
2168-6750 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETC.2020.2979019, IEEE
Transactions on Emerging Topics in Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

GasChecker: Scalable Analysis for Discovering
Gas-Inefficient Smart Contracts

Ting Chen, Youzheng Feng, Zihao Li, Hao Zhou, Xiapu Luo‡, Xiaoqi Li, Xiuzhuo Xiao, Jiachi Chen,
and Xiaosong Zhang

Abstract—Ethereum, the largest blockchain for running smart contracts, charges the people who send transactions to deploy or invoke
smart contracts for thwarting resource abuse. The amount of transaction fee depends on the size of that contract and the operations
executed by that contract. Consequently, smart contracts with inefficient code will waste money. In this paper, we propose and develop
the first tool, named GasChecker, for automatically identifying gas-inefficient code in smart contracts, and conduct the first empirical
study on the prevalence of gas-inefficient code in the deployed smart contracts. More precisely, we first summarize ten gas-inefficient
programming patterns and propose a new approach based on symbolic execution (SE) to detect them in the bytecode of smart contracts.
To make our approach scalable to analyze millions of smart contracts, we parallelize SE by tailoring it to the MapReduce programming
model, and propose a new feedback-based load balancing strategy to effectively utilize cloud resources. Extensive experiments show
that GasChecker scales well with the increase of workers. The empirical study demonstrates that lots of real smart contracts contain
various inefficient code. Manual investigation demonstrates that only 2.5% of discovered gas-inefficient instances are false positives.

Index Terms—Smart contract, scalable analysis, gas-inefficient pattern, symbolic execution, parallelization, MapReduce

�

1 INTRODUCTION

THE supporting of smart contracts is the landmark of
blockchain 2.0, which allows running various appli-

cations on the blockchain other than cryptocurrency (e.g.,
bitcoin) [1]. A smart contract is an autonomous computer
program that, once started, executes automatically and
mandatorily according to the program logic defined be-
forehand [2]. Due to many unique advantages (e.g., auto-
matic execution in a deterministic manner, without trusted
intermediaries, highly resistant to forgery), smart contracts
have the power to reshape a number of industries, in which
retail banking, insurance, financial exchange, marketplaces,
and content platforms are the most impacted [3]. Therefore,
many blockchain systems support smart contracts, such as
Ethereum, Counterparty, Stellar, Monax, Lisk [4]. Among
them, Ethereum is the largest one with more than 10 billion
USD market capitalization1, 8 million smart contracts and
200 million transactions2 until September 2019. Moreover,
smart contract developers are in great demand [5]. There-
fore, this study concentrates on smart contracts of Ethereum.
The terms blockchain and smart contract refer to Ethereum
blockchain and Ethereum smart contract hereinafter if not
special specified.

Smart contracts are typically developed in a high-level
language (e.g., Solidity) and then compiled into a special
bytecode form, the EVM bytecode, which can be executed in
the Ethereum Virtual Machine (EVM), the runtime system of
Ethereum. According to Ethereum’s specification [6], every
node in Ethereum maintains a complete copy of blockchain,
and will replay all transactions stored in the blockchain. In
particular, a smart contract will be executed if it is the recip-
ient of a transaction. Since every node needs to run all smart

‡ The corresponding author.
1. CryptoCurrency Market Capitalizations: https://coinmarketcap.

com/.
2. Etherscan: https://etherscan.io/.

contracts in the bytecode format using EVM, the execution
of smart contracts consumes the computing resources of
every node. To prevent resource abuse, especially Denial-of-
Service (DoS) attacks that exhaust the computing resources
(e.g., CPU, disk, network) of nodes [7], Ethereum adopts
the gas mechanism that charges the transaction senders. In
other words, transaction senders have to pay for deploying
or invoking smart contracts. The amount of money should
be charged for deploying and invoking a smart contract
depends on the size of the deployed smart contract and the
operations executed in that smart contract, respectively.

We name a smart contract that costs more gas than nec-
essary as a gas-inefficient smart contract. Such contracts will
waste a lot of gas because gas-inefficient patterns are preva-
lent in deployed smart contracts (Section 6.3), which could
be invoked an unlimited number of times. Many factors can
result in gas-inefficient smart contracts, e.g., unawareness of
gas waste, inexperienced developers, insufficient compiler
optimizations, the absence of auxiliary tools.

In this paper, we first identify ten gas-inefficient pat-
terns, which overcharge the developers and users of smart
contracts. Then, we design and develop GasChecker, a
novel system to automatically detect these patterns in the
bytecode of smart contracts. GasChecker does not need
source code, because the proportion of open-source smart
contracts is less than 1% [8]. To make GasChecker scalable
to process millions of smart contracts, we propose a new
approach to parallelize SE by leveraging cloud computing
platform.In particular, we tailor parallel SE into MapReduce
programming model and propose a feedback-based load
balancing strategy to improve the utilization of computing
resources. The experimental results show that GasChecker
has high precision and low false positive rate (i.e., 2.5%)
(Section 6.2). Moreover, GasChecker scales well with the
increase of workers, and our proposed load balancing strat-

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 08,2020 at 09:13:29 UTC from IEEE Xplore. Restrictions apply.
2168-6750 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 08,2020 at 09:13:29 UTC from IEEE Xplore. Restrictions apply.

2168-6750 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETC.2020.2979019, IEEE
Transactions on Emerging Topics in Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

egy is effective (Section 5). By applying GasChecker to the
deployed smart contracts, we observe that these deployed
smart contracts contain lots of gas-inefficient code (Section
6.3) and some gas-inefficient patterns occur frequently. Un-
fortunately, recent compilers cannot eliminate gas-inefficient
patterns, although new compilers outperform old compilers
in optimizing gas-inefficient code (Section 6.4). Moreover,
we find that much money can be saved after optimizing
gas-inefficient code. For example, by optimizing three gas-
inefficient patterns in 1,500 smart contracts, we can save
1,520 USD (Section 6.5).

Our position paper first points out the issue of gas-
inefficient smart contracts [9]. This full paper extensively
extends our previous work from four aspects. First, we
identify ten gas-inefficient programming patterns whereas
our position paper introduces seven patterns. Note that this
work adds four new patterns, and excludes one pattern
proposed in our position paper because our experiments
show that such pattern is not appeared in practice. Second,
we design and develop a new system named GasChecker
for detecting all ten patterns automatically in EVM bytecode
whereas only three patterns could be detected by our previ-
ous work [9]. Third, to make GasChecker scalable to handle
millions of smart contracts, we propose a new approach
to parallelize symbolic execution (SE) by leveraging cloud
computing platform whereas sequential SE is used in our
previous work [9]. Finally, we conduct much more experi-
ments in this paper than the position paper, e.g., scalability,
detection precision of GasChecker, amount of saved money
by optimizing contracts.

Our previous tool, PACCI is the first work to parallel SE
via MapReduce [10]. However, GasChecker is implemented
from scratch rather than reuse PACCI for two reasons. First,
GasChecker analyzes EVM bytecode while PACCI handles
binaries. Second, PACCI does not consider load balancing.

This study can benefit developers in several domains.
First, the developers of smart contracts can avoid the gas-
inefficient patterns identified in this paper. Second, com-
piler developers can improve compilers by replacing gas-
inefficient code with efficient code during compiling. Third,
the developers of Ethereum can create a JIT compiler and
embed it into the runtime system (i.e., EVM) for optimiz-
ing gas-inefficient code at runtime. Last but not least, this
work may motivate a new optimization service that turns
gas-inefficient smart contracts into gas-efficient ones while
maintaining the program logic.
Overall, this work has four major contributions.
(1) We propose ten gas-inefficient programming patterns.
(2) We design and implement a novel tool, GasChecker
which is based on SE to detect these patterns in the bytecode
of smart contracts.
(3) We propose to scalalize the automated analysis by par-
allelizing SE according to the MapReduce programming
model and designing a feedback-based load balancing strat-
egy (FBLB) to improve resource utilization.
(4) We conduct a large-scale empirical study by apply-
ing GasChecker to the deployed smart contracts. Experi-
ments show that GasChecker can find lots of gas-inefficient
code in existing smart contracts with low false positives.
Moreover, event recent compilers cannot eliminate all gas-

inefficient patterns, and much money can be saved by
optimizing the gas-inefficient code.
Paper organization. Section 2 introduces background
knowledge with a motivating example. Section 3 describes
the ten gas-inefficient patterns. Section 4 details the design
of GasChecker. The scalability of GasChecker is evaluated
in Section 5, and the results of the empirical study is pre-
sented in Section 6. The threats to validity are discussed in
Section 7. After reviewing related studies in Section 8, we
conclude the paper in Section 9.

2 BACKGROUND AND A MOTIVATING EXAMPLE

Blockchain. A blockchain is a continuously growing list of
records, called blocks which contains zero or more transac-
tions [11]. A transaction refers to a signed data package that
contains a message sent by an account [12].
Ethereum. Ethereum is the largest blockchain with the ca-
pability of running smart contracts. Ethereum runs smart
contracts in a stack-based virtual machine, so-called the
Ethereum Virtual Machine (EVM). Ethereum has two kinds
of accounts, external owned accounts (EOAs) and smart
contracts. A smart contract contains executable bytecode,
while an EOA does not.
Smart contract. A smart contract is typically written in a
high-level language (e.g., Solidity) and then compiled into
EVM bytecode. A smart contract is deployed by sending
a special transaction whose receiver field is empty and its
input data field carries the bytecode [12]. A smart contract
is invoked by a transaction, where the receiver field gives the
address of the callee and the input data field indicates the
function to be invoked and the arguments.
Gas. To prevent resource abuse, especially DoS attacks [7],
Ethereum proposes gas mechanism to charge execution fee
from transaction senders. Execution fee is computed by
gas price × gas cost, where gas cost is the amount of gas
consumed measured by the number of units [6]. The gas
cost of individual operation is defined by Ethereum’s core
protocol [12]. Some operations are cheap, e.g., ADD, AND,
EQ, POP, because they are pure stack operations [6]. Some
operations are expensive, e.g., SSTORE for updating the
storage, CREATE for creating a smart contract [6].
Symbolic execution. Symbolic execution (SE) is a multi-path
program analysis technique, which can exhibit different be-
haviors of the analyzed program corresponding to different
paths. Moreover, by leveraging a theorem prover, SE can
determine path feasibility, and therefore techniques based
on SE can avoid analyzing dead code. Besides, SE maintains
the symbolic expressions of variables, and therefore SE can
reason about the relation of two expressions (e.g., whether
two expressions are equal). The reasons for choosing SE
rather than standard compiler techniques are explained in
detail in Section 4.1.
MapReduce. MapReduce is a programming model and an
associated implementation for processing and generating
large data sets with a parallel, distributed algorithm on a
cluster [13]. A MapReduce application consists of a Map
procedure to perform filter and sort, a Reduce procedure
to summarize, and a Driver procedure to integrate the Map
and Reduce. MapReduce can launch multiple Map tasks (a
Map task is an execution of the Map procedure) and run

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 08,2020 at 09:13:29 UTC from IEEE Xplore. Restrictions apply.
2168-6750 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 08,2020 at 09:13:29 UTC from IEEE Xplore. Restrictions apply.

2168-6750 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETC.2020.2979019, IEEE
Transactions on Emerging Topics in Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

1 contract ExpensiveStorage {
2 uint num; //in storage
3 function setVar(uint x) {
4 for(uint i = 0; i < x; i++){
5 num++; //expensive

 }
}

}

(a) Gas-inefficient contract

1 contract CheapStorage {
2 uint num; //in storage
3 function setVar(uint x) {
4 uint y = num;
5 for(uint i = 0; i < x; i++){
6 y++; //cheap
7 }
8 num = y;

}
}

(b) Efficent version
Fig. 1. A gas-inefficient contract and its efficient version

them independently and execute Reduce tasks (a Reduce
task is an execution of the Reduce procedure) in parallel.
MapReduce has several features. First, Reduce tasks will
not be started until all Map tasks finish their jobs. Second,
all Mappers (the workers run Map tasks) are independent,
and hence there are no communications among Mappers.
Hence, cloud services (e.g., Spark [14]) can simply re-execute
a failed Map task on another worker for failure recovery.
Third, a MapReduce application is expected to be scalable
to the increase of workers since the communications among
workers are greatly reduced by design.
A motivating example. Fig. 1(a) shows a smart contract
containing a gas-inefficient pattern (i.e, P3, Section 3.2.1)
and Fig. 1(b) gives its efficient version. It is worth noting
that even a recent compiler (Solidity 0.5.10 released on Jun.
25, 2018) for smart contracts cannot perform this optimiza-
tion. This contract declares a global variable num. Unlike
traditional applications, global variables in a smart contract
are stored in the storage. Since accessing the storage is
expensive [6], reading and writing num in a loop repeatedly
(Line 5) costs lots of gas. By contrast, the contract in Fig. 1(b)
is more efficient with the same functionality as the costly
contract. In particular, it reads num into a local variable y,
then increases y in the loop, and finally writes y back to num.
Hence, the number of access to storage reduces from 2x (1
read and 1 write in every iteration of the loop) to 2. Since
the local variable y is stored in the stack and accessing the
stack requires orders of magnitude less gas than operating
storage [6], the code in Fig. 1(b) is gas-efficient.

It is worth noting that from the viewpoint of traditional
program optimization, the code in Fig. 1(a) cannot be op-
timized for several reasons. First, accessing a local variable
has no distinct difference with accessing a global variable in
terms of speed. Besides, more memory is required to store
the local variable when running the code in Fig. 1(b). Third,
the code in Fig. 1(b) contains more instructions and hence
more disk space is needed to store the code, more memory
will be allocated to load the code, and more instructions will
be executed. Hence, a traditional compiler would consider
the code in Fig. 1(a) be better because it typically aims at im-
proving runtime performance, reducing memory and disk
consumptions. GasChecker can detect such gas-inefficient
pattern in the bytecode of smart contracts as detailed in
Section 4.6.

3 GAS-INEFFICIENT PROGRAMMING PATTERNS

We identify ten gas-inefficient programming patterns, and
divide them into four categories.

1

2 3

4 5

terminal block
branch block

feasible branch
infeasible branch

Fig. 2. An opaque predicate in block 3, but no dead code

3.1 Useless Code

3.1.1 P1: Opaque Predicate

An opaque predicate refers to a comparison that has only
one outcome (i.e., True or False). Hence, the gas for invoking
the smart contract can be reduced by removing the compar-
ison, and the gas for deploying the smart contract can also
be reduced by removing the code on the infeasible branch. It
is non-trivial for the developers of smart contracts to avoid
opaque predicates because opaque predicates do not alter
program logic.

3.1.2 P2: Dead Code

The code that cannot be reached at runtime is dead. The gas
for deploying smart contracts can be reduced by eliminating
dead code. It is worth noting that opaque predicate is not
always the same as dead code even if they often appear
together (as shown in Fig. ??). Dead code is the code that
cannot be executed in practice, and an opaque predicate
(also termed by invariant opaque predicate in recent stud-
ies [15]) is a comparison which always produces the same
result. First, an opaque predicate does not necessarily result
in dead code. Fig. 2 shows an example. Blocks 1, 2, 3 are
branch blocks which end with a JUMPI, and blocks 4, 5 are
terminal blocks which end with a STOP. Note that since STOP
terminates the execution of smart contracts [6] they do not
have successors. A solid edge indicates a feasible branch,
while a dashed edge stands for an infeasible branch. Hence,
there is an opaque predicate in block 3, because only one
branch from block 3 is feasible. However, there is no dead
code in this example, because block 5 can be reached from
block 2. On the other hand, dead code is not necessarily
caused by opaque predicates, e.g., functions never been
called, the code after a return statement.

3.2 Loop

3.2.1 P3: Expensive Operations in a Loop

Expensive operations in a loop are worthy of attention be-
cause a single transaction can execute expensive operations
multiple times, resulting in high money cost. A transaction
sender sets the field gas limit of the transaction, indicating
the amount of gas the sender can afford to execute that
transaction. As a consequence, if the execution of a transac-
tion requires more gas than the gas limit, the transaction will
fail and the gas in the amount of gas limit will be consumed.
By moving expensive operations outside the loop, the gas
for invoking smart contracts can be reduced. However, the
size of bytecode after optimization will be increased (as
shown in Fig. 1), thus the gas for deploying smart contracts
will be raised. It is worth noting that a contract can be
deployed only once but invoked many times. Hence, such
optimization can reduce overall gas consumption.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 08,2020 at 09:13:29 UTC from IEEE Xplore. Restrictions apply.
2168-6750 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 08,2020 at 09:13:29 UTC from IEEE Xplore. Restrictions apply.

2168-6750 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETC.2020.2979019, IEEE
Transactions on Emerging Topics in Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

3.2.2 P4: Fusible Loops
Two loops are fusible, if they can be merged into one loop
without changing program behaviors. By loop fusion, the
gas for deploying smart contracts can be reduced because
the size of bytecode becomes smaller, and the gas for invok-
ing smart contracts can be reduced because the executed
instructions will be reduced. Moreover, other optimizations
(e.g., common subexpression elimination) can be applied
on the merged loop body so that gas consumption can be
reduced further. Although loop fusion has been applied in
modern compilers, compilers may fail to find all fusible
loops, particularly the loops whose loop bounds are hard
to determine using standard compiler techniques.

3.2.3 P5: Repeated Computation in a Loop
This pattern refers to the computation that produces the
same result in each iteration of a loop. By moving the com-
putation outside the loop and using a temporary variable
to hold the result, the optimized version saves the gas for
executing smart contracts at the price of larger bytecode (i.e.,
more gas for deploying smart contracts). Since a contract is
deployed once and executed many times, such optimization
is acceptable.

3.2.4 P6: Unilateral Comparison in a Loop
This pattern means a comparison in a loop whose outcome
is fixed. Please note that it is not an opaque predicate (P2)
because the comparison can produce different results under
different contexts. By moving the unilateral comparison
outside the loop and copies the loop body, the optimized
version saves gas for executing smart contracts since it
reduces the number of comparisons at the price of larger
bytecode.

3.3 Wasted Disk Space
3.3.1 P7: Redundant SSTORE

This pattern indicates a storage that is never used (e.g., SLOAD)
after definition (i.e., SSTORE). Please note that not only SLOAD
but also some other operations (e.g., BALANCE obtains the
balance of an account) read storage. Redundant SSTORE
operations waste disk space andmuchmoney as the gas cost
of SSTORE (as shown in Table 1) is high. Standard compiler
techniques for detecting redundant variable definitions (e.g.,
liveness analysis) may not be suitable for our purpose be-
cause storage is like a database on the disk rather than a data
structure in physical memory. In particular, a storage can
be written by a transaction and then read by a subsequent
transaction. Therefore, we need multi-path analysis and
we cannot say that an SSTORE is redundant if the written
location is not read in one program path. After optimization,
both the gas for deploying and executing smart contracts
can be reduced.

3.4 Gas-Inefficient Operation Sequence
This type of gas-inefficient patterns refer to consecutive
EVM operation sequences that can be replaced with gas-
efficient operation sequences. Although the following three
patterns are specific to EVM bytecode, the basic idea can
be extended to other smart contract platforms. After opti-
mization, both the gas for deploying and invoking smart
contracts can be reduced.

i0

i1

i0

i1
i1

i0

i1

i0

i1

i1

i0

i1

i1

i0

i0

i1

i1

i0

i1

i1

i1

i0

i1

i1

i0

i1

Top

Bottom

Stack

Fig. 3. Stack after the execution of SWAP1/DUP2/SWAP1

3.4.1 P8: SWAP1/DUP2/SWAP1

In EVM, SWAP1 exchanges the 1st and 2nd stack items and
DUP2 duplicates the 2nd stack item [6]. Fig. 3 shows the
change of stack after execution of the operation sequence
SWAP1/DUP2/SWAP1 following the yellow edges, which con-
sists of three operations. i0 and i1 indicate two stack items.
This pattern can be simplified to DUP1/SWAP2 (in blue edges
of Fig. 3) which is shorter and consumes fewer gases. SWAP2
exchanges the 1st and 3rd stack items [6]. Note that each
swap and duplication needs 3 units of gas for execution [6],
and hence the shorter sequence saves 3 units of gas while
producing the same output. The opcode of each operation
is a non-zero byte and each non-zero byte attached in a
transaction needs 68 units of gas [6]. Besides, the bytecode
of the gas-inefficient pattern is 0x908190 and the bytecode
of the gas-efficient counterpart is 0x8091 [6]. Therefore,
compared to the gas-efficient counterpart, the gas-inefficient
pattern wastes 68 units of gas for contract deployment.

3.4.2 P9: PUSHx/POP

There are 32 push operations in EVM, including PUSH1,
PUSH2, ..., PUSH32, which place 1 byte, 2 bytes, ..., 32 bytes
on the stack, respectively [6]. Please note that push opera-
tions are the only EVM operations that have an operand.
No matter how many bytes are placed, a push operation
adds 1 item on the stack. Therefore, the operation sequence
PUSHx/POP, 1 ≤ x ≤ 32 makes no changes to stack, and
hence such sequence can be removed to save gas. Five units
of gas can be saved for contract execution by eliminating
this pattern because a push operation and a pop operation
cost three units and two units of gas, respectively [6]. The
amount of gas saved for contract deployment by eliminating
this pattern depends on the operand of the push operation
and the upper bound is 2,312 (68 units for the pop operation,
68 units for the push opcode and 68×32 for the 32-byte
operand without one zero byte) units of gas.

3.4.3 P10: PUSH1/NOT

NOT is a bitwise not operation that flips every bit of the 1st
stack item [6]. PUSH1 pushes 1 byte on the stack, where the
byte should be a constant [6]. Hence, the 1st stack item
after the execution of NOT can be computed in advance.
Consequently, the gas-inefficient pattern PUSH1/NOT can be
replaced with a single PUSH1 whose operand is the bitwise
not of the operand of PUSH1 in the gas-inefficient pattern.
The efficient counterpart saves three units and 68 units
of gas for contract executing and deploying, respectively,
because the execution of one NOT needs three units of gas [6].

Table 1 summarizes the effects by replacing gas-
inefficient patterns with their gas-efficient counterparts,

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 08,2020 at 09:13:29 UTC from IEEE Xplore. Restrictions apply.
2168-6750 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 08,2020 at 09:13:29 UTC from IEEE Xplore. Restrictions apply.

2168-6750 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETC.2020.2979019, IEEE
Transactions on Emerging Topics in Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

TABLE 1
Gas cost changes by replacing gas-inefficient patterns with their

gas-efficient counterparts

gas change P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
execute – o – – – – – – – –
deploy – – + – + + – – – –

+:increase –: decrease o: no impact

where +,− and O stand for increase, decrease and no
impact, respectively.

4 GASCHECKER
4.1 Why Symbolic Execution?

GasChecker is based on SE, which is a heavy-weight pro-
gram analysis technique. We adopt it for the following
reasons. First, SE is a multi-path program analysis technique,
which facilitates the detection of P7 (Section 3.3.1). More
precisely, to detect redundant SSTORE (P7), we need to check
the usage of SSTORE in every program path. Second, by
leveraging a theorem prover (Z3 used by GasChecker),
SE is able to determine whether two expressions are equivalent,
including the case where expressions are computed by
bitwise/arithmetic operations or even depend on inputs.
Such case is challenging to standard compiler techniques.
Therefore, SE is more suitable than standard compiler tech-
niques for detecting the gas-inefficient patterns, P4 (Section
3.2.2) and P5 (Section 3.2.3). To detect fusible loops (P4),
we need to check whether the loop bounds of two adjacent
loops are equal. SE is a rational choice to detect P4 especially
the loop bounds that are computed by bitwise/arithmetic
operations or even depend on inputs. Similarly, SE can
facilitate detecting P5 because it is able to check whether
the results of two computations in a loop are equal, even if
the results are not constants.

Moreover, SE is able to determine path feasibility, which
is also a challenge to standard compiler techniques. Hence,
SE outperforms standard compiler techniques in detecting
the gas-inefficient patterns, P1 (Section 3.1.1), P2 (Section
3.1.2) and P6 (Section 3.2.4). Since SE attempts to explore
all feasible paths, we consider any predicate with single
outcome as an opaque predicate P1, and the uncovered code
as dead code (P2) after the completion of path exploration.
Similarly, by leveraging SE, we know the results of a com-
parison in a loop under different contexts, thus SE facilitates
the detection of P6. Furthermore, our recent study discovers
that SE is capable of identifying some control flow transfers
which trouble standard compiler techniques [16]. Since
control flow information is critical to program analysis,
missing some control flow transfers may lead to inaccuracy
in detecting gas-inefficient patterns. For example, if a control
flow transfer from block A to block B is not discovered,
block B may be misidentified as dead code. Besides, if the
missed control flow transfer is the back edge of a loop, the
loop structure may not be discovered and therefore the loop-
related patterns (P3, P4, P5, P6) may be missed.

4.2 Overview

Fig. 4 shows the architecture of GasChecker, which consists
of a Master to run the Driver procedure, multiple Mappers to
run Map tasks and multiple Reducers to run Reduce tasks.
Both Mappers and Reducers are workers, and there is at least

dis CFG Map
launcher

state
replay

SE block

next
block

encode combiner

load
balancer detectordis CFG Map

launcher
load

balancer detector

state
replay

SE block

next
block

encode combiner

monitor

smart contract

report

Master

Mapper
Reducer

Fig. 4. Architecture of GasChecker
one worker. GasChecker takes in a smart contract and pro-
duces a report containing the locations of gas-inefficient pat-
terns discovered in the analyzed smart contract. Master first
disassembles the bytecode and constructs the control flow
graph (CFG) from it. CFG is a directed graph, where each
node denotes a basic block without control flow transfers
inside and each edge indicates a control flow transfer (i,e.,
unconditional jump, conditional jump). Since it is difficult
for standard compiler techniques to determine some jump
targets, we complete the CFG during path exploration. After
that, multiple Map tasks and Reduce tasks are launched.
GasChecker runs Map tasks and Reduce tasks iteratively
until all program paths have been explored or timeout.
Master collects runtime information (e.g., value of an ex-
pression, executed basic blocks) from Reducers for detecting
gas-inefficient patterns, and performance information (e.g.,
time consumption for state recovery) for improving load
balance. Mappers accept Map tasks from Master, run CFG
symbolically, and then produce new tasks if any. Mappers
recover the state, from which path exploration begins. New
tasks are encoded in bit-vectors in order to improve the
degree of parallelism by reducing network communications.
Themonitor in eachMapper records runtime information and
performance information.

Most work is completed by Mappers (e.g., path explo-
ration) and the Master (e.g., gas-inefficient code detection),
and the responsibility of Reduce tasks is to combine (i.e.,
reorganize) the outputs from Map tasks into a form that can
be easily handled by the Master and then return the results
to theMaster. For example, if two Mappers output (P1, info1)
and (P2, info2) where P and info stand for the encoded path
prefix and information collected during SE, respectively, a
Reducer combines them into ({P1, P2}, {info1, info2}). After
receiving the combined results (e.g., {P1, P2}, {info1, info2})
from Reducers, theMaster generates new Map tasks from the
first part {P1, P2}, then detects gas-inefficient patterns, and
improves load balance using the second part {info1, info2}.
We detail the key components of GasChecker in the follow-
ing sections while omitting the details for implementing a
standard SE engine. The components (in gray boxes) dis for
dissembling bytecode, CFG for constructing the control flow
graph and SE block for executing a basic block symbolically
are reused from an existing sequential SE tool, OYENTE for
detecting security bugs [17].

4.3 Task Encoding and State Recovery

Mapper receives a Map task from Master, explores the paths
of the tested smart contract, forks new states when encoun-
ters conditional jumps (i.e., JUMPI), selects an unexplored
state to execute, and outputs the unexplored states after
the Map task finishes. The state in SE contains all necessary

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 08,2020 at 09:13:29 UTC from IEEE Xplore. Restrictions apply.
2168-6750 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 08,2020 at 09:13:29 UTC from IEEE Xplore. Restrictions apply.

2168-6750 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETC.2020.2979019, IEEE
Transactions on Emerging Topics in Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

information (e.g., program counter, symbolic expressions of
all variables, constraints of the executed branches) that SE
needs, and therefore SE can start path exploration from any
states. In a decentralized environment, the Master should
tell Mappers where (i.e., which basic block) to start path
exploration and how much work should do (Section 4.5).

An intuitive way forMaster to assign tasks to a Mapper is
sending the exact state from which path exploration should
start to that Mapper. After the Mapper finishes its work,
all unexplored states are sent to Reducers. Then, Reducers
aggregate the states from all Mappers, and return the states
to the Master for subsequent iterations of Map and Reduce
routines. Although simple by design, this approach con-
sumes considerable network resources, resulting in weak
scalability when the number of workers increases.

To address this issue, we employ task encoding and
state recovery for reducing the consumption of network
resources. In particular, a Map task is represented by a
bit-vector, indicating a path prefix. The state from which
to start path exploration, can be recovered by symbolically
executing the analyzed smart contract following the path
prefix. For example, “0101” tells a Mapper to take False,
True, False, True of the first four encountered branches when
executing the analyzed smart contract, and then start path
exploration after the fourth branch. Please note that state
recovery neither check branch feasibility nor fork another
state when encountering a branch, because the path prefix
is feasible and the smart contract is executed along the path
prefix during state recovery.

After the Mapper finishes, all unexplored states are
encoded into path prefixes, indicating the paths from the
beginning of the analyzed smart contract to the unexplored
states. All path prefixes are feasible since their feasibility is
validated by previous path exploration. The advantage of
our method is that considerable network resources can be
saved by sending bit-vectors rather than states. Therefore,
compared to state transferring, our approach is more scal-
able at the expense of computing resources for state recov-
ery. To increase the utilization of the computing resources
of workers, we propose a feedback-based load balancing
strategy, which is able to reduce the proportion of CPU
resources for state recovery by dynamically adjusting the
amount of work Mappers should do (Section 4.5).

4.4 Map Task

The Map procedure is the core component to implement
SE. Beside the path prefix for state recovery and the CFG to
explore, a Map task accepts a parameter SN from the Master,
which stands for the number of EVM operations to be exe-
cuted by the Map task. Hence, by changing SN, the Master
can adjust the amount of work Mappers should do. After
launching a monitor to collect runtime and performance
information, the Mapper recovers the state from the given
path prefix. After that, the Mapper begins path exploration
until all paths have been explored or the designated amount
of tasks, i.e., SN has been finished. A Mapper will not stop
executing EVM operations until it executes a JUMPI or an
operation (e.g., STOP) for terminating the execution of the
smart contract, even if the number of executed operations
exceeds the designated amount of tasks. The rationale lies in

the fact that the Map task may not produce new Map tasks
if SE terminates in the middle of a basic block. Operations
are executed in sequence and a counter increases by 1.

When reaching a conditional jump (i.e., JUMPI), a new
state will be generated if one branch can be taken and
a new constraint will be added in the path condition,
which is stored in the new state. The Mapper will select an
unexplored state for subsequent SE. Any path exploration
algorithms (e.g., depth-first search, random search) can be
implemented in Select state() to determine the execution pri-
ority of states. In the current implementation, GasChecker
reuses the code of OYENTE for state prioritization, which
is depth-first search. After the Mapper finishes its work,
all unexplored states will be encoded into path prefixes.
Finally, the Mapper outputs path prefixes together with the
information collected during SE.

4.5 Feedback-based Load Balancing Strategy
MapReduce may result in low utilization of computing
resources, because, Mappers are independent and cannot
communicate with each other, and therefore a Mapper can-
not obtain new tasks which are generated by other Mappers
in the current iteration of MapReduce. That is, a Mapper
has to wait until all Mappers finish their jobs, and then
the Reducers process the outputs of Mappers and return the
combined data to Master. After that, Master launches new
Map tasks. Consequently, the resource utilization would be
low if some workers have to wait a long time for the other
workers to finish their jobs.

To improve resource utilization, we propose a feedback-
based load balancing strategy (FBLB), which adjusts the
amount of work that should be completed by Mappers
after each iteration. We first define two metrics to measure
the performance of Mappers. Replay ratio stands for the
proportion of time required for state recovery to the time
for running Map tasks. Obviously, the lower the replay ratio
is, the better. That is, more computing resources will be used
for path exploration. Another metric is working ratio, which
indicates the proportion of time for running tasks to the
time the worker is available. Working ratio will be low if
many workers wait for the completion of another worker.
FBLB attempts to decrease the replay ratio and increase the
working ratio. To this end, our approach limits the amount
of work a Mapper should do to SN, which is an upper
bound of the operations to be symbolically executed by
a Mapper (does not count the operations executed during
state recovery). Since there is a tradeoff between the two
ratios, we cannot simply set SN with a fixed value. Section
5.2 will show that fixing SN is not an optimal solution.

Replay ratio will be lowered by increasing SN because a
Mapper will use more time to execute more EVM operations
with a larger SN. Working ratio can also be influenced by
changing SN, however, the influence should be determined
at runtime. For example, a large SN means that a Mapper
needs a long time to finish its job, and hence the other
workers may wait for it (i.e., working ratio of the current
iteration may be low), especially in the case where workers
outnumber tasks (i.e., there are workers that have no tasks
to do at all). However, the larger SN is, the more new tasks
may be generated by Mappers, and hence working ratio in
subsequent iterations may be improved.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 08,2020 at 09:13:29 UTC from IEEE Xplore. Restrictions apply.
2168-6750 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 08,2020 at 09:13:29 UTC from IEEE Xplore. Restrictions apply.

2168-6750 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETC.2020.2979019, IEEE
Transactions on Emerging Topics in Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

FBLB adjusts the amount of work as follows. First,
GasChecker computes replay ratio (rri) and working ratio
(wri) of iteration i from the performance date collected by
the monitor of the Mapper. GasChecker increases SNi+1

from SNi if rri is higher than a threshold td. Otherwise,
GasChecker considers the adjustment of SN as a search
problem and borrows the idea of simulated annealing al-
gorithm [18] to approach the global optimal of working
ratio. In particular, if wri > wri−1 (indicating the previous
adjustment increases working ratio), we accept the previous
adjustment and adjust SNi+1 based on SNi (i.e., SNi+1 is
a neighbor around SNi). If wri < wri−1 (indicating that
the previous adjustment decreases working ratio), we accept
the adjustment with a probability defined as e(wri−wri−1)/T ,
where T is the temperature in simulated annealing. If the
previous adjustment is rejected, SNi+1 will be set based
on SNi−1. Since the simulated annealing algorithm has a
probability to accept a “bad” adjustment, our method could
escape a local optimal.

4.6 Pattern Detection
P1. During SE, GasChecker records the result of each exe-
cuted predicate. After SE, GasChecker regards a predicate
as opaque, if the predicate has only one outcome.
P2. After CFG construction, GasChecker obtains all basic
blocks of a smart contract. During SE, GasChecker records
all executed blocks. After SE, GasChecker regards a basic
block as dead, if it belongs to the smart contract but it is not
executed by SE.
P3. To detect loop-related patterns (i.e., P3 – P6),
GasChecker first identifies loops through three steps. First,
GasChecker scans the CFG to find back edges that indicate
the existence of a loop, and identifies the entry block and
exit block of a loop. We define the distance between two
blocks as the least number of edges from one block to
the other. Second, for each block, GasChecker calculates
the distance between it and the entry block as well as the
distance between it and the exit block. Finally, a block is
regarded as being in a loop if it is closer to the exit block
than to the entry block, because the block in a loop should go
through the exit block to reach the entry block. Our method
can also detect nested loops because it captures the structure
of a loop in CFG. After identifying loops, P3 detection is
simple. Technically, GasChecker scans each block in a loop
for expensive operations. The current implementation of
GasChecker can detect three expensive operations: SLOAD,
SSTORE and BALANCE. The extension to support other oper-
ations is straightforward.
P4. GasChecker first identifies two adjacent loops and then
computes their loop bounds. GasChecker considers two
adjacent loops are fusible if their loop bounds are equal.
If loop bounds are constants, it is easy to identify whether
they are equal. If their loop bounds depend on symbols, we
apply SE to determine whether they are equal. Our detection
of fusible loops may introduce false positives because we do
not consider data dependency (e.g., the second loop reads
a variable which is set in the first loop) of loops. Manual
analysis reveals that the false positive rate is low in practice
(Section 6.2).
P5. GasChecker detects P5 in third steps. First, it detects
loops by the approach described above. Second, for each

computation in a loop, GasChecker records its outcome in
each iteration of the loop during SE. Third, after SE, for
each computation in a loop, GasChecker checks whether
it results in the same outcome for every iteration. If so,
GasChecker detects a repeated computation in a loop.
P6. GasChecker detects P6 in three steps. First, it detects
loops by the approach described above. Second, it records
the outcome of each branches inside loop during SE. Third,
after SE, GasChecker detects a unilateral comparison, if the
following two conditions are satisfied. First, the comparison
produces two feasible branches, i.e., it is not an opaque
predicate (P2). Second, the comparison produces only one
outcome under the same context. Here, we define the context
as the path condition before entering the loop.
P7. GasChecker detects P7 in two steps. First, during
SE, GasChecker records the places of storage opera-
tions happened on each explored path, including SSTORE
for writing and the operations for reading (e.g., SLOAD,
BALANCE, EXTCODESIZE, EXTCODECOPY). Second, after SE,
GasChecker regards an SSTORE as redundant, if the place
written by the SSTORE can never be read in all paths. Note
that we do not consider an SSTORE is redundant, if it sets a
storage value to zero from non-zero, because such operation
clears the storage [6]. Storage clearance reclaims disk space,
so Ethereum refunds the transaction sender [6]. Therefore,
such SSTORE does not waste gas.
P8 – P10. GasChecker detects P8 – P10 in two steps. First,
GasChecker records each executed EVM operation during
SE. Second, after the exploration of each program path,
GasChecker checks whether the recorded EVM operations
contain these patterns.

5 SCALABILITY EVALUATION

In this section, we evaluate the scalability of GasChecker
by answering the following research questions.
RQ1: How is the scalability of GasChecker with the in-
crease of workers?
RQ2: How is the effectiveness of FBLB?

5.1 Scalability of GasChecker

We use the top 10 most popular smart contracts (how to
obtain smart contracts is described in Section 6.1), each of
which is involved in at least 93,038 transactions, to evaluate
the efficiency of GasChecker. By default, FBLB is turned
on, and the threshold of replay ratio and initial SN (i.e.,
SN for the first iteration of MapReduce) are set as 30% and
200, respectively. To fairly compare the time consumptions
required for analyzing contracts using different number of
workers, we first record the number of paths explored for
each analyzed contract when providing one worker. When
testing with more workers, we stop analyzing a contract if
the number of explored paths reaches the recorded number.
We rent cloud resources from Google Cloud, and each
node is equipped with 4 processors and 20GBmain memory.
Fig. 5 illustrates that the time needed for GasChecker to ac-
complish the analysis declines with the increase of workers.

We define speedup as the ratio of the time consumption
given one worker to that given N workers, and define
speedup ratio as the ratio of speedup to the number of

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 08,2020 at 09:13:29 UTC from IEEE Xplore. Restrictions apply.
2168-6750 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 08,2020 at 09:13:29 UTC from IEEE Xplore. Restrictions apply.

2168-6750 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETC.2020.2979019, IEEE
Transactions on Emerging Topics in Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

1000

2000

3000

4000

5000
T

im
e

co
ns

um
pt

io
n

Number of workers
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

2

4

6

8

10

Sp
ee

du
p

time consumption
speedup

(16,489)

Fig. 5. Time consumption and speedup with various number of workers
workers. Fig. 5 shows that GasChecker is scalable because
the speedup keeps increasing with the number of workers. In
other words, we can expect even better acceleration providing
more workers. For example, GasChecker with 16 workers
need 489 seconds to complete analysis while GasChecker
with 1 worker requires 4,377 seconds. In other words, by
leveraging 16 workers, GasChecker obtains 9x speedup
and the speedup ratio is about 56% (replay ratio is 15%,
working ratio is 69%). It is worth noting that the speedup
ratio of a practical distributed system cannot achieve 1 due
to many practical issues such as the consumptions of com-
munication, task dispatching, results collection. Moreover,
GasChecker needs to consume CPU resources for state
recovery, and there are some restrictions from MapReduce
programming model (e.g., a Mapper cannot get new tasks
directly from other Mappers), preventing full utilization
of computing resources. We will show the effectiveness of
FBLB in improving resources utilization in Section 5.2.
Answer to RQ1: GasChecker scales well with the increase
of workers.

5.2 Effectiveness of FBLB
To evaluate the effectiveness of FBLB, we turn off it and
launch GasCheckerwith fixed SN. Fig. 6 gives the execution
time for analyzing the top 10 most popular smart contracts
using different SN. We observe a downward trend and then
an upward trend with the increase of SN. To find the reason
for this observation, we draw the replay ratio in Fig. 7, and
observe that replay ratio decreases with the increase of SN.
Hence, GasChecker is inefficient with small SN, because
considerable computing resources are used for state replay.
For example, replay ratio is as high as 72% when SN is fixed
as 100. Moreover, working ratio fluctuates with the increase
of SN, and it becomes low given a large SN because some
workers do lots of work, resulting in insufficient tasks for
the other workers. For example, working ratio is as low
as 20% when SN is fixed as 2,000. Another observation is
that FBLB (489 seconds) is even better than the best result
of fixed strategy (i.e., 549 seconds with a fixed SN, 550).
The result is reasonable since our load balancing adjusts
SN in every iteration of MapReduce to improve resource
utilization while the fixed strategy uses the same SN in
every iteration.
Answer to RQ2: FBLB is effective in improving resource
utilization.

6 RESULTS OF THE EMPIRICAL STUDY

This section reports the empirical study on the gas-
inefficient patterns in the deployed smart contracts by an-
swering the following questions.

0 500 1000 1500 2000
500

1000

1500

2000

SN

T
im

e
co

ns
um

pt
io

n

(550,549)

Fig. 6. Time consumption with
different SN

500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

SN

R
at

io

replay ratio
working ratio

Fig. 7. Replay ratio and working
ratio with different SN

RQ3: What is the analysis precision of GasChecker?
RQ4: How prevalent is gas-inefficient code in the deployed
smart contracts?
RQ5: What is the difference of different compilers in terms
of producing gas-inefficient code?
RQ6: How much money can be saved if the gas-inefficient
code is optimized?

6.1 Data Set
We download all smart contracts (i.e., 599,934) that were
deployed on the public blockchain of Ethereum from the
launch of Ethereum, July 30th, 2015 to June 10th, 2017, and
then choose the representative contracts from all contracts
according to some criteria. We first describe how to obtain
all smart contracts in two steps. The first step is to collect
the addresses of all smart contracts. The second one is to get
the bytecode of contracts by invoking an API that takes in
the address of a contract. We detail the two steps as follows.

It is non-trivial to get the addresses of all smart contracts
because the address space is 220 (an address is 20 bytes),
and we cannot determine whether an address is used by
a contract only according to the address. We propose to
collect the addresses that are specified by transactions and
internal messages, because both a transaction and internal
message can deploy a smart contract. To collect the ad-
dresses of smart contracts which are deployed by trans-
actions, we instrument the function ApplyTransaction() in
\core\state processor.go of the Ethereum client, which is
responsible for executing transactions. To collect the ad-
dresses of smart contracts which are deployed by internal
messages, we instrument the handlers of all operations (i.e.,
CREATE, CALL, CALLCODE, DELEGATECALL, STATICCALL and
SELFDESTRUCT) that are able to send internal messages [6].
For each address, we download the bytecode of the smart
contract by invoking the API GetCode() provided by the
client of Ethereum3. The API returns the bytecode, or empty
if the address corresponding to an EOA or the correspond-
ing smart contract has been removed from the blockchain.
Eventually, the bytecode of 599,934 smart contracts is down-
loaded.

We select 1,500 representative smart contracts for analy-
sis from all 599,934 contracts according to the following cri-
teria. First, since we find that many contracts have identical
bytecode, we only consider contracts with unique bytecode.
Second, we include all open-source contracts. In particular,
we search open-source smart contracts in Etherscan, and
find 803 open-source contracts with unique bytecode. We
also collect the source code of those 803 contracts from
Etherscan for the comparison of different compilers (Section
6.4). Then, we choose 500 most popular smart contracts

3. Ethereum JavaScript API: https://github.com/ethereum/web3.js/

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 08,2020 at 09:13:29 UTC from IEEE Xplore. Restrictions apply.
2168-6750 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 08,2020 at 09:13:29 UTC from IEEE Xplore. Restrictions apply.

2168-6750 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETC.2020.2979019, IEEE
Transactions on Emerging Topics in Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

in terms of the number of transactions invoking smart
contracts. To count such number, we instrument the function
ApplyTransaction() because it executes transactions. Note that
the numbers of transactions sent to the contracts having
the same bytecode are accumulated to the unique contract
bytecode. Finally, we randomly select other 197 contracts.
Those 1,500 contracts are representative because they repre-
sent 114,903 contracts, which account for about 20% of all
downloaded contracts. Moreover, the top 500 most popular
contracts represent 99,385 contracts which are involved in
6,739,363 transactions. Note that among all 28,502,131 trans-
actions, 9,139,590 out of them are sent to smart contracts.
Therefore, the top 500 contracts are involved in about 74%
of the transactions sent to smart contracts.

The empirical study is conducted on 17 nodes, consisting
of 1 Master and 16 workers. By default, FBLB is turned on.
We set the timeout for analyzing each smart contract as 10
minutes. Besides, we need to set a loop bound n to control
how many times a loop can unfold; otherwise, GasChecker
may achieve low code coverage, resulting in inaccurate
detection results, because long program paths (especially
due to loops) will be explored without setting a loop bound.
Consequently, much code may remain unexecuted when
timeout. However, setting a proper loop bound is not easy,
given that we have limited time to analyze each contract.
We propose to evaluate a loop bound by the number of
basic blocks executed by GasChecker because GasChecker
should cover as many basic blocks (without considering
dead code) as possible to ensure high detection precision.
Therefore, we run GasChecker by setting various loop
bounds ranging from 1 to 10, and we find that GasChecker
covers the most basic block when the loop bound is set
to 4. More precisely, Table 2 demonstrates that there are
235,877 basic blocks of 1,500 contracts in total, and 7,532
dead blocks (as shown in Table 3) are detected. Therefore,
81.3% = 235, 877/(235, 877 + 54, 346) of basic blocks are
covered when the loop bound is set to 4. Differently, the
ratios of covered basic blocks when the loop bound is set
to 1 and 10 are 75.1% and 77.5%, respectively. Hence, we
set the loop bound to 4 by default. GasChecker allows to
adjust parameters (e.g., timeout, loop bound).

6.2 Precision Analysis

We first enumerate the possible factors in theory which
can impair the analysis precision of GasChecker, and then
analyze the causes of false positives happened in practice.

We examine the false positives manually due to the lack
of ground truth. More precisely, we randomly select and
scrutinize 100 occurrences of each gas-inefficient pattern.
Since there are only 15 instances and 99 instances of P4
and P7, respectively (see Table 3), we investigate all of
them. Consequently, we manually check 914 instances of
gas-inefficient patterns that are discovered by GasChecker.
We do not examine the false negatives because there lacks
ground truth about the exact number of gas-inefficient pat-
terns in smart contracts. Investigation shows that for P3, P5
to P7, and P8 to P10, all 699 pieces of gas-inefficient code
are not false positives. For P1, P2 and P4, the false positives
are 5, 14, and 4, respectively. Hence, the false positive
rate is 2.5% (23/914). We manually check the reasons for

54 for (uint i = 0; i < strikes_.length; i++) {
55 if (numOptions < 20) {
56 uint optionID = numOptions++;
57 options[optionID] = strikes_[i];

}
 }

Fig. 8. Misidentified opaque predicate in
a loop at Line 55

198 while(i < 4)
199 {
200 while(j < 4 …){
… //some code
204 }
205 if(hits == 0) throw;

Fig. 9. Misidentified
dead code at Line 205

274 for (i = 0; i < numAccounts; i++) {
275 pctx10 = partnerAccounts[i].pctx10;
276 maxAcctDist = totalFundsReceived * pctx10 / TENHUNDWEI;
277 if (partnerAccounts[i].credited < maxAcctDist) {
278 totalDistPctx10 += pctx10;
279 }
280 }
281 for (i = 0; i < numAccounts; i++) {
282 pctx10 = partnerAccounts[i].pctx10;
283 acctDist = distAmount * pctx10 / totalDistPctx10;
… //some code

Fig. 10. Misidentified fusible loops at Lines 274, 281

those 23 false positives, and reveal that all false positives
of P1 and P2 are due to the reason that there are some
feasible program paths which are not explored during path
exploration. Moreover, we find that all false positives of P4
are due to data dependency of loops that is not considered
by GasChecker.

Fig. 8 presents a misidentified opaque predicate
(P1) in an open-source contract which was deployed
at 0xaf0f6A53269Fc9DBbd9DA9F11c368d36B7A60006. The
variable numOptions is initialized as 0, so the outcome of
the comparison (Line 55) should be always True if the loop
count is smaller than 20. On the contrary, the outcome
of the comparison becomes False if the loop count is no
smaller than 20. However, GasChecker misidentifies the
comparison as an opaque predicate, because it unfolds the
loop (Line 54) four times. Fig. 9 presents misidentified
dead code (P2) in an open-source contract which was de-
ployed at 0x7698392fff47d8d4CeE21295aD1F31b6ced9ad66.
We keep the line numbers in the source file. GasChecker
considers Line 205 is dead code, which is a false pos-
itive. Before Line 205, there is a nested loop that the
basic blocks inside the inner loop can execute up to
16 times. However, GasChecker sets the loop bound
as four, so the program path will be terminated before
it reaches Line 205. Fig. 10 shows misidentified fusible
loops (P4) in an open-source contract which was de-
ployed at 0x61F9d1cE56aC1623eD4e949D7D420251fef0896.
GasChecker considers the two loops at Line 274 and Line
281 are fusible, because they have the same loop bounds.
Unfortunately, it is a false positive because the second loop
reads a variable totalDisPctx10 (Line 283) whose value is
computed by the first loop (Line 278). Therefore, the second
loop should be executed after the execution of the first loop
due to such data dependency.

Then, we investigate whether we can eliminate the false
positives of P1 and P2 by simply setting a larger loop bound.
Therefore, we keep all default settings but set the loop
bound to 50. Interestingly, all false positives are not removed
and the analysis of the corresponding contracts triggers
timeout. The result is accordant with the observation that
GasChecker executes fewer basic blocks when the loop
bound is set as ten than the number when the loop bound
is set as four, given the same timeout setting (Section 6.1).

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 08,2020 at 09:13:29 UTC from IEEE Xplore. Restrictions apply.
2168-6750 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 08,2020 at 09:13:29 UTC from IEEE Xplore. Restrictions apply.

2168-6750 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETC.2020.2979019, IEEE
Transactions on Emerging Topics in Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

TABLE 2
Statistics of 1,500 smart contracts

JUMP JUMPI checks

19,877 5,363,932 626,130 235,877 96,967 650,485 375,135 750,270/
41,368

Fig. 11. Number of smart contracts
containing gas-inefficient patterns

Fig. 12. Contracts with ex-
pensive operations in a loop

We then set the timeout for analyzing each contract as 300
minutes, which is 30 times longer than the default setting.
In this setting (i.e., timeout = 300m, loop bound = 50), all
false positives of P1 and P2 are eliminated, and the time
consumed by analyzing the corresponding contracts (19
contracts) is 3,842 minutes.
Answer to Q3: GasChecker produces low false positive
ratio (2.5%), which can be further reduced to 0.4% (4/914)
by setting a larger loop bound and giving longer time for
analysis.

6.3 Prevalence Analysis

Table 2 presents the statistics of the analyzed 1,500 smart
contracts. Column 1 is the number of methods which can
be invoked. Column 2 presents the overall size of those
contracts in bytes. Hence, the average size of a smart con-
tract is 3,576 bytes. The analysis is completed in 626,130
seconds (about 174 hours, column 3). Table 2 also gives the
number of executed basic blocks (column 4), the number
of explored paths (column 5), the number of unconditional
jumps (column 6), the number of conditional jumps (column
7) and the number of queries to the theorem prover, Z3. The
figure before “/” is the number of queries for identifying
branch feasibility while the figure after “/” is the number
of queries for solving the constraints for detecting P4 and
P5 (e.g., query whether two loop bounds are equal). Table
3 presents the number of dead blocks (i.e., uncovered basic
blocks), so the total number of basic blocks in 1,500 contracts
are 290,223 (235, 877+ 54, 346), and thus there are 193 basic
blocks per contract on average.

Fig. 11 shows the number of smart contracts containing
each gas-inefficient patterns. Please note that a smart con-

Fig. 13. Relationship between
the occurrence of patterns with
the size of bytecode

Fig. 14. Relationship between
the occurrence of patterns with
the # of involved transactions

tract will be counted twice if it contains two different pat-
terns. We observe that a large proportion of smart contracts
contain P1, P2 or P3. A reasonable explanation is that they
could be easily introduced in writing smart contracts and
compilers cannot eliminate all of them. We also notice that
lots of contracts contain P8, P9 and P10. A possible reason is
that such low-level and architecture-dependent patterns are
hard to be avoided by the developers of smart contracts.
Moreover, the optimizations conducted by the compilers
do not handle such low-level patterns. We evaluate the
effectiveness of the latest compiler with optimization in
reducing gas-inefficient code in Section 6.4. Fig. 12 illustrates
the numbers of different expensive operations in a loop (P3).
We find that SLOAD (803) and SSTORE (752) are more preva-
lent than BALANCE (246). Interestingly, if a loop contains
an SSTORE (752), it is likely to contain a SLOAD together
(744), but the opposite is not always true. Specifically, there
are 90 = 81 + 9 contracts (i.e., more than 10% of total
contracts containing at least one expensive operations) that
have SLOAD but no SSTORE in a loop. The result matches
the observation from Table 3 that redundant SSTORE occurs
infrequently. Furthermore, 209 smart contracts (24%) contain
three expensive operations together.

Fig. 13 shows the relationship between the size of a smart
contract and the occurrences of gas-inefficient patterns in
it. A point (x, y) in this figure indicates that there is a
smart contract of x bytes and it has y occurrences of gas-
inefficient patterns. As expected, larger smart contracts are
likely to contain more patterns. Fig. 14 depicts the relationship
between the number of transactions of a smart contract and
the occurrences of gas-inefficient patterns in it. A point (x,
y) in this figure denotes that there is a smart contract, which
is involved in x transactions and has y occurrences of gas-
inefficient patterns. Interestingly, the more popular contracts
(i.e., take part in more transactions) are less likely to contain
many gas-inefficient patterns. It may suggest that widely-used
contracts are developed by professional software vendors or
experienced programmers, and thus have better quality.

Table 3 gives the detailed results of this empirical study.
The second row presents the total occurrences of ten gas-
inefficient patterns in the 1,500 analyzed smart contracts.
The third row gives the averages. For example, five (row 3,
column 3) means that there are five opaque predicates on
average for each contract. The remaining rows concern the
803 open-source smart contracts, which will be explained in
Section 6.4.
Answer to Q4: A large proportion of smart contracts con-
tains gas-inefficient patterns. Besides, opaque predicates,
dead code, expensive operations in a loop and three low-
level patterns occur frequently per contract.

6.4 Effectiveness of Compiler in Eliminating Gas-
Inefficient Code
Developers can use different compilers (e.g., Solidity, Ser-
pent, LLL) to convert the source code of smart contracts
into EVM bytecode. Each compiler may have many different
versions with different capabilities to optimize the bytecode.
For example, Solidity has more than 350 versions whose first
version is 0.1.1, released in 20154. Developers can also turn

4. Remix: https://remix.ethereum.org/

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 08,2020 at 09:13:29 UTC from IEEE Xplore. Restrictions apply.
2168-6750 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 08,2020 at 09:13:29 UTC from IEEE Xplore. Restrictions apply.

2168-6750 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETC.2020.2979019, IEEE
Transactions on Emerging Topics in Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

TABLE 3
Number of occurrences of ten gas-inefficient patterns

Total
sum 7,532 54,346 28,192 15 182 401 99 9,238 9,810 6,464
ave 5 36.2 18.8 0.01 0.12 0.27 0.066 6.2 6.5 4.3

Open source
(original)

sum 2,083 18,269 8,688 6 68 122 20 3,403 1,821 2,406
ave 2.6 22.8 10.8 0.0075 0.085 0.15 0.025 4.2 2.3 3

Open source
(0.4.0)

sum 2,274 11,706 9,161 5 13 171 14 1,040 1,174 1,291
ave 2.8 14.6 11.4 0.0062 0.016 0.21 0.017 1.3 1.5 1.6

Open source
(0.4.4)

sum 2,274 11,699 9,153 5 13 148 13 1,034 1,118 1,283
ave 2.8 14.6 11.4 0.0062 0.016 0.18 0.016 1.3 1.4 1.6

Open source
(0.4.8)

sum 2,274 11,629 9,075 5 12 145 10 1,030 0 1,275
ave 2.8 14.5 11.3 0.0062 0.015 0.18 0.012 1.3 0 1.5

Open source
(0.4.12)

sum 2,137 11,169 8,015 4 11 145 10 1,017 0 1,243
ave 2.7 13.9 10 0.005 0.014 0.18 0.012 1.3 0 1.5

Open source
(0.4.16)

sum 2,101 10,723 7,987 4 11 57 10 1,009 0 1,240
ave 2.6 13.4 9.9 0.005 0.014 0.071 0.012 1.3 0 1.5

Open source
(0.4.19)

sum 1,861 10,646 7,929 3 11 57 10 998 0 1,212
ave 2.3 13.3 9.9 0.0037 0.014 0.071 0.012 1.2 0 1.5

Open source
(0.4.21)

sum 1,620 10,568 7,870 3 10 54 9 990 0 986
ave 2 13.2 9.8 0.0037 0.012 0.067 0.011 1.2 0 1.2

Open source
(0.4.24)

sum 1,597 10,523 7,750 3 10 54 9 987 0 981
ave 2 13.1 9.7 0.0037 0.012 0.067 0.011 1.2 0 1.2

on/off optimizations. In this section, we investigate whether
different compilers can remove gas-inefficient code.

For this experiment, we collect the bytecode as well
as the source code of 803 open-source smart contracts
from Etherscan. We term the bytecode downloaded from
Ethereum as original bytecode. Then, we use GasChecker
to detect gas-inefficient code in the original bytecode. Af-
ter that, we compile those contracts using eight different
versions of Solidity with full optimizations. We name the
produced bytecode as optimized bytecode. Then, we also
employ GasChecker to discover gas-inefficient code in opti-
mized bytecode. Finally, we compare the results of checking
original bytecode and optimized bytecode. Note that we
select Solidity, whose versions range from 0.4.0 (released on
September 6, 2016) to 0.4.24 (released on May 16, 2018) be-
cause Solidity is the most popular language for developing
Ethereum smart contracts [12], which undergoes hundreds
of upgrading. We do not select Solidity whose versions are
lower than 0.4.0 because we find that many contracts cannot
be compiled successfully by earlier versions of Solidity due
to the new features introduced in new versions.

Evaluation results are presented in row 4 to row 21 of
Table 3. The row sum gives the number of gas-inefficient
instances in 803 open-source smart contracts and the row
ave presents the average number of gas-inefficient instance
in each open-source contract. We have several observations
from the experimental results. First, the number of each gas-
inefficient instances in the contracts compiled by a newer
version is no more than that of the contracts compiled by
an older version. In other words, compilers have been im-
proved to reduce gas-inefficient code. Interestingly, P9 could
be totally eliminated since Solidity 0.4.8. Second, many gas-
inefficient code snippets still cannot be removed by recent
compilers (e.g., 0.4.24). For example, Solidity 0.4.24 leaves
987 instances of P8 which are comparable to the number
(1,040) of gas-inefficient code instances compiled by Solidity
0.4.0, which was released 20 months before (Sep. 2016).

We find several potential reasons to explain why com-
pilers cannot eliminate all gas-inefficient code. First, among
all tasks in developing compilers (e.g., introducing new
features, fixing bugs), reducing gas consumption may not

be the primary task. Second, compilers are unlikely to incor-
porate heavy-weight techniques (e.g., symbolic execution)
to optimize smart contracts because compilers need to pro-
duce bytecode quickly. Consequently, some gas-inefficient
patterns discovered by GasChecker are not identified by the
latest Solidity. For instance, compilers may feel difficult to
determine path feasibility, and hence they may leave many
gas-inefficient patterns (i.e., P1, P2, P6) in the produced
bytecode. Besides, it is non-trivial for compilers to deter-
mine whether two expressions are equivalent if those ex-
pressions are computed by bitwise/arithmetic operations or
depend on inputs, and therefore compilers may fail to detect
many instances of P4, P5. Moreover, as suggested in Section
4.1, compilers may fail to identify some control flow trans-
fers (e.g., the jump targets computed by bitwise/arithmetic
operations), which hinders thorough program optimization.
Answer to Q5: The improvement of compilers can reduce
some gas-inefficient code, but many pieces of gas-inefficient
code were still left.

6.5 Money Saved Analysis

It is interesting to present how much money can be saved
by optimizing gas-inefficient code since saving money is
the ultimate goal of detecting and optimizing gas-inefficient
code. Here, we optimize the smart contracts containing the
last three gas-inefficient patterns (i.e., gas-inefficient oper-
ation sequence: P8, P9, P10) through the following steps,
because this work focuses on the detection of gas-inefficient
code. We leave the optimization for the other seven patterns
in future work. First, based on the report produced by
GasChecker which gives the locations of all detected gas-
inefficient instances, we replace each gas-inefficient instance
with its efficient counterpart (Section 3.4). During replace-
ment, we record the new locations of the basic blocks after
the replaced code. For instance, if there is a basic block
locating at 0x40 in the bytecode and there is a piece of
gas-inefficient code SWAP1/DUP2/SWAP1 (P8) before the basic
block, the new location of the basic block should be 0x3f
because the gas-efficient counterpart is DUP1/SWAP2 which
is one byte shorter than the gas-inefficient code.

After that, we modify the jump targets of JUMP and JUMPI
which jump to the basic blocks whose locations are adjusted.
Note that a smart contract will trigger an exception if a
jump operation jumps to an incorrect location [6]. We use a
semi-automated way to modify jump targets. In particular,
we automatically search the bytecode of the code patterns
PUSHx/JUMP and PUSHx/JUMPI whose jump targets need to
be adjusted, and then change the operand of PUSHx to the
new locations. Note that in the patterns PUSHx/JUMP and
PUSHx/JUMPI, the targets of the jump operations are given
as the operands of the push operations [6]. For the jump
operations whose targets are obtained by the other fashions
(e.g., the push operation locates in a different place, the
target is computed by bitwise/arithmetic operations), we
manually modify EVM operations to ensure the correctness
of jump targets.

To evaluate the money saved in deploying the optimized
smart contracts, we deploy the original contracts and the
optimized contracts in our private Ethereum blockchain,
which is isolated from the public Ethereum blockchain, for

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 08,2020 at 09:13:29 UTC from IEEE Xplore. Restrictions apply.
2168-6750 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 08,2020 at 09:13:29 UTC from IEEE Xplore. Restrictions apply.

2168-6750 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETC.2020.2979019, IEEE
Transactions on Emerging Topics in Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

the purpose of experiments. The amount of gas consumed
for contract deployment is returned by the transaction for
deploying that contract. By comparing the gas consumption
for deploying the original contracts with that for deploying
the optimized ones, we find that 3,991,702 units of gas are
saved. Considering that gas price is about 5 × 10−8 Ether
and 1 Ether can be exchanged into around 200 USD in
September, 2019, the saved money in deploying the opti-
mized smart contracts is about 40 USD.

To evaluate the money saved in invoking the optimized
smart contracts, we first instrument the EVM and record the
execution trace for each execution of smart contracts during
synchronization with the public Ethereum blockchain. An
execution trace consists of all executed EVM operations of
a smart contract triggered by one transaction. Then, we
calculate the gas consumption for invoking the original
smart contracts by accumulating the gas cost for each ex-
ecuted EVM operation in execution traces. After that, we
replace the gas-inefficient instances in execution traces with
the gas-efficient counterparts. Then, we compute the gas
consumption for invoking the optimized smart contracts by
accumulating the gas cost for each EVM operations in the
adjusted execution traces. By comparing the gas consump-
tion for invoking the original smart contracts with that for
invoking the optimized contracts, we find that 147,908,132
units of gas are saved. Thus, the invoking of the optimized
contracts saves about 1,480 USD. Considering that there
are more than 8 million smart contracts and more than
500 million transactions in total until September 2019, and
this experiment just optimizes 1,500 smart contracts which
are involved in about 7 million transactions, the amount of
money that can be saved by optimizing all 8 million smart
contracts should be several orders of magnitude than the
amount by optimizing 1,500 smart contracts.
Answer to Q6: About 1,520 USD can be saved by optimizing
three gas-inefficient patterns in 1,500 smart contracts. We
reasonably expect significantly more money can be saved if
we optimize all deployed smart contracts to eliminate all
ten gas-inefficient patterns.

6.6 Case Studies
This section conducts case studies on 4 deployed smart
contracts covering 4 gas-inefficient patterns. For the ease
of presentation, we show open-source smart contracts and
keep their line numbers unchanged. We neither show the
practical cases of the first 3 patterns because they have
been presented in our previous position paper, nor show
last 3 patterns because they are low-level which have been
explained in Section 3.4.

6.6.1 Big: P4
Big is deployed at 0xb36ce92cad11e7a9b903531f30590ebc2e99
1ea6, which has two fusible loops at Line 97 and Line 101,
Fig. 15 (Top) respectively. By asking a theorem prover,
GasChecker can find that their loop bounds (i.e.,
category.VotesCount) are equal, though they are not constant.
though they are not constant. The first loop (Line 97) resets
totalVotes to zero, and the second loop (Line 101) checks
whether totalVotes is zero. Hence, the two loops can be
combined and the comparison at Line 102 can be removed,
as shown in Fig. 15 (Bottom).

Fig. 15. Top: two fusible loops at Line 97 and 101. Bottom: efficient
version

Fig. 16. Top: a repeated computation in a loop at Line 112. Bottom:
efficient version

6.6.2 Honestgamble: P5
Honestgamble is deployed at 0x7c4a690585e89c01aebfce188b
9bec8def9e8d, containing a repeated computation Payout id
+ number of players in a loop at Line 112, Fig. 16 (Top). Since
the two variables do not change in the loop, the computation
result is the same in each iteration. As the two variables are
in storage, the computation involves two expensive SLOAD
operations to read them into the stack. It can be optimized
by moving the comparison outside the loop, as shown in
Fig. 16 (Bottom), so that the execution number of SLOAD is
reduced from 2 × number of players to 2.

6.6.3 PassFunding: P6
PassFunding is deployed at 0x055a9c349cDC2A598439d6A45
D0A83CAd3864FDc, containing a comparison with unilat-
eral outcome (Line 1237) in a loop (Line 1225), as shown
in Fig. 17 (Top). Since the variable tokenCreation is in the
storage and changeable by other functions, its value cannot
be determined in compilation. However, tokenCreation is
never changed in the loop at Line 1225, and hence the
comparison at Line 1237 produces the same result (i.e., True
or False) in each iteration. The efficient code given in Fig. 17
(Bottom) moves the comparison outside the loop and copies
the loop body into the else block. This optimization reduces
the number of comparison from to− from+ 1 to just 1.

6.6.4 Oraclize: P7
Oraclize is deployed at 0xf05782932dBABDe1D657a5311FC3b
78db81c60E7 (Fig. 18) that has two functions with the same
name setBasePrice(), each of which has a redundant SSTORE
(Line 110 and 116), because the private variable baseprice
is never read on every feasible path in the smart contract.
Therefore, the efficient code removes the declaration and
storage operations of basePrice to save gas.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 08,2020 at 09:13:29 UTC from IEEE Xplore. Restrictions apply.
2168-6750 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 08,2020 at 09:13:29 UTC from IEEE Xplore. Restrictions apply.

2168-6750 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETC.2020.2979019, IEEE
Transactions on Emerging Topics in Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

Fig. 17. Top: a unilateral comparison at Line 1237 in a loop. Bottom:
efficient version

Fig. 18. Two redundant SSTORE at Line 110 and 116

7 THREATS TO VALIDITY

The first threat to the validity of our study results is the
inherent limitations of SE. For example, to prevent path
explosion, GasChecker unfolds the loops up to four times.
The second threat is the imprecision of the detection module
that will result in false positives, e.g., we do not consider
data dependency when detecting fusible loops. We will im-
prove the accuracy of GasChecker by leveraging advanced
analysis techniques (e.g., data dependency analysis) and
advanced techniques to process loops (e.g., loop summary)
in future work. The third threat is the representativeness of
the discovered gas-inefficient instances for the analysis of
false positives. To minimize the threat, we randomly select
100 gas-inefficient instances for each pattern. Another threat
is the representativeness of the analyzed smart contracts to
evaluate the efficiency of GasChecker. To reduce the threat,
we use the top 10 most popular contracts for evaluation.
Moreover, when evaluating GasChecker, its parameters
(e.g., default SN, the threshold of replay ratio) are set
empirically. We will try other combinations of parameters
and investigate how to set the parameters automatically in
future work. The number of workers is also a threat, because
we evaluate GasChecker on at most 16 workers. To reduce
the threat, we evaluate the scalability of GasChecker, and
find that GasChecker is scalable to the increase of workers.
Hence, we can reasonably expect a good performance of
GasChecker when it is deployed on more workers due to
its scalability. The last threat is the potential errors in our
manual analysis of false positives. To reduce the threat, we
cross-validated the results by asking three Ph.d. students to

check the reports independently.

8 RELATED WORK

8.1 Gas-Related Studies

Chen et al. propose to defend against DoS attacks of
Ethereum by adjusting gas costs dynamically [7]. By doing
so, DoS attacks exploiting under-priced EVM operations
will be terminated quickly [7]. MadMax decompiles EVM
bytecode, and then detects gas-related security problems
from the decompiled code [19]. Gastap derives the sound
gas upper bounds for all public functions of a given smart
contract, by inferring size relations, generating gas equa-
tions and solving the equations [20]. Gasol extends Gastap
by replacing multiple accesses to the same storage location
with one access [21]. GasFuzz applies feedback-directed
fuzz testing to automatically generate inputs which could
lead to a high gas consumption of contract functions [22].
Marescotti et al. leverages symbolic model checking to
compute the exact worst-case gas consumption for smart
contracts [23].

Yang et al. conduct an empirical study of gas con-
sumption, and they have several observations, including
some under-priced EVM operations that can be exploited
by DoS attacks [24]. GRuB dynamically stores data in smart
contracts or offline to reduce gas cost of data-intensive smart
contracts [25]. Zhang et al. propose a novel data structure,
so-called GEM2-Tree to substitute the original Merkle hash
tree in Ethereum to reduce gas cost [26]. SmartCheck [27]
detects 21 kinds of code issues in Ethereum smart contracts.
Two of them are related to gas-inefficient code. The first is
byte[] because it can be replaced with bytes which is cheaper.
The second is the loops with function calls inside because
repeated function invocations will result in considerable gas
consumption. GasChecker is different with SmartCheck
mainly because SmartCheck relies on the source code of
smart contracts. Unfortunately, open-source contracts only
account for less than 1% [8]. For example, since there is
no type information in EVM bytecode, it is difficult to
distinguish byte[] from bytes without the source code.

8.2 Parallel Symbolic Execution

Staats et al. propose static task partition to divide the
whole execution tree into disjoint subtrees and explore the
subtrees in parallel [28]. Their method cannot balance the
workload because the whole execution tree is unknown
before execution [28]. Other parallel SE approaches [29],
[30], [31], [32], [33], [34] partition the task dynamically, and
move workload from busy nodes to idle nodes to improve
resource utilization. However, Ibing’s work [29] cannot al-
ways achieve good balancing due to the high coordination
cost, low parallelism of tested units, and the operation
delay of shared data-structures etc. Cloud9 [30] balances
well because an idle worker can directly acquire jobs from
other busy workers, so the resources of workers can be
well utilized. SCORE [32], LCT [33], and ParSym [34] are
similar to Cloud9 in task partition and workload migration.
The major difference between those parallel SE tools [29],
[30], [32], [33], [34] and GasChecker lies in that they are
not tailored to the MapReduce framework. Hence, those

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 08,2020 at 09:13:29 UTC from IEEE Xplore. Restrictions apply.
2168-6750 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 08,2020 at 09:13:29 UTC from IEEE Xplore. Restrictions apply.

2168-6750 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETC.2020.2979019, IEEE
Transactions on Emerging Topics in Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

approaches cannot enjoy the benefits of commodity cloud
services (e.g., scalability, flexibility, and fault tolerance).

9 CONCLUSION

We identify and summarize ten gas-inefficient patterns, and
then propose and develop the system named GasChecker
to detect gas-inefficient code in the bytecode of smart con-
tracts. GasChecker is scalable to millions of smart contracts
by parallelizing SE through MapReduce. Evaluation shows
that it (1) scales well with the increase of workers; (2) FBLB
is effective in improving resource utilization; (3) produces
only a few false positives.

ACKNOWLEDGEMENT

Ting Chen is partially supported by National Natural Sci-
ence Foundation of China (61872057) and National Key
R&D Program of China (2018YFB0804100). Xiapu Luo
is partially supported by Hong Kong RGC Project (No.
152193/19E).

REFERENCES

[1] M. von Haller Gronbaek. (2016) Blockchain 2.0,
smart contracts and challenges. [Online]. Avail-
able: https://www.twobirds.com/en/news/articles/2016/uk
/blockchain-2-0--smart-contracts-and-challenges

[2] J. Kehrli. (2016) Blockchain 2.0 - from bitcoin transactions to smart
contract applications. [Online]. Available: https://www.niceidea
s.ch/roller2/badtrash/entry/blockchain-2-0-from-bitcoin

[3] A. Ruth. (2016) Why build decentralized applications:
understanding dapp. [Online]. Available: https://due.com/blog
/why-build-decentralized-applications-understanding-dapp/

[4] X. Li, J. Peng, T. Chen, X. Luo, and Q. Wen, “A survey on
the security of blockchain systems,” Future Generation Computer
Systems, 2017.

[5] S. Kalla. (2017) To the moon? blockchain’s hiring crunch could
last years. [Online]. Available: https://www.coindesk.com/moo
n-blockchains-big-hiring-crunch-last-years/

[6] G. Wood. (2017) Ethereum: A secure decentralised generalised
transaction ledger. [Online]. Available: https://bravenewcoin.c
om/assets/Whitepapers/Ethereum-A-Secure-Decentralised-Gen
eralised-Transaction-Ledger-Yellow-Paper.pdf

[7] T. Chen, X. Li, Y. Wang, J. Chen, Z. Li, X. Luo, M. H. Au, and
X. Zhang, “An adaptive gas cost mechanism for ethereum to
defend against under-priced dos attacks,” in ISPEC, 2017.

[8] M. Fröwis and R. Böhme, “In code we trust? measuring the control
flow immutability of all smart contracts deployed on ethereum,”
in DPM&CBT, 2017.

[9] T. Chen, X. Li, X. Luo, and X. Zhang, “Under-optimized smart
contracts devour your money,” in SANER, 2017.

[10] T. Chen, Y. Feng, X. Luo, X. Lin, and X. Zhang, “Cloud-based
parallel concolic execution,” in SANER, 2017.

[11] (2017) Blockchain. [Online]. Available: https://en.wikipedia.org
/wiki/Blockchain

[12] (2017) Ethereum homestead documentation. [Online]. Available:
http://www.ethdocs.org/en/latest/

[13] J. Dean and S. Ghemawa, “Mapreduce: simplified data processing
on large clusters,” Communications of the ACM, vol. 51, no. 1, pp.
107–113, 2008.

[14] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Sto-
ica, “Spark: Cluster computing with working sets,” in HotCloud.
USENIX, 2010.

[15] J. Ming, D. Xu, L. Wang, and D. Wu, “Loop: Logic-oriented opaque
predicate detection in obfuscated binary code,” in CCS, 2015.

[16] T. Chen, Z. Li, Y. Zhang, X. Luo, T. Wang, T. Hu, X. Xiao, D. Wang,
J. Huang, and X. Zhang, “A large-scale empirical study on control
flow identification of smart contracts,” in Proc. ESEM, 2019.

[17] L. Luu, D. H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making
smart contracts smarter,” in CCS, 2016.

[18] (2017) Simulated annealing. [Online]. Available: https://en.wik
ipedia.org/wiki/Simulated annealing

[19] N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, and Y. Smarag-
dakis, “Madmax: Surviving out-of-gas conditions in ethereum
smart contracts,” in OOPSLA, 2018.

[20] E. Albert, P. Gordillo, A. Rubio, and I. Sergey, “Running on fumes,”
in VECoS, 2019.

[21] E. Albert, J. Correas, P. Gordillo, G. Román-Dı́ez, and A. Rubio,
“Gasol: Gas analysis and optimization for ethereum smart con-
tracts,” in TACAS, 2020.

[22] F. Ma, Y. Fu, M. Ren, W. Sun, Z. Liu, Y. Jiang, J. Sun,
and J. Sun. (2019) Gasfuzz: Generating high gas consumption
inputs to avoid out-of-gas vulnerability. [Online]. Available:
https://arxiv.org/pdf/1910.02945.pdf

[23] M. Marescotti, M. Blicha, A. E. Hyvärinen, S. Asadi, and N. Shary-
gina, “Computing exact worst-case gas consumption for smart
contracts,” in ISoLA, 2018.

[24] R. Yang, T. Murray, P. Rimba, and U. Parampalli, “Empirically
analyzing ethereum’s gas mechanism,” in EuroS&PW, 2019.

[25] K. Li, Y. Tang, Q. Zhang, C. Xu, and J. Xu. (2019) Grub:
Gas-efficient blockchain storage via workload-adaptive data
replication. [Online]. Available: https://arxiv.org/pdf/1911.
04078v1.pdf

[26] C. Zhang, C. Xu, J. Xu, Y. Tang, and B. Choi, “Gem2-tree: A gas-
efficient structure for authenticated range queries in blockchain,”
in ICDE, 2019.

[27] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,
E. Marchenko, and Y. Alexandrov, “Smartcheck: Static analysis of
ethereum smart contracts,” in WETSEB, 2018.

[28] M. Staats and C. Pǎsǎreanu, “Parallel symbolic execution for
structural test generation,” in ISSTA, 2010.

[29] A. Ibing, “Parallel SMT-constrained symbolic execution for eclipse
cdt/codan,” in ICTSS, 2013.

[30] S. Bucur, V. Ureche, C. Zamfir, and G. Candea, “Parallel symbolic
execution for automated real-world software testing,” in EuroSys,
2011.

[31] L. Ciortea, C. Zamfir, S. Bucur, V. Chipounov, and G. Candea,
“Cloud9: a software testing service,” vol. 43, no. 4, 2010.

[32] M. Kim, Y. Kim, and G. Rothermel, “A scalable distributed con-
colic testing approach: An empirical evaluation,” in ICST, 2012.

[33] K. Kăhkănen, T. Launiainen, O. Saarikivi, J. Kauttio, K. Heljanko,
and Niemelä, “LCT: An open source concolic testing tool for java
programs,” in BYTECODE, 2011.

[34] J. Siddiqui and S. Khurshid, “Parsym: Parallel symbolic execu-
tion,” in ICSTE, 2010.

Ting Chen received his PhD degree from University of Electronic
Science and Technology of China (UESTC), China, 2013. Now he is
an Associate Professor in UESTC. His research interest focuses on
blockchain, smart contract and program analysis.

Youzheng Feng received his MS degree from UESTC. Now he serves
in Alibaba Group.

Zihao Li received his Bachelor degree from UESTC. Now he is a master
student in UESTC.

Hao Zhou is a PhD student in Hong Kong Polytechnic University.

Xiapu Luo received his PhD degree from Hong Kong Polytechnic
University. After that, he continued his research as a Postdoctoral re-
searcher in Georgia Institute of Technology. Now he is an Associate
Professor in Hong Kong Polytechnic University. His research interest
includes network measurement, mobile security and blockchain.

Xiaoqi Li is a PhD student in Hong Kong Polytechnic University.

Xiaoxiu Zhuo received his Bachelor degree from UESTC. Now he is a
master student in UESTC.

Jiachi Chen received the B.S. degree in Institute of Service Engineer-
ing, HangZhou Normal University, China in 2016. He obtained M.S
degree in Department of Computing, Hong Kong Polytechnic University,
in 2017. After that, Jiachi spent one year at the Hong Kong Polytechnic
University as a research assistant advised by Dr. Xiapu Luo. Currently,
he is a Ph.D student in Faculty of Information Technology, Monash
University, Australia.

Xiaosong Zhang received his PhD degree from UESTC, 2011, and
now he is a full professor in UESTC. His research focuses on network
security, AI security and blockchain security.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 08,2020 at 09:13:29 UTC from IEEE Xplore. Restrictions apply.
2168-6750 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 08,2020 at 09:13:29 UTC from IEEE Xplore. Restrictions apply.

