption 𝑐𝑖 . The total CPU consump-
tion reflects the total amount of cores consumed during 
the entire period of the task execution, whereas the CPU 
usage rate reflects the mean of the CPU usage rate wit-
nessed at any time throughout the period of the task exe-
cution. 

5 STRAGGLER CLASSIFICATION MODULE 

After the resource estimation of tasks encompassed with-
in a given job, it is vital to classify the tasks within a sin-
gle job based on their resource intensiveness.  

Definition: Energy aware stragglers. For a job set J = {t1, t2, 

t3,……. tn}, where n is the total number of tasks within job 
J, with an average job CPU rate of μ and an average task 
length of ω, then tasks characterising both a CPU usage 
rate higher than μ and running longer than ω are termed 
as energy-aware stragglers within job J. 

From the analysis of the selected historical job profiles, 
two initial lists of energy-aware stragglers are initially 
generated as 𝑆𝑡1 and 𝑆𝑡2, respectively in the day-of-the-
week and time-of-the-day samples. Tasks commonly wit-
nessed as energy-aware stragglers in the two generated 
lists can anticipated to be a definite straggler during the 
actual job execution, as shown in equation 6,  𝑆𝑡ℎ is the 
initial list of energy-aware stragglers anticipated during 
the actual job execution. It is also a possibility that 𝑆𝑡ℎ can 
be an empty set at this point if none of the straggling 
tasks overlap in the generated lists of historical stragglers. 

                                𝑆𝑡ℎ[𝑖] =  𝑆𝑡1[𝑖]  ∩ 𝑆𝑡2[𝑖]                          (6) 

5.1 Straggler Prediction 

This section presents the proposed analytics methodology 
for straggler classification before the initialisation of the 
job execution. Based on the initial lists of stragglers in the 
two historical samples, an nth percentile distribution of 
energy-aware straggles within the two historical samples 
is extracted. Now, tasks not impacted by the abrupt be-
haviours of CPU usage rate and duration are isolated and 
categorised as non-stragglers based on the observations 
falling beyond the (100-n)th distribution, using equation 7.  

                           𝑁𝑠𝑡 = 𝑊(1,2)[𝑖] {
𝑖𝑙 < 𝑃(100−𝑛)
𝑖𝑢 < 𝑃(100−𝑛)

                       (7) 

where, 𝑁𝑠𝑡 is the sample containing non-stragglers, 𝑊[𝑖] 
is the chosen historical sample, 𝑖𝑙 is the task duration, 𝑖𝑢 is 
the mean CPU usage rate of ith task respectively, 𝑃(100−𝑛) 
is the (100-n)th  percentile value and n is the proportions of 
stragglers identified in the historical sample. After filter-
ing out the energy-aware stragglers, threshold score for 
the CPU usage rate and duration for non-stragglers is 
obtained for the two samples using equation 8. 

         𝑁𝑠(𝛼(1,   2),   𝛽(1,   2))
= ( ∑

𝑁𝑠𝑡[𝑢𝑖]

𝑛

𝑛
𝑖=1  , ∑

𝑁𝑠𝑡[𝑙𝑖]

𝑛

𝑛
𝑖=1  )                (8) 

where, n is the total number of non-stragglers, 𝛼 and 𝛽 
are the average values of the CPU usage rate and task 
duration of the non-stragglers within the two samples. 
The non-straggler threshold values are computed sepa-
rately for the two samples as 𝑁𝑠1(𝛼,   𝛽) and 𝑁𝑠2(𝛼,   𝛽). These 
two values form the upper and lower confidence limits 
for the average duration and CPU usage rate for the non-
straggling tasks during the current execution. Now, this 
confidence limits are applied to the predicted output ob-
tained in equation 5 to generate the list of non-stragglers 
bounded with a two-sided confidence limit for the target 
job respectively, as shown in equation 9 and 10.  

   𝑃𝑢𝑐𝑜𝑛[𝑖] =  𝛼1 < 𝑃𝑜𝑢𝑡[𝑖] < 𝛼2,      𝑓𝑜𝑟 𝐶𝑃𝑈 𝑢𝑠𝑎𝑔𝑒 𝑟𝑎𝑡𝑒   (9)             

   𝑃𝑙𝑐𝑜𝑛[𝑖] =  𝛽2 < 𝑃𝑜𝑢𝑡[𝑖] < 𝛽1,       𝑓𝑜𝑟 𝑡𝑎𝑠𝑘 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛     (10)                



AUTHOR ET AL.:  TITLE 7 

 

 

where, 𝑃𝑢𝑐𝑜𝑛[𝑖] and 𝑃𝑙𝑐𝑜𝑛 [𝑖] are the list of tasks satisfying 
the confidence bounds of CPU usage rate and duration 
thresholds for non-stragglers respectively in the predicted 
usage profile. Tasks anticipated to execute within the lim-
its of 𝑃𝑐𝑜𝑛 should satisfy the non-straggler criterion. How-
ever, the trade-off between task duration and the CPU 
usage rate is crucial in deciding the energy-aware strag-
gling behaviours of tasks. Furthermore, tasks anticipated 
to exhibit a duration less than the value projected by the 
confidence bounds are considered as not satisfying the 
non-straggler criterion, with the presumption that lower 
duration might characterise a higher usage rate, thereby 
not satisfying the usage rate-duration trade-off. Antici-
pated task execution behaviours not falling within the 
healthily execution criterion is vulnerable to become po-
tential stragglers during execution. An optimised CPU 
usage rate and duration for the non-stragglers during the 
actual execution is given by equation 11. 

                      𝑆𝑡ℎ(𝛼,   𝛽) =  (
∑ 𝑃𝑢𝑐𝑜𝑛[𝑖]
𝑛
𝑖=1

𝑛𝑢
,
∑ 𝑃𝑙𝑐𝑜𝑛[𝑖]
𝑛
𝑖=1

𝑛𝑙
)               (11) 

where 𝑛𝑢 and 𝑛𝑙  are the total number of tasks in 𝑃𝑢𝑐𝑜𝑛 and 
𝑃𝑙𝑐𝑜𝑛 respectively. The predicted output obtained from 
equation 5 is now subjected to this trade-off criterion and 
the tasks not meeting 𝑆𝑡ℎ(𝛼,   𝛽) are further isolated and 
labelled as anticipated energy-aware stragglers during 
execution. 𝑆𝑡ℎ(𝛼,   𝛽) is expected to present the CPU usage 
rate and duration threshold values for both the usage and 
duration confidence limit samples. Ideally, 𝛼1 and 𝛼2 are 
the upper and lower thresholds for the CPU usage rate 
for non-stragglers in the predicted output, where 𝛼1 is 
obtained from the 𝑃𝑢𝑐𝑜𝑛 and 𝛼2 is obtained from 𝑃𝑙𝑐𝑜𝑛 re-
spectively, and 𝛽1 and 𝛽2 are the duration counterparts, 
where 𝛽1 is obtained from 𝑃𝑙𝑐𝑜𝑛 and 𝛽2 is obtained from 
𝑃𝑢𝑐𝑜𝑛 respectively, based on equation 11. The thresholds 
for non-stragglers anticipated in the predicted output is 
computed based on equation 12 and equation 13, which 
weighs 𝛼1 and 𝛽1 more than their counterparts 𝛼2 and 𝛽2. 

                         𝑆𝑡ℎ𝛼 = (𝜔 ∗ 𝛼1) + (1 − 𝜔)𝛼2                      (12) 

                         𝑆𝑡ℎ𝛽 = (𝜔 ∗ 𝛽1) + (1 − 𝜔)𝛽2                      (13) 

Now, an initial classification of the energy-aware 
stragglers anticipated during the execution of the target 
job is achieved based on equation 14. 

       𝑆𝑡−𝑜𝑓𝑓 = {𝑃𝑜𝑢𝑡[𝑖]{(𝑖𝑢 > 𝛼)  ∩  (𝑖𝑙 > 𝛽)} ⋃ (𝑆𝑡ℎ[𝑖])      (14) 

where 𝑖𝑢 is the CPU usage rate and 𝑖𝑙 is the task duration 
of ith task contained in 𝑃𝑜𝑢𝑡, 𝛼 is the optimised CPU usage 
rate and 𝛽 is the optimised task duration respectively giv-
en by equation 12 and equation 13, and 𝑆𝑡ℎ is the initial 
list of stragglers given by equation 6.  
𝑆𝑡−𝑜𝑓𝑓 is the probability of stragglers identified from 

the descriptive analytics of the historical events and pre-
dicted resource usage profiles. However, the actual task 
behaviour depends on several run-time factors such as 
the node efficiency, resource consumption fluctuation, 
running duration, task intensity etc., and are impacted by 
the sole effects of CPU usage rate and task duration re-
spectively. Thus, it is important to further optimise this 
classified straggler list 𝑆𝑡−𝑜𝑓𝑓 through a categorical analy-
sis of straggler probability by incorporating the behav-
ioural heterogeneity for every individual task. Hence, this 

initial classification of tasks is used as a hypothesis for  
task behaviours during actual execution, which is further 
subjected to a Naïve Bayes classifier for enhancing the 
preciseness of the dependability of 𝑆𝑡−𝑜𝑓𝑓. A bayes rule 
scales well for a categorical classification when the di-
mensionality of the inputs is high. Now, Pout delivered by 
equation 5 with an initial task classification based on 
𝑆𝑡−𝑜𝑓𝑓 is trained as input data for Naïve Bayes classifier to 
obtain the final list of energy-aware stragglers anticipated 
in Pout

 during the actual job execution.  
Definition. Conditional independence. For a set of predic-

tor 𝑋 = {𝑥1, 𝑥2, 𝑥3, … . 𝑥𝑘}, Naive Bayes classifier assumes 
that the effect of the value of a predictor xi on a given 
class c is independent of the values of other predictors.  

Conditional independence is the property of the in-
volved predictors having their independent influence 
upon the prediction output irrespective of the presence 
and influence of the other predictors. Based on this condi-
tional independence, the influence of CPU usage rate, 
task duration and total core consumption from the two 
historical samples and the predicted output are evaluated 
individually on the task classification given by 𝑆𝑡−𝑜𝑓𝑓, 
using equation 15. This is due to the fact that the total 
CPU consumption for a given task can be determined by 
the product of the task’s runtime duration and the mean 
CPU usage. Furthermore, the CPU usage rate of a given 
task determines its resource intensity.   

                               𝑃(𝑐/𝑥) =  
𝑃(𝑥/𝑐)𝑃(𝑐)

𝑃(𝑥)
                                (15) 

The overall influence of all the predictors on the re-
source intensity of a given task for straggler classification 
is given by equation 16.  

 𝑃(𝐶/𝑋) = 𝑃(𝑥1/𝑐)* 𝑃 (
𝑥2

𝑐
) ∗ 𝑃 (

𝑥3

𝑐
) ∗ …… .∗ 𝑃 (

𝑥𝑛

𝑐
) =

                                                                    ∏ 𝑃(𝑥𝑘/𝑐)
𝑛
𝑘=1             (16) 

where, P(c/x) is the posterior probability of class c for a 
given predictor x, P(c) is the prior probability of class c 
(straggler or a non-straggler), P(x/c) is the likelihood for 
the probability of class c for a given predictor x, and 
P(x) is the prior probability of predictor x. After evaluat-
ing the posterior probability, Naïve Bayes classifier cate-
gorises a given observation as belonging to the class of 
stragglers Ci or non-stragglers Cj using equation 17. 

            𝐶(𝑜𝑏𝑠) =  {
𝐶𝑖 ,     𝑓𝑜𝑟 𝑃(𝐶𝑖/𝑋)  >  𝑃(𝐶𝑗/𝑋)

𝐶𝑗 ,                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
             (17) 

Since the predictors including CPU usage rate, dura-
tion and total CPU consumption are numerical values, all 
such values should be discretised into respective catego-
ries before Naïve classifier estimates the posterior proba-
bility. For discretisation, the classifier assumes a normal 
distribution for observations within a given job based on 
the measure of mean and standard deviation functions.  

5.2 Runtime Mitigation 

Stragglers in the past do not necessarily behave as a fu-
ture straggler due to the runtime heterogeneity, simply 
classifying the energy-aware stragglers based on their 
historical behaviour may not be sufficient for Cloud exe-
cutions. A task execution profile is consistent only when it 
exhibits statistical correlations among different execution 
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instances. 𝑆𝑡ℎ(𝛼,   𝛽) obtained in the offline analytics can be 
referred as the threshold point to label a running tasks as 
potential straggler when the task execution breaches the 
threshold defined by 𝑆𝑡ℎ(𝛼,   𝛽). Due to the uncertainty in 
the task execution behaviour and the usage rate-duration 
trade-off can only be achieved after the execution, the 
proposed scheme alerts a task as possible energy-aware 
straggler when the CPU usage rate breaches its corre-
sponding threshold. Long tail stragglers can be identified 
based on the duration threshold, though evaluating the 
duration threshold for long-tail straggler identification is 
not within the scope of this paper. The threshold for CPU 
usage rate and duration is calculated by subjecting the 
corresponding threshold values of the non-stragglers ob-
tained in the chosen historical sample analytics, the of-
fline straggler threshold and the threshold of non-
stragglers in the prediction output to a two-tier nested 
exponential smoothing filter, as shown in equation 18 and 
equation 19, in such a way that the factual values enjoy a 
better weighing than the anticipated values. 

𝑆𝑟𝑢 =  {𝜔(𝜔 𝛼1 + (1 – 𝜔) 𝛼2) + (1 –  𝜔) (𝜔 𝛼𝑜𝑓𝑓 + 

                                                          (1 – 𝜔) 𝛼𝑝𝑟𝑒𝑑)}             (18) 

𝑆𝑟𝑙 = {𝜔(𝜔 𝛽1 + (1 – 𝜔) 𝛽2) + (1 –  𝜔) (𝜔 𝛽𝑜𝑓𝑓 + 

                                                          (1 – 𝜔) 𝛽𝑝𝑟𝑒𝑑)}             (19) 

where, 𝜔 = 2 /(n+1),  𝛼1 and 𝛼1 are the mean CPU usage 
rate of the non-stragglers identified in the historical sam-
ple analytics, 𝛼𝑜𝑓𝑓 is the mean CPU usage threshold used 
in the offline straggler identification based on 𝑆𝑡ℎ(𝛼,   𝛽) 
and 𝛼𝑝𝑟𝑒𝑑 is the mean CPU usage threshold of the non-
stragglers in the predicted output (based on 𝑃𝑐𝑜𝑛), and 𝛽 is 
the duration equivalent respectively.  

Since Cloud workloads are dynamic in nature, the het-
erogeneity among the Cloud workloads can be witnessed 
from two different perspectives: firstly, tasks within a job 
characterising increased CPU usage rate fluctuation with 
fairly even distribution of task length, and secondly tasks 
within a job charactering increased CPU usage rate with 
uneven distribution of task length. Whilst the former does 
not have an impact on the overall completion time of the 
job, the latter can significantly impact the overall job 
completion time. In other words, the former is a job con-
taining only energy-aware stragglers and the latter con-
sists of both energy-aware stragglers and long tails. In 
general, long tails depend on the runtime factors such as 
co-located tasks, node efficiency, node-level stragglers 
etc., thus it is optimum to mitigate the long tail stragglers 
during runtime rather than attempting to predict them 
before execution. The characteristics of long tails are pos-
tulated to exhibit an execution duration of 50% greater 
than the duration threshold 𝑆𝑟𝑙, as shown in equation 20. 
                              𝑆𝑙𝑡 = 𝑡𝑙 [𝑖] > 1.5 ∗ 𝑆𝑟𝑙                              (20) 

Thus, during the actual job execution, the runtime 
stragglers are identified using equation 21.  

𝑆𝑡 = {
𝑡𝑢[𝑖] >  𝑆𝑟𝑢 ,   𝑓𝑜𝑟 𝑒𝑛𝑒𝑟𝑔𝑦 − 𝑎𝑤𝑎𝑟𝑒 𝑠𝑡𝑟𝑎𝑔𝑔𝑙𝑒𝑟𝑠

𝑡𝑙[𝑖] >  𝑆𝑙𝑡 ,                      𝑓𝑜𝑟 𝑙𝑜𝑛𝑔 𝑡𝑎𝑖𝑙 𝑠𝑡𝑟𝑎𝑔𝑔𝑙𝑒𝑟𝑠
     (21) 

where  𝑡𝑢[𝑖] and 𝑡𝑙[𝑖] are the current CPU usage rate and 
task duration of the 𝑖𝑡ℎ task within a given job during 
execution. The initial task classification facilitates decid-

ing their resource provisioning levels before the actual 
execution. But the energy-aware stragglers identified dur-
ing execution needs dynamic scaling of resources which 
can be achieved through dynamic vertical scaling, how-
ever this is considered to be out of scope of this paper. 

6 RESOURCE PROVISION MODULE 

The resource provisioning optimisation problem can be 
witnessed from two perspectives: firstly, commitment of 
resources levels should not be vulnerable to cause re-
source idleness, and secondly the task execution should 
not breach the provisioned level of resources. From the 
resource prediction perspectives, the former usually re-
sults from the over-estimated resource levels and the lat-
ter results from under-estimation. This section is focused 
on optimising the under-estimated resource levels deliv-
ered by the proposed resource estimation module in con-
sideration of the straggler classification. A resource usage 
and straggler-aware over commitment policy of resource 
levels has been proposed to meet the objectives of termi-
nation less execution with minimal resource idleness. 

6.1 Task Categories 

Based on the early discussed behaviours and characteris-
tics of tasks within jobs, tasks are classified as non-
stragglers and energy-aware stragglers for resource pro-
vision. A static resource provisioning policy for these two 
categories may not scale well for energy efficiency, since 
the resource consumption level of non-stragglers and 
stragglers are significantly different.  

Case (1): Non-stragglers 

Non-stragglers are expected to execute without any nota-
ble abnormal resource consumption level, thus it is rec-
ommended to initially rely on the resource usage estima-
tion whilst provisioning resource levels to non-stragglers. 
Thus, the anticipated usage of non-stragglers is expected 
as per the usage prediction output, as in shown equation 
22, where 𝑅𝑃𝑟𝑒𝑑[𝑖] is the initially predicted resource usage 
level for task i within a given job given by equation 5. 
                                𝑅𝑛𝑠(𝑐)[𝑖] =  𝑅𝑃𝑟𝑒𝑑[𝑖]                                 (22) 

Case (2): Energy-aware Stragglers 

The resource consumption level for energy-aware strag-
gles are usually expected to exceed the level of non-
stragglers by a significant margin. Further to the usage 
prediction of stragglers, it is also recommended to rely on 
the historical execution instances to determine the re-
source provisioning level of the classified energy-aware 
stragglers. Thus, the resource consumption level of strag-
glers 𝑅𝑠𝑡(𝑐 ) is anticipated in accordance with the identi-
fied maximum CPU consumption levels among the two 
historical samples and the resource prediction as shown 
in equation 23, where 𝑅𝑠1[𝑖] and 𝑅𝑠2[𝑖] are the correspond-
ing CPU consumption level of a given straggling task i in 
the two historical execution profiles respectively. 

              𝑅𝑠𝑡(𝑐)[𝑖] = max( 𝑅𝑠1[𝑖], 𝑅𝑠2[𝑖], 𝑅𝑃𝑟𝑒𝑑[𝑖])                (23) 

6.2 Over Commitment factor  

The extravagant heterogeneity of tasks within a job and 
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the dynamic datacentre runtime environment is naturally 
insisting the need for overcommitting the resource levels 
for achieving termination-less execution. To this end, a 
dynamic over-allocation policy has been further proposed 
for every individual task within a given job to  optimise 
the resource provisioning levels. An over commitment of 
factor γ is adopted for all the task categories, whereby it is 
proposed to overcommit the resources by a margin of γ to 
the level insisted by equation 22 and equation 23 accord-
ingly. This over commitment factor is dynamically evalu-
ated for every individual task depending on three im-
portant factors: task consistency based on the process effi-
ciency of tasks in the historical execution profiles, process 
capacities of tasks determined for the actual execution 
based on the resource prediction output, and task classifi-
cation delivered by the straggler classification module. 
Three classes of reliability have been adopted for every 
individual factor determining the over commitment factor 
as high, medium and low, with high insisting a highly 
reliable measure through to low being less reliable for a 
task to behave normally during execution. Over alloca-
tion proportions for the three defined levels of reliability 
classes are adopted as 1.3, 1.4 and 1.5 respectively for 
high, medium and low classes of task reliability. Based on 
these over-commitment factors and the respective reliabil-
ity class of tasks, every individual task will be dynamical-
ly evaluated to moderate the over commitment factor.  

6.2.1 Process Efficiency 

The reliability of resource consumption consistency of 
tasks is estimated based on the process efficiency of the 
task execution during its historical instances. Despite the 
allocated level of resources, it is usual for the process effi-
ciency of certain tasks to fall behind than a majority of 
tasks within the same job, impacted by the task nature.  

Definition: Process Efficiency. Given a Job set J with n 
number of tasks J={T1, T2, T3,......, Tn}, executed for a duration 
D={t1, t2, t3,…,tn} consumed a resource level of R={r1, r2, 
r3,….rn}, where the Task Ti is executed for a duration of ti, 

and consumed ri amounts of resources, the task process 
efficiency 𝑃𝑒𝑖 of task Ti is defined as the ratio of the exe-
cuted duration to the amount of resources consumed, 
where the job duration and resource consumption of the 
job are given by max(ti) and ∑ 𝑟𝑖

𝑛
𝑖=𝑜  respectively. The task 

process efficiency and the job process efficiency can be 
computed as shown in equation 24 and equation 25. 
                                          𝑃𝑒𝑖 =  

𝑡𝑖

𝑟𝑖
                                           (24) 

                                       𝑃𝑒𝑗 = 
∑ 𝑃𝑒𝑖
𝑛
𝑖=0

𝑛
                                     (25) 

In general, the task process efficiency is usually the 
measure of an individual task, and an average of all the 
task efficiency encompassed within a job reflects the effi-
ciency of the entire job. If certain tasks are allocated with 
less process efficiency within a single job, such tasks are 
vulnerable to behave either as long tails or energy-aware 
stragglers resulting from the node-level process efficien-
cy. It is postulated that the task efficiency of a given task 
is extremely low if its process efficiency falls below 50% 
of the job process efficiency as shown in equation 26. 

       𝑇𝑙𝑒[𝑖] = {
𝐽[𝑡𝑖]         𝑖𝑓 𝑃𝑒𝑖[𝑖] < 0.5 ∗ 𝑃𝑒𝑗  𝑖𝑠 𝑡𝑟𝑢𝑒 

𝑛𝑖𝑙                                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
           (26)            

Now, based on the task process efficiency of the two 
historical samples, the consistency of a given task is 
measured among the two historical usage profiles to 
evaluate its class of reliability. A task is considered to be 
highly reliable when the process efficiency of the corre-
sponding task stays internally consistent among the two 
historical usage profiles. If the task process efficiency is 
not consistent in both the two historical samples, it is less 
reliable and if the task process efficiency is consistent only 
in one of the two historical samples it characterises a reli-
ability class of medium. 

6.2.2 Process Capacity 

It is worthy of note that the task efficiency is not only af-
fected by the node-level stragglers, tasks those are more 
resource intensive within a single job naturally demands 
more resources than the other co-located tasks. 

Definition: Process capacity. Given a Job set J with n 
number of tasks J={T1, T2, T3,......, Tn}, predicted to run for a 
duration D={t1, t2, t3,…,tn} anticipated to consume a resource 
level of R={r1, r2, r3,….r4}, where the Task Ti is expected to 
run for a duration of tpi, and to consume rpi amounts of 
resources, the task process capacity 𝑃𝑐𝑖  of task Ti is de-
fined as the ratio of the anticipated duration to the pre-
dicted level of resource usage, where the anticipated job 
duration and resource consumption of the job are given 
by max(ti) and ∑ 𝑟𝑖

𝑛
𝑖=𝑜  respectively. The task process capac-

ity and the job process capacity can be computed as 
shown in equation 27 and equation 28. 

                                          𝑃𝑐𝑖 = 
𝑡𝑝𝑖

𝑟𝑝𝑖
                                         (27) 

                                       𝑃𝑐𝑗 = 
∑ 𝑃𝑐𝑖
𝑛
𝑖=0

𝑛
                                      (28) 

Process capacity will determine the effectiveness of the 
provisioned level of resources in processing the job with-
in the determined time-scale. Higher the value of Pci, 

greater is the process efficiency and shorter is the execu-
tion duration. Lower the value of Pci, higher is the possi-
bility of the corresponding task to behave as a straggler. 
Similar to the task process efficiency, tasks with low pro-
cess capacity 𝑇𝑙𝑐[𝑖] are identified using equation 29. 

          𝑇𝑙𝑐[𝑖] = {
𝐽[𝑡𝑖]         𝑖𝑓 𝑃𝑐𝑖[𝑖] < 0.5 ∗ 𝑃𝑐𝑗  𝑖𝑠 𝑡𝑟𝑢𝑒 

𝑛𝑖𝑙                                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
         (29)                       

Tasks with lower process capacity identified by equa-
tion 29 are considered as less reliable whilst optimising 
their initially estimated resource provisioning level.  

6.2.3 Task Category 

Furthermore, the over-commitment factor will give spe-
cial emphasis to the straggler classification with the objec-
tive of overcommitting the resource levels of energy-
aware stragglers. For a given task, if it behaved as non-
straggler in the two historical usage profiles and further 
classified to be a non-straggler based on the resource pre-
diction, it is highly reliable to stay as a non-straggler dur-
ing execution. For a given task, if it is classified as energy-
aware straggler in the offline analytics, then it is less reli-
able to behave as a non-straggler during execution. For a 
given task, if it has behaved as energy-aware straggler 
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TABLE 2 JOB PROFILE REPRESENTATION 

Job  No. of 

Tasks 

Periodicity Straggler 

Propor-

tions (%) 
Job Nature Day-of-the-

week 

Time-of-

the-day 

Job 0 50 Yes Yes 8 Uneven distribution of task length and resource intensity.  

Job 1 100 Yes Yes 26 Even distribution of task length, with only a very few tasks characterise a 

lower duration but the resource intensity is extremely heterogeneous. 

Job 2 200 Yes Yes 35 Evenly distributed task length and resource intensity, only a few tasks 

exhibit lower resource intensity. 

Job 3 182 Yes No 13 Limited periodicity due to the lack of the time-of-the-day sample. 

Job 4 488 Yes Yes 40 Extremely heterogeneous distribution of task length and resource inten-

sity. 

Job 5 1050 Yes Yes 2 Fairly homogeneous distribution of both task length and resource inten-

sity. 

 
 
 

during both its historical execution instances and not 
classified as energy-aware straggler, then it is less reliable 
to behave as a non-straggler during execution. For a given 
task, if it has behaved as energy-aware straggler in either 
one of the two historical samples and not classified as 
energy-aware straggler, then it characterises a medium 
reliability to behave as non-straggler during execution. 

6.3 Over-commitment Percentage 

The above discussed factors determining the over com-
mitment level of resources for task execution are expected 
to influence each other. For instance, an energy-aware 

straggler task with process efficiency consistency will 
enjoy a higher reliability weightage at step 6.2.1 and a 
lower reliability weightage at step 6.2.3, such that the lev-
el of over commitment postulated in the two respective 
levels are expected to cancel out the effects of each other 
so as to deliver a final optimised level of over-
commitment. Thus, the optimised over-commitment per-
centage of resources 𝑂𝐶𝐹 for a given task is achieved as 
an average of the over commitment level determined by 
the above three factors as shown in equation 30, where 
𝑜𝑐𝑓𝑎, 𝑜𝑐𝑓𝑏, 𝑜𝑐𝑓𝑐  are the over commitment level of re-
sources computed based on the three influencing factors 
respectively. The over-commitment protocol is illustrated 
in Fig. 3. 
                        𝑂𝐶𝐹 =

1

3
 (𝑜𝑐𝑓𝑎 + 𝑜𝑐𝑓𝑏 + 𝑜𝑐𝑓𝑐)                    (30) 

The final level of recommended resource provision for 
a task i is given by equation 31. The OCF is calculated for 
all the task groups since the optimisation framework 
uniquely treats every individual tasks and further adopts 
an over commitment policy for all tasks in an attempt to 
avoid under provisioning of resources. 

  𝑅𝑝[𝑖] =  {
𝑅𝑛𝑠(𝑐)[𝑖] ∗ 𝑂𝐶𝐹,         𝑓𝑜𝑟 𝑛𝑜𝑛 𝑠𝑡𝑟𝑎𝑔𝑔𝑙𝑒𝑟𝑠

𝑅𝑠𝑡(𝑐)[𝑖] ∗ 𝑂𝐶𝐹,                  𝑓𝑜𝑟 𝑠𝑡𝑟𝑎𝑔𝑔𝑙𝑒𝑟𝑠
    (31)                     

7 PERFORMANCE EVALUATIONS 

The efficiency of the proposed analytics framework has 
been evaluated both theoretically and experimentally by 
training real-world Google Cloud trace logs [28]. In order 
to display the impacts of job heterogeneity upon the effi-
ciency of the proposed framework , six different jobs have 
been chosen as representatives of different job types 
based on the heterogeneous combinations of encom-
passed tasks within jobs, straggler composition, task du-
ration etc, as summarised in Table 2. 

7.1 Resource Estimation Performance 

The efficiency of the proposed dynamic weighing CMA 
algorithm in estimating the resource requirements of the 
jobs has been evaluated against the existing state-of-the-
art techniques [29-34] including Simple Moving Average 
filter, Exponential Moving Average, Low Pass filter, Auto 
Regressing Moving Average and Linear Regression. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

Fig. 3. Over-Commitment Protocol 
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Fig. 5. Over and Under Prediction Ratio 

 
 

Fig. 4 presents the estimated CPU requirements 
against the actually consumed for Job 0, Job 1, Job 2, Job 4 
and Job 5 respectively. Since Job 3 does not satisfy the 
historical window requirements of the proposed method-
ology, evaluation of resource estimation for Job 3 is not 
included. The unusual spikes in the actual trend illus-
trates the increased CPU consumption of the energy-
aware stragglers. This exhibits the increased analytics 
complexity in capturing and predicting the resource re-
quirements of energy-aware stragglers. 3 out of 4 energy-
aware stragglers have not been captured by any of the 
evaluated techniques in the case of Job 0. In the case of 
Job 1, ARMA presents a linear prediction for all the en-
compassed tasks, and it is over-predicting the resource 
requirements of non-stragglers by a considerable margin. 
This is due to the inefficiency of ARMA model in captur-
ing minute deviations among the observation. In the case 
of Job 2, all the techniques are vulnerable to under-
estimate the resource requirements of energy-aware 
stragglers and ARMA model delivers a flat prediction. 
Similar behaviours of energy-aware straggler prediction 
can be observed for Job 4, where a few of the non-
stragglers are over estimated by a significant margin by 
all the techniques. Interestingly, all the prediction tech-
niques are closely estimating the resource requirements of 
the tasks encompassed within Job 5. This is because the 
proportional presence of energy-aware stragglers is in-
significant in Job 5, accounting for only around 2%.  

Fig. 5 presents the over and under-prediction ratio of 
all the evaluated techniques, presented as an average of 
all the studied jobs. Considering all the task classification, 
the proposed DWCMA over-estimates 44.65% of tasks 
and under-estimates 55.34% of tasks accordingly. The 
over estimation of the evaluated techniques is observed at 

an average of 45.34%, 46.16%, 54.04%, 54.14%, 47.32%, 
and the under estimation is observed at an average of 
54.65%, 53.83%, 45.93%, 45.58% and 53.67% respectively 
for SMA, EMA, LPF, ARMA and LR. The estimation effi-
ciency of all such techniques are further evaluated by iso-
lating the energy-aware stragglers and long tails, so as to 
evaluate the resource estimation efficiency for non-
stragglers. Now, the proposed DWCMA over estimates 
59.06% and under-estimates 40.93% of the non-straggler 
tasks. Further, the over estimation of the compared tech-
niques is observed at 59.51%, 60.75%, 71.40%, 72.72% and 
59.71%, and the under estimation is observed at 40.48%, 
39.24%, 28.59%, 27.27% and 40.28% respectively for SMA, 
EMA, LPF, ARMA and LR. It is clearly evident that the 
under prediction for non-stragglers is much lesser than 
those of the total tasks (including energy-aware strag-
glers, non-stragglers and long tails), illustrating the im-
pacts of energy-aware stragglers in prediction analytics. 

The estimation trade-off of the proposed DWCMA, 
SMA, EMA and LR fairly remains the same for both the 
task classifications. But the over estimation ratio of LR 

 
 
 
 
 
 

 

 

 
 

 

 

 

 

 

 

 

 

 
Fig. 4. Resource Estimation Observation (a) Job 0 (b) Job 1 (c) Job 2 (d) Job 4 (e) Job 5 
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Fig. 6. Average Accumulative Error for Resource Prediction 

 

 

 

TABLE 3 REPLICATED CLOUD EXECUTION STATISTICS 

FOR EXPERIMENTS 

Job 

Name 

Task 

Index 

Cloud 

Execution 

(seconds) 

Experiment 

Duration 

(seconds) 

Imposed 

Delay 

(seconds) 

Resource 

Intensity 

(%) 

Job 0 0 156 148.2 5.93 28 

Job 1 12 178 177.9 4.1354 43 

Job 1 91 161 161.07 2.68 22 

Job 2 31 46 45.84 0.88 52 

Job 2 191 50 49.80 1.13 44 

Job 3  44 40 39.71 0.23 171 

Job 4 138 229 228.17 3.93 58 

Job 4 420 222 221.47 5.98 37 

Job 5 233 1698 1689.97 67.55 25 

Job 5 1008 1734 1729.26 86.4 20 

 
 
 

and ARMA are higher than the remaining techniques by a 
considerable margin. Whilst is optimum for a prediction 
technique to over-estimate the resource requirements, this 
over estimation should always be marginally higher than 
the actual requirements. Over-estimating the resource 
level by a significant margin leads to resource wastages, 
which is actually the case of ARMA. In general, ARMA 
model fits well for time series trend prediction and usual-
ly presents the upper and lower confidence limits for 
prediction, but does not scale well in the context of re-
source requirement estimation. LPF presents a better over 
estimation ratio, however LPF depends on the average of 
prediction outcome of the previous iteration and adds a 
degradation function for the current sample. This increas-
es the computational complexity by incurring multiple 
iterations of prediction analytics and the degradation 
function is vulnerable to over-commit the resource levels.  

Furthermore, the resource estimation accuracy of the 
stated techniques is evaluated in terms of the Average 
Accumulative Error (AAE) for under-estimated and over-
estimated tasks within a single job respectively, presented 
in Fig. 6 as an average of all the studied jobs. It can com-
monly be observed that all the evaluated techniques are 
exhibiting a better AAE Percentage for the under-
estimated tasks than those of the over-estimated tasks, 
though the over-estimation ratio is better for non-
stragglers. In other words, a majority of the non-

straggling task proportions are over-estimated with high 
error percentage and a minority of the non-straggling task 
proportions are under-estimated with minimum error 
percentage. Due to space constraints, the discussion of 
individual jobs is not presented in this section. The AAE 
for under-estimated tasks are observed at 28.59%, 30.9%, 
30.04%, 32.01%, 19.63% and 36.72% for DWCMA, SMA, 
EMA, LPF, ARMA and LR respectively for all the job cat-
egories. Similarly, the AAE for the over-estimated tasks 
are observed at 45.24%, 49.69%, 49.14%, 45.19, 67.98% and 
56.24% respectively for DWCMA, SMA, EMA, LPF, AR-
MA and LR for all job categories.  

Overall, it can be concluded that the proposed 
DWCMA protocol achieves a better prediction accuracy 
trade-off between the under and over-estimated non-
straggling tasks within the given jobs than the compared 
techniques with better AAE. Though marginal, the under-
estimated tasks are vulnerable for terminations due to 
under-commitment of resources, thus needs further op-
timisation. 

7.2 Straggler Classification Performance 

7.2.1 Experiment Setup and Workload Generation 

The efficiency of the proposed straggler classification 
methodology has been evaluated in two different phases. 
Firstly, the offline analytics has been evaluated to demon-
strate the efficiency of the proposed methodology in clas-
sifying the task-level energy-aware stragglers before the 
start of the actual job execution. Secondly, the identifica-
tion accuracy of the proposed methodology in detecting 
energy-aware stragglers during the actual execution has 
been evaluated. To facilitate the evaluation of runtime 
identification, the proposed framework along with the 
compared techniques are modelled to identify energy-
aware stragglers when the jobs are executed in a Kubuntu 
VM characterising 2 core processor and 1GB RAM, every 
task within a given job are executed on individual threads 
to reflect the isolated LXCs of a typical Cloud datacentre. 
Tasks within a single job are parallelised and all the 
threads used for a single job execution are started at the 
same time to ensure an even start time for all the tasks 
within a given job. Heterogeneity among the running 
tasks within a single job in terms of their progress rate is 
achieved by imposing various level of delays and compu-
tation intensities among the tasks, whereby tasks are exe-
cuted with varied resource consumption and completion 
times. After an initial random run of the chosen jobs in 
the evaluation system, the datacentre equivalent (near 
identical) execution time and proportional resource inten-
sity of the individual tasks within the respective jobs are 
achieved by moderating the initially imposed delay with-
in the task progress using equation 32. 

                                𝑑𝑟𝑒𝑞 = (𝑑𝑐 ∗  𝑡𝑟𝑒𝑞) / 𝑡𝑐                         (32)  

where, 𝑑𝑟𝑒𝑞 is the required delay within the task progress 
to identically replicate the Cloud execution, 𝑑𝑐 is the de-
lay imposed during the initial run, 𝑡𝑟𝑒𝑞 is the task execu-
tion duration of the Cloud execution and 𝑡𝑐 is the task 
completion time of the initial run respectively. Table 3 
presents the replicated task completion time to that of the 
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typical Cloud execution along with the heterogeneity in 
resource intensity for a randomly chosen 10 tasks from 
the studied jobs. The resource intensity percentage of the 
tasks are presented in accordance with the intensity of the 
other co-located tasks within the same job. 

The straggler detection efficiency of the proposed 
methodology has been evaluated against the existing 
state-of-the-art threshold calculation [5, 17, 18, 20] meth-
ods including static threshold, progress score based 
threshold, task progress based threshold, estimated finish 
time based threshold and a normalised duration based 
threshold accordingly.  

7.2.2 Classification Accuracy 

This section presents the analysis of the experiment re-
sults for the proposed energy-aware straggler classifica-
tion technique against the compared techniques. Due to 
space constraints, Job 0 and Job 4 have been chosen to 
discuss the obtained performance in detail as they repre-
sent the two performance extremities impacted by the 
presence of energy-aware stragglers, and an overall aver-
age statistics are further presented.  

Fig. 7 presents the classification efficiency of the pro-
posed and the compared techniques in terms of the total 
number of correctly identified energy-aware stragglers 
and the true and false positive proportions of classified 
tasks respectively for Job 0. It can be observed that the 
proposed offline analytics identifies 3 out of 4 energy-
aware stragglers even before the execution starts and the 
proposed runtime analytics threshold identifies all the 
energy-aware stragglers. In addition, the true positive 
rate of the proposed runtime threshold is significantly 

better than the compared techniques witnessed at 66.66% 
and further reducing the false positives rate down to 
33.33%. Though the static mean threshold identifies all 
the energy-aware stragglers during runtime, the true pos-
itive and false positive rates are witnessed at 36.36% and 
63.63% respectively, much worse than the proposed tech-
nique. It can further be confirmed that the rest of the 
evaluated techniques are not efficient in identifying ener-
gy-aware stragglers and further characterise significant 
proportions of false positives, resulting in wrong classifi-
cation of non-stragglers as energy-aware stragglers. Thus, 
it is clear that despite the job heterogeneity, the proposed 
methodology is effective in accurate classification of en-
ergy-aware stragglers with minimal proportions of false 
positives.  

Fig. 8 presents the classification accuracy statistics of 
the evaluated techniques for Job 4. Job 4 is an interesting 
sample since it comprises more than 40% of energy aware 
stragglers, which means nearly half of the tasks are ener-
gy intensive. In this regard Job 4 itself can be regarded as 
an energy-intensive job rather than comprising energy-
aware stragglers. It is evident that the proposed classifica-
tion technique outperforms the evaluated techniques in 
terms of the achieved trade-off between identified strag-
glers and reduction in false positives, with the proposed 
technique identifying 161 out of 201 energy-aware strag-
glers at a true positive rate of 64.9%, against the static 
mean threshold identifying 171 stragglers at a true posi-
tive rate of 60.6%. The total number of correctly identified 
stragglers by the remaining techniques are very insignifi-
cant, and the benefits availed to resource provision is lit-
tle of merit. 

 
 
 
 
 

 

 

 
Fig. 8. Classification Accuracy for Job 4 (a) Identified Stragglers (b) Error Proportions 

 
 

 
 
 
 
 
 

 

 
 
 

 
Fig. 7. Classification Accuracy for Job 0 (a) Identified Stragglers (b) Error Proportions 
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Fig. 9. Classification Efficiency of the Proposed Technique 

 
 

 

 

 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
Figure 5. Tasks Identified as Stragglers 

 
 
 
 

 

 

 

 
Fig. 10. Straggler and Heterogeneity Consequence 

 
 

 
 

 

 

 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
Figure 5. Tasks Identified as Stragglers 

Fig. 9 presents the classification efficiency of the pro-
posed technique in terms of the true positive and false 
positive rates averaged across all the studied jobs pre-
sented against the accuracy proportions of Job 3. Job 3 is a 
job sample without sufficient historical traces which re-
strains the efficiency of the proposed analytics both in 
terms of resource prediction and straggler classification. 
From Fig. 9, the effects of this limited availability of the 
appropriate historical samples are clearly evident, with 
the true positive rate for the rest of the jobs is witnessed at 
60.23% which reduces to 26.53% for Job 3. Apart from 
this, it can be concluded that the proposed straggler ana-
lytics technique performs significantly better than the 
evaluated techniques. It is worthy of note that most of the 
evaluated techniques are focused on classifying stragglers 
only based on the task duration related metrics, ignoring 
CPU usage rate restrains their efficiency in identifying 
energy-aware stragglers. The classification effectiveness 
of the proposed analytics methodology can be attributed 
to the fact that it incorporates the combinational effects of 
both the task duration and CPU usage rate of respective 
tasks. The energy-aware straggler prediction before exe-
cution is still believed to be an aspiration to date, in which 
sense it can be postulated that the proposed straggler 
classification methodology is efficient in identifying task-
level stragglers before the start of the actual job execution. 

7.3 Resource Optimisation Performance 

This section presents the efficiency of the proposed re-
source optimisation methodology, evaluated from the 
perspectives of reducing the server energy expenditures, 
reducing task terminations and mitigating the presence of 
energy-aware stragglers. The failure probability in terms 
of under-estimated resource levels has been verified by 

theoretical analysis, and further the server energy ex-
penditures of the actual and proposed resource provision-
ing levels have been evaluated experimentally through 
simulations. GreenCloud [35, 36] simulation platform has 
been used to simulate the task execution within jobs. The 
tasks are devised to be scheduled by the green scheduler 
of the GreenCloud across a selected range of servers. For 
energy management, DVFS has been enabled on the both 
the physical servers and the processing VMs to dynami-
cally adjust the internal scheduling of tasks, so that the 
VMs try to extend the task execution time to exploit DVFS 
in accordance with the workload intensity. The resource 
intensity of the tasks has been reflected in the task size 
(presented in bytes) and the proportional idleness has 
been reflected by imposing corresponding load on the 
servers depending on the idle proportions incurred in the 
actual and proposed level of resource provisioning ac-
cordingly.  

7.3.1 Straggler and Heterogeneity Consequence 
Fig. 10 presents the proportions of tasks achieving re-
source conservation and resource wastages within the 
studied jobs based on the proposed methodology. Whilst 
the conserved task proportions reflect the achieved reduc-
tion in the originally provisioned resource level for tasks 
within jobs along with the conversation percentage 
achieved, the wasted task proportions depict the tasks for 
which the resources are over-estimated than the actual 
level along with the percentage of resources wasted for 
the tasks within the studied jobs. None of the over-
estimated tasks within Job 0 experience resource wastag-
es, (i.e.,) the proposed resource provisioning level are 
much less than the actual level for all the tasks within Job 
0. Thus, an average of 82.24% of resource levels are con-
served across all the tasks encompassed within Job 0.  

From Fig. 10, resource conservation has been achieved 
for 90% of tasks with an average of 79.93% of conserva-
tion in Job 1, 97.43% of tasks with an average of 84% of 
conservation in Job 2, 84% of tasks with an average of 
62.54% of conservation in Job 4 and 58% of tasks with an 
average of 19.12% of conservation in Job 5 respectively. 
Conversely, the proposed methodology has over-
estimated the resource level than the originally provi-
sioned level for 9% of tasks with an average of 39.35% of 
wastages for Job 1, 3% of tasks with an average of 48.36% 
of wastages for Job 2, 15% of tasks with an average of 
62.65% of wastages for Job 4 and 42% of tasks with an 
average of 17.3% of wastages for Job 5 respectively. It is 
clearly evident that resource conservations are achieved 
for a majority of the task proportions with significant re-
duction in the actually provisioned resource levels and a 
minority of the task proportions are suffering marginal 
resource wastages. Job 5 is exhibiting a different trend, 
since it incurred only around 16% of resource idleness 
during its actual Cloud execution. Furthermore, the pro-
portional presence of stragglers is insignificant within Job 
5 and also the energy-aware stragglers do not show any 
notable increase in their resource consumption level from 
that of non-stragglers. To this end, it can be postulated 
that jobs exhibiting fair resource consumption trend with 
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less than 20% resource idleness can be ignored for further 
analysis for exploring the scope of resource conservation.  

As expected, the proportional presence of energy-
aware stragglers does have a considerable impact upon 
the efficiencies of resource provision optimisation mod-
ule. Job 0 with 8% of energy-aware stragglers is not suf-
fering any excess resource wastages resulting from over-
estimation. Increased proportions of energy-aware strag-
glers at around 27%, 36% and 40% are witnessed in Job 1, 
Job 2 and Job 4 respectively, which has reflected in the 
corresponding wasted proportions of resources within 
the respective jobs. Such observations are reflecting the 
fact that increased proportions of energy-aware stragglers 
may result in respective increase in the proportional re-
source wastages through over-estimation of resource lev-
els based on the proposed analytics methodology. How-
ever, the proportions of task for which their resource lev-
els are over-estimated are still insignificant, whereby the 
impacts of the over-estimation factor have been main-
tained at the minimum possible level to reduce their en-
ergy impacts upon the overall energy consumption. 

7.3.2 Failure Probability 

Fig. 11 presents the failure probability proportions of 
tasks within their respective job during the actual execu-
tion, resulting from the under-predicted resource levels 
by the proposed methodology. The effectiveness of the 
proposed methodology is evaluated from two different 
perspectives: firstly, the failure probability has been eval-
uated for all the tasks encompassed within a given job 
despite their resource consumption behaviour, and sec-
ondly the actual and classified non-stragglers within jobs 
are isolated to evaluate the failure probability of non-
stragglers. From Fig. 11, around 11% of the total tasks are 
vulnerable for resource related terminations which re-
duces to 9% for non-stragglers for Job 0. Similarly, the 
failure probability has been witnessed at 32% for all tasks 
and 5% for non-stragglers for Job 1, 30% for all tasks and 
6% for non-stragglers for Job 2, 19% for all tasks and 7% 
for non-stragglers for Job 4 and 23% for all tasks and 
20.64% for non-stragglers for Job 5. Again, Job 5 is not 
performing as expected exhibiting an increased propor-
tions of job failure probability for all tasks and non-
stragglers. This can again be attributed to the fair execu-
tion profile of Job 5, again it can be recommended that 
jobs with fair execution trend do not project the scope for 

further reduction in resource expenditures.  
It is clearly evident that the failure probability for non-

stragglers are significantly lower than the entire task 
group including stragglers, exhibiting the efficiencies of 
the proposed methodology in reducing the failure proba-
bility for non-stragglers. This failure probability of tasks 
can further be reduced through vertical scaling during 
runtime. Failure probability can also be reduced by in-
creasing the margin of the over-commitment factor pro-
posed in the over-estimation protocol, in such a way that 
the over-commitment factor for the discussed categories 
can be scaled up to further reduce the proportions of un-
der-estimation of resources. However, increasing the 
over-commitment margin will increase the resource pro-
visioning levels of other task groups for which the re-
sources have already been over-estimated. This may lead 
to a reduction in the overall energy conservation of re-
sources estimated by the proposed methodology. 

7.3.3 Energy Efficiency Analysis 

This section is intended to exhibit the effectiveness of the 
proposed methodology in conserving the server energy 
expenditures achieved through the reduction in the 
amounts of resources spent on the job execution. Fig. 12 
displays the energy expenditure statistics obtained from 
the simulation of Job 0, Job 1 and Job 5 (however all the 
jobs have been discussed in detail in this section), for the 
actually assigned amounts of resources and the proposed 
level of resource provision. The effectiveness of the pro-
posed methodology has been presented for the classified 
energy-aware stragglers and non-stragglers respectively 
in Fig. 12, for an equivalent selection of random tasks rep-
resenting the two group of classification. On a coarse-
grain, it is clearly evident that the proposed methodology 
performs better in reducing the server energy expendi-
tures for tasks classified as non-stragglers than those clas-
sified as energy-aware stragglers within a given job. This 
is because of the straggler classification effectiveness of 
the proposed methodology well before the start of the 
actual execution. For instance, in the case of Job 0, tasks 0, 
1, 2, 7, 43, and 48 are classified as energy-aware stragglers 
by the proposed offline analytics. Though the proposed 
methodology proposes only a marginal reduction for 
tasks 0, 1 and 2 and 43, a significant reduction in server 
energy expenditures can be achieved for tasks 7 and 48 
within the classified energy-aware straggler group. De-
spite being classified as energy-aware stragglers, the re-
source provisioning level of task 7 and 48 has been mod-
erated by the proposed resource optimisation module 
based on the runtime factors. For non-straggler tasks 
within Job 0, a significant proportions of energy conserva-
tion have been achieved fairly across all the tasks. Though 
a significant reduction in the energy expenditures has 
been achieved for non-stragglers within Job 1, only a 
marginal reduction in server energy expenditures has 
been achieved by the proposed methodology for most of 
the classified energy-aware stragglers. Furthermore, task 
23 within Job 1 is a typical example where the proposed 
methodology is estimating the resource provisioning lev-
el that exceeds the actual level of resources originally 

 
 
 
 
 

 

 

 

 
Fig. 11. Failure Probability Proportions 

 
 

 

 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
Figure 5. Tasks Identified as Stragglers 
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Fig. 13. Overall Energy Conservation Statistics 
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provisioned, in which sense this would incur energy 
wastages by incurring more proportions of resource idle-
ness. This is attributed to the fact task 23 being incon-
sistent in its behaviour during historical execution pro-
files in terms of its straggling behaviour and process effi-
ciency and further the process capacity being less reliable 
for the current execution. However, considering the over-
all impacts of this over-estimation upon the server energy 
conservation for all the tasks within Job 1, the excess en-
ergy consequence of task 23 is insignificant.  

Job 2 is a typical example where task 134 has been es-
timated to consume more resources which is then turning 
out to be a non-straggler during the actual execution, 
again this is due to task 134 being less reliable in its strag-
gler behaviour. But, a significant reduction in sever ener-
gy conservation has been achieved for both the task 
groups within Job 2 based on the proposed methodology. 
The influence of an increased proportions of straggling 

tasks within Job 4 are clearly evident, where only a mar-
ginal reduction in server energy expenditures has been 
achieved for most of the classified energy-aware strag-
glers. Furthermore, the achieved reduction in the propor-
tional server energy expenditures for non-stragglers is 
much less than those of the other studied jobs, however 
still better than those of the actually provisioned level of 
resources for non-stragglers within Job 4. Job 5 has been 
suggested not to reduce the actually provisioned resource 
levels based on the theoretical verification, driven by the 
effects of straggler consequence, failure probability and 
importantly the witnessed level of reduced resource idle-
ness (being less than 20%) during the historical execution 
profiles. The simulation experiments are also presenting 
us with similar inferences, since most of the energy-aware 
stragglers have been over-estimated than the actual level 
of resource provision. Also, only a marginal reduction in 
the server energy expenditures can be achieved for the 
group of non-stragglers. 

Fig. 13 presents the overall energy conservation statis-
tics across all the encompassed tasks within the studied 
jobs, comparing the server energy expenditures incurred 
by the proposed level of resource provision against the 
actually provisioned level of resources. The statistics pre-
sented in Fig. 13 has been moderated with the propor-
tions of tasks achieving energy conservation and energy 
wastages within a given job accordingly. From Fig. 13, an 
overall reduction in the server energy expenditures can 
be achieved by a margin of 82.75%, 58.18%, 82.53%, 
47.04% and 0.11% based on the proposed resource provi-

 
 
 
 
 

 

 

 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 

 
Fig. 12. Server Energy Expenditures (a) Classified and Actual Stragglers (b) Classified Non-Stragglers {(0) Job 0 (1) Job 1 (5) Job 5 

 
 

 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
Figure 5. Tasks Identified as Stragglers 
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sioning level across all the tasks encompassed within Job 
0, Job 1, Job 2, Job 4 and Job 5 respectively. The difference 
in the achieved reduction in server energy expenditures 
across the studied jobs are attributed to the job heteroge-
neity in terms of the straggler proportions, difference be-
tween the resource consumption level of stragglers and 
non-stragglers within a given job, task behaviour con-
sistency in terms of straggling behaviours, process effi-
ciency and process capacity. 

8 CONCLUSION 

This paper proposed a novel analytics driven resource 
optimisation framework to optimise the level of resource 
provisioning whilst executing tasks in the datacentres, for 
the purpose of reducing resource wastages incurred 
though the presence of resource idleness during task exe-
cution. The proposed framework includes three integral 
components such as the resource estimation module, 
straggler classification module and the resource optimisa-
tion module. Estimating the resource consumption levels 
of the tasks encompassed within jobs a priori, tasks with-
in a given job are classified based on their resource inten-
sity and execution trend. Further, the estimated resource 
levels are optimised based on their classified intensity 
and several runtime factors affecting the task execution. 
The effectiveness of every integrated module is evaluated 
both theoretically and through practical experiments, 
which proves the effectiveness of the proposed analytics 
methodology in estimating the resource requirements of 
the tasks with reliable level of accuracy. The straggler 
classification module is efficient in classifying energy-
aware stragglers well before the start of the actual task 
execution, and also effectively identifies the energy-aware 
stragglers during runtime. Furthermore, the resource op-
timisation module incorporates the descriptive 
knowledge of the task execution and postulates a re-
source provisioning level for tasks within jobs, in such a 
way that the originally provisioned resource level is con-
siderably reduced, whereby the incurred proportions of 
resource idleness can be significantly reduced with mini-
mal probability of task failures. 

The proposed approach of resource provision optimi-
sation performs better for non-stragglers than the energy-
aware stragglers, in such a way that the resource estima-
tion of non-stragglers presents better reliability. Further, 
the straggler classification framework includes a marginal 
proportion of false positive rate which has reflected in a 
marginal level of excess resource provision for a very few 
tasks within jobs. Though marginal, reducing such false 
positive overheads benefits achieving better reduction in 
server energy expenditures. Investigating the possibility 
of enhancing the crispness of resource estimation of ener-
gy-aware stragglers and reducing the false positive rates 
of the classification approach is one of our future research 
directions. Additionally, evaluating the efficiencies of the 
proposed framework in classifying jobs with cascaded 
tasks is another future objective of our research. 
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