IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Received 21 August 2019; revised 30 March 2020; accepted 30 March 2020.
Date of publication 22 April 2020; date of current version 4 March 2022.

Digital Object Identifier 10.1109/TETC.2020.2986487

Incremental Checkpointing for Fault-Tolerant Stream
Processing Systems: A Data Structure Approach

CHIA-YU LIN*, (Member, IEEE), LI-CHUN WANG

, (Fellow, IEEE), AND SHU-PING CHANG, (Member, IEEE)

C.-Y Lin and L.-C Wang are with the Department of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan
S.-P. Chang is with the IBM T.J. Watson Research Center, Yorktown Heights NY 10598, USA

CORRESPONDING AUTHOR: L.-C. WANG (Email: lichun@g2.nctu.edu.tw)

ABSTRACT As the demand of high-speed stream processing grows, in-memory databases are widely used
to analyze streaming data. It is challenging for in-memory systems to meet the requirements of high through-
put and data persistence at the same time since data are not stored in disks. ARIES logging and command log-
ging are two popular logging methods. In current applications, both ARIES logging and command logging
are necessary. However, no checkpointing mechanism includes both the functions of ARIES logging method
and command logging method. Besides, adopting ARIES logging method in an in-memory database creates
high overhead. Command logging records redundant commands and has high storage cost. To address the
above issues, we utilize order-irrelevant characteristics of data structure and incremental checkpointing con-
cepts to devise a data structure based incremental checkpointing (DSIC) mechanism. DSIC mechanism is a
very low overhead checkpointing approach while retaining the features of ARIES logging and command log-
ging. DSIC mechanism reduces more than 70 percent logging time of the existing logging scheme and saves
40 percent storage costs of the existing logging scheme.

INDEX TERMS Stream processing systems, incremental checkpointing, in-memory databases, key-value stores

. INTRODUCTION

Streaming data technology has generated great interest due to
the growing demands for rapid analysis. Streaming data are
collected in real-time through sensors, GPS, social media
activities, and e-Commerce, etc. Deriving accurate insights
in the context in which these streaming data are created can
exceed the market share that your competitors have not yet
identified. Hence, real-time streaming data analysis is
expected to create new services and improve decision mak-
ing [1], [2].

To achieve real-time analysis, streaming data are analyzed
and stored in the in-memory systems [3]. For example,
autonomous cars collect and analyze traffic data in the in-
memory system to provide passengers an efficient and safer
transportation environment [4], [S]. The route of autonomous
electric buses are recorded in memory to predict power-
saving routing and charging locations in real-time [6]. Since
data are not stored in disks, it is challenging for in-memory
systems to meet the requirements of high throughput and
data persistence at the same time. Fault tolerance is critical
when streaming operators crash and result in data loss [7],
[8], [9]. Snapshot and log-based methods are common data

persistence and recovery models for in-memory databases
[10]. Compared to the snapshot approaches, log-based meth-
ods are more popular. In [11], ARIES logging method
recorded how transactions update tuples and was the most
widely used logging method. High overhead was incurred by
ARIES logging method since all the transactions were proc-
essed rapidly in the in-memory databases. To reduce the
logging overhead, a command logging method [12] was pro-
posed to only record the transactions. Command logging
resulted in low recovery performance since it fully replayed
transactions and lacked parallel recovery in distributed
systems [13]. Thus, [14] proposed a distributed command
logging method by generating a dependency graph to iden-
tify the dependency relationship between commands. How-
ever, many unnecessary commands were still logged in [14]
and had big storage cost. For example, adding ifem; to a set
and removing item; from the same set could be offset. Add-
ing item; twice to a set could be regarded as one ADD opera-
tion. The redundant commands intensively increased the
recovery time and storage cost of command logging method.

In current applications, both ARIES logging and command
logging are necessary. For example, autonomous electrical

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see

124 https://creativecommons.org/licenses/by/4.0/

VOLUME 10, NO. 1, JAN.-MAR. 2022

https://orcid.org/0000-0002-5106-7286
https://orcid.org/0000-0002-5106-7286
https://orcid.org/0000-0002-5106-7286
https://orcid.org/0000-0002-5106-7286
https://orcid.org/0000-0002-5106-7286
https://orcid.org/0000-0002-7883-6217
https://orcid.org/0000-0002-7883-6217
https://orcid.org/0000-0002-7883-6217
https://orcid.org/0000-0002-7883-6217
https://orcid.org/0000-0002-7883-6217

Lin et al.: Incremental Checkpointing for Fault-Tolerant Stream Processing Systems: A Data Structure Approach

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

buses need ARIES logging to retrieve the latest status of bus.
On the other hand, autonomous electrical buses need to replay
the routing events to find out the reasons of the accident. How-
ever, no checkpointing mechanism includes both the features
of ARIES logging method and command logging method. In
addition, the high overhead of ARIES logging method and the
redundant commands of command logging method have a
great impact on system performance.

In this paper, we propose a data structure based incremen-
tal checkpointing (DSIC) mechanism to provide an efficient
checkpointing process while preserving the functionalities of
ARIES logging method and command logging method for
in-memory databases. In DSIC mechanism, we utilize the
order-irrelevant characteristics of sets to check the validity of
commands and remove redundant commands. The storage
cost and logging time of DSIC mechanism can be intensively
reduced. Besides, an undo incremental checkpointing on set
scheme (DSIC-undo) and a redo incremental checkpointing
on set scheme (DSIC-redo) are designed to retrieve the latest
status in real-time and to replay commands. DSIC-undo and
DSIC-redo schemes can be switched between each other and
replay to a specific state.

The contributions of DSIC mechanism are as follows:

e DSIC mechanism reduces more than 70 percent logging

time of the existing logging scheme.

e DSIC mechanism saves 40 percent storage costs of the
existing logging scheme.

e DSIC mechanism is designed based on the existing
key-value store application programming interfaces
(API) to address the hardware support issues. The pro-
posed techniques do not require changes in database
codes.

e The checkpointing techniques of DSIC mechanism can
be adaptive for read- and write-intensive streaming
applications.

The rest of this paper is organized as follows. Section II
describes the related works for checkpointing techniques.
Section III details the proposed data structure based incre-
mental checkpointing (DSIC) mechanism. Section IV dem-
onstrates the experimental results of DSIC mechanism. We
give our concluding remarks in Section V.

Il. RELATED WORK

In stream processing systems, different fault tolerance techni-
ques have been proposed in the past to solve the challenges
of data reliability and short recovery time [15], [16]. In [17],
the authors logged the entire operator state of streaming
applications into Distributed File System (DFS) such as Goo-
gle File System (GFS) and Hadoop Distributed File System
(HDES). [18] logged updated data and periodically generated
checkpoints to reduce the size of the log file. When a failure
occurred, the latest checkpoint state was loaded and the logs
were replayed. [19] split the operator states into multiple
parts to incrementally update operator states. To dynamically
scale out and restore stateful operators, [20] performed the
explicit operator state management by externalizing internal

VOLUME 10, NO. 1, JAN.-MAR. 2022

operator states. Most studies only focused on replicating
operator states on disks. In-memory databases are now com-
monly adopted as auxiliary tools in streaming applications.
Streaming data are written into in-memory databases when
multiple operators share states [21] or the state of operators
is big. Thus, the replication of in-memory databases with
operator states becomes important.

Data replication and data persistence were two methods to
keep data safe for in-memory databases such as Redis [22],
[23], Memcached [24], MongoDB [25] and so on. [26], [27],
[28], [29], [30] adopted data replication techniques to
achieve fault tolerance. In [26], a standby replicated node
would take over the role of the primary node in the event of a
failure. [27] partitioned Redis data of the master server to
slave servers. The recovery process efficiently replicated data
from various slave servers. [28] designed a master-slave
semi synchronization scheme. The scheme recorded the full
replication of data on slave nodes and reduced the influence
on the performance of Redis by TCP protocol. [29] devel-
oped a value identifier vector and a dictionary log for col-
umn-oriented in-memory databases. A transaction with the
corresponding column of the in-memory database was added
to the value identifier vector and the dictionary log of the
slave node. [30] proposed MemEC, which was an erasure-
coding based key-value store. MemEC encoded objects
including keys, values, and metadata through a new fully
encoded data model to achieve low data access latency and
fast recovery from in-memory storage servers. In data repli-
cation technology, computational performance and reliability
were trade-offs since it took a long time to fully replicate
data.

Snapshots and log-based approaches were two data persis-
tence models [10]. Based on snapshots and log-based
approaches, Redis designed RDB persistence and AOF per-
sistence. RDB persistence executed point-in-time snapshots
of dataset. AOF persistence logged each WRITE operation
received by the server [31]. To avoid data loss, [32] often
wrote RDB to storage class memory (SCM) and recorded
updated items in SCM via AOF file. In contrast, log-based
approaches were more popular than snapshot approaches.
The most widely used logging method was ARIES logging
method [11]. ARIES logging method recorded how transac-
tions updated tuples. [33] used a sequential log in persistent
storage to maintain checkpoints for key-value pairs. How-
ever, adopting ARIES logging method in an in-memory data-
base created high overhead because all transactions are
processed quickly in memory.

To reduce logging overhead, a command logging method
[12] was proposed to only record the transactions. Compared
to ARIES logging method, the command logging method
compressed log information to reduce the I/O cost of storing
logs into disks. However, in recovering process, command
logging method seriously fully replayed transactions instead
of executing in parallel and resulted in long recovery time.
To improve the performance of command logging, [14] pro-
posed a distributed command logging method by identifying

125

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Lin et al.: Incremental Checkpointing for Fault-Tolerant Stream Processing Systems: A Data Structure Approach

TABLE 1. Notations of DSIC-undo and DSIC-redo schemes.

Current
State

‘ Operation Command

Notations Meaning 1 T SADD(K,{1,2,3,...,99})
T Current state. Key-Value Store (Key,Value)
17;_ I ¥EZ Eg]v(l)(;li}sles?éﬁ' Metadata File Base Set
M The number of members K > Kg ‘ Kg ‘ {1,2,3,...99} ‘
we add/remove to the set. ;
(K, member;_y) The key-value pair > Kyp Checkpoint Log
we add/remove to the set. - ‘ Ka 1 ‘ {} ‘
Kp The key of the base set. —
Kar The key of the add set at state T. RT ‘ Kr ‘ 0 ‘
Kr 1 The key of the remove set at state T —
Sg The base set.
Sar The add set of state T . .
Skr The remove set of state T. FIGURE 1. An example of creating the base set in DSIC-undo
N The number of ADD/REMOVE operations scheme.
between two checkpoints.
Sizep Size of base set.

the dependencies between commands. However, since many
redundant commands were still logged and replayed in [14],
the cost of recovery process significantly increased.

Current applications need ARIES logging method and
command logging method at the same time. For example,
autonomous electrical buses can adopt ARIES logging to
retrieve the latest status of bus and provide real-time deci-
sions. They can also utilize command logging method to find
out the reasons of an accident by replaying the routing
events. However, there is no checkpointing mechanism
which includes both functions of ARIES logging method and
command logging method. In addition, ARIES logging has
high overhead. Command logging records redundant com-
mands and has high storage cost.

In this paper, we want to improve the performance of
checkpointing while retaining the functionalities of both
ARIES logging and command logging. We propose a data
structure based incremental checkpointing (DSIC) mecha-
nism by utilizing the features of data structures such as set
and incremental checkpointing techniques [34], [35], which
can only log changed data, to reduce the amount of data in
each checkpoint. The detail of DSIC mechanism will be
introduced in the following sections.

lll. DATA STRUCTURE BASED INCREMENTAL
CHECKPOINTING MECHANISM

In the proposed data structure based incremental checkpoint-
ing (DSIC) mechanism, the metadata file, checkpoint logs
and the base set are three basic components defined in the in-
memory database, which is a key-value store. In the metadata
file, a mapping file between the original key and the extended
key is stored. In checkpoint logs, the add sets and the remove
sets are generated to record the added and removed value in
each state, respectively. The base set records all members in
the set. If the base set is updated in each operation and the
latest base set is loaded to “undo” the operations in the roll-
back process, it is DSIC-undo scheme. Since the mainte-
nance of the latest base set makes the storage requirements

126

for DSIC-undo scheme increase, DSIC-redo scheme is pro-
posed. In each operation, the system only updates the modi-
fied values in the add set and the remove set. During the
rollback procedure, the system “re-does” the operations on
the base set.
The most common set operations as following are demon-
strated in DSIC-undo and DSIC-redo schemes:
e SADD: Add one or more members to the set of the key.
e SREM: Remove one or more members from the set of
the key.
o SISMEMBER: Determine whether a given value is a
member of the set of the key.
e SCARD: Retrieve the number of members in the set of
the key.
e CHECKPOINT: Change the state of the store.
e ROLLBACK: Restore the data to a previous state.
Notations of DSIC-undo and DSIC-redo schemes are
shown in Table 1. In the initial step of state 7, the mapping
between the new key (K), the key of the base set (Kg), the
key of the add set (K4_r), and the key of the remove set
(Kg_7) are created in the metadata file. The base set (Sp), the
add set (S5 1) and the remove set (Sg_r) of state T are also
generated in checkpoint logs. When the members are initially
added to the set of key K, the members are added to Sg, as
shown in Figure 1.

A. DSIC-UNDO SCHEME

In DSIC-undo scheme, the system not only logs the opera-
tions in the add set and the remove set, but also updates the
base set.

1) SADD

Algorithm 1 shows the process of adding (K, member;) in
DSIC-undo scheme. A loop is used to update member;
one by one in Sp, Si_r, and Sg_r of key K. In the loop,
member; is added to Sp. If the member is not in Sz before
SADD operation, Sg_r is used to check whether the member
is in it. If the member is in Sg 7, the member is removed
from Si 7. Otherwise, the member is added to S4_7. The time
complexity of an add operation in the in-memory database is

VOLUME 10, NO. 1, JAN.-MAR. 2022

Lin et al.: Incremental Checkpointing for Fault-Tolerant Stream Processing Systems: A Data Structure Approach

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Command Current ‘ Operation Command The process in key-value
Order State store

1 T SADD(K,100) 00

2 SADD(K,100)

3 SREM(K,99) 00

4 SADD(K,99) (5Y6)

Key-Value Store: Initial Status Key-Value Store: Command 1_SADD(K,100)

Metadata File

Metadata File Base Set Base Set

1
K> Ko | [Ks [(1:23,..99) K=K |l [(123..90.100
W Checkpoint Log m Chckpoint Log
’E’()—‘ . [Ka_r [1100}
> K -

4

Key-Value Store: Command 2 SADD(K,100) (Redundant)

Key-Value Store: Command 3 SREM(K,99) Key-Value Store: Command 4 SADD(K,99)

Base Set

Base Set

Metadata File Metadata File

3. 5
K-> Kg {1,2,3,“.,100 K-> Kg (1,2,3,...99,100)
| Checkpoint Log 0 Checkpoint Log
-> Kar |:|’> > Kar
[Kar [t1003 [[Je1003
- 4 4

FIGURE 2. An example of executing SADD and SREM in DSIC-
undo scheme.

O(N), where N is the number of members added to the set.
Therefore, the time complexity of a SADD operation is
O(N) + O(N) = O(N).

Algorithm 1. SADD of DSIC-Undo Scheme

procedure SADD(K, member;_)
1: i+ 1
2: fori < M+ 1do
3: Add member; to Sp

4: r « return value of ADD operation to base set
5: ifr == 1 then
6: if member; € Sg_r do
7: Remove member; from Sg 1
8: else
9: Add member; 10 S4 1
10: end if
11: endif
12 i+ i+1
13: end for

end procedure

2) SREM
The SREM procedure is similar to the SADD procedure, as
shown in Algorithm 2. The member; is first removed from
Sp. If the member; is in Sp before the SREM operation, the
member; is removed from S, 7 or added to Si 7. The time
complexity of a remove operation in the in-memory database
is O(N), where N is the number of members removed from
the set. Therefore, the time complexity of a SREM operation
is O(N) + O(N) = O(N).

Figure 2 shows the examples of SADD and SREM opera-
tions. Initially, Sp contains 1,2,3,...99. When the first

VOLUME 10, NO. 1, JAN.-MAR. 2022

Command Current | Operation Command Return Value
Order State
1 T+1 SISMEMBER(K,99) FALSE “--1
2 SCARD(K) 100 ['J:
Key-Value Store (Key,Value) E
Metadata File Base Set E
K - Kg 3 {123,..98,100,101)
> Kar Checkpoint Log
- Kar | (100} |
. Ker {99} |
> Ka e
K (101} |
> Ky ‘KR_T+ i ‘) ‘

FIGURE 3. An example of executing SISMEMBER and SCARD in
DSIC-undo scheme.

SADD(K, 100) is requested, 100 is added to the base set and
the add set. In the second command, 100 is added again.
Since 100 is already in the base set, the updating processes
in the remove set and the add set are not executed. 99 is
requested to remove from the set in the third command. 99 is
removed from the base set and added to the remove set.
When SADD(K,99) is executed, 99 is added to the base set
and removed from the remove set.

Algorithm 2. SREM of DSIC-Undo Scheme

procedure SREM(K, member;)
1: i+ 1
2: fori < M+ 1do
3: Remove member; from Sp

4: r « return value of base set REMOVE operation
5. ifr == 1 then
6: if member; € Sy_r then
7: Remove member; from S4 1
8: else
9: Add member; to Sg_r
10: end if
11: end if
12 i+—i+1
13: end for

end procedure

3) SISMEMBER AND SCARD

In addition to ADD/REMOVE operations, READ operations
are common. The READ operation of set is using “SISMEM-
BER” to read an element or using “SCARD” to get the size
of a set. Since the base set is maintained as the latest set, SIS-
MEMBER and SCARD can directly utilize base set to get
the information, as shown in Figure 3. When 99 is read in
state T + 1, the base set is checked. Since 99 is not in S,
“FALSE” is returned to the user. The time complexity of a
read operation in the in-memory database is O(1). Therefore,
the time complexity of using the base set to finish a SIS-
MEMBER or a SCARD operation is O(1).

127

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Lin et al.: Incremental Checkpointing for Fault-Tolerant Stream Processing Systems: A Data Structure Approach

Command ‘Current ‘Operation Command | The process in Command | Current | Operation The process in
Order State key-value store Order State |Command key-value store
1 T SADD(K,100) 1 T SADD(K,100)
2 SREM(K,99) 2 SREM(K,99)
3 Checkpoint 00 3 Checkpoint
2 s 4 T+1 | SADD(K,99)
Key-Value Store (Key,Value) 6 Rollback o e e
Metadata File Base Set 7 T
K > Kg ‘ Kq ‘ {1,2,3,...98, 100 } ‘ Key-Value Store (Key,Value)
> Kt Checkpoint Log Metadata File Base Set
- ->
Kar | (100} | & Ke IKB ‘ {1,2,3,...,98.99, 100}‘
> Kgr
’KR—T ‘ {99} ‘ > Kyt Checkpoint Log
> K " -
AT Knrwr | (3 | Kar [(100 |
- > Krr
> Kg 141 CTKR_M ’ 0 ‘ - Ker |{99}
> K (2
SE Ra_T+1 ‘ 1997

FIGURE 4. An example of executing checkpoint in DSIC-undo
scheme. KR_T+1 KR_T+1 3

4) CHECKPOINT

In state 7, SADD and SREM are executed. The base set is
updated in the SADD and SREM procedures. When a check-
point is established, the state becomes 7 + 1. The add set
and the remove set of state T + 1 are created, as shown in
Figure 4. The base set remains the same as the previous step.
The time complexity of CHECKPOINT process is O(1).

Algorithm 3. ROLLBACK of DSIC-Undo Scheme

procedure Rollback
1: member|] — The members of S4_z

: for i < The size of Sy_r,1 do
Remove member|i] from S
: end for
: member|| — The members of Sg_7.
: for i < The size of Sg_r41 do
Add member]i] from Sp
: end for

9: Delete Sa_r11

10: Delete Sg_741

11: current state «— T
end procedure

5) ROLLBACK

In a system failure event, we can “undo” the operations by
checkpoint logs. Algorithm 3 shows the four steps of the roll-
back procedure from state T + 1 to state 7. The first step is to
remove the members of S4_7. from Sp. The time complexity
is O(N), where N is the number of members removed from
the set. 99 is removed from the base set in Figure 5. The
members of Sg_r4; are added to Sp in the second step. The
time complexity is O(N), where N is the number of members
added to the set. Sq_7+1 and Sg_74; are deleted in the third
step. The time complexity is O(N), where N is the number of

128

FIGURE 5. An example of executing ROLLBACK in DSIC-undo
scheme.

sets to delete. Finally, the current state changes to 7. After
the undo operations is completed, the base set is the latest
version in state 7. The total time complexity of a rollback
operation is O(N) + O(N) + O(N) = O(N).

Since the base set is maintained as the latest set, the READ
operation such as SISMEMBER and SCARD can be directly
operated on the base set, thereby reducing the computational
complexity of the READ operation. That is, DSIC-undo
scheme is well-suited for read-intensive streaming applica-
tions. However, maintaining large and latest base set requires
not only additional storage but also an additional step to
update checkpoint logs. The checkpoint time and storage costs
increase. Therefore, DSIC-redo scheme is proposed to reduce
the storage cost and the complexity of checkpointing process.

B. DSIC-REDO SCHEME

In DSIC-redo scheme, the base set contains the initial mem-
bers of the current state instead of being updated in every
operation. Since the members in the base set are not the latest
members, we can not check whether a member is in the set or
not. Therefore, we must record every modified member in
both add set and the remove set.

1) SADD

Algorithm 4 is the SADD procedure. The added members are
removed from Sk_r and added to S4_7. The time complexity
of an add/remove operation in the in-memory database is
O(N), where N is the number of members added to/removed
from the set. Therefore, the time complexity of a SADD
operation is O(N) + O(N) = O(N).

VOLUME 10, NO. 1, JAN.-MAR. 2022

Lin et al.: Incremental Checkpointing for Fault-Tolerant Stream Processing Systems: A Data Structure Approach

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Return Value

Command |Current |Operation Command

The process in

Command Current ‘ Operation Command The process in key-value
Order State store

1 T SADD(K,100) (1)

2 SREM(K,99) (2)

3 SADD(K,99) 00

Key-Value Store: Initial Status
Metadata File Base Set

Key-Value Store: Command 1 SADD(K,100)
Metadata File Base Set

K-> Ke lKE ‘ (1,23,..99} K-> Kq (123,..99}
Checkpoint Lo 0 Checkpoint Lot
> Kur p g o p 9

> K R
7 Brr ‘ Ker | {} g KR'T KR_T

Key-Value Store: Command 2 SREM(K,99) Key-Value Store: Command 3 SADD(K,99)

~
g

Metadata File Base Set Metadata File Base Set
{1,23,...99} K-> Ke | - {1,2,3,..99}
Checkpoint Log T Checkpoint Log
|:'> - AT |
‘KU {100} - Kat @99,100)
2 B 3
e {! %) > KR ey

FIGURE 6. An example of executing SADD and SREM in DSIC-
redo scheme.

Algorithm 4. SADD of DSIC-Redo Scheme

procedure SADD(K , member;_)
i1

2: fori < M+ 1do

3: if member; € Sg_r then

4: Remove member; from Sg_r
5: endif

6: Add member; 10 Sy 1

70 i—i+1

8: end for

end procedure

Algorithm 5. SREM of DSIC-Redo Scheme

procedure SREM(K, member;_)
l: i+ 1

2: fori < M+ 1do

3: if member; € S,_r then

4 Remove member; from Sy r
5: endif

6: Add member; to Sg_1

7. i+—i+1

8: end for

end procedure

2) SREM

Algorithm 5 presents the SREM procedure. When the SREM
operation is performed, the members are removed from Sy_7
and added to Sg_r. The time complexity of an add/remove
operation in the in-memory database is O(N), where N is
the number of members added to/removed from the set.
Therefore, the time complexity of a SREM operation is
O(N) + O(N) = O(N).

VOLUME 10, NO. 1, JAN.-MAR. 2022

Order State key-value store
1 T+ SISMEMBER(K,101) (1) TRUE
2 SISMEMBER(K,99) |@®© FALSE
3 SISMEMBERK,)) | ©OOBO® TRUE
Key-Value Store: Current Status Command 1 SISMEMBER(K,101)
Metadata File Base Set Metadata File Base Set
K-> Ke {123,..99} K-> Ky (123,..99}
-> Kar Checkpoint Log I:> > Kat Checkpoint Log
| [[G
> Kpr > Krt
Ker | {99} {99}
-> Kp 141 -> Ka 141 1
Ka 141 | {101} Ka 141 [{101}
-> Ky 14 > Kg 1+

Command 2 SISMEMBER(K,99) Command 3 SISMEMBER(K,1)
Metadata File Base Set Metadata File Base Set
K-> K {123,..99} K-> Kg { 1,23,..99}
> Kat Checkpoint Log > Kat Checkpoint Log
— [Ker [100} B -KU Or100y
> Krr E> > Kpr 5
Kt | {99} Ker 7199}
-> K 141 . -> K 141 A
Ka 141 [{101} Ka 1.1] {101}
> Kg 1s > Kg 14

FIGURE 7. An example of executing SISMEMBER in DSIC-redo
scheme.

Figure 6 is an example of the SADD and SREM process.
In the first command, 100 is added to the add set. When 99 is
requested to remove from the set of key K, 99 is added to the
remove set. When 99 is added again to the set, 99 is removed
from the remove set and added to the add set.

3) SISMEMBER
Algorithm 6 shows SISMEMBER process. Since the base set
contains the initial members of the current state, we have to
check remove set (Sg_r), add set (Sx_r) and base set (Sg) in
order to see if the member is in the set or not. Sg_7 records the
members removed from the set of key K in state 7. Thus, Sg_r
is checked first. If the specified member is in Sg_r, “FALSE”
is returned to the user. Otherwise, S4 7 is checked. S4 1
records the members added to the set of key K in state 7. If the
member is in S4_7, “TRUE” is returned to user. If the value is
neither in Sy_7 nor Sk 7 of state T, we check the add set and
the remove set of state T — 1 to state 1. If we still can not find
the member in the add set and the remove set of any states, we
will check Sg. “TRUE” is returned to the user, if the member
is found in Sp; otherwise, it returns “FALSE.” The time com-
plexity of a read operation in the in-memory database is O(1).
Therefore, the time complexity of a SISMEMBER operation
is C = O(1), where C is the number of sets we need to check.
Figure 7 is an example of SISMEMBER procedure. 101 is
found in the add set of state T + 1, and returns “TRUE.” 99
is not in the add set and the remove set of state T + 1, but 99
is in the remove set of state T. Thus, 99 is removed in state
T + 1. “FALSE” is returned to the user. 1 is not found in the

129

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Lin et al.: Incremental Checkpointing for Fault-Tolerant Stream Processing Systems: A Data Structure Approach

(a) Method 1

Add Set_statel (1M)
Add Set_state2 (1M)
Add Set_state3 (1M)

L

L

o

+
(b) Method 2

e

==

=

=

Base Set_new (21M)

Base Set (20M) -
Base Set_new (21M) [
-

L}

-

-

Base Set_new (22M)

Base Set_new (22M)
Base Set_new (23M)

Add Set_state2 (1M)
Add Set_state4 (1M)

Add Set_union_2 (2M)

FIGURE 8. Two methods of rollback procedure.

Base Set_new (23M)

Base Set_new (24M)

Add Set_union_1 (2M)

Add Set_statel (1M)
Add Set_state3 (1M)
Add Set_union_1 (1M)

Add Set_union_3 (4M)

Add Set_union_2 (2M)

Add Set_union_3 (4M)

Base Set_new (24M)

add set and the remove set of any states but 1 is found in the
base set. That is, 1 is in the set of key K.

Algorithm 6. SISMEMBER of DSIC-Redo Scheme

function STSMEMBER(K, member)
1: QT
2: for Q > Odo
3: if member € Sg_o then
4 return FALSE
5: endif
6: if member € Sy_p then
7
8

return TRUE

: endif
99 Q0+—0-1
10: end for

11: if member € Sp then
12: return TRUE

13: else

14: return FALSE

15: end if

end function

4) CHECKPOINT
The CHECKPOINT operation of DSIC-redo scheme is same
as that of the DSIC-undo scheme. The state becomes 7 + 1
after a checkpoint. The add set and the remove set of state
T + 1 are created.

5) SCARD

In addition to SISMEMBER process, SCARD operation,
which finds the size of the set, is also complex. Since we do
not maintain the latest base set, the members of the add set
might be a duplicate member in the base set. We can not sim-
ply summarize the size of the add sets and subtract the size of
the remove sets to get the answer. We must combine the base
set with the add set and the remove set of every state to gen-
erate a new base set. The size of new base set is replied to
the user. The combination step is same as rollback step,
which is described in detail in the next subsection.

6) ROLLBACK
In DSIC-redo mechanism, we record the add set and the
remove set of every state. Thus, we can choose to rollback to

130

ADD one million data

CHECKPOINT

| ADD and CHECKPOINT pair

ADD one million data execute 10 times

CHECKPOINT

ROLLBACK

ADD one million data

CHECKPOINT

| ADD and CHECKPOINT pair

ADD one million data execute 10 times

CHECKPOINT

ROLLBACK

FIGURE 9. Experiment steps for comparing execution time of dif-
ferent ROLLBACK methods.

specific state. Assume we want to rollback to state P, which
is a state before current state 7. We calculate the union of the
base set with the add sets from state P,P+ 1,P +2... to
state 7. After generating the new union set, we determine the
difference between the new union set and the remove sets
from state P to state 7.

There are two methods to calculate the latest base set. In
method 1, the base set is used in each step to calculate the
union, as shown in Figure 8(a). Suppose the checkpoint logs
contain the log from state 1 to state 4. There are 20 million
members in the base set and there are one million members
in each add set. At first, we calculate the union of the add set
of state 1 and the base set to get the new base set Sp_pe-
There are 21 million members in Setg_ . In the following
steps, we use Setp ., to get the union set with the add sets
of state 2 to state 4. In method 1, the total number of mem-
bers processed in the union operation is 90 million. In
method 2, add sets of each state are used to calculate the new
union set. In the final step, the latest new union set is calcu-
lated with the base set to get the final union set, as shown in
Figure 8(b). The total number of members processed in the
union operations of method 2 is 32 million. Since the time
complexity of union operation is O(N), where N is the total
number of elements in all given sets, the time complexity of
method 2 is much lower than method 1.

We also conduct an experiment to compare the execution
time of methods 1 and method 2. Figure 9 illustrates the steps
of the experiment. First, we add one million members to the
set and generate a checkpoint after the ADD operation. A
rollback procedure is operated after the ADD operation and
the CHECKPOINT operation are repeated ten times. We exe-
cute rollback procedure two times to measure the execution
time. In Figure 10, we can see that the execution time of
method 1 in the first rollback process is about 1.8 times

VOLUME 10, NO. 1, JAN.-MAR. 2022

Lin et al.: Incremental Checkpointing for Fault-Tolerant Stream Processing Systems: A Data Structure Approach

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

100000

m Method 1

90000 86920

80000 Method 2
70000
60000
50000

40000

Execution Time (ms)

30291

30000 25305

20000 17045

10000
0

The first rollback
process

The second rollback
process

Rollback Process

FIGURE 10. Execution time of different ROLLBACK methods.

execution time of method 2. In the second rollback process,
the execution time of method 1 is about 4 times execution
time of method 2. That is, if the system executes rollback pro-
cesses multiple times, method 2 can achieve better perfor-
mance. Method 2 is chosen to implement in the rollback
procedure of DSIC-redo scheme, as shown in Algorithm 7.
The time complexity of a union/difference operation is O(N),
where N is the total number of elements in all given sets.
Therefore, the time complexity of a rollback operation is
C % O(N), C is the number of union and difference operations.

Algorithm 7. ROLLBACK of DSIC-Redo Scheme

1: P < The earliest state (P # T — 1)
2: The state of the checkpoint log records from P to T
procedure Combine
3: Sa_new < Sa_p
4: SR_new — SR_P
5: while S, ., does not contain all members of S, from P
toT —1do
S4_new < The union of all Sy from Pto T — 1
Delete S4 fromPto T — 1
: end while
: while Si_,,.,, does not contain all members of Si from P
toT —1do
10: Sg_new < The union of all S from Pto T — 1
11: Delete Sg fromPto T — 1
12: end while
13: Sg_jew < The union of Sp and Sy .
14: Sg_new < The difference between Sg e, and Sg_e.
15: SB — SB_new
end procedure

Figure 11 illustrates the ROLLBACK operation. The roll-
back is from state 7 + 3 to state 7 + 1. We calculate the

VOLUME 10, NO. 1, JAN.-MAR. 2022

Command Current State

Order

Operation Command

1 T SADD(K,100)
2 SREM(K,99)
|3 L | Checkpoint
4 T+1 SADD(K,101)
5 SREM(K,100)
6 Checkpoint
7 T+2 SADD(K,102)
8 SREM(K,1)

9 Checkpoint
10 T+3 SADD(K,102)
1

H

3

Key-Value Store: State T+3

Metadata File Base Set gtept Calculating the union of add sets:
K-> K ke | (1,2,3,...,93,99)] =§;“"T'°: Sh 101
> Kar Checkpoint Log ={100}+{101}
Koo | {100} ={100,101}
r = Rollback
> Kar [Ker [(99) |l T+ Step2: Calculating the union of remove sets:
-> Kater - SR_umcn
. K7 | {101} =Sg 1+ Sk 141
> Krra ={99}+{100}
Ke 701 |{ 100
- | (100) ={99,100}
- A_T+2
I e S l{ 102} Step3: Merging the union of add sets and
> Kgree remove sets with base set
> K sB_union
AT Ka 12 ‘(103} ‘ =Sg+ SAﬁunlcn - SAﬁunion
> K ={1,2,3,...,98,99} + {100,101} - {99,100}
Rl K [2) ={1,2,3,..,98,101}
Key-Value Store: After Rollback to state T+1 Q
Metadata File Base Set
K > Kg
m {1,2,3,....98,101 }
Ko Checkpoint Log
- A_T+1
*
2 Ker| | (Kerer |0}

FIGURE 11. An example of executing ROLLBACK in DSIC-redo
scheme.

union of the add sets of state T and state 7+ 1 is
{100, 101}. The union of the remove sets of state T and state
T+ 1 is {99,100}. We calculate the union of the base set
{1,2,3,...,98,99} and the new union of add sets
{100,101} to get {1,2,3,...,98,99,100,101}. We com-
pare the difference of {1,2,3,...,98,99,100, 101} and the
new union of remove sets {99,100}. In the end, the latest
base set is {1,2,3,...,98,101}. Since the base set contains
the latest members of state T + 1, the add set and the remove
set in the checkpoint logs are deleted.

IV. EVALUATION AND DISCUSSION

In the experiments, we use Redis, a popular high-performance
memory oriented key value database. We set up two mac-
hines: one is for the Redis server and one is for the client.
Each server has 4 cores, 64 GB memory, 256 GB solid-state
disk and 1 TB local disks. We compare the proposed DSIC
mechanism with ARIES logging approach [11] and command
logging approach [14]. ARIES logging approach records how
database updated by commands, which is called “ARIES” in
the following experiments. Command logging approach logs
the requested command, which is called “COMMAND” in
the following experiments. The execution time and storage
costs of the ADD/REMOVE operation, the READ operations,
and the ROLLBACK operations are evaluated in the follow-
ing experiments.

131

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Lin et al.: Incremental Checkpointing for Fault-Tolerant Stream Processing Systems: A Data Structure Approach

1.4 1.33
— ARIES
1.2 © COMMAND
1 1 @ DSIC-undo
M DSIC-redo

o
©

0.65

%%t

0.61

XX
Sosssssssee]
sjsiriedririeieiririiing

o
[}

o380

ofazasezezezeese =g

2

Normalized Normal Computing Time
e

o
4 R
.]
KA
R
KA
]
KX
]
KX
]
0.21 R
]
KX
s
. KX
]
.. KX
]
R4
4
0.06 s3]
0.03 ;:::::
0 o202 - L fetetsl |

10 Adds 100 Adds
The Number of Add Operations

FIGURE 12. Normalized normal computing time of various num-
ber of ADD operations between two checkpoints.

A. EXPERIMENT OF ADD/REMOVE AND CHECKPOINT
OPERATIONS

To measure the performance of ADD/REMOVE operations

and CHECKPOINT operations, the normal computing time

is considered. The normal computing time represents the

average computation time of one ADD/REMOVE operation

and one CHECKPOINT operation as follows:

mechanism on average since ARIES scheme creates and
stores the latest data in every ADD/REMOVE operations.
The normal computing time of DSIC-undo and DSIC-redo is
a little bit longer than COMMAND scheme since COM-
MAND scheme only records the requested command in every
operation instead of checking the validity of commands.

Figure 13 demonstrates the ratios of ADD operations
to CHECKPOINT operations in ARIES, COMMAND,
DSIC-undo, and DSIC-redo schemes. When N is one, the
ratios of checkpointing time to the total normal computing
time of ARIES, COMMAND, DSIC-undo, and DSIC-redo
schemes are 98, 5, 2 and 4 percent, respectively. When N
is one hundred, the ratios of checkpointing time to the
total normal computing time of ARIES, COMMAND,
DSIC-undo, and DSIC-redo schemes are 37, 0, O and
0 percent, respectively. The checkpointing time of ARIES
scheme accounts for a large proportion. Thus, increasing
the number of ADD operations between two checkpoints
disperses the checkpointing time. On the other hand, the
ratio of checkpointing time to the total normal computing
time of COMMAND, DSIC-undo and DSIC-redo schemes
is almost O percent since the checkpointing process only
changes the state to the next version instead of replicating
the whole data. That is, ADD operations dominate the nor-
mal computing time in COMMAND, DSIC-undo and
DSIC-redo schemes.

Normal computing time =

The number of ADD/REMOVE operations between two
checkpoints (N), the number of members added/removed to/
from the set (M), and the size of the base set (Sizep) are three
factors that affect the performance of ADD/REMOVE opera-
tions and CHECKPOINT operations. The following experi-
ment shows the impact of three factors.

1) NUMBER OF ADD/REMOVE OPERATIONS BETWEEN
TWO CHECKPOINTS (N)

In this experiment, N is set to one, ten and one hundred to
measure the normal computing time. Sizep is one million
members in Redis, and M is ten thousand members. If N is
one, the normal computing time of ARIES, COMMAND,
DSIC-undo, and DSIC-redo schemes are 374 ms, 9 ms, 23 ms
and 10 ms respectively. When N is ten, the normal computing
time of ARIES, COMMAND, DSIC-undo, and DSIC-redo
schemes are 53 ms, 7 ms, 34 ms, and 11 ms respectively.
When N is one hundred, the normal computing time of
ARIES, COMMAND, DSIC-undo, and DSIC-redo schemes
are 10 ms, 7 ms, 13 ms, and 6 ms respectively. The normal
computing time of four approaches is normalized by the nor-
mal computing time of ARIES scheme and shown in
Figure 12. We can see that the normal computing time of
DSIC mechanism is only 30 percent than that of ARIES

132

Time of ADD/REMOVE operations + Time of one CHECKPOINT operation
Number of ADD/REMOVE operations '

€y

2) NUMBER OF MEMBERS ADDED TO THE SET (M)

In this experiment, M is set to one thousand, ten thousand
and 0.1 million to measure the normal computing time. Sizep
is one million members in Redis, and N is one hundred. As
shown in Figure 14, when M is 0.1 million members, the nor-
mal computing time of ARIES, COMMAND, DSIC-undo,
and DSIC-redo schemes are 113 ms, 70 ms, 212 ms and
96 ms, respectively. When M is one thousand, the normal
computing time of ARIES, COMMAND, DSIC-undo, and
DSIC-redo schemes are 4 ms, 0.77 ms, 2.6 ms, and 0.78 ms
respectively. Since COMMAND and DISC-redo schemes do
not need to modify the base set, the normal computing time
of COMMAND and DISC-redo schemes is less than ARIES
and DSIC-undo schemes. The smaller M, the greater the
difference of the normal computing time among four app-
roaches. Therefore, we can say that DSIC mechanism signifi-
cantly reduces the normal computing time when a smaller
number of members are added to the set.

We also compare the storage cost for different M. We exe-
cute 50 different ADD operations and 50 same ADD opera-
tions. When M is 0.1 million members, the storage sizes of
ARIES, COMMAND, DSIC-undo, and DSIC-redo schemes
are 1.31 GB, 2 GB, 1.62 GB, and 0.77 GB, respectively.
When M is one thousand members, the storage sizes of
ARIES, COMMAND, DSIC-undo, and DSIC-redo schemes

VOLUME 10, NO. 1, JAN.-MAR. 2022

IEEE TRANSACTIONS ON

EMERGING TOPICS
Lin et al.: Incremental Checkpointing for Fault-Tolerant Stream Processing Systems: A Data Structure Approach IN COMPUTING
£ Add Time 2 BARIES
1.86
18 — @ COMMAND
O Checkpoint) ©DSIC-undo
Time g1.6 mDSIC-redo
= 1.41
E’ 1.4]
2
98% g 1.2
o 1
T 1
3 0.85
o
% 0.8
S 06 0.63 0.61
£ 0.45 §§§§§§
6 5| :::::::
z04 g 55
ARIES 02
ks 55
0 s B
() One add operation. 10 Thousand 0.1 Million
The Number of Members Add to The Set
~| 0 Add Time FIGURE 14. Normalized normal computing time of different M.
0O Checkpoint
Time
1.60 aARIES
147
79% a0 B ®COMMAND
1.28 125 ;,; 124 oDSIC-undo
1.20 5 mDSIC-redo

COMMAND DSIC-undo DSIC-redo

(b) Ten add operations.

0 Add Time

37% O Checkpoint

Time

ARIES COMMAND DSIC-undo DSIC-redo

(c) One hundred add operations.

FIGURE 13. Ratio between checkpoint time and add time.

are 1.27 GB, 0.86 GB, 1.6 GB, and 0.8GB, respectively. The
elements added to the set in the experiment are digits of only
four bytes each. Thus, the total storage is less than 1.5 GB.
We normalize the storage sizes of four approaches by the
storage size of ARIES scheme in Figure 15. We can see that
the storage cost of COMMAND scheme is highest since
COMMAND scheme records every transaction and the
added members in the log. When the add operation is

VOLUME 10, NO. 1, JAN.-MAR. 2022

N
o
o

o]
2505
BR8N

,,,m,.,.,v,
RIS
BB

e
25

o2t

.
2%

25
%2

%R O
2
&

5

29990009
00
353%%
o200 %
XX

0000055

0.60

R

ST
25
25
2555
ote%ets
=)
o
©

5
%

I
[}
S
RXT
RRR
REX
R
I
3%
X
edets

%

R
%X
X
o
$5%
%%

SRaes

So%s
e

Normalized Storage Size
o
o
o
=

Sesoresetotesetotetatotetetoret

o

»

o
XKLL
e
QS
S0 0tete
SIS

PLOI IO
LTI
SRR

o9t 9tesateto%e?
atofetatotetetotets

o
%
%
242!
5o
%
o2
398

XX
QSN

%
%
<55
XX

%
25

XS

e
—

—
R
ote%ets

o
N
o
RRXZZ
S
KKK HHAX
SRS
%
R
XK
XX

RRZX
R
R

=
55
g

%3
3%
9t

o

%

e

%
X3
5%
22

e

RRRX

%
XXX

o29%

2

b

BT

0.00

1 Thousand 10 Thousand 0.1 Million
The Number of Members Add to The Set

FIGURE 15. Normalized storage size of different M.

repeated 50 times, COMMAND scheme records the same
add operation 50 times. On the other hand, ARIES, DSIC-
undo and DSIC-redo do not record repeated members. Com-
pared to ARIES scheme, the proposed DISC mechanism
reduces storage size by 40 percent. If the user adds larger ele-
ments, such as images to the set, DSIC mechanism can
reduce more storage size. According to Figures 14 and 15,
DSIC mechanism intensively saves the normal computing
time and the storage cost.

3) SIZE OF THE BASE SET (Sizeg)

Sizep is set to 0.1 million members, one million members,
and ten million members to measure the normal computing
time in this experiment. M is ten thousand members, and N
is ten. The normal computing time of ARIES scheme is used
to normalize the normal computing time of four approaches
in Figure 16. In this experiment, COMMAND scheme is
least affected by the size of base set since COMMAND
scheme only records transactions in every step. ARIES
scheme is easily affected by the size of base set. When Sizep

133

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Lin et al.: Incremental Checkpointing for Fault-Tolerant Stream Processing Systems: A Data Structure Approach

1.6 152 2 ARIES

2 COMMAND
1.4

oDSIC-undo
12 mDSIC-redo

-

Normalized Normal Computing Time
o
@

0.66
0.62
0.6
.4
04
1%9%93] 0.21

=
X
R

o
N
TR
5
o2xle

—
X%
o232

kX1

<
5
o2t

R ©
(555553
R =

<
& :0
XX

illion 1 Million

o
3
K
ie

0.

o

10 Million
Base Set Size (Number of Members)

FIGURE 16. Normalized normal computing time of different Sizep.

is ten million members, the normal computing time of
ARIES scheme is about 20 times that of DSIC mechanism.
When Sizep is one million members, the normal computing
time of ARIES scheme is still longer than that of DSIC
mechanism. ARIES scheme outperforms DSIC mechanism,
but the difference is less than 10 ms with 0.1 million mem-
bers in the base set. As the Sizep increases, the normal com-
puting time of DSIC mechanism is much shorter than that of
the ARIES scheme. We can say that if the base set contains
more than 0.1 million members, we should choose DSIC
mechanism to reduce the normal computing time.

B. EXPERIMENT OF READ OPERATIONS

In addition to ADD/REMOVE operations, READ operations
are common. In this experiment, Sizep is one million mem-
bers in Redis. To evaluate the reading time between DSIC-
redo and DSIC-undo schemes, the number of members in the
base set and the add set should be large. Therefore, N is one
hundred and M is set to 0.1 million to rapidly increase the
number of members in the base set. The reading time is mea-
sured in the case of one, five, and ten checkpoints. Since the

1.1E+00
2ARIES

2 COMMAND

1.0E+00 1.0E+00 1.0E+00

1.0E+00

<
2|

0o

%

el
s
RS

TR
XX
s

9.0E-01 @DSIC-undo

mDSIC-redo

o
255K
Zetates

XLRIRR:
KRB,
RS

2%

8.0E-01

ime

TR
%
R

7.0E-01

2R
2%
oFeet

TR
255K
otofetel

6.0E-01

one
2%
o4t

TR
25
5

0
2
%t

oTee
2%
R

5.0E-01

TR
25
5

ST
255
R

4.0E-01

IR,
25055
statetel

4.8E-04 1.7E-04

%R
254
R

Normalized Reading Ti

3.0E-01

TRRRR,
2K
SRR

1.1E-04

B
[$%5% |
st
K
552
B
o]
o508
K
K
%39
3959
B
0]
5%
k4
5553
5652
XX
95958
5653
K
b3
e
o2
%
%

B3 3.9608

2 0E-01 5.26-05

2R
2%
oFeet

2%

St
%
3%
R

R

XXX
2%
R

2%
X
otet

X3
XX
ote%

s
2
it

o
%
o2ete?

9.9E-05 ¥ 6.0E-05

1.0E-01 36E-04

TIIZ,
3
oteto%et

%
S
oot

9.7E-05

xx
%
QL

%%
%

X
2%

0.0E+00
1 Checkpoint 5 Checkpoint 10 Checkpoint
The Number of Checkpoints Before READ operation

FIGURE 17. Comparison of reading time.

134

1.20 ZARIES
& COMMAND
1.00 1.00
1.00 5% mDSIC-undo
XX
mDSIC-redo

o
®
S

0.66 0.64

RRRIIKLZKLS
RIS

o

'S

o
RIRXZ
KIS

Normalized Rollback Time
o
D
o
RIS

0.20

RRRIRIRIR
R

0.04
10 Checkpoint

1 Checkpoint

0.00

5 Checkpoint
The Number of Checkpoints Before Rollback

FIGURE 18. Comparison of rollback time.

reading time of COMMAND scheme is longest, we normalize
the reading time of four approaches by the reading time of
COMMAND scheme in Figure 17. The reading time of
ARIES and DSIC-undo schemes are only 0.6 ms and 0.62 ms
on average since the latest base set is maintained in ARIES
and DSIC-undo schemes. The READ operation of DSIC-redo
scheme searches for the specified element in the add set and
remove set of each state. Although the READ operation of
DSIC-redo scheme is more complicated than ARIES and
DSIC-undo schemes, the reading time of DSIC-redo scheme
is only 0.3 ms longer than that of ARIES and DSIC-undo
schemes. On the other hand, COMMAND scheme executes
all the transactions to read an element in the latest set and
results in high computing complexity. The reading time of
COMMAND scheme is 16590 times than that of ARIES,
DSIC-undo and DSIC-redo schemes.

C. EXPERIMENT OF ROLLBACK OPERATIONS

In the rollback experiment, Sizep is one million members in
Redis. N is one hundred, and M is 0.1 million members. The
rollback time is measured in the case of one, five, and ten
checkpoints. The rollback time of four approaches is normal-
ized by the rollback time of COMMAND scheme. As shown
in Figure 18, the rollback time of ARIES scheme is the short-
est since the rollback procedure of ARIES scheme removes
the latest base set without any other operations. COMMAND
scheme operates all the logged transactions to finish the roll-
back operation and results in the longest rollback time. Com-
pared to COMMAND scheme, DSIC-mechanism has much
shorter rollback time since add set and the remove set are
designed. In the rollback procedure of DSIC-undo scheme,
we remove the value in the latest add set from the base set
and add the value in the latest remove set to the base set. In
DSIC-redo scheme, the rollback procedure combines the add
set and the remove set of every state with the oldest base set.
As shown in Figure 18, DSIC-undo and DSIC-redo can saves
50 percent rollback time that of COMMAND scheme.

VOLUME 10, NO. 1, JAN.-MAR. 2022

IEEE TRANSACTIONS ON

EMERGING TOPICS

Lin et al.: Incremental Checkpointing for Fault-Tolerant Stream Processing Systems: A Data Structure Approach IN COMPUTING
TABLE 2. Summary of experiments.
ARIES COMMAND DSIC-undo DSIC-redo

Suitable number of
ADD/REMOVE operations
between two checkpoints (V) More than 100 Any Less than 100 Any
Suitable number of
members added to the set (M)-Computing Time Fewer Little effect Fewer Little effect
Suitable number of Less
members added to the set (M)-Storage Cost Fewer repeated commands Fewer Little effect
Suitable base set Less than More than More than More than
size (Sizep) 0.1 million 0.1 million 0.1 million 0.1 million
Rollback time Shortest Longest Short Short
Suitable application type Failure-prone No-failure Read-intensive ~ Write-intensive

applications applications applications applications

D. DISCUSSIONS

Table 2 summarizes the observations of our experiments. In
DSIC schemes, the number of ADD/REMOVE operations
and the number of members added to the set have no signifi-
cant effect on the normal computing time. In ARIES scheme,
more ADD/REMOVE operations between two checkpoints
and a smaller number of members of an ADD/REMOVE
operation disperses the normal computing time. COMMAND
scheme has significant impact on storage cost, especially
when there are many repeated transactions. If the base set size
is larger than 0.1 million, COMMAND and DSIC mechanism
achieves better performance. The rollback time of ARIES,
DSIC-undo and DSIC-redo scheme is short. The rollback
time of COMMAND scheme is too long and cannot be
accepted by users. ARIES scheme is suitable for applications
which crash frequently and often execute rollback procedures.
DSIC-undo scheme performs better in read-intensive applica-
tions. DSIC-redo scheme yields shorter normal computing
time in write-intensive applications. Although the rollback
time of DSIC mechanism is longer than that of ARIES
scheme, the checkpointing time of DSIC mechanism is much
shorter than that of ARIES scheme. Therefore, DSIC mecha-
nism can provide efficient checkpointing process to improve
the reliability of streaming applications while retaining the
ability to retrieve latest status and replay transactions.

V. CONCLUSION

In this paper, we investigated the efficiency and the cost of
fault tolerant techniques in stream processing systems. We
utilized the order-irrelevant characteristics of sets to present a
data-structure based incremental checkpointing (DSIC) mec-
hanism for in-memory databases. In DSIC mechanism, we
proposed DSIC-undo and DSIC-redo schemes. In these two
schemes, the add, remove, read, checkpoint, and rollback
processes were precisely designed and compared to ARIES
logging method and command logging method.

From the experiment results, we observed that DSIC
mechanism could achieve better performance when the size
of the base set was greater than 0.1 million and there were
less than one hundred ADD/REMOVE operations between
two checkpoints. Under these conditions, our experiments

VOLUME 10, NO. 1, JAN.-MAR. 2022

showed that DSIC-undo and DSIC-redo schemes required
less than 30 percent checkpointing time and a 40 percent
reduction in storage space in comparison to ARIES scheme
and COMMAND scheme. In addition, DSIC-undo and
DSIC-redo schemes could be switched between each other
and significantly reduced computational complexity for read-
intensive and write-intensive streaming applications. In the
future, we will further generalize the proposed incremental
checkpointing mechanism for different data structures.

ACKNOWLEDGMENTS

The authors sincerely thank Dr. Ku-Lung Wu and Dr. Gabriela
Jacques da Silva in IBM T.J. Watson Research Center, York-
town Heights, NY, USA, for their helps in defining this
research problem and insightful discussions. This work was
sponsored by the Ministry of Science and Technology (MOST)
of Taiwan under grants MOST 109-2634-F-009-018 through
Pervasive Attificial Intelligence Research (PAIR) Labs.

REFERENCES

[1] J. Taylor, “Real-time responses with big data,” 2014. [Online]. Available:
https://blogs.oracle.com/rtd/real-time-responses-with-big-data

[2] M. A. U. Nasir, “Fault tolerance for stream processing engines,” Tech.
Rep., arXiv:1605.00928, 2016. [Online]. Available: https://arxiv.org/abs/
1605.00928

[3]1 F. Zheng, C. Venkatramani, R. Wagle, and K. Schwan, “Cache topology
aware mapping of stream processing applications onto cmps,” in Proc.
IEEE Int. Conf. Distrib. Comput. Syst., 2013, pp. 52-61.

[4] Y. Kwon et al., “Function-safe vehicular ai processor with nano core-in-
memory architecture,” in Proc. Int. Conf. Artif. Intell. Circuits Syst., 2019,
pp. 127-131.

[5] C.-H. Chen, F.-J. Hwang, and H.-Y. Kung, “Travel time prediction system
based on data clustering for waste collection vehicles,” IEICE Trans. Info.
Syst., vol. 102, no. 7, pp. 1374-1383, 2019.

[6] T. Shiobara, G. Habault, J.-M. Bonnin, and H. Nishi, “Effective communi-
cating optimization for V2G with electric bus,” in Proc. IEEE Int. Conf.
Ind. Inform., 2016, pp. 992-997.

[7]1 E.Pinheiro, W.-D. Weber, and L. A. Barroso, “Failure trends in a large disk
drive population,” in Proc. USENIX Conf. File Storage Technol., 2007,
pp. 17-29.

[8] B. Schroeder and G. Gibson, “A large-scale study of failures in high-per-
formance computing systems,” IEEE Trans. Dependable Secure Comput.,
vol. 7, no. 4, pp. 337-350, Dec. 2010.

[9] X. Jiang, X. Cao, and D. H. Du, “Multihop transmission and retransmis-
sion measurement of real-time video streaming over DSRC devices,” in
Proc. IEEE Int. Symp. World Wireless Mobile Multimedia Netw., 2014,
pp. 1-9.

135

https://blogs.oracle.com/rtd/real-time-responses-with-big-data
https://arxiv.org/abs/1605.00928
https://arxiv.org/abs/1605.00928

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Lin et al.: Incremental Checkpointing for Fault-Tolerant Stream Processing Systems: A Data Structure Approach

[10] X.Bao, L. Liu, N. Xiao, Y. Lu, and W. Cao, “Persistence and recovery for
in-memory noSQL services: A measurement study,” in Proc. IEEE Int.
Conf. Web Services, 2016, pp. 530-537.

[11] C.Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz, “Aries: A
transaction recovery method supporting fine-granularity locking and partial
rollbacks using write-ahead logging,” ACM Trans. Database Syst., vol. 17,
no. 1, pp. 94-162, 1992.

[12] N. Malviya, A. Weisberg, S. Madden, and M. Stonebraker, ‘“Rethinking
main memory OLTP recovery,” in Proc. IEEE Int. Conf. Data Eng., 2014,
pp. 604-615.

[13] H.Zhang, G. Chen, B. C. Ooi, K.-L. Tan, and M. Zhang, “In-memory big
data management and processing: A survey,” IEEE Trans. Knowl. Data
Eng., vol. 27, no. 7, pp. 1920-1948, Jul. 2015.

[14] C. Yao, D. Agrawal, G. Chen, B. C. Ooi, and S. Wu, “Adaptive logging:
Optimizing logging and recovery costs in distributed in-memory data-
bases,” in Proc. ACM Int. Conf. Manage. Data, 2016, pp. 1119-1134.

[15] M. Balazinska, H. Balakrishnan, S. Madden, and M. Stonebraker, “Fault-
tolerance in the borealis distributed stream processing system,” in Proc.
ACM SIGMOD Int. Conf. Manage. Data, 2005, Art. no. 3.

[16] E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson, “A survey of
rollback-recovery protocols in message-passing systems,” ACM Comput.
Surv., vol. 34, no. 3, pp. 375-408, 2002.

[17] Y. Kwon, M. Balazinska, and A. Greenberg, “Fault-tolerant stream proc-
essing using a distributed, replicated file system,” Proc. VLDB Endow-
ment, vol. 1, no. 1, pp. 574-585, 2008.

[18] J. Zhou, C. Zhang, H. Tang, J. Wu, and T. Yang, “Programming support
and adaptive checkpointing for high-throughput data services with log-
based recovery,” in Proc. IEEE Int. Conf. Dependable Syst. Netw., 2010,
pp- 91-100.

[19] Z. Sebepou and K. Magoutis, “CEC: Continuous eventual checkpointing
for data stream processing operators,” in Proc. IEEE Int. Conf. Depend-
able Syst. Netw., 2011, pp. 145-156.

[20] R. Castro Fernandez, M. Migliavacca, E. Kalyvianaki, and P. Pietzuch,
“Integrating scale out and fault tolerance in stream processing using opera-
tor state management,” in Proc. ACM SIGMOD Int. Conf. Manage. Data,
2013, pp. 725-736.

[21] S. Nathan and B. Gedik, “Using infosphere streams with memcached and
redis,” 2017. [Online]. Available: https://www.ibm.com/developerworks/
library/bd-streamsmemcached/

[22] Redis Labs, “Redis,” 2017. [Online]. Available: http://redis.io/

[23] J. L. Carlson, Redis in action. Shelter Island, NY, USA: Manning Publica-
tions Co., 2013.

[24] B. Fitzpatrick, “Memcached,” 2018. [Online]. Available: https://memcached.
org/

[25] D. Merriman, E. Horowitz, and K. Ryan, “Mongodb,” 2018. [Online].
Auvailable: https://www.mongodb.com/

[26] D. Matar, “Benchmarking fault-tolerance in stream processing systems,”
Masters thesis, Dept. Comput. Sci., TU-Berlin, 2016.

[27] D. Min, T. Hwang, J. Jang, Y. Cho, and J. Hong, “An efficient backup-
recovery technique to process large data in distributed key-value store,” in
Proc. ACM Symp. Appl. Comput., 2015, pp. 2072-2074.

[28] S. Chen, X. Tang, H. Wang, H. Zhao, and M. Guo, “Towards scalable and
reliable in-memory storage system: A case study with redis,” in Proc.
IEEE Int. Conf. Big Data Sci. Eng., 2016, pp. 1660—-1667.

[29] F.Renkes and J.-H. Bose, “Logging scheme for column-oriented in-memory
databases,” US Patent 8,868,512, Oct. 21, 2014.

[30] M. M. Yiu, H. H. Chan, and P. P. Lee, “Erasure coding for small objects in
in-memory KV storage,” in Proc. ACM Int. Syst. Storage Conf., 2017,
pp. 1-12.

[31] Redis Labs, “Redis persistance,” 2012. [Online]. Available: https://redis.
io/topics/persistence

[32] E. Giles, K. Doshi, and P. Varman, “Persisting in-memory databases using
SCM,” in Proc. IEEE Int. Conf. Big Data, 2016, pp. 2981-2990.

[33] P. Damani and R. E. Strom, “System and method for maintaining check-
points of a keyed data structure using a sequential log,” US Patent
7451 166, Nov. 11, 2008.

[34] J. L. Lawall and G. Muller, “Efficient incremental checkpointing of java
programs,” in Proc. IEEE Int. Conf. Dependable Syst. Netw., 2000,
pp. 61-70.

[35] J.S.Plank, M. Beck, G. Kingsley, and K. Li, “Libckpt: Transparent check-
pointing under unix,” in Proc. Usenix Techn. Conf., 1995, pp. 213-223.

136

CHIA-YU LIN (Member, IEEE) received the BS
and MS degrees in computer science from National
Chiao Tung University (NCTU), Taiwan in 2010
and 2012, respectively, and the PhD degree from
the Institute of Communications Engineering,
NCTU, in 2019. She is the researcher in NCTU.
Her current research interests include real-time
updating techniques for recommendation algo-
rithms and mathematical framework for data
streaming applications.

LI-CHUN WANG (Fellow, IEEE) received the BS
degree in electrical engineering from National Chiao
Tung University, Taiwan, in 1986, the MS degree in
electrical engineering from National Taiwan Uni-
versity, in 1988, and the MS and PhD degrees in
electrical engineering from the Georgia Institute of
Technology, Atlanta, in 1995 and 1996, respec-
tively. From 1990 to 1992, he was with the Tele-
communications Laboratories of the Ministry of
Transportation and Communications, Taiwan. In
1995, he was affiliated with the Bell Northern
Research of Northern Telecom, Inc., Richardson, TX. From 1996 to 2000, he
was with AT&T Laboratories, where he was a senior technical staff member
with the Wireless Communications Research Department. Since August
2000, he has been with National Chiao Tung University, Taiwan, where he is
currently a chair professor with the Department of Electrical and Computer
Engineering and is jointly appointed by the Department of Computer Science.
He has published more than 90 journal papers and 180 conference papers, 19
U.S. patents, and has co-edited a book entitled Key Technologies for 5G Wire-
less Systems (Cambridge, 2017). His recent research interests include cross-
layer optimization and data-driven learning techniques for 5G ultra-reliable
and ultra-low latency communications, edge computing, unmanned aerial
vehicle communications networks, and Al-empowered mobile networks. He
was a recipient of the 1997 IEEE Jack Neubauer Best Paper Award in 1997,
the Distinguished Research Award of Ministry of Science and Technology,
Taiwan, in 2012 and 2018, and the IEEE Communications Society Asia—
Pacific Board Best Paper Award in 2015. He was elected as an IEEE fellow
for his contributions in cellular architectures and radio resource management
in wireless networks.

SHU-PING CHANG (Member, IEEE) received
the PhD degree in computer and information scien-
ces from the University of Minnesota with special
focus in computer communication and system. He
works at Al Engineering, T.J. Watson Research
Center as a software development manager for the
IBM System S (Streams) Laboratory, a cluster for
distributed computing research and development.
He has more than 25 years research and product
development experiences in the computer and
information technology arena. He has broad and in
depth knowledge in computer system hardware architecture and software
structure in big data platforms and prototype building and development,
computer communication, relational database, Internet based solutions, and
cloud computing.

VOLUME 10, NO. 1, JAN.-MAR. 2022

https://www.ibm.com/developerworks/library/bd-streamsmemcached/
https://www.ibm.com/developerworks/library/bd-streamsmemcached/
http://redis.io/
https://memcached.org/
https://memcached.org/
https://www.mongodb.com/
https://redis.io/topics/persistence
https://redis.io/topics/persistence

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

