
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 1

An Approach to Optimise Resource Provision
with Energy-awareness in Datacentres by

Combating Task Heterogeneity
John Panneerselvam, Lu Liu and Nick Antonopoulos

Abstract—Cloud workloads are increasingly heterogeneous such that a single Cloud job may encompass one to several tasks,

and tasks belonging to the same job may behave distinctively during their actual execution. This inherent task heterogeneity

imposes increased complexities in achieving an energy efficient management of the Cloud jobs. The phenomenon of a few

proportions of tasks characterising increased resource intensity within a given job usually lead the providers to over-provision all

the encompassed tasks, resulting in majority of the tasks incurring an increased proportions of resource idleness. To this end,

this paper proposes a novel analytics framework which integrates a resource estimation module to estimate the resource

requirements of tasks a priori, a straggler classification module to classify tasks based on their resource intensity, and a

resource optimisation module to optimise the level of resource provision depending on the task nature and various runtime

factors. Performance evaluations conducted both theoretically and through practical experiments prove that the proposed

methodology performs better than the compared statistical resource estimation methods and existing models of straggler

mitigation, and further demonstrate the effectiveness of the proposed methodology in achieving energy conservation by

postulating appropriate level of resource provisioning for task execution.

Index Terms—Energy-aware systems, Interactive data exploration and discovery, Power Management, Servers

—————————— ——————————

1 INTRODUCTION

N the Cloud Computing concept, user request arrives in
the form of jobs encompassing one to several number of

tasks. Such tasks are usually processed in various servers
across the datacentres. Schedulers usually allocate the
incoming tasks onto isolated containers with a pre-
defined level of CPU, memory and disk space resources
for the LXCs (Linux Containers) or VMs (Virtual Ma-
chines) to consume of the physical resources. This prede-
fined level of resource provision is usually the maximum
level of allowed resources for the LXCs or VMs to con-
sume. It is common that the resource requirements of the
tasks are often over-estimated in an attempt to avail re-
sources at a level which does not compromise the task
execution resulting from resource scarcity. There are two
immediate implications - over-estimation of resource re-
quirements usually incurs a significant proportion of re-
source idleness and under-estimation usually leads to
task terminations directly affecting the Quality of Service
(QoS). While it is being argued that the level of provi-
sioned resources usually far exceed [1] the actual re-
quirements of the tasks, resource idleness resulting from
over-estimation of resource requirements can be mini-
mised when the resource requirements of the jobs are
estimated before execution. But accurately predicting the
resource requirements of the jobs include various chal-
lenges, one of them is the inner heterogeneity of tasks
within jobs in terms of their resource requirements, task
duration, resource intensity etc. Completion of a given job

can only be assured when all of its encompassing tasks
are successfully executed. Thus, a task-level optimisation
is of the interests of energy efficiency to achieve an over-
all energy optimisation of the entire job.

Giving a special emphasis to this inherent task hetero-
geneity, this paper postulates the phenomenon of a few
tasks within a single job exhibiting a resource intensive-
ness as an increased multiple of majority of the remaining
co-located tasks as energy-aware straggling behaviour of
tasks. Since these straggling behaviours of tasks are not
previously known, all the encompassed tasks within a
given job over-provisioned at a level that can guarantee
termination-less execution of the energy-aware stragglers.
The worse energy implication can occur when the energy-
aware stragglers are only a marginal proportion of the
total tasks, thus leaving a larger proportion of resources
allocated to the non-straggling tasks unutilised.

Existing works to date addressing the inner task heter-
ogeneity [2-6] focused only on long tails, whereby a few
tasks usually exhibit a duration as an increased multiple
than those of the majority of the remaining tasks within
the same job. Stragglers are of two types based on their
locality, such as the node-level stragglers and the task
level stragglers. Whilst the former is usually identified
among the running physical servers the latter results de-
pending on the nature, characteristics and requirements
of the tasks. Server nodes exhibiting poor performance
and declining process capability can cause node-level
stragglers, naturally tasks scheduled on to such node-
level stragglers suffer performance constraints, possible
terminations and prolonged execution duration than an-
ticipated. Tasks-level stragglers naturally exhibit a varied
execution behaviour than the other co-located tasks with-

I

————————————————

• The authors are with the Department of Engineering and Technology,
University of Derby, Derby, DE22 1GB, United Kingdom,

• Email: {j.panneerselvam, l.liu, n.antonopoulos}@derby.ac.uk

2 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING

in the same job in terms of their resource consumption,
execution duration etc. Whilst the node-level stragglers
can be mitigated by avoiding scheduling jobs onto such
poor nodes, task-level stragglers pose an increased man-
agement complexity since they can hardly be identified
before they occur. Further the existence of the relation-
ship between node-level and stragglers is trivial, such
that a common task-level straggler in two different execu-
tion instances of the same job can behave distinctly on
alternative server nodes. Node-level long tail stragglers
usually affect the overall completion time of the entire job
but energy-aware stragglers, posing a significant energy
implication, have not gained suffice importance so far.

To this end, this paper proposes a novel analytics
framework for mitigating the energy-aware stragglers
within jobs to optimise the level of resource provisioning
to reduce energy expenditures incurred in the form of
idle resource proportions during task execution. The pro-
posed framework encompasses three cascaded modules.
The novelty beyond the state-of-the-art models of strag-
gler mitigation lies in the fact that the inherent task heter-
ogeneity has been given primary importance and every
individual task within a given job has been uniquely
treated to optimise their resource provision. Important
contribution of this paper includes the following:

• Firstly, a resource estimation module has been devel-
oped to estimate the resource intensiveness of every
individual task within jobs. This resource estimation
module exploits the inherent periodical effects among
the Cloud workloads and predicts the resource re-
quirements of every individual tasks within jobs with
reliable level of accuracy.

• Secondly, a straggler classification framework has
been integrated to classify tasks within a given job as
potential energy-aware stragglers and non-stragglers.
This classification framework exploits the historical
behaviours of the tasks from suitable execution in-
stances and classifies tasks based on their anticipated
resource intensiveness and execution trend.

• Finally, a resource optimisation module has been in-
corporated to optimise the level of resources availed
to tasks within jobs to achieve termination-less execu-
tion with reduced proportion of resource idleness.
This resource optimisation module considers various
run-time execution factors and the nature of the tasks
within jobs to recommend the most appropriate level
of resource provision to conserve energy.

The remainder of this paper is organised as follows:
Section 2 reviews the related works of straggler mitiga-
tion techniques for energy efficiency and Section 3 details
our proposed analytics framework. The resource estima-
tion module, the straggler classification module and the
resource optimisation module are described in Section 4,
5 and 6 respectively. Section 7 is covered with the per-
formance evaluations and discussions, and Section 8 con-
cludes this paper along with outlining our future works.

2 RELATED WORKS

Energy management has been approached from various
perspectives [7-15] such as energy-aware resource sched-
uling, server switching, task allocation, live migration,
VM consolidation etc. This paper focuses on approaches
those aim to mitigate task heterogeneity, particularly the
straggling behaviours of tasks within jobs. Straggler iden-
tification is growing importance as an integral component
in the context of energy management in datacentres, since
identifying the straggling tasks and treating them accord-
ingly benefits not only to ensure completion of the strag-
gling tasks but also to restrain the stragglers from con-
suming more server resources resulting from termination
driven resubmissions and prolonged execution.

Stragglers are usually identified based on a defined
threshold to locate tasks exhibiting an abnormal execu-
tion behaviour than those of the other co-located tasks
within the same job. One of the most commonly consid-
ered execution metrics is the task duration for characteris-
ing long tail stragglers [3, 16]. Most of the existing works
adopts this duration threshold as a typical value of tasks
exhibiting 50% longer [5] than the average duration for
straggler classification. Static threshold for straggler iden-
tification based on their execution duration may not scale
well for Cloud workloads because of the task heterogenei-
ty. Such static thresholds are computed as a temporal dif-
ference of the duration between a running task and the
average task duration during execution. Computing this
temporal difference is possible only during the run time.

Existing strategies of mitigating stragglers during
runtime include speculative execution, which is common-
ly being used in Hadoop and Map Reduce environments
and in production clusters [5] such as Google and Bing.
This strategy increases the probability of early completion
of the straggling tasks by creating multiple replicas of the
long tails, the replica completed first is stored for task
completion and the remaining replicas are terminated.
Though, duplicating the same execution instance de-
mands more resource allocation and hence incur excess
energy consumption. Furthermore, resources spent on all
other replicas other than the one completed first are need-
less energy expenditures. The execution of such replicas is
not known a priori which doubts their completion rate in
a way that the created replicas might be even execute
longer and consume more resources than the actual
stragglers. Another drawback of speculative execution is
the definition of the threshold to trigger replicas. If the
replicas are created earlier during the execution, there is
still a possibility for the actual task to progress smoothly,
in which case the created replicas are simply terminated
without extracting any useful information services. If the
replicas are created later in the execution, changes are the
created replicas may not finish on time causing unneces-
sary delays in the actual job completion, whereby wasting
not only the resources spent on the straggling task but
also on the created replicas. Most of the existing works
identifies runtime stragglers during the later stage [3] of
the actual execution’s lifecycle, causing needless replicas.
Since the threshold identification for creating replicas can
only be achieved during runtime, a pro-active measure-

AUTHOR ET AL.: TITLE 3

ment is not possible with speculative execution. Further-
more, creating replicas when the system utilisation [5] is
higher may pose threat of straggling the created replicas.

A progress score based threshold [5] computes the task
progress score as the ratio of proportions of tasks com-
pleted to the proportions remaining for execution, and
classifies a task as straggler when its progress score falls
behind a defined threshold than the average progress
score of the given job. Hadoop scheduler [17] uses this
progress score to classify tasks as stragglers when their
progress score falls behind 80% of the average progress
score of the job. Both the task progress rate and the pro-
cess bandwidth within an execution phase [18] have been
utilised to identify straggling tasks. The process speed of
tasks has been predicted during the runtime and the re-
maining task execution time has been computed [19] for
triggering a new set of speculative execution for maximis-
ing the cost performance. When the progress rate, deter-
mined based on a slow-node threshold, of a given task
falls behind 50% of the other co-located tasks then the
corresponding task is reported as stragglers. Whilst a
higher threshold delays straggler identification and may
not identify any stragglers at all, a lower threshold might
lead to false positives. LATE [19] speculates the tasks
those are estimated to finish farther into the future for
reducing the job response time. Since tasks within a single
job do not progress at a stable rate, process bandwidth
might not provide suffice inferences for accurate estima-
tion of stragglers. Furthermore, tasks within a single job
may not start at the same time in the case of jobs with
cascaded tasks, whereby a common progress rate cannot
be applied to all the tasks within a single job.

Straggler tasks are characterised as exhibiting a nor-
malised duration [20] as an increasing multiple of the
median of the normalised duration of the other co-located
tasks within the same job, with the normalised duration
computed as the ratio of task execution time to the
amount of work done, but assuming a static median may
not scale well in spite of the task heterogeneity. Mantri is
a straggler mitigation approach [6, 21] focused on con-
serving the computing resources of the server nodes. It
employs a strategy of backing up tasks for multiple exe-
cution at an early stage and kills the original task instance
when the cluster becomes busy and restarts the task in a
different node instance. Though Mantri addresses con-
serving energy by an early speculation of straggling tasks,
terminations are unavoidable at the process level. Fur-
thermore, the newly created instances of the terminated
tasks are not often guaranteed to complete within a de-
fined time-scale, causing long tails of the created replicas.

Addressing the issues of speculative execution, a co-
worker based scheme [22] has been proposed for mitigat-
ing stragglers to shorten the job completion time with less
resource consumption. This approach transfers a portion
of data from the straggling tasks to the co-worker, where-
by the workload is shared by the co-worker. Whilst ad-
dressing energy efficiency, data transfer and migration
costs are unavoidable in this scheme. Another way of
avoiding runtime stragglers is server blacklisting [2, 4,
23], by avoiding scheduling tasks onto the nodes those

spotted as stragglers in the past. Though this scheduling
strategy helps to avoid node-level stragglers, it is not al-
ways true that a straggler node in the past should remain
the same in the future, this increases the probability of
classifying a non-straggling server node as straggler.

Most of the existing works on straggler identification
are focused on identifying and mitigating the stragglers
only during the actual execution. It is commonly being
argued that straggling tasks can only be identified after a
few minutes of the task execution. Furthermore, the state-
of-the-art straggler identification techniques are focusing
more towards long tails, leaving the resource intensity of
the tasks unnoticed. Though identifying task-level strag-
glers before the actual execution might facilitate better
management of stragglers, forecasting the task-level
stragglers before the actual execution is still an aspiration
to date which laid the foundation for this research paper,
aimed at an energy management strategy driven by a
prior estimation of the task behaviours at the datacentres.

3 ANALYTICS FRAMEWORK

The proposed analytics framework is illustrated in Fig. 1,
which encompasses various components for functionali-
ties such as sample selection, imputation, execution trend
analysis, resource estimation, straggler classification and
resource level optimisation. The primary purposes of
these encompassed functionalities are detailed as follows.

Sample selection: The primary objective of the sample
selection component is to choose the most appropriate
samples from historical traces for analytics. Most suitable
historical samples are chosen and validated based on a
statistical similarity measure with the actual sample.

Imputation: It is common that the extracted historical
samples might be incomplete in such a way that the exe-
cution profile for certain tasks within a given job might
not be available. The imputation module is responsible to
obtain a complete execution profile for jobs by inferring
and imputing the missing values.

Execution trend analysis: An analysis in now conducted
on the complete execution profile of the validated histori-
cal samples to observe the actual historical execution be-
haviours of the jobs.

Resource estimation: Driven by the descriptive analytics
of the historical execution instances, the anticipated re-
source consumption levels of every individual task within
a given job are estimated for resource provision.

Straggler classification: Based on their resource inten-
siveness, every task within a given job are subjected to a
classification framework to forecast the anticipated execu-
tion behaviour of tasks within jobs. This classification is
intended to isolate energy-aware stragglers within jobs
from non-stragglers for further optimising their level of
resource provisioning.

Resource level optimisation: Based on the estimated re-
source levels and straggler classification, optimum level
of resource provision for every individual task within a
given job are determined by considering various runtime
and execution factors.

4 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING

RESOURCE ESTIMATION MODULE

4.1 Sample Selection

Firstly for a currently arrived job, similar execution pro-
files from historical instances are chosen for descriptive
analytics by exploiting the inherent periodicity such as
the time-of-the-day and day-of-the-week effects among
the user behaviours, detailed information about this sam-
ple selection can be found in our earlier work [24, 25]. It is
always recommended to choose the complete execution
profile which can only be obtained from finished jobs,
however, it is possible that jobs facing terminations may
or may not be resubmitted again. In this event, the histor-
ical sample selection might return more than one execu-
tion instances. Thus, it is essential to validate the most
suitable historical sample for a given job profile. A simi-
larity weight is computed for the chosen historical sam-
ples by measuring the quantitative association of the sta-
tistical properties between the current and historical sam-
ples in terms of the explicitly known number of tasks en-
compassed within the jobs, resource requests, job sched-
uling priorities and task priority levels and the termina-
tion pattern available from the historical execution traces.
A Profile Information (PI) table for similarity measure is
constructed based such statistical properties. The execu-

tion instances exhibiting a close quantitative association
with the currently arrived job profile are validated by the
PI table and are then utilised for further predictive analyt-
ics for respective jobs.

The construction of the PI table, for a job named Job 0,
arrived during 12 - 1 am on Day 10 Wednesday of Week
2, is illustrated in Table 1. The statistical composite for the
currently arrived job is extracted as 𝐽0 = {12.15 𝑎𝑚,
6323881198, 50, 0}, implying that Job 0 has been submit-
ted at 12.15 am and has been assigned with a job index of
6323881198, encompasses a total of 50 tasks and has a
scheduling priority of 0 (low latency sensitivity). The task
profile, named T0, for the job J0 has been extracted as a
statistical composite 𝑇0 = {𝑡𝑠𝑡, 6323881198, (0.03125,
0.007767), 4} implying that task 𝑇0 has arrived at a time
𝑡𝑠𝑡 , belongs to the Job 6323881198 and characterise a CPU
request of 0.03125 cores and a memory request of
0.007767 bytes, and includes a task priority level of 4.
Task profile is constructed for all the encompassed tasks
within a given job. The sample selection component has
returned three similar job profiles from the historical trac-
es for both the time-of-the-day and day-of-the-week sam-
ples. The PI table assigns a similarity weight for profile
composite, identically associated metrics are assigned a
weight of 1 and the metrics deviating from the current job

Fig. 1. Analytics Architecture

TABLE 1 PROFILE INFORMATION TABLE FOR JOB 0

AUTHOR ET AL.: TITLE 5

profile are assigned with corresponding deviation for
similarity measure, for instance if the quantitative associ-
ation of the historical job is less than one than the current
job, then the corresponding similarity weight will be -1.
This computation also includes the measure of task ter-
mination proportions in the historical execution instances
and assigns a weight of 1 for instances without any task
terminations and -1 for evicts, -2 for kill and fail events
accordingly in the historical execution traces. Kill [26, 27]
is a user triggered termination of the executing tasks,
usually it does not involve the intervention of the service
providers, whereas fail is a natural event due to several
runtime causes such as resource scarcity and resource
level breaches. Evict is a provider triggered event, where
the execution of the running instances are paused tempo-
rarily to accommodate jobs with more priority, and later
resumed when resources become available. A similarity
score is generated as the summation of all the individual
parametric score for all the identified execution instances.
Based on the association measure, all the six execution
instances in Table 1 can be validated as different execu-
tion instances of the same job profile, but the similarity
score helps to choose the execution instance with minimal
measurable deviation from the currently arrived job pro-
file. Based on the similarity score, instance 1 of the day-of-
the-week sample and instance 2 of the time-of-the-day
sample are validated as the representatives of the two
periodical effects respectively.

4.2 Imputation

Imputation is a process of replacing or substituting miss-
ing data in statistical analysis, which is required for exe-
cution samples due to the higher probability of execution
profiles suffering data ambiguity, missing data and pos-
sible anomalies. Missing values in incomplete profiles are
estimated using Maximum Likelihood Estimation (MLE),
as shown in equation 1. MLE assumes Xi to be normally
distributed around a constant mean and variance for a
random sample X1, X2,..., Xn. for estimating the value of
missing Xi. MLE substitutes or estimates the missing val-
ue with the predicted value that maximises the probabil-
ity of likelihood and minimises imputation error.

 𝐿(𝜃) = 𝑃(𝑋1 = 𝑥1, 𝑋2 = 𝑥2,… , 𝑋𝑛 = 𝑥𝑛) = 𝑓(𝑥1; 𝜃) ⋅
 𝑓(𝑥2; 𝜃)⋯ 𝑓(𝑥𝑛; 𝜃) = ∏𝑖 = 1𝑛𝑓(𝑥𝑖; 𝜃) (1)

The first equality is the definition of the joint probabil-
ity mass function and the second equality comes with the
consideration that the sample is a random function, im-
plying Xi is independent. The last equality uses the short-
hand mathematical notation of the indexed sample val-
ues. Expectation-Maximisation (EM) algorithm is used to
estimate the maximum likelihood. EM converges in n
number of iteration, and estimates the unknown value
through n number of equalities.

4.3 Resource Estimation

The estimation module exploits the validated historical
samples as the baseline for usage estimation in terms of
the total CPU consumption, anticipated duration and
CPU usage rate for every individual task within a given
job. The CPU usage rate of the tasks and their execution

duration of the historical samples are used as input train-
ing sets for estimating the anticipated equivalents during
the current execution. A dynamic weighing causal mov-
ing average (DWCMA) filter is proposed to estimate the
CPU usage trend and duration of tasks. Traditional causal
moving average filter assumes that a given output sample
depends only on the corresponding inputs occurred earli-
er and usually assigns more weights to the most recent
samples, as shown in equation 2.

𝑦(𝑛) = 𝑏(1) ∗ 𝑥(𝑛) + 𝑏(2) ∗ 𝑥(𝑛 − 1)+ . . . + 𝑏(𝑁𝑏 + 1) ∗
 𝑥(𝑛 − 𝑁𝑏) (2)

where y(n) is the output response depending on the pre-
vious occurrences based on x(n), x(n-1) etc., and b(1),
b(2)…b(n) are the exponentially assigned weight functions
to past occurrences. It is obvious that such a filter is linear
and shift-invariant such that y(n) is the output response
to x(n), and y(n–k) is the response of the system to x(n–k).

Definition. Linear shift-invariant. For input sets of varia-
bles X = {x1, x2, x3,…..xn} and Y = {y1, y3, y3,…..yn}, the response
variables within the output Z = {z1, z2, z3,….zn} are internally
independent such that the response zi depends only on its
corresponding past instances xi and yi.

Hypothesis: Though the task behaviours are dynamic
within a given job in such a way that a given job might
include energy-aware stragglers and tasks may not satisfy
the usage rate-duration trade-off whereby the usage rate
and duration are inversely proportional, it is initially as-
sumed that the tasks within a given job will behave nor-
mally as non-stragglers and will satisfy the usage rate
duration trade-off, in such a way that tasks characterising
a lower CPU usage rate runs longer and vice versa.

The proposed resource estimation module adopts the
above hypothesis for initially estimating the resource con-
sumption levels of tasks within jobs, however this hy-
pothesis may not necessarily be always true for job execu-
tions. Tasks failing to meet the hypothesis are moderated
accordingly described as follows. Now from the two sets
of historical inputs, the sample set exhibiting better asso-
ciation with the currently arrived job profile is naturally
assigned more weights by the DWCMA filter. But this
initially assigned weight is dynamically swapped for eve-
ry individual task execution profile depending on several
runtime factors. Unlike the traditional casual moving av-

Fig. 2. Dynamic Weight Assignment Protocol

6 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING

erage filter, the proposed DWCMA filter assigns more
weights to the most appropriate or (in-trend) sample for a
given task execution from the two sets of historical pro-
files. The term in-trend refers to the satisfactory level of a
task execution profile being a non-straggler and satisfying
the usage rate-duration trade-off. As discussed earlier,
usage rate and duration are inversely proportional to
each other for a healthily executed task. Based on the ac-
tual usage behaviours of tasks within a given job, an op-
timal value for usage rate-duration trade-off 𝑜𝑝𝑡(𝑢, 𝑑) for
tasks within a job J is defined as in equation 3. The health-
ily execution trend is unique for every job execution,
which is calculated from the execution profile of jobs.
 𝑜𝑝𝑡(𝑢, 𝑑) = 𝑚𝑒𝑎𝑛⏟

∀𝑡𝑖∈𝐽

 {𝑢𝑖 , 𝑑𝑖} (3)

It is not a practical reality for every individual task ex-
ecution within a given job to exhibit the expected level of
healthily execution trend. Hence measurable deviations
are always evident among the individual task execution
within a job, however the proportional relationship in this
trade-off is not obvious. In addition to the execution
trend, the task profiles extracted from the actual execu-
tion are treated with more weights than those imputed.
The protocol for assigning weights to the two samples by
DWCMA is presented in Fig. 2. The weight assignment is
executed in three cascaded phases, Phase I verifies the
Similarity Scores assigned by the PI table, Phase II verifies
the correctness of the samples depending on the availabil-
ity of the actual execution profile and Phase III verifies
the usage rate-duration trade-off for every task execution.
The two samples sets are assigned with weights depend-
ing on the execution profile satisfying the three phases,
task profiles within the respective two samples satisfying
Phase I and Phase III are assigned with increasing
weights and the weights are decreased with a degrada-
tion function when Phase II is violated. This is because
the EM algorithm often imputes the missing values with
an overestimated value. The weights are assigned to the
sample sets based on equation 4, where n is the total
number of sample sets.

 𝜔 = {

1

𝑛
, 𝑝ℎ𝑎𝑠𝑒 𝐼𝐼 𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑑

2

𝑛+1
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4)

The CPU usage rate and duration and the total CPU
consumption for every individual task within a given job
are estimated by the dynamic weighing CMA filter as a
tuple shown in equation 5. Whilst the total CPU con-
sumption provides inferences for optimum level of re-
source provision, the estimated usage rate and duration
are expected to provide inferences for straggler classifica-
tion, dealt in the following section.

 𝑃𝑜𝑢𝑡[𝑖] = {𝑢𝑖 , 𝑑𝑖 , 𝑐𝑖} (5)

where, 𝑃𝑜𝑢𝑡[𝑖] is the estimated tuple for task i, encompass-
ing its estimated values of CPU usage rate 𝑢𝑖 , duration
𝑑𝑖 and total core consumption 𝑐𝑖 . The total CPU consump-
tion reflects the total amount of cores consumed during
the entire period of the task execution, whereas the CPU
usage rate reflects the mean of the CPU usage rate wit-
nessed at any time throughout the period of the task exe-
cution.

5 STRAGGLER CLASSIFICATION MODULE

After the resource estimation of tasks encompassed with-
in a given job, it is vital to classify the tasks within a sin-
gle job based on their resource intensiveness.

Definition: Energy aware stragglers. For a job set J = {t1, t2,

t3,……. tn}, where n is the total number of tasks within job
J, with an average job CPU rate of μ and an average task
length of ω, then tasks characterising both a CPU usage
rate higher than μ and running longer than ω are termed
as energy-aware stragglers within job J.

From the analysis of the selected historical job profiles,
two initial lists of energy-aware stragglers are initially
generated as 𝑆𝑡1 and 𝑆𝑡2, respectively in the day-of-the-
week and time-of-the-day samples. Tasks commonly wit-
nessed as energy-aware stragglers in the two generated
lists can anticipated to be a definite straggler during the
actual job execution, as shown in equation 6, 𝑆𝑡ℎ is the
initial list of energy-aware stragglers anticipated during
the actual job execution. It is also a possibility that 𝑆𝑡ℎ can
be an empty set at this point if none of the straggling
tasks overlap in the generated lists of historical stragglers.

 𝑆𝑡ℎ[𝑖] = 𝑆𝑡1[𝑖] ∩ 𝑆𝑡2[𝑖] (6)

5.1 Straggler Prediction

This section presents the proposed analytics methodology
for straggler classification before the initialisation of the
job execution. Based on the initial lists of stragglers in the
two historical samples, an nth percentile distribution of
energy-aware straggles within the two historical samples
is extracted. Now, tasks not impacted by the abrupt be-
haviours of CPU usage rate and duration are isolated and
categorised as non-stragglers based on the observations
falling beyond the (100-n)th distribution, using equation 7.

 𝑁𝑠𝑡 = 𝑊(1,2)[𝑖] {
𝑖𝑙 < 𝑃(100−𝑛)
𝑖𝑢 < 𝑃(100−𝑛)

 (7)

where, 𝑁𝑠𝑡 is the sample containing non-stragglers, 𝑊[𝑖]
is the chosen historical sample, 𝑖𝑙 is the task duration, 𝑖𝑢 is
the mean CPU usage rate of ith task respectively, 𝑃(100−𝑛)
is the (100-n)th percentile value and n is the proportions of
stragglers identified in the historical sample. After filter-
ing out the energy-aware stragglers, threshold score for
the CPU usage rate and duration for non-stragglers is
obtained for the two samples using equation 8.

 𝑁𝑠(𝛼(1, 2), 𝛽(1, 2))
= (∑

𝑁𝑠𝑡[𝑢𝑖]

𝑛

𝑛
𝑖=1 , ∑

𝑁𝑠𝑡[𝑙𝑖]

𝑛

𝑛
𝑖=1) (8)

where, n is the total number of non-stragglers, 𝛼 and 𝛽
are the average values of the CPU usage rate and task
duration of the non-stragglers within the two samples.
The non-straggler threshold values are computed sepa-
rately for the two samples as 𝑁𝑠1(𝛼, 𝛽) and 𝑁𝑠2(𝛼, 𝛽). These
two values form the upper and lower confidence limits
for the average duration and CPU usage rate for the non-
straggling tasks during the current execution. Now, this
confidence limits are applied to the predicted output ob-
tained in equation 5 to generate the list of non-stragglers
bounded with a two-sided confidence limit for the target
job respectively, as shown in equation 9 and 10.

 𝑃𝑢𝑐𝑜𝑛[𝑖] = 𝛼1 < 𝑃𝑜𝑢𝑡[𝑖] < 𝛼2, 𝑓𝑜𝑟 𝐶𝑃𝑈 𝑢𝑠𝑎𝑔𝑒 𝑟𝑎𝑡𝑒 (9)

 𝑃𝑙𝑐𝑜𝑛[𝑖] = 𝛽2 < 𝑃𝑜𝑢𝑡[𝑖] < 𝛽1, 𝑓𝑜𝑟 𝑡𝑎𝑠𝑘 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (10)

AUTHOR ET AL.: TITLE 7

where, 𝑃𝑢𝑐𝑜𝑛[𝑖] and 𝑃𝑙𝑐𝑜𝑛 [𝑖] are the list of tasks satisfying
the confidence bounds of CPU usage rate and duration
thresholds for non-stragglers respectively in the predicted
usage profile. Tasks anticipated to execute within the lim-
its of 𝑃𝑐𝑜𝑛 should satisfy the non-straggler criterion. How-
ever, the trade-off between task duration and the CPU
usage rate is crucial in deciding the energy-aware strag-
gling behaviours of tasks. Furthermore, tasks anticipated
to exhibit a duration less than the value projected by the
confidence bounds are considered as not satisfying the
non-straggler criterion, with the presumption that lower
duration might characterise a higher usage rate, thereby
not satisfying the usage rate-duration trade-off. Antici-
pated task execution behaviours not falling within the
healthily execution criterion is vulnerable to become po-
tential stragglers during execution. An optimised CPU
usage rate and duration for the non-stragglers during the
actual execution is given by equation 11.

 𝑆𝑡ℎ(𝛼, 𝛽) = (
∑ 𝑃𝑢𝑐𝑜𝑛[𝑖]
𝑛
𝑖=1

𝑛𝑢
,
∑ 𝑃𝑙𝑐𝑜𝑛[𝑖]
𝑛
𝑖=1

𝑛𝑙
) (11)

where 𝑛𝑢 and 𝑛𝑙 are the total number of tasks in 𝑃𝑢𝑐𝑜𝑛 and
𝑃𝑙𝑐𝑜𝑛 respectively. The predicted output obtained from
equation 5 is now subjected to this trade-off criterion and
the tasks not meeting 𝑆𝑡ℎ(𝛼, 𝛽) are further isolated and
labelled as anticipated energy-aware stragglers during
execution. 𝑆𝑡ℎ(𝛼, 𝛽) is expected to present the CPU usage
rate and duration threshold values for both the usage and
duration confidence limit samples. Ideally, 𝛼1 and 𝛼2 are
the upper and lower thresholds for the CPU usage rate
for non-stragglers in the predicted output, where 𝛼1 is
obtained from the 𝑃𝑢𝑐𝑜𝑛 and 𝛼2 is obtained from 𝑃𝑙𝑐𝑜𝑛 re-
spectively, and 𝛽1 and 𝛽2 are the duration counterparts,
where 𝛽1 is obtained from 𝑃𝑙𝑐𝑜𝑛 and 𝛽2 is obtained from
𝑃𝑢𝑐𝑜𝑛 respectively, based on equation 11. The thresholds
for non-stragglers anticipated in the predicted output is
computed based on equation 12 and equation 13, which
weighs 𝛼1 and 𝛽1 more than their counterparts 𝛼2 and 𝛽2.

 𝑆𝑡ℎ𝛼 = (𝜔 ∗ 𝛼1) + (1 − 𝜔)𝛼2 (12)

 𝑆𝑡ℎ𝛽 = (𝜔 ∗ 𝛽1) + (1 − 𝜔)𝛽2 (13)

Now, an initial classification of the energy-aware
stragglers anticipated during the execution of the target
job is achieved based on equation 14.

 𝑆𝑡−𝑜𝑓𝑓 = {𝑃𝑜𝑢𝑡[𝑖]{(𝑖𝑢 > 𝛼) ∩ (𝑖𝑙 > 𝛽)} ⋃ (𝑆𝑡ℎ[𝑖]) (14)

where 𝑖𝑢 is the CPU usage rate and 𝑖𝑙 is the task duration
of ith task contained in 𝑃𝑜𝑢𝑡, 𝛼 is the optimised CPU usage
rate and 𝛽 is the optimised task duration respectively giv-
en by equation 12 and equation 13, and 𝑆𝑡ℎ is the initial
list of stragglers given by equation 6.
𝑆𝑡−𝑜𝑓𝑓 is the probability of stragglers identified from

the descriptive analytics of the historical events and pre-
dicted resource usage profiles. However, the actual task
behaviour depends on several run-time factors such as
the node efficiency, resource consumption fluctuation,
running duration, task intensity etc., and are impacted by
the sole effects of CPU usage rate and task duration re-
spectively. Thus, it is important to further optimise this
classified straggler list 𝑆𝑡−𝑜𝑓𝑓 through a categorical analy-
sis of straggler probability by incorporating the behav-
ioural heterogeneity for every individual task. Hence, this

initial classification of tasks is used as a hypothesis for
task behaviours during actual execution, which is further
subjected to a Naïve Bayes classifier for enhancing the
preciseness of the dependability of 𝑆𝑡−𝑜𝑓𝑓. A bayes rule
scales well for a categorical classification when the di-
mensionality of the inputs is high. Now, Pout delivered by
equation 5 with an initial task classification based on
𝑆𝑡−𝑜𝑓𝑓 is trained as input data for Naïve Bayes classifier to
obtain the final list of energy-aware stragglers anticipated
in Pout

 during the actual job execution.
Definition. Conditional independence. For a set of predic-

tor 𝑋 = {𝑥1, 𝑥2, 𝑥3, … . 𝑥𝑘}, Naive Bayes classifier assumes
that the effect of the value of a predictor xi on a given
class c is independent of the values of other predictors.

Conditional independence is the property of the in-
volved predictors having their independent influence
upon the prediction output irrespective of the presence
and influence of the other predictors. Based on this condi-
tional independence, the influence of CPU usage rate,
task duration and total core consumption from the two
historical samples and the predicted output are evaluated
individually on the task classification given by 𝑆𝑡−𝑜𝑓𝑓,
using equation 15. This is due to the fact that the total
CPU consumption for a given task can be determined by
the product of the task’s runtime duration and the mean
CPU usage. Furthermore, the CPU usage rate of a given
task determines its resource intensity.

 𝑃(𝑐/𝑥) =
𝑃(𝑥/𝑐)𝑃(𝑐)

𝑃(𝑥)
 (15)

The overall influence of all the predictors on the re-
source intensity of a given task for straggler classification
is given by equation 16.

 𝑃(𝐶/𝑋) = 𝑃(𝑥1/𝑐)* 𝑃 (
𝑥2

𝑐
) ∗ 𝑃 (

𝑥3

𝑐
) ∗ …… .∗ 𝑃 (

𝑥𝑛

𝑐
) =

 ∏ 𝑃(𝑥𝑘/𝑐)
𝑛
𝑘=1 (16)

where, P(c/x) is the posterior probability of class c for a
given predictor x, P(c) is the prior probability of class c
(straggler or a non-straggler), P(x/c) is the likelihood for
the probability of class c for a given predictor x, and
P(x) is the prior probability of predictor x. After evaluat-
ing the posterior probability, Naïve Bayes classifier cate-
gorises a given observation as belonging to the class of
stragglers Ci or non-stragglers Cj using equation 17.

 𝐶(𝑜𝑏𝑠) = {
𝐶𝑖 , 𝑓𝑜𝑟 𝑃(𝐶𝑖/𝑋) > 𝑃(𝐶𝑗/𝑋)

𝐶𝑗 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (17)

Since the predictors including CPU usage rate, dura-
tion and total CPU consumption are numerical values, all
such values should be discretised into respective catego-
ries before Naïve classifier estimates the posterior proba-
bility. For discretisation, the classifier assumes a normal
distribution for observations within a given job based on
the measure of mean and standard deviation functions.

5.2 Runtime Mitigation

Stragglers in the past do not necessarily behave as a fu-
ture straggler due to the runtime heterogeneity, simply
classifying the energy-aware stragglers based on their
historical behaviour may not be sufficient for Cloud exe-
cutions. A task execution profile is consistent only when it
exhibits statistical correlations among different execution

8 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING

instances. 𝑆𝑡ℎ(𝛼, 𝛽) obtained in the offline analytics can be
referred as the threshold point to label a running tasks as
potential straggler when the task execution breaches the
threshold defined by 𝑆𝑡ℎ(𝛼, 𝛽). Due to the uncertainty in
the task execution behaviour and the usage rate-duration
trade-off can only be achieved after the execution, the
proposed scheme alerts a task as possible energy-aware
straggler when the CPU usage rate breaches its corre-
sponding threshold. Long tail stragglers can be identified
based on the duration threshold, though evaluating the
duration threshold for long-tail straggler identification is
not within the scope of this paper. The threshold for CPU
usage rate and duration is calculated by subjecting the
corresponding threshold values of the non-stragglers ob-
tained in the chosen historical sample analytics, the of-
fline straggler threshold and the threshold of non-
stragglers in the prediction output to a two-tier nested
exponential smoothing filter, as shown in equation 18 and
equation 19, in such a way that the factual values enjoy a
better weighing than the anticipated values.

𝑆𝑟𝑢 = {𝜔(𝜔 𝛼1 + (1 – 𝜔) 𝛼2) + (1 – 𝜔) (𝜔 𝛼𝑜𝑓𝑓 +

 (1 – 𝜔) 𝛼𝑝𝑟𝑒𝑑)} (18)

𝑆𝑟𝑙 = {𝜔(𝜔 𝛽1 + (1 – 𝜔) 𝛽2) + (1 – 𝜔) (𝜔 𝛽𝑜𝑓𝑓 +

 (1 – 𝜔) 𝛽𝑝𝑟𝑒𝑑)} (19)

where, 𝜔 = 2 /(n+1), 𝛼1 and 𝛼1 are the mean CPU usage
rate of the non-stragglers identified in the historical sam-
ple analytics, 𝛼𝑜𝑓𝑓 is the mean CPU usage threshold used
in the offline straggler identification based on 𝑆𝑡ℎ(𝛼, 𝛽)
and 𝛼𝑝𝑟𝑒𝑑 is the mean CPU usage threshold of the non-
stragglers in the predicted output (based on 𝑃𝑐𝑜𝑛), and 𝛽 is
the duration equivalent respectively.

Since Cloud workloads are dynamic in nature, the het-
erogeneity among the Cloud workloads can be witnessed
from two different perspectives: firstly, tasks within a job
characterising increased CPU usage rate fluctuation with
fairly even distribution of task length, and secondly tasks
within a job charactering increased CPU usage rate with
uneven distribution of task length. Whilst the former does
not have an impact on the overall completion time of the
job, the latter can significantly impact the overall job
completion time. In other words, the former is a job con-
taining only energy-aware stragglers and the latter con-
sists of both energy-aware stragglers and long tails. In
general, long tails depend on the runtime factors such as
co-located tasks, node efficiency, node-level stragglers
etc., thus it is optimum to mitigate the long tail stragglers
during runtime rather than attempting to predict them
before execution. The characteristics of long tails are pos-
tulated to exhibit an execution duration of 50% greater
than the duration threshold 𝑆𝑟𝑙, as shown in equation 20.
 𝑆𝑙𝑡 = 𝑡𝑙 [𝑖] > 1.5 ∗ 𝑆𝑟𝑙 (20)

Thus, during the actual job execution, the runtime
stragglers are identified using equation 21.

𝑆𝑡 = {
𝑡𝑢[𝑖] > 𝑆𝑟𝑢 , 𝑓𝑜𝑟 𝑒𝑛𝑒𝑟𝑔𝑦 − 𝑎𝑤𝑎𝑟𝑒 𝑠𝑡𝑟𝑎𝑔𝑔𝑙𝑒𝑟𝑠

𝑡𝑙[𝑖] > 𝑆𝑙𝑡 , 𝑓𝑜𝑟 𝑙𝑜𝑛𝑔 𝑡𝑎𝑖𝑙 𝑠𝑡𝑟𝑎𝑔𝑔𝑙𝑒𝑟𝑠
 (21)

where 𝑡𝑢[𝑖] and 𝑡𝑙[𝑖] are the current CPU usage rate and
task duration of the 𝑖𝑡ℎ task within a given job during
execution. The initial task classification facilitates decid-

ing their resource provisioning levels before the actual
execution. But the energy-aware stragglers identified dur-
ing execution needs dynamic scaling of resources which
can be achieved through dynamic vertical scaling, how-
ever this is considered to be out of scope of this paper.

6 RESOURCE PROVISION MODULE

The resource provisioning optimisation problem can be
witnessed from two perspectives: firstly, commitment of
resources levels should not be vulnerable to cause re-
source idleness, and secondly the task execution should
not breach the provisioned level of resources. From the
resource prediction perspectives, the former usually re-
sults from the over-estimated resource levels and the lat-
ter results from under-estimation. This section is focused
on optimising the under-estimated resource levels deliv-
ered by the proposed resource estimation module in con-
sideration of the straggler classification. A resource usage
and straggler-aware over commitment policy of resource
levels has been proposed to meet the objectives of termi-
nation less execution with minimal resource idleness.

6.1 Task Categories

Based on the early discussed behaviours and characteris-
tics of tasks within jobs, tasks are classified as non-
stragglers and energy-aware stragglers for resource pro-
vision. A static resource provisioning policy for these two
categories may not scale well for energy efficiency, since
the resource consumption level of non-stragglers and
stragglers are significantly different.

Case (1): Non-stragglers

Non-stragglers are expected to execute without any nota-
ble abnormal resource consumption level, thus it is rec-
ommended to initially rely on the resource usage estima-
tion whilst provisioning resource levels to non-stragglers.
Thus, the anticipated usage of non-stragglers is expected
as per the usage prediction output, as in shown equation
22, where 𝑅𝑃𝑟𝑒𝑑[𝑖] is the initially predicted resource usage
level for task i within a given job given by equation 5.
 𝑅𝑛𝑠(𝑐)[𝑖] = 𝑅𝑃𝑟𝑒𝑑[𝑖] (22)

Case (2): Energy-aware Stragglers

The resource consumption level for energy-aware strag-
gles are usually expected to exceed the level of non-
stragglers by a significant margin. Further to the usage
prediction of stragglers, it is also recommended to rely on
the historical execution instances to determine the re-
source provisioning level of the classified energy-aware
stragglers. Thus, the resource consumption level of strag-
glers 𝑅𝑠𝑡(𝑐) is anticipated in accordance with the identi-
fied maximum CPU consumption levels among the two
historical samples and the resource prediction as shown
in equation 23, where 𝑅𝑠1[𝑖] and 𝑅𝑠2[𝑖] are the correspond-
ing CPU consumption level of a given straggling task i in
the two historical execution profiles respectively.

 𝑅𝑠𝑡(𝑐)[𝑖] = max(𝑅𝑠1[𝑖], 𝑅𝑠2[𝑖], 𝑅𝑃𝑟𝑒𝑑[𝑖]) (23)

6.2 Over Commitment factor

The extravagant heterogeneity of tasks within a job and

AUTHOR ET AL.: TITLE 9

the dynamic datacentre runtime environment is naturally
insisting the need for overcommitting the resource levels
for achieving termination-less execution. To this end, a
dynamic over-allocation policy has been further proposed
for every individual task within a given job to optimise
the resource provisioning levels. An over commitment of
factor γ is adopted for all the task categories, whereby it is
proposed to overcommit the resources by a margin of γ to
the level insisted by equation 22 and equation 23 accord-
ingly. This over commitment factor is dynamically evalu-
ated for every individual task depending on three im-
portant factors: task consistency based on the process effi-
ciency of tasks in the historical execution profiles, process
capacities of tasks determined for the actual execution
based on the resource prediction output, and task classifi-
cation delivered by the straggler classification module.
Three classes of reliability have been adopted for every
individual factor determining the over commitment factor
as high, medium and low, with high insisting a highly
reliable measure through to low being less reliable for a
task to behave normally during execution. Over alloca-
tion proportions for the three defined levels of reliability
classes are adopted as 1.3, 1.4 and 1.5 respectively for
high, medium and low classes of task reliability. Based on
these over-commitment factors and the respective reliabil-
ity class of tasks, every individual task will be dynamical-
ly evaluated to moderate the over commitment factor.

6.2.1 Process Efficiency

The reliability of resource consumption consistency of
tasks is estimated based on the process efficiency of the
task execution during its historical instances. Despite the
allocated level of resources, it is usual for the process effi-
ciency of certain tasks to fall behind than a majority of
tasks within the same job, impacted by the task nature.

Definition: Process Efficiency. Given a Job set J with n
number of tasks J={T1, T2, T3,......, Tn}, executed for a duration
D={t1, t2, t3,…,tn} consumed a resource level of R={r1, r2,
r3,….rn}, where the Task Ti is executed for a duration of ti,

and consumed ri amounts of resources, the task process
efficiency 𝑃𝑒𝑖 of task Ti is defined as the ratio of the exe-
cuted duration to the amount of resources consumed,
where the job duration and resource consumption of the
job are given by max(ti) and ∑ 𝑟𝑖

𝑛
𝑖=𝑜 respectively. The task

process efficiency and the job process efficiency can be
computed as shown in equation 24 and equation 25.
 𝑃𝑒𝑖 =

𝑡𝑖

𝑟𝑖
 (24)

 𝑃𝑒𝑗 =
∑ 𝑃𝑒𝑖
𝑛
𝑖=0

𝑛
 (25)

In general, the task process efficiency is usually the
measure of an individual task, and an average of all the
task efficiency encompassed within a job reflects the effi-
ciency of the entire job. If certain tasks are allocated with
less process efficiency within a single job, such tasks are
vulnerable to behave either as long tails or energy-aware
stragglers resulting from the node-level process efficien-
cy. It is postulated that the task efficiency of a given task
is extremely low if its process efficiency falls below 50%
of the job process efficiency as shown in equation 26.

 𝑇𝑙𝑒[𝑖] = {
𝐽[𝑡𝑖] 𝑖𝑓 𝑃𝑒𝑖[𝑖] < 0.5 ∗ 𝑃𝑒𝑗 𝑖𝑠 𝑡𝑟𝑢𝑒

𝑛𝑖𝑙 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (26)

Now, based on the task process efficiency of the two
historical samples, the consistency of a given task is
measured among the two historical usage profiles to
evaluate its class of reliability. A task is considered to be
highly reliable when the process efficiency of the corre-
sponding task stays internally consistent among the two
historical usage profiles. If the task process efficiency is
not consistent in both the two historical samples, it is less
reliable and if the task process efficiency is consistent only
in one of the two historical samples it characterises a reli-
ability class of medium.

6.2.2 Process Capacity

It is worthy of note that the task efficiency is not only af-
fected by the node-level stragglers, tasks those are more
resource intensive within a single job naturally demands
more resources than the other co-located tasks.

Definition: Process capacity. Given a Job set J with n
number of tasks J={T1, T2, T3,......, Tn}, predicted to run for a
duration D={t1, t2, t3,…,tn} anticipated to consume a resource
level of R={r1, r2, r3,….r4}, where the Task Ti is expected to
run for a duration of tpi, and to consume rpi amounts of
resources, the task process capacity 𝑃𝑐𝑖 of task Ti is de-
fined as the ratio of the anticipated duration to the pre-
dicted level of resource usage, where the anticipated job
duration and resource consumption of the job are given
by max(ti) and ∑ 𝑟𝑖

𝑛
𝑖=𝑜 respectively. The task process capac-

ity and the job process capacity can be computed as
shown in equation 27 and equation 28.

 𝑃𝑐𝑖 =
𝑡𝑝𝑖

𝑟𝑝𝑖
 (27)

 𝑃𝑐𝑗 =
∑ 𝑃𝑐𝑖
𝑛
𝑖=0

𝑛
 (28)

Process capacity will determine the effectiveness of the
provisioned level of resources in processing the job with-
in the determined time-scale. Higher the value of Pci,

greater is the process efficiency and shorter is the execu-
tion duration. Lower the value of Pci, higher is the possi-
bility of the corresponding task to behave as a straggler.
Similar to the task process efficiency, tasks with low pro-
cess capacity 𝑇𝑙𝑐[𝑖] are identified using equation 29.

 𝑇𝑙𝑐[𝑖] = {
𝐽[𝑡𝑖] 𝑖𝑓 𝑃𝑐𝑖[𝑖] < 0.5 ∗ 𝑃𝑐𝑗 𝑖𝑠 𝑡𝑟𝑢𝑒

𝑛𝑖𝑙 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (29)

Tasks with lower process capacity identified by equa-
tion 29 are considered as less reliable whilst optimising
their initially estimated resource provisioning level.

6.2.3 Task Category

Furthermore, the over-commitment factor will give spe-
cial emphasis to the straggler classification with the objec-
tive of overcommitting the resource levels of energy-
aware stragglers. For a given task, if it behaved as non-
straggler in the two historical usage profiles and further
classified to be a non-straggler based on the resource pre-
diction, it is highly reliable to stay as a non-straggler dur-
ing execution. For a given task, if it is classified as energy-
aware straggler in the offline analytics, then it is less reli-
able to behave as a non-straggler during execution. For a
given task, if it has behaved as energy-aware straggler

10 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING

TABLE 2 JOB PROFILE REPRESENTATION

Job No. of

Tasks

Periodicity Straggler

Propor-

tions (%)
Job Nature Day-of-the-

week

Time-of-

the-day

Job 0 50 Yes Yes 8 Uneven distribution of task length and resource intensity.

Job 1 100 Yes Yes 26 Even distribution of task length, with only a very few tasks characterise a

lower duration but the resource intensity is extremely heterogeneous.

Job 2 200 Yes Yes 35 Evenly distributed task length and resource intensity, only a few tasks

exhibit lower resource intensity.

Job 3 182 Yes No 13 Limited periodicity due to the lack of the time-of-the-day sample.

Job 4 488 Yes Yes 40 Extremely heterogeneous distribution of task length and resource inten-

sity.

Job 5 1050 Yes Yes 2 Fairly homogeneous distribution of both task length and resource inten-

sity.

during both its historical execution instances and not
classified as energy-aware straggler, then it is less reliable
to behave as a non-straggler during execution. For a given
task, if it has behaved as energy-aware straggler in either
one of the two historical samples and not classified as
energy-aware straggler, then it characterises a medium
reliability to behave as non-straggler during execution.

6.3 Over-commitment Percentage

The above discussed factors determining the over com-
mitment level of resources for task execution are expected
to influence each other. For instance, an energy-aware

straggler task with process efficiency consistency will
enjoy a higher reliability weightage at step 6.2.1 and a
lower reliability weightage at step 6.2.3, such that the lev-
el of over commitment postulated in the two respective
levels are expected to cancel out the effects of each other
so as to deliver a final optimised level of over-
commitment. Thus, the optimised over-commitment per-
centage of resources 𝑂𝐶𝐹 for a given task is achieved as
an average of the over commitment level determined by
the above three factors as shown in equation 30, where
𝑜𝑐𝑓𝑎, 𝑜𝑐𝑓𝑏, 𝑜𝑐𝑓𝑐 are the over commitment level of re-
sources computed based on the three influencing factors
respectively. The over-commitment protocol is illustrated
in Fig. 3.
 𝑂𝐶𝐹 =

1

3
 (𝑜𝑐𝑓𝑎 + 𝑜𝑐𝑓𝑏 + 𝑜𝑐𝑓𝑐) (30)

The final level of recommended resource provision for
a task i is given by equation 31. The OCF is calculated for
all the task groups since the optimisation framework
uniquely treats every individual tasks and further adopts
an over commitment policy for all tasks in an attempt to
avoid under provisioning of resources.

 𝑅𝑝[𝑖] = {
𝑅𝑛𝑠(𝑐)[𝑖] ∗ 𝑂𝐶𝐹, 𝑓𝑜𝑟 𝑛𝑜𝑛 𝑠𝑡𝑟𝑎𝑔𝑔𝑙𝑒𝑟𝑠

𝑅𝑠𝑡(𝑐)[𝑖] ∗ 𝑂𝐶𝐹, 𝑓𝑜𝑟 𝑠𝑡𝑟𝑎𝑔𝑔𝑙𝑒𝑟𝑠
 (31)

7 PERFORMANCE EVALUATIONS

The efficiency of the proposed analytics framework has
been evaluated both theoretically and experimentally by
training real-world Google Cloud trace logs [28]. In order
to display the impacts of job heterogeneity upon the effi-
ciency of the proposed framework , six different jobs have
been chosen as representatives of different job types
based on the heterogeneous combinations of encom-
passed tasks within jobs, straggler composition, task du-
ration etc, as summarised in Table 2.

7.1 Resource Estimation Performance

The efficiency of the proposed dynamic weighing CMA
algorithm in estimating the resource requirements of the
jobs has been evaluated against the existing state-of-the-
art techniques [29-34] including Simple Moving Average
filter, Exponential Moving Average, Low Pass filter, Auto
Regressing Moving Average and Linear Regression.

Fig. 3. Over-Commitment Protocol

AUTHOR ET AL.: TITLE 11

Fig. 5. Over and Under Prediction Ratio

Fig. 4 presents the estimated CPU requirements
against the actually consumed for Job 0, Job 1, Job 2, Job 4
and Job 5 respectively. Since Job 3 does not satisfy the
historical window requirements of the proposed method-
ology, evaluation of resource estimation for Job 3 is not
included. The unusual spikes in the actual trend illus-
trates the increased CPU consumption of the energy-
aware stragglers. This exhibits the increased analytics
complexity in capturing and predicting the resource re-
quirements of energy-aware stragglers. 3 out of 4 energy-
aware stragglers have not been captured by any of the
evaluated techniques in the case of Job 0. In the case of
Job 1, ARMA presents a linear prediction for all the en-
compassed tasks, and it is over-predicting the resource
requirements of non-stragglers by a considerable margin.
This is due to the inefficiency of ARMA model in captur-
ing minute deviations among the observation. In the case
of Job 2, all the techniques are vulnerable to under-
estimate the resource requirements of energy-aware
stragglers and ARMA model delivers a flat prediction.
Similar behaviours of energy-aware straggler prediction
can be observed for Job 4, where a few of the non-
stragglers are over estimated by a significant margin by
all the techniques. Interestingly, all the prediction tech-
niques are closely estimating the resource requirements of
the tasks encompassed within Job 5. This is because the
proportional presence of energy-aware stragglers is in-
significant in Job 5, accounting for only around 2%.

Fig. 5 presents the over and under-prediction ratio of
all the evaluated techniques, presented as an average of
all the studied jobs. Considering all the task classification,
the proposed DWCMA over-estimates 44.65% of tasks
and under-estimates 55.34% of tasks accordingly. The
over estimation of the evaluated techniques is observed at

an average of 45.34%, 46.16%, 54.04%, 54.14%, 47.32%,
and the under estimation is observed at an average of
54.65%, 53.83%, 45.93%, 45.58% and 53.67% respectively
for SMA, EMA, LPF, ARMA and LR. The estimation effi-
ciency of all such techniques are further evaluated by iso-
lating the energy-aware stragglers and long tails, so as to
evaluate the resource estimation efficiency for non-
stragglers. Now, the proposed DWCMA over estimates
59.06% and under-estimates 40.93% of the non-straggler
tasks. Further, the over estimation of the compared tech-
niques is observed at 59.51%, 60.75%, 71.40%, 72.72% and
59.71%, and the under estimation is observed at 40.48%,
39.24%, 28.59%, 27.27% and 40.28% respectively for SMA,
EMA, LPF, ARMA and LR. It is clearly evident that the
under prediction for non-stragglers is much lesser than
those of the total tasks (including energy-aware strag-
glers, non-stragglers and long tails), illustrating the im-
pacts of energy-aware stragglers in prediction analytics.

The estimation trade-off of the proposed DWCMA,
SMA, EMA and LR fairly remains the same for both the
task classifications. But the over estimation ratio of LR

Fig. 4. Resource Estimation Observation (a) Job 0 (b) Job 1 (c) Job 2 (d) Job 4 (e) Job 5

12 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING

Fig. 6. Average Accumulative Error for Resource Prediction

TABLE 3 REPLICATED CLOUD EXECUTION STATISTICS

FOR EXPERIMENTS

Job

Name

Task

Index

Cloud

Execution

(seconds)

Experiment

Duration

(seconds)

Imposed

Delay

(seconds)

Resource

Intensity

(%)

Job 0 0 156 148.2 5.93 28

Job 1 12 178 177.9 4.1354 43

Job 1 91 161 161.07 2.68 22

Job 2 31 46 45.84 0.88 52

Job 2 191 50 49.80 1.13 44

Job 3 44 40 39.71 0.23 171

Job 4 138 229 228.17 3.93 58

Job 4 420 222 221.47 5.98 37

Job 5 233 1698 1689.97 67.55 25

Job 5 1008 1734 1729.26 86.4 20

and ARMA are higher than the remaining techniques by a
considerable margin. Whilst is optimum for a prediction
technique to over-estimate the resource requirements, this
over estimation should always be marginally higher than
the actual requirements. Over-estimating the resource
level by a significant margin leads to resource wastages,
which is actually the case of ARMA. In general, ARMA
model fits well for time series trend prediction and usual-
ly presents the upper and lower confidence limits for
prediction, but does not scale well in the context of re-
source requirement estimation. LPF presents a better over
estimation ratio, however LPF depends on the average of
prediction outcome of the previous iteration and adds a
degradation function for the current sample. This increas-
es the computational complexity by incurring multiple
iterations of prediction analytics and the degradation
function is vulnerable to over-commit the resource levels.

Furthermore, the resource estimation accuracy of the
stated techniques is evaluated in terms of the Average
Accumulative Error (AAE) for under-estimated and over-
estimated tasks within a single job respectively, presented
in Fig. 6 as an average of all the studied jobs. It can com-
monly be observed that all the evaluated techniques are
exhibiting a better AAE Percentage for the under-
estimated tasks than those of the over-estimated tasks,
though the over-estimation ratio is better for non-
stragglers. In other words, a majority of the non-

straggling task proportions are over-estimated with high
error percentage and a minority of the non-straggling task
proportions are under-estimated with minimum error
percentage. Due to space constraints, the discussion of
individual jobs is not presented in this section. The AAE
for under-estimated tasks are observed at 28.59%, 30.9%,
30.04%, 32.01%, 19.63% and 36.72% for DWCMA, SMA,
EMA, LPF, ARMA and LR respectively for all the job cat-
egories. Similarly, the AAE for the over-estimated tasks
are observed at 45.24%, 49.69%, 49.14%, 45.19, 67.98% and
56.24% respectively for DWCMA, SMA, EMA, LPF, AR-
MA and LR for all job categories.

Overall, it can be concluded that the proposed
DWCMA protocol achieves a better prediction accuracy
trade-off between the under and over-estimated non-
straggling tasks within the given jobs than the compared
techniques with better AAE. Though marginal, the under-
estimated tasks are vulnerable for terminations due to
under-commitment of resources, thus needs further op-
timisation.

7.2 Straggler Classification Performance

7.2.1 Experiment Setup and Workload Generation

The efficiency of the proposed straggler classification
methodology has been evaluated in two different phases.
Firstly, the offline analytics has been evaluated to demon-
strate the efficiency of the proposed methodology in clas-
sifying the task-level energy-aware stragglers before the
start of the actual job execution. Secondly, the identifica-
tion accuracy of the proposed methodology in detecting
energy-aware stragglers during the actual execution has
been evaluated. To facilitate the evaluation of runtime
identification, the proposed framework along with the
compared techniques are modelled to identify energy-
aware stragglers when the jobs are executed in a Kubuntu
VM characterising 2 core processor and 1GB RAM, every
task within a given job are executed on individual threads
to reflect the isolated LXCs of a typical Cloud datacentre.
Tasks within a single job are parallelised and all the
threads used for a single job execution are started at the
same time to ensure an even start time for all the tasks
within a given job. Heterogeneity among the running
tasks within a single job in terms of their progress rate is
achieved by imposing various level of delays and compu-
tation intensities among the tasks, whereby tasks are exe-
cuted with varied resource consumption and completion
times. After an initial random run of the chosen jobs in
the evaluation system, the datacentre equivalent (near
identical) execution time and proportional resource inten-
sity of the individual tasks within the respective jobs are
achieved by moderating the initially imposed delay with-
in the task progress using equation 32.

 𝑑𝑟𝑒𝑞 = (𝑑𝑐 ∗ 𝑡𝑟𝑒𝑞) / 𝑡𝑐 (32)

where, 𝑑𝑟𝑒𝑞 is the required delay within the task progress
to identically replicate the Cloud execution, 𝑑𝑐 is the de-
lay imposed during the initial run, 𝑡𝑟𝑒𝑞 is the task execu-
tion duration of the Cloud execution and 𝑡𝑐 is the task
completion time of the initial run respectively. Table 3
presents the replicated task completion time to that of the

AUTHOR ET AL.: TITLE 13

typical Cloud execution along with the heterogeneity in
resource intensity for a randomly chosen 10 tasks from
the studied jobs. The resource intensity percentage of the
tasks are presented in accordance with the intensity of the
other co-located tasks within the same job.

The straggler detection efficiency of the proposed
methodology has been evaluated against the existing
state-of-the-art threshold calculation [5, 17, 18, 20] meth-
ods including static threshold, progress score based
threshold, task progress based threshold, estimated finish
time based threshold and a normalised duration based
threshold accordingly.

7.2.2 Classification Accuracy

This section presents the analysis of the experiment re-
sults for the proposed energy-aware straggler classifica-
tion technique against the compared techniques. Due to
space constraints, Job 0 and Job 4 have been chosen to
discuss the obtained performance in detail as they repre-
sent the two performance extremities impacted by the
presence of energy-aware stragglers, and an overall aver-
age statistics are further presented.

Fig. 7 presents the classification efficiency of the pro-
posed and the compared techniques in terms of the total
number of correctly identified energy-aware stragglers
and the true and false positive proportions of classified
tasks respectively for Job 0. It can be observed that the
proposed offline analytics identifies 3 out of 4 energy-
aware stragglers even before the execution starts and the
proposed runtime analytics threshold identifies all the
energy-aware stragglers. In addition, the true positive
rate of the proposed runtime threshold is significantly

better than the compared techniques witnessed at 66.66%
and further reducing the false positives rate down to
33.33%. Though the static mean threshold identifies all
the energy-aware stragglers during runtime, the true pos-
itive and false positive rates are witnessed at 36.36% and
63.63% respectively, much worse than the proposed tech-
nique. It can further be confirmed that the rest of the
evaluated techniques are not efficient in identifying ener-
gy-aware stragglers and further characterise significant
proportions of false positives, resulting in wrong classifi-
cation of non-stragglers as energy-aware stragglers. Thus,
it is clear that despite the job heterogeneity, the proposed
methodology is effective in accurate classification of en-
ergy-aware stragglers with minimal proportions of false
positives.

Fig. 8 presents the classification accuracy statistics of
the evaluated techniques for Job 4. Job 4 is an interesting
sample since it comprises more than 40% of energy aware
stragglers, which means nearly half of the tasks are ener-
gy intensive. In this regard Job 4 itself can be regarded as
an energy-intensive job rather than comprising energy-
aware stragglers. It is evident that the proposed classifica-
tion technique outperforms the evaluated techniques in
terms of the achieved trade-off between identified strag-
glers and reduction in false positives, with the proposed
technique identifying 161 out of 201 energy-aware strag-
glers at a true positive rate of 64.9%, against the static
mean threshold identifying 171 stragglers at a true posi-
tive rate of 60.6%. The total number of correctly identified
stragglers by the remaining techniques are very insignifi-
cant, and the benefits availed to resource provision is lit-
tle of merit.

Fig. 8. Classification Accuracy for Job 4 (a) Identified Stragglers (b) Error Proportions

Fig. 7. Classification Accuracy for Job 0 (a) Identified Stragglers (b) Error Proportions

14 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING

f

Fig. 9. Classification Efficiency of the Proposed Technique

Figure 5. Tasks Identified as Stragglers

Fig. 10. Straggler and Heterogeneity Consequence

Figure 5. Tasks Identified as Stragglers

Fig. 9 presents the classification efficiency of the pro-
posed technique in terms of the true positive and false
positive rates averaged across all the studied jobs pre-
sented against the accuracy proportions of Job 3. Job 3 is a
job sample without sufficient historical traces which re-
strains the efficiency of the proposed analytics both in
terms of resource prediction and straggler classification.
From Fig. 9, the effects of this limited availability of the
appropriate historical samples are clearly evident, with
the true positive rate for the rest of the jobs is witnessed at
60.23% which reduces to 26.53% for Job 3. Apart from
this, it can be concluded that the proposed straggler ana-
lytics technique performs significantly better than the
evaluated techniques. It is worthy of note that most of the
evaluated techniques are focused on classifying stragglers
only based on the task duration related metrics, ignoring
CPU usage rate restrains their efficiency in identifying
energy-aware stragglers. The classification effectiveness
of the proposed analytics methodology can be attributed
to the fact that it incorporates the combinational effects of
both the task duration and CPU usage rate of respective
tasks. The energy-aware straggler prediction before exe-
cution is still believed to be an aspiration to date, in which
sense it can be postulated that the proposed straggler
classification methodology is efficient in identifying task-
level stragglers before the start of the actual job execution.

7.3 Resource Optimisation Performance

This section presents the efficiency of the proposed re-
source optimisation methodology, evaluated from the
perspectives of reducing the server energy expenditures,
reducing task terminations and mitigating the presence of
energy-aware stragglers. The failure probability in terms
of under-estimated resource levels has been verified by

theoretical analysis, and further the server energy ex-
penditures of the actual and proposed resource provision-
ing levels have been evaluated experimentally through
simulations. GreenCloud [35, 36] simulation platform has
been used to simulate the task execution within jobs. The
tasks are devised to be scheduled by the green scheduler
of the GreenCloud across a selected range of servers. For
energy management, DVFS has been enabled on the both
the physical servers and the processing VMs to dynami-
cally adjust the internal scheduling of tasks, so that the
VMs try to extend the task execution time to exploit DVFS
in accordance with the workload intensity. The resource
intensity of the tasks has been reflected in the task size
(presented in bytes) and the proportional idleness has
been reflected by imposing corresponding load on the
servers depending on the idle proportions incurred in the
actual and proposed level of resource provisioning ac-
cordingly.

7.3.1 Straggler and Heterogeneity Consequence
Fig. 10 presents the proportions of tasks achieving re-
source conservation and resource wastages within the
studied jobs based on the proposed methodology. Whilst
the conserved task proportions reflect the achieved reduc-
tion in the originally provisioned resource level for tasks
within jobs along with the conversation percentage
achieved, the wasted task proportions depict the tasks for
which the resources are over-estimated than the actual
level along with the percentage of resources wasted for
the tasks within the studied jobs. None of the over-
estimated tasks within Job 0 experience resource wastag-
es, (i.e.,) the proposed resource provisioning level are
much less than the actual level for all the tasks within Job
0. Thus, an average of 82.24% of resource levels are con-
served across all the tasks encompassed within Job 0.

From Fig. 10, resource conservation has been achieved
for 90% of tasks with an average of 79.93% of conserva-
tion in Job 1, 97.43% of tasks with an average of 84% of
conservation in Job 2, 84% of tasks with an average of
62.54% of conservation in Job 4 and 58% of tasks with an
average of 19.12% of conservation in Job 5 respectively.
Conversely, the proposed methodology has over-
estimated the resource level than the originally provi-
sioned level for 9% of tasks with an average of 39.35% of
wastages for Job 1, 3% of tasks with an average of 48.36%
of wastages for Job 2, 15% of tasks with an average of
62.65% of wastages for Job 4 and 42% of tasks with an
average of 17.3% of wastages for Job 5 respectively. It is
clearly evident that resource conservations are achieved
for a majority of the task proportions with significant re-
duction in the actually provisioned resource levels and a
minority of the task proportions are suffering marginal
resource wastages. Job 5 is exhibiting a different trend,
since it incurred only around 16% of resource idleness
during its actual Cloud execution. Furthermore, the pro-
portional presence of stragglers is insignificant within Job
5 and also the energy-aware stragglers do not show any
notable increase in their resource consumption level from
that of non-stragglers. To this end, it can be postulated
that jobs exhibiting fair resource consumption trend with

AUTHOR ET AL.: TITLE 15

less than 20% resource idleness can be ignored for further
analysis for exploring the scope of resource conservation.

As expected, the proportional presence of energy-
aware stragglers does have a considerable impact upon
the efficiencies of resource provision optimisation mod-
ule. Job 0 with 8% of energy-aware stragglers is not suf-
fering any excess resource wastages resulting from over-
estimation. Increased proportions of energy-aware strag-
glers at around 27%, 36% and 40% are witnessed in Job 1,
Job 2 and Job 4 respectively, which has reflected in the
corresponding wasted proportions of resources within
the respective jobs. Such observations are reflecting the
fact that increased proportions of energy-aware stragglers
may result in respective increase in the proportional re-
source wastages through over-estimation of resource lev-
els based on the proposed analytics methodology. How-
ever, the proportions of task for which their resource lev-
els are over-estimated are still insignificant, whereby the
impacts of the over-estimation factor have been main-
tained at the minimum possible level to reduce their en-
ergy impacts upon the overall energy consumption.

7.3.2 Failure Probability

Fig. 11 presents the failure probability proportions of
tasks within their respective job during the actual execu-
tion, resulting from the under-predicted resource levels
by the proposed methodology. The effectiveness of the
proposed methodology is evaluated from two different
perspectives: firstly, the failure probability has been eval-
uated for all the tasks encompassed within a given job
despite their resource consumption behaviour, and sec-
ondly the actual and classified non-stragglers within jobs
are isolated to evaluate the failure probability of non-
stragglers. From Fig. 11, around 11% of the total tasks are
vulnerable for resource related terminations which re-
duces to 9% for non-stragglers for Job 0. Similarly, the
failure probability has been witnessed at 32% for all tasks
and 5% for non-stragglers for Job 1, 30% for all tasks and
6% for non-stragglers for Job 2, 19% for all tasks and 7%
for non-stragglers for Job 4 and 23% for all tasks and
20.64% for non-stragglers for Job 5. Again, Job 5 is not
performing as expected exhibiting an increased propor-
tions of job failure probability for all tasks and non-
stragglers. This can again be attributed to the fair execu-
tion profile of Job 5, again it can be recommended that
jobs with fair execution trend do not project the scope for

further reduction in resource expenditures.
It is clearly evident that the failure probability for non-

stragglers are significantly lower than the entire task
group including stragglers, exhibiting the efficiencies of
the proposed methodology in reducing the failure proba-
bility for non-stragglers. This failure probability of tasks
can further be reduced through vertical scaling during
runtime. Failure probability can also be reduced by in-
creasing the margin of the over-commitment factor pro-
posed in the over-estimation protocol, in such a way that
the over-commitment factor for the discussed categories
can be scaled up to further reduce the proportions of un-
der-estimation of resources. However, increasing the
over-commitment margin will increase the resource pro-
visioning levels of other task groups for which the re-
sources have already been over-estimated. This may lead
to a reduction in the overall energy conservation of re-
sources estimated by the proposed methodology.

7.3.3 Energy Efficiency Analysis

This section is intended to exhibit the effectiveness of the
proposed methodology in conserving the server energy
expenditures achieved through the reduction in the
amounts of resources spent on the job execution. Fig. 12
displays the energy expenditure statistics obtained from
the simulation of Job 0, Job 1 and Job 5 (however all the
jobs have been discussed in detail in this section), for the
actually assigned amounts of resources and the proposed
level of resource provision. The effectiveness of the pro-
posed methodology has been presented for the classified
energy-aware stragglers and non-stragglers respectively
in Fig. 12, for an equivalent selection of random tasks rep-
resenting the two group of classification. On a coarse-
grain, it is clearly evident that the proposed methodology
performs better in reducing the server energy expendi-
tures for tasks classified as non-stragglers than those clas-
sified as energy-aware stragglers within a given job. This
is because of the straggler classification effectiveness of
the proposed methodology well before the start of the
actual execution. For instance, in the case of Job 0, tasks 0,
1, 2, 7, 43, and 48 are classified as energy-aware stragglers
by the proposed offline analytics. Though the proposed
methodology proposes only a marginal reduction for
tasks 0, 1 and 2 and 43, a significant reduction in server
energy expenditures can be achieved for tasks 7 and 48
within the classified energy-aware straggler group. De-
spite being classified as energy-aware stragglers, the re-
source provisioning level of task 7 and 48 has been mod-
erated by the proposed resource optimisation module
based on the runtime factors. For non-straggler tasks
within Job 0, a significant proportions of energy conserva-
tion have been achieved fairly across all the tasks. Though
a significant reduction in the energy expenditures has
been achieved for non-stragglers within Job 1, only a
marginal reduction in server energy expenditures has
been achieved by the proposed methodology for most of
the classified energy-aware stragglers. Furthermore, task
23 within Job 1 is a typical example where the proposed
methodology is estimating the resource provisioning lev-
el that exceeds the actual level of resources originally

Fig. 11. Failure Probability Proportions

Figure 5. Tasks Identified as Stragglers

16 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING

Fig. 13. Overall Energy Conservation Statistics

F

provisioned, in which sense this would incur energy
wastages by incurring more proportions of resource idle-
ness. This is attributed to the fact task 23 being incon-
sistent in its behaviour during historical execution pro-
files in terms of its straggling behaviour and process effi-
ciency and further the process capacity being less reliable
for the current execution. However, considering the over-
all impacts of this over-estimation upon the server energy
conservation for all the tasks within Job 1, the excess en-
ergy consequence of task 23 is insignificant.

Job 2 is a typical example where task 134 has been es-
timated to consume more resources which is then turning
out to be a non-straggler during the actual execution,
again this is due to task 134 being less reliable in its strag-
gler behaviour. But, a significant reduction in sever ener-
gy conservation has been achieved for both the task
groups within Job 2 based on the proposed methodology.
The influence of an increased proportions of straggling

tasks within Job 4 are clearly evident, where only a mar-
ginal reduction in server energy expenditures has been
achieved for most of the classified energy-aware strag-
glers. Furthermore, the achieved reduction in the propor-
tional server energy expenditures for non-stragglers is
much less than those of the other studied jobs, however
still better than those of the actually provisioned level of
resources for non-stragglers within Job 4. Job 5 has been
suggested not to reduce the actually provisioned resource
levels based on the theoretical verification, driven by the
effects of straggler consequence, failure probability and
importantly the witnessed level of reduced resource idle-
ness (being less than 20%) during the historical execution
profiles. The simulation experiments are also presenting
us with similar inferences, since most of the energy-aware
stragglers have been over-estimated than the actual level
of resource provision. Also, only a marginal reduction in
the server energy expenditures can be achieved for the
group of non-stragglers.

Fig. 13 presents the overall energy conservation statis-
tics across all the encompassed tasks within the studied
jobs, comparing the server energy expenditures incurred
by the proposed level of resource provision against the
actually provisioned level of resources. The statistics pre-
sented in Fig. 13 has been moderated with the propor-
tions of tasks achieving energy conservation and energy
wastages within a given job accordingly. From Fig. 13, an
overall reduction in the server energy expenditures can
be achieved by a margin of 82.75%, 58.18%, 82.53%,
47.04% and 0.11% based on the proposed resource provi-

Fig. 12. Server Energy Expenditures (a) Classified and Actual Stragglers (b) Classified Non-Stragglers {(0) Job 0 (1) Job 1 (5) Job 5

Figure 5. Tasks Identified as Stragglers

AUTHOR ET AL.: TITLE 17

sioning level across all the tasks encompassed within Job
0, Job 1, Job 2, Job 4 and Job 5 respectively. The difference
in the achieved reduction in server energy expenditures
across the studied jobs are attributed to the job heteroge-
neity in terms of the straggler proportions, difference be-
tween the resource consumption level of stragglers and
non-stragglers within a given job, task behaviour con-
sistency in terms of straggling behaviours, process effi-
ciency and process capacity.

8 CONCLUSION

This paper proposed a novel analytics driven resource
optimisation framework to optimise the level of resource
provisioning whilst executing tasks in the datacentres, for
the purpose of reducing resource wastages incurred
though the presence of resource idleness during task exe-
cution. The proposed framework includes three integral
components such as the resource estimation module,
straggler classification module and the resource optimisa-
tion module. Estimating the resource consumption levels
of the tasks encompassed within jobs a priori, tasks with-
in a given job are classified based on their resource inten-
sity and execution trend. Further, the estimated resource
levels are optimised based on their classified intensity
and several runtime factors affecting the task execution.
The effectiveness of every integrated module is evaluated
both theoretically and through practical experiments,
which proves the effectiveness of the proposed analytics
methodology in estimating the resource requirements of
the tasks with reliable level of accuracy. The straggler
classification module is efficient in classifying energy-
aware stragglers well before the start of the actual task
execution, and also effectively identifies the energy-aware
stragglers during runtime. Furthermore, the resource op-
timisation module incorporates the descriptive
knowledge of the task execution and postulates a re-
source provisioning level for tasks within jobs, in such a
way that the originally provisioned resource level is con-
siderably reduced, whereby the incurred proportions of
resource idleness can be significantly reduced with mini-
mal probability of task failures.

The proposed approach of resource provision optimi-
sation performs better for non-stragglers than the energy-
aware stragglers, in such a way that the resource estima-
tion of non-stragglers presents better reliability. Further,
the straggler classification framework includes a marginal
proportion of false positive rate which has reflected in a
marginal level of excess resource provision for a very few
tasks within jobs. Though marginal, reducing such false
positive overheads benefits achieving better reduction in
server energy expenditures. Investigating the possibility
of enhancing the crispness of resource estimation of ener-
gy-aware stragglers and reducing the false positive rates
of the classification approach is one of our future research
directions. Additionally, evaluating the efficiencies of the
proposed framework in classifying jobs with cascaded
tasks is another future objective of our research.

ACKNOWLEDGMENT

This work is partially supported by the National Natural

Science Foundation of China under Grants No. 61502209 and

61502207, the Natural Science Foundation of Jiangsu Prov-

ince under Grant BK20170069 and UK-China Knowledge

Economy Education Partnership. Lu Liu is the corresponding

author.

REFERENCES

[1] J. Patel, V. Jindal, I.-L. Yen, F. Bastani, J. Xu, and P. Garraghan, "Work-

load Estimation for Improving Resource Management Decisions in the

Cloud," presented at the Twelfth International Symposium on Auton-

omous Decentralized Systems, Taichung, 2015.

[2] Y. Xu, Z. Musgrave, B. Noble, and M. Bailey, "Bobtail: Avoiding Long

Tails in the Cloud," in Proc. of 10th USENIX conference on Networked

Systems Design and Implementation, Lombard, 2013, pp. 329-342.

[3] P. Garraghan, X. Ouyang, P. Townend, and J. Xu, "Timely Long Tail

Identification through Agent Based Monitoring and Analytics," pre-

sented at the 18th International Symposium on Real-Time Distributed

Computing, Auckland, 2015.

[4] N. J. Yadwadkar and W. Choi, "Proactive Straggler Avoidance using

Machine Learning," University of Berkeley, 2012.

[5] X. Ouyang, P. Garraghan, D. Mckee, P. Townend, and J. Xu, "Straggler

Detection in Parallel Computing Systems through Dynamic Threshold

Calculation," presented at the 30th International Conference on Ad-

vanced Information Networking and Applications (AINA), Crans-

Montana, 2016.

[6] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, "Effective

straggler mitigation: attack of the clones," presented at the Proceedings

of the 10th USENIX conference on Networked Systems Design and

Implementation Pages, Lombard, 2013.

[7] Q. Chen, P. Grosso, K. v. d. Veldt, C. d. Laat, R. Hofman, and H. Bal,

"Profiling energy consumption of VMs for green cloud computing," in

Ninth International Conference on Dependable, Autonomic and Secure

Computing (DASC, 2011, pp. 768-775.

[8] I. Takouna, W. Dawoud, and C. Meinel, "Energy efficient scheduling of

HPC-jobs on virtualize clusters using host and VM dynamic configura-

tion," ACM SIGOPS Operating Systems Review, vol. 46, pp. 19-27, 2012.

[9] Z. Zhang and S. Fu, "Characterizing power and energy usage in cloud

computing systems," in Cloud Computing Technology and Science

(CloudCom), 2011 IEEE Third International Conference on, 2011, pp.

146-153.

[10] P. Raycrofta, R. Jansena, M. Jarus, and P. R. Brennera, "Performance

bounded energy efficient virtual machine allocation in the global

cloud," Sustainable Computing: Informatics and Systems, vol. 4, pp. 1 -

9, March 2014.

[11] N. Bessis, S. Sotiriadis, V. Cristea, and F. Pop, "Modelling requirements

for enabling meta-scheduling in inter-clouds and inter-enterprises," in

Intelligent Networking and Collaborative Systems (INCoS), 2011 Third

International Conference on, 2011, pp. 149-156.

[12] C. Chen, B. He, and X. Tang, "Green-aware workload scheduling in

geographically distributed data centers," in 4th Int. Conf. on Cloud

Computing Technology and Science (CloudCom), 2012, pp. 82-89.

[13] A. Beloglazov, J. Abawajy, and R. Buyya, "Energy-aware resource

allocation heuristics for efficient management of data centers for cloud

computing," Future Generation Computer Systems, vol. 28, pp. 755-768,

2012.

[14] P. Graubner, M. Schmidt, and B. Freisleben. (April 2013) Energy-

Efficient Virtual Machine Consolidation. IT Professional. 28 - 34. Avail-

18 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING

able: http://ieeexplore.ieee.org/document/6193088/

[15] A. Corradi, M. Fanelli, and L. Foschini, "VM consolidation: A real case

based on OpenStack Cloud," Future Generation Computer Systems,

vol. 32, pp. 118 - 127, 2014.

[16] J. Rosen and B. Zhao, "Fine-Grained Micro-Tasks for MapReduce

Skew-Handling," 2012.

[17] Q. Chen, D. Zhang, M. Guo, Q. Deng, and S. Guo, "SAMR: A Self-

adaptive MapReduce Scheduling Algorithm In Heterogeneous Envi-

ronment," presented at the 10th IEEE International Conference on

Computer and Infomation Technology (CIT 2010), Bradford, 2010.

[18] Q. Chen, C. Liu, and Z. Xiao, "Improving MapReduce Performance

Using Smart Speculative Execution Strategy," IEEE Transactions on

Computers, vol. 63, pp. 954-967, 24 January 2014.

[19] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica, "Improv-

ing MapReduce performance in heterogeneous environments," pre-

sented at the 8th USENIX conference on Operating systems design and

implementation, San Diego, 2008.

[20] N. J. Yadwadkar, G. Ananthanarayanan, and R. Katz, "Wrangler: Pre-

dictable and Faster Jobs using Fewer Resources," presented at the Pro-

ceedings of the ACM Symposium on Cloud Computing, Seattle, 2014.

[21] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu, B.

Saha, et al., "Reining in the outliers in map-reduce clusters using Man-

tri," presented at the Proceedings of the 9th USENIX conference on Op-

erating systems design and implementation Pages, Vancouver, 2010.

[22] S.-W. Huang, T.-C. Huang, S.-R. Lyu, C.-K. Shieh, and Y.-S. Chou, "Im-

proving Speculative Execution Performance with Coworker for Cloud

Computing," presented at the IEEE 17th International Conference on

Parallel and Distributed Systems, Taiwan, 2011.

[23] X. Ouyang, P. Garraghan, C. Wang, P. Townend, and J. Xu, "An Ap-

proach for Modeling and Ranking Node-Level Stragglers in Cloud

Datacenters," IEEE Int. Conf. on Services Computing, 2016.

[24] J. Panneerselvam, L. Liu, and N. Antonopoulos, "InOt-RePCoN: Fore-

casting user behavioural trend in large-scale cloud environments," Fu-

ture Generation Computer Systems, pp. 1 - 20, 1 June 2017.

[25] J. Panneerselvam, L. Liu, and N. Antonopoulos, "Characterisation of

Hidden Periodicity in Large-Scale Cloud Datacentre Environments,"

presented at the 13th IEEE International Conference on Green Compu-

ting and Communications, Exeter, 2017.

[26] J. Panneerselvam, L. Liu, N. Antonopoulos, and M. Trovati, "Latency-

Aware Empirical Analysis of the Workloads for Reducing Excess Ener-

gy Consumptions at Cloud Datacentres," presented at the IEEE Sympo-

sium on Service-Oriented System Engineering (SOSE), Oxford, 2016.

[27] P. Garraghan, I. S. Moreno, P. Townend, and J. Xu, "An Analysis of

Failure-Related Energy Waste in a Large-Scale Cloud Environment,"

IEEE Transactions on Emerging Topics in Computing, vol. 2, pp. 166-

180, 04 February 2014..

[28] "Google Cluster Data V2," Google, Ed., 2 ed, 2011.

[29] C.-F. Wang, H. Wen-Yi, and C.-S. Yang, "A Prediction Based Energy

Conserving Resources Allocation Scheme for Cloud Computing," pre-

sented at the IEEE International Conference on Granular Computing

(GrC), Noboribetsu, 2014.

[30] W. Fang, Z. Lu, J. Wu, and Z. Cao, "RPPS: A Novel Resource Prediction

and Provisioning Scheme in Cloud Data Center," presented at the IEEE

Ninth Int. Conf. on Services Computing, Honolulu, HI, 2012.

[31] N. Roy, A. Dubey, and A. Gokhale, "Efficient Autoscaling in the Cloud

using Predictive Models forWorkload Forecasting," presented at the

IEEE 4th International Conference on Cloud Computing, Washington,

DC, 2011.

[32] I. S. Moreno and J. Xu, "Customer-Aware Resoruce Overallocation to

Improve Energy Efficiency in Real-Time Cloud Computing Data Cen-

tres," presented at the International Conference on Service-Oriented

Computing and Applications (SOCA), Irvine, CA, 2011.

[33] J. Yang, C. Liu, Y. Shang, Z. Mao, and J. Chen, "Workload Predicting-

Based Automatic Scaling in Service Clouds," presented at the Sixth In-

ternational Conference on Cloud Computing, Santa Clara, CA, 2013.

[34] T. Li, J. Wang, W. Li, T. Xu, and Q. Qi, "Load Prediction-based Auto-

matic Scaling Cloud Computing," presented at the International Con-

ference on Networking and Network Applications, 2016.

[35] GreenCloud 'Simulating Energy-Efficient Clouds'. Available:

https://greencloud.gforge.uni.lu/publications.html

[36] D. Kliazovich, P. Bouvry, and S. U. Khan, "GreenCloud: a packet-level

simulator of energy-aware cloud computing data centers," The Journal

of Supercomputing, vol. 62, pp. 1263–1283, December 2012.

John Panneerselvam received his Ph.D. from
the University of Derby and currently is a Lectur-
er in Computing at the University of Derby, Unit-
ed Kingdom. His current research is focused on
energy efficient cloud systems and he has pub-
lished his recent research works in notable peer
reviewed international conferences, journals and
as book chapters. He is an active member of
IEEE and British Computer Society, and his re-

search interests include Cloud Computing, Big Data Analytics, Op-
portunistic Networking and P2P Computing.

Lu Liu is currently the Head of the Department of
Electronics, Computing and Mathematics in the
University of Derby and adjunct professor in the
School of Computer Science and Communication
Engineering at Jiangsu University. Prof. Liu re-
ceived his Ph.D. degree from University of Surrey.
He is the Fellow of British Computer Society and
Member of IEEE. Prof. Liu’s research interests are
in areas of Cloud Computing, Social Computing,

Data Analytics, Service-Oriented Computing and Peer-to-Peer Com-
puting.

Nick Antonopoulos is currently the Pro Vice-
Chancellor of Research in the University of Derby
and the University of Derby Technical Coor-dinator
of the framework collaboration with CERN as well
as the ALICE experiment. Nick holds a PhD in
Computer Science from the University of Surrey in
2000. His research interests include Cloud
Computing, P2P Computing, software agent

architectures and security. Nick has many years of academic
experience and has pub-lished more than 150 articles in fully
refereed journals and internation-al conferences.

