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ABSTRACT In railway traffic systems, it is essential to achieve a high punctuality to satisfy the goals of the
involved stakeholders. Thus, whenever disturbances occur, it is important to effectively reschedule trains while
considering the perspectives of various stakeholders. This typically involves solving a multi-objective train
rescheduling problem, which is much more complex than its single-objective counterpart. Solving such a prob-
lem in real time for practically relevant problem sizes is computationally challenging. The reason is that the
rescheduling solution(s) of interest are dispersed across a large search tree. The tree needs to be navigated fast
while pruning off branches leading to undesirable solutions and exploring branches leading to potentially desir-
able solutions. The use of parallel computing enables such a fast navigation of the tree. This article presents a heu-
ristic parallel algorithm to solve the multi-objective train rescheduling problem. The parallel algorithm combines
a depth-first search with simultaneous breadth-wise tree exploration while searching the tree for solutions. An
existing parallel algorithm for single-objective train rescheduling has been redesigned, primarily, by (i) pruning
based on multiple metrics, and (ii) maintaining a set of upper bounds. The redesign improved the quality of the
obtained rescheduling solutions and showed better speedups for several disturbance scenarios.

INDEX TERMS Transportation, decision support, parallel algorithms, tree search strategies

I. INTRODUCTION

Public transportation is an important part of daily human life.
Transportation by railways is one of the major components of
public transportation. Disturbances in railway networks have a
significant impact on the daily life of passengers. In railway dis-
turbance management, there exist three major stakeholders:
infrastructure managers, railway operators and passengers,
each with diverse and potentially conflicting goals [1]. When
rescheduling trains during a disturbance, the goals of an infra-
structure manager are focused on the operational feasibility of
the rescheduled timetable, while railway operators aim at mini-
mizing operation costs [1]. The liberalization of the European
railway sector in recent years has compelled railway operators
to increase the focus on satisfaction of passengers [2]. Thus, it
has become a crucial goal for the railway operating companies
to strive for a better passenger satisfaction.
While solving a train rescheduling problem, it is frequently

required to consider multiple, partially conflicting, objec-
tives. In other words, it is usually required to solve it as a
multi-objective optimization problem (MOP). Alternative
objective functions may result in structurally quite different

rescheduling solutions [3]. During train rescheduling, it is
important to find a solution which is satisfactory from both a
passenger-oriented perspective and an operational perspec-
tive. The former perspective takes into account the inconve-
nience caused to passengers while the latter takes into
account operational feasibility, operational costs, etc.
By presenting a set of solutions with different tradeoffs

between conflicting objectives to a human expert, one can
provide valuable decision support in train rescheduling.

II. PROBLEM DESCRIPTION

In the railway sector, everyday train services are based on pre-
planned timetables which ensure feasibility of the services by
respecting the applicable constraints. Typically, such con-
straints enforce safety by requiring a minimum time separation
between consecutive trains passing through the same railway
track. A railway disturbance is an unexpected event that makes
the originally planned train timetable infeasible by introducing
‘conflicts’. A conflict is a situation that arises when two trains
require an infrastructure resource during overlapping time
intervals, thus violating one or more constraints.
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Disturbances are triggered by incidents such as over-
crowded platforms, train malfunctions, signalling system
failures, etc. Depending on the type of the incident and its
severity, the induced delays are either minor or significant.
Train timetables are planned with appropriate time margins
in order to recover from minor delays. Hence, when a distur-
bance causes minor delays, the affected train(s) may be able
to recover from the effects of the disturbance provided there
is sufficient buffer in the original timetable. In case of a dis-
turbance that causes a significant delay to one or more trains,
conflicts arise in the existing timetable, making it operation-
ally infeasible. The resolution of these conflicts in real time,
to quickly obtain a feasible timetable (e.g., within 10 sec) of
sufficient quality, constitutes train rescheduling.
In order to resolve a conflict, the following three tactics are

frequently employed: (1) Reordering, i.e., prioritizing a train
over another, (2) Retiming, i.e., allocating new arrival and
departures times to one or more trains, (3) Local rerouting,
i.e., reassigning tracks of one or more trains. Apart from
these tactics, conflicts can also be handled by globally rerout-
ing the trains, partially/fully cancelling the affected train
services, etc. The algorithmic approach presented in this
paper applies only reordering, retiming, and local rerouting.
During a disturbance, rescheduling the railway traffic is

typically handled manually by train dispatchers who have
very limited access to decision support systems [4]. The
time available for analysing alternative decisions is often
very limited. Under these circumstances, a rescheduling
strategy often employed by train dispatchers is to priori-
tize the on-time trains over the trains that are delayed due
to the disturbance. This strategy does not always lead to
the best rescheduling solution as several potentially desir-
able alternative schedules are never considered. Thus, it
is a challenge for the decision maker to analyze alterna-
tive desirable solutions and motivate his/her rescheduling
choices within the available time. This challenge becomes
even harder when the perspectives of multiple stakehold-
ers need to be considered.
It is computationally difficult to reschedule the train traffic

in real time while considering multiple objectives. Thus, it is
challenging to find rescheduled timetables
1) that are of good quality, both from an operational as

well as passenger-oriented perspective,
2) sufficiently fast, i.e., within the allowed computational

time limit.
Balancing this tradeoff between speed and solution quality

is a well-known challenge faced by current train rescheduling
algorithms. Hence, there is a need to investigate faster solu-
tion approaches to train rescheduling that consider different
perspectives. In the context of, e.g., a branch and bound
(B&B) algorithm, considering multiple perspectives typically
implies exploring larger portions of the search tree. The use
of parallel algorithms enables exploring large search trees
fast as compared to their sequential counterparts.
Recent advances in computer hardware have made power-

ful chips such as multi-core central processing units (CPUs)

and graphics processing units (GPUs) increasingly common.
In spite of this, limited research has been conducted in
designing parallel algorithms that employ such hardware to
better solve the train rescheduling problem. Recently,
Josyula et al. [5] report significant speedup in train resched-
uling as a result of parallel exploration of multiple branches
of the search tree. Further research [6] in parallel algorithms
explores the potential of GPUs in train rescheduling. How-
ever, these parallel algorithms have been employed in the
context of a single-objective train rescheduling problem, the
objective being minimization of final delays of trains. A
recent review [7] of rail-research literature shows that passen-
ger-oriented train rescheduling quite often needs to be posed
as a multi-objective problem.
Thus, it is necessary to investigate the potential of parallel

algorithms for multi-objective train rescheduling. Massive
speedups reported for multi-objective B&B algorithms [8]
make such an investigation a worthwhile endeavour. The
aim of this research is to efficiently solve a multi-objective
train rescheduling problem using a parallel algorithm.
This study investigates how a parallel heuristic search

algorithm can be used to better solve a real-time railway
rescheduling problem while considering perspectives of
infrastructure managers and railway operators, as well as
passengers.
In the context of a tree search algorithm, multiple perspec-

tives can be considered by including multiple metrics for
pruning (i.e., by relaxing the pruning). It is assumed that to
better solve a rescheduling problem means:
1) to improve the quality of the obtained rescheduling sol-

utions with respect to the considered evaluation met-
rics, and

2) to increase the computational speed of obtaining the
rescheduled solutions.

The following propositions are formulated and investigated:
P1: When pruning is based on multiple metrics, a larger num-

ber of solution branches of the search tree are explored.
Thus, the risk of pruning branches leading to desirable
solutions is reduced, which in turn may lead to finding
potentially better solutions.

P2: When pruning is based on multiple metrics, the speedup
due to incorporating a parallel tree search algorithm is
greater.

III. INTRODUCTION TO MULTI-OBJECTIVE

OPTIMIZATION

Consider a MOP with i objectives, where each objective
function fi corresponding to the ith objective needs to be min-
imized. A solution u is then said to dominate a solution v
(denoted u � v) only if [9]:
1) u is at least as good as v in all of the objectives.

8i; fiðuÞ � fiðvÞ.
2) u is better than v in at least one of the multiple objec-

tives.
9i; fiðuÞ < fiðvÞ.
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Figure 1 illustrates, via an example, the concept of domi-
nance in a bi-objective minimization problem in the context
of real-time train rescheduling. As can be seen from the
figure, both solution a and solution b dominate solution c.
A solution is said to be pareto-optimal (or pareto efficient)

if it is not dominated by any other solution. A pareto-optimal
solution cannot be improved in one objective without lower-
ing the solution quality with respect to other objective(s) [9].
The set of all pareto-optimal solutions constitute the pareto
set (also known as pareto frontier or pareto front). For every
solution not in the pareto set, there exists at least one solution
in the set that dominates it. The goal of multi-objective opti-
mization [10] is two-fold:
1) to find a set of solutions as close as possible to the par-

eto front,
2) to find a set of solutions as diverse as possible.
In our case, this set of solutions is presented to a human

expert who selects one of these solutions based on the situa-
tion at hand and his/her experience.
Example approaches that are often explored by the scien-

tific community to solve MOPs are the �-constraint method,
the compromise programming method, etc. For a detailed
introduction to multi-objective optimization, see [11, 12].

IV. RELATEDWORK

The goals of a real-time train rescheduling algorithm are
threefold [13]: (i) to quickly reach completion, (ii) to capably
handle large, realistic input data, and (iii) to obtain high-qual-
ity solutions. Every algorithmic approach has its pros and
cons; each approach differs in its ability to fulfill the above
goals.
Multi-objective train (re)scheduling has been a topic of

considerable research interest for many years. Recently,
Binder et al. [2] solved a tri-objective railway rescheduling
problem with special emphasis on minimizing passenger
inconvenience. The problem is formulated as an integer lin-
ear program (ILP) that includes �-constraints for two of the
three objectives. For a realistic case study, they achieve high-

quality solutions in terms of passenger satisfaction, with a
minor increase in the timetable’s operational cost. The draw-
back of their approach is that for many problem instances, it
takes > 1 hour to give solutions with an optimality gap of
3%. Due to this, they deem their approach impractical to use
for real-world rescheduling.
More recently, Shakibayifar et al. [14] proposed a multi-

objective version of the variable neighborhood search to
solve the railway disturbances caused by a partial/full block-
age. Their approach generates, for real-world test cases, sets
of good quality solutions with minimized: (i) total average
train delays at destinations, and (ii) deviation from the origi-
nal timetable. However, the authors use a computational time
limit of 15 min for solving each scenario, which is inapt for
real-time applications.
In the context of train rescheduling, there is also significant

research that focuses on incorporating multiple objectives
using a single objective function. Examples are [15, 16],
which (i) formulate the train rescheduling problem as a
mixed-integer linear programming (MILP) model and an ILP
respectively, (ii) consider two objectives: minimizing number
of train cancellations, and train deviations/delays, (iii) use a
single objective function that is the weighted sum of the con-
sidered two metrics. Apart from several drawbacks inherent to
the weighted-sum approach [17], one of its practical difficul-
ties is to come up with reasonable weights that are agreeable
to the involved stakeholders, who may have conflicting goals.
Multi-objective B&B algorithms are widely employed in

several application domains. Sourd and Spanjaard [18] pres-
ent a formal framework to design such algorithms. Several
surveys, each focusing on studies employing a specific type
of algorithm to solve MOPs, exist in literature, e.g., B&B
algorithm [19] and evolutionary algorithm [20]. Parallel
computing paradigms are increasingly considered in the
design and implementation of algorithms for MOPs [19].
Research studies that employ concepts of parallel computing

in railway research have recently been reviewed in [21]. Though
the use of parallel computing for railway rescheduling has been
investigated in recent years, e.g., in [5, 6, 22], research on paral-
lel computing for multi-objective train rescheduling is rather
scarce. In a recent work, Nitisiri et al. [23] present a parallel
multi-objective genetic algorithm for scheduling trains. Their
algorithm employs a GPU and obtains a best-compromised
solution. When considering two objectives, they obtain quick
(in < 1 sec) and promising results while scheduling trains on
mass transit lines. The performance of the algorithm for (i)
rescheduling on main lines, and for (ii) many (i.e., > 3) objec-
tives is unknown.
The research on reinforcement learning (RL) based

approaches for train (re)scheduling is increasing in recent
times [13, 24, 25]. Obara et al. [13] use a deep RL approach
which effectively reschedules trains during disturbances
caused due to train delays (of 5–35 min) on a small-scale
problem (6 trains, 8 stations). Their approach, however, has
difficulties in dealing with real-world input. Recently,
Khadilkar [25] proposed a scalable RL algorithm for train

FIGURE 1. Illustration of a pareto front: Feasible solutions after

train rescheduling.
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(re)scheduling, which completes its execution in 3–11 min
for real-world problem instances (up to 440 trains, 60 sta-
tions). A noteworthy drawback in these approaches is that
they use only one objective. Multiple objectives might need
to be considered for obtaining higher quality solutions.
According to [19], most of the published multi-objective

B&B algorithms are straight-forward extensions of the sin-
gle-objective case and simply follow a depth-first search
(DFS) strategy. Various other search strategies remain to be
investigated [19]. Based on the review of related work, some
of the observed weaknesses and challenges are addressed in
this paper by: (i) investigating the effectiveness of a parallel
search strategy, (ii) considering up to six relevant objectives,
and (iii) quickly reaching completion for real-world input,
while train rescheduling. This paper extends an existing sin-
gle-objective train rescheduling algorithm [5] for the multi-
objective case, using a few concepts from an algorithmic
framework [18]. The redesigned algorithm is parallelized
using a parallel DFS strategy. The main contributions of the
research presented in this paper are: (i) findings from an
experimental study showing the benefits of incorporating
multiple objectives in train rescheduling, as well as identified
challenges resulting from the expanded tree search, (ii) a pro-
posed parallel algorithmic approach to address the above-
mentioned challenges, (iii) a systematic assessment of qual-
ity-related properties of the resulting rescheduling solutions.

V. ALGORITHMIC DESIGN CHOICES

The sequential and the parallel heuristic algorithms for sin-
gle-objective train rescheduling problems have been
designed and introduced in [5]. The following provides a
concise summary of the two algorithms.
The sequential algorithm constructs (and simultaneously

navigates) a binary tree by iteratively detecting and resolving
conflicts. Typically, a conflict can be between two or more
trains. However, we chose a node to represent a conflict
between exactly two trains. Starting with the root node, each
node is visited using the depth-first search strategy to find the
best solution. Throughout the search, the value of the upper
bound is updated, based on which the branches leading to
undesirable solutions are pruned. The root node corresponds
to the original timetable which turns infeasible due to the dis-
turbance. At each node, a conflict detection operation is per-
formed on the corresponding timetable. The detected
conflicts are arranged in a chronological order and the first
conflict is chosen to be resolved. The outgoing edge corre-
sponds to the rescheduling decision made as a part of conflict
resolution. Reordering, retiming trains, and local rerouting
are the employed rescheduling decisions. Leaf nodes in the
unpruned branches correspond to feasible solutions.
Rescheduling Tactics. In any intermediate timetable state,

i.e., at any internal node, first, one of the trains in the chosen
conflict is prioritized over the other. Typically, each of the
two outgoing edges corresponds to a prioritization alterna-
tive. Then, a child node is created by performing the follow-
ing actions: (i) By locally rerouting the unprioritized train if

an empty track is available throughout the train’s occupancy
of the conflict section, (ii) Otherwise, by making the
unprioritized train wait on a prior section (likely causing a
reordering), and retiming it accordingly to resolve the con-
flict. Thus, reordering is always accompanied by retiming.
Each edge in the binary tree, i.e., each rescheduling decision,
corresponds to either (i) a track reassignment, (ii) retiming,
or (iii) reordering and retiming, of a train.
The parallel algorithm decomposes the search tree con-

struction into several disjoint tasks which can be computed
in parallel. The algorithm takes as a parameter the maximum
number of allowed parallel threads. During the execution of
the program, once the specified number of threads are cre-
ated, each thread runs in parallel an instance of the aforemen-
tioned sequential DFS algorithm with the appropriate node as
its root node (illustrated in Figure 2). Throughout the execu-
tion of the parallel program, the operating system dynami-
cally assigns threads to the available processors, and all the
threads share and update the value of the upper bound. The
best solution obtained by the parallel algorithm is the same
as that obtained by the sequential algorithm. See [5] for fur-
ther details about the two algorithms.
In the aforementioned algorithms, only a single evaluation

metric (total final delay) is used for pruning. Incorporating
several key evaluation metrics while pruning the search tree
ensures that several perspectives can be considered in the
computation of good-enough, or even optimal, solutions.
Thus, in this study, the algorithms are redesigned such that
several metrics can be considered while pruning. At the same
time, instead of a single upper bound, a set of upper bounds
associated with the set of best solutions is maintained. Each
employed combination of pruning metrics corresponds to a
multi-objective train rescheduling problem where the objec-
tives are to minimize the values of the metrics used for prun-
ing. Section V-B discusses, in detail, the modifications made
to the aforementioned algorithms.

A. METRICS FOR SOLUTION EVALUATION AND

PRUNING

The purpose of the evaluation metrics is to capture different
effects of certain decisions and assess the properties (unwanted

FIGURE 2. Illustration of parallel algorithm with 6 parallel threads.
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as well as desired) of the alternative rescheduling solutions.
Several comparable metrics exist for comparative evaluation of
two railway timetables. In this section, themost relevantmetrics
for evaluation of rescheduled timetables, both from a passen-
ger-oriented as well as an operational perspective, are pre-
sented. The decision maker, based on his/her experience and
based on the evaluation metrics, selects the most desirable solu-
tion from the set of best solutions provided by the algorithm.
A partially rescheduled timetable is considered to be unde-

sirable if further rescheduling will make it worse than one or
more of the already available feasible rescheduled timetables.
Intelligent navigation of the solution space requires discard-
ing potentially undesirable solutions. In other words, while
constructing a search tree, it is necessary to prune off
branches which likely lead to undesirable solutions. The met-
rics chosen for evaluation are also used for pruning. Note that
the minimization objectives of the MOP correspond to the
chosen pruning metrics.
A positive deviation from the originally scheduled time in

the initial timetable is called as a delay. Such a deviation in a
train’s timetable at its final station is called its final delay.
The selected evaluation metrics are defined and the effect of
using them for pruning is described as follows. For all the
metrics, the lower the value of the metric, the better the qual-
ity of the rescheduling solution.
1) Total final delay (TFD): It is the sum of final delays of

all the trains. An increase in the final delay lowers the
quality of a solution. Hence, this metric is used for
pruning off undesirable solution branches.

2) Total accumulated delay (TAD2): It is the sum of delays
(> 2 min) in arrival times of all the trains at intermedi-
ary, scheduled commercial stations.1 TFD does not con-
sider what happens to the trains en-route, even though it
is often partly reflected at the final destination [3].
Including this metric for pruning prevents discarding
potentially desirable solutions with slightly higher TFD
but with lower TAD2.

3) Total passenger delay (TPD2): It is the sum of delays (>
2 min) incurred by alighting passengers, en-route as well
as at the final destination. Including this metric for prun-
ing prevents discarding potentially desirable solutions
with, e.g., slightly higher TFD and, a lower TPD2.

4) Number of delayed passengers (#D2pax): The number
of passengers that experience a delay (> 2 min) while
alighting, i.e., while dismounting the train at their desti-
nation. Including this metric for pruning prevents dis-
carding solutions with a higher value of TPD2 but with
a lower value of #D2pax.

5) Number of delayed trains (#Dtrains): The total number
of trains that experience a final delay. Including this
metric for pruning prevents discarding potentially desir-
able solutions with, e.g., slightly higher TFD and, a
lower #Dtrains.

6) Number of trains with secondary delays (#D2sectr):
The number of trains that at some point are recorded to
have a delay (> 2 min), excluding the trains that suffer
from an initially forced delay due to the disturbance
scenario. This metric considers the propagation of
delays and monitors how initially punctual trains may
be affected by already delayed trains. Including this
metric for pruning retains solutions with lower values
of #D2sectr even though they have higher values for
other pruning metrics.

B. EMPLOYING MULTIPLE PRUNING METRICS

The heuristic rescheduling algorithms, originally introduced
in [5], have been modified for multi-objective train resched-
uling. These modifications are discussed as follows.

1) DEFINING DOMINANCE OPERATORS

Let ðu1; u2. . .unÞ and ðv1; v2. . .vnÞ be the cost-vectors for any
two solutions u and v. A cost-vector of a solution is defined as
the n-tuple2 representing the values of the n pruning metrics.
Note that a solution can be either partial (i.e., at an intermedi-
ary node) or complete (i.e., at a leaf node). The following
notations, similar to those defined in the multiobjective B&B
framework by Sourd and Spanjaard [18], are adopted.

i) Weak dominance

u ^ v , ui � vi; 8 i 2 n; (1)

ii) Dominance

u � v , u ^ v and not ðv ^ uÞ: (2)

2) MAINTAINING A SET OF UPPER BOUNDS

In the context of a single-objective optimization problem [5],
during the navigation of solution space (or search tree), the
upper bound UB is recorded in order to identify and prune
undesirable branches. Typically, the value of this upper
bound is the cost of the best feasible solution B found so far.
Note that this is also the value of the objective to be
minimized.
In solving the MOP under consideration, instead of a sin-

gle best solution B and a corresponding upper bound UB, a
set B of best solutions and a set UB of upper bounds (i.e.,
cost-vectors of solutions in B) is maintained.

3) USINGWEAK DOMINANCE OPERATOR TO PRUNE

SOLUTION BRANCHES

While constructing and navigating the search tree to solve the
multi-objective train rescheduling problem, the concept of
weak dominance is used at every node. Its use can be classi-
fied into the following two cases:

I. At an intermediary node, if there exists a solution in B
that weakly dominates the partial solution corresponding

1A commercial station is a station where a train is not allowed to leave before
its originally scheduled departure time.

2an n-tuple is an ordered sequence of n elements, usually written by listing
the elements within ( ) and separated by commas.
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to the node, then the branch is pruned. Otherwise, the
branch is explored further.

II. At a leaf node, as mentioned in the multi-objective
B&B framework [18],
a) If none of the solutions in B weakly dominate the

obtained solution bnew, then bnew is included in B.
b) All the solutions bi 2 B such that bnew � bi are

removed from B once bnew is inserted.
The use of the weak dominance operator (^) has the fol-

lowing two consequences corresponding to the cases out-
lined above:

I. Assume that during the construction of a solution
branch, at an intermediary node, the corresponding par-
tial solution is p. If a solution b in the then available list
of best solutions B has the same cost-vector as p, then
the solution branch is pruned.

Note that if the � operator were used for pruning
(instead of the ^ operator), the solution branch of p
would not be pruned.

II. Assume that after constructing a solution branch, at the
leaf node, the corresponding solution is bnew. If bnew
has the same cost-vector as a solution b in the then
available list of best solutions B, then bnew is discarded.

Figure 3 illustrates the pruning through relevant examples.
In both the examples in the figure, at the time of constructing
node n of the tree, the set B of available best solutions = fbg,
corresponding to which, UB ¼ fð225; 700Þg. In Example 1
of the figure, in case of the partial solution p corresponding
to node n+1, b ^ p is not true. Thus, the feasible solution
obtained by navigating along the branch has the potential to
be included in the set B. Hence, navigation along the branch
is continued.

Algorithm 1. The Algorithm for Multi-Objective Train
Rescheduling (an abridged version)

Input: Original timetable, infrastructure, disturbance, multi-
ple objectives.

Output: Set B of best, feasible solutions.
1: Update the timetable as per the disturbance.
2: Use the time supplements available in the timetable (for

further details, see [5]).
3: Configure the^ operator based on the multiple objectives.
4: Create the empty set B of best solutions.
5: Construct (Root node).

6: Function Construct (node):
7: Detect conflicts in the partial timetable p.
8: if no conflict is detected then /* Leaf node */

9: Save the feasible timetable.
10: Update the solution set (p), return.
11: else if 9b 2 B : b^p then return. /* Prune */

12: else /* Construct the child nodes */

13: for edge = “left edge”, “right edge” do
14: Resolve conflict (edge)

Construct (child node).
15: Restore the state of the parent node.
16: end
17: return
18: Function Update the solution set (bnew):
19: if @b 2 B such that b^bnew then
20: foreach b 2 B such that bnew � b do exclude b
21: Include bnew in the set B.
22: return
23: Function Resolve conflict (edge):
24: Select the ‘earliest’ conflict from the detected ones.
25: if the edge is “left edge” then prioritize a train
26: else prioritize the other train
27: Resolve the selected conflict using the appropriate

rescheduling tactic (see Section V, for further details
see [5]).

28: return

In Example 2 of the figure, in case of the partial solution p
corresponding to node n+1, b ^ p is true. Thus, owing to
the properties of the search tree under consideration, any fea-
sible solution that will be obtained by further pursuing along
this branch will be weakly dominated by solution b. Hence,
the branch is pruned.
Algorithm 1 is an abridged version of the designed multi-

objective algorithm. This algorithm is parallelized as
explained in Section V and as shown in Figure 2. In the full
version of the algorithm, whenever the parent node’s conflict
is between trains in the same direction, only the first train
that enters the conflict section is prioritized (see Lines 13–
15, 25–26 of Algorithm 1).

VI. EXPERIMENTAL DESIGN

In this study, an experiment is designed, based on the guide
to experimental algorithmics by McGeoch [26]. The formu-
lated propositions are revisited while highlighting the por-
tions that are of relevance in this section.

FIGURE 3. Examples to illustrate pruning while solving a bi-

objective problem where the objective is to find a solution that

minimizes both TFD and TAD2.
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P1: When pruning is based on multiple metrics, a larger
number of solution branches... are explored. Thus... lead to
finding potentially better solutions.
P2: When pruning is based on multiple metrics, the

speedup due to incorporating a parallel tree search algorithm
is greater.

A. PARAMETERS

The parameters of the heuristic rescheduling algorithm are
mentioned in Table 1. The program used to reschedule can
be run sequentially or in parallel. When run sequentially, the
number of threads used to explore the search tree is equal to
1. However, when run in parallel, the number of threads is a
parameter that can take the value of any positive integer.
Relaxation of pruning is achieved by changing the pruning

criterion Pi. The appropriate pruning criterion increases or
reduces (i.e., restricts or relaxes) the pruning of branches in
the search tree by considering fewer or more pruning metrics
respectively.
Josyula et al. [5] solve a single-objective train rescheduling

problem using the minimization of TFD as the objective and
thus TFD as the pruning metric. The 6 pruning metrics (out-
lined in Section V-A) provide 26 � 1 ¼ 63 choices to select
from. Out of these, the pruning criteria P1–P6 (each corre-
sponding to their own set of minimization objectives) are cho-
sen for the experiment. Table 2 lists the chosen pruning
criteria and the pruning metrics comprising each criterion.
Table 4 presents the scenarios that comprise the represen-

tative sample of disturbances used for the experiment. This
sample was originally defined and used for the experiment in
[5]. In each disturbance scenario, a selected train suffers a
delay at a selected section. The algorithm can also solve other
types of disturbance scenarios, e.g., those caused due to a
malfunctioned train or an infrastructure failure. However, in
this experiment, we do not evaluate the algorithm for these
types of scenarios.

The timetable and the infrastructure data used in the exper-
iment can be classified as real instances. The railway net-
work is from Karlskrona–Tj€ornarp. The infrastructure
consists of 59 sections (including stations), and all tracks are
bi-directional. The original timetable is from 15:50 to 21:10
(5 hr 20 min). The passenger data consists of the number of
passengers alighting a train at each station, and is generated
by a random number generator in C++. The number of
alighting passengers (i) at any station are � 18, (ii) at any
commercial station are � 5.
In the experiment, we assumed all trains as passenger

trains with passengers alighting at all stations. An advantage
of this assumption is that the individual trains have little
influence on the rescheduling algorithm when P3–P6 are
used as the pruning criteria. In practice, non-commercial sta-
tions are not used for passenger alighting and boarding, but
merely as, e.g., train meeting or overtaking points.

B. PERFORMANCE INDICATORS

In the experiment, the following dimensions of algorithm
performance are measured:
1) Explored solution branches, solution set quality.

The quality of the set of solutions obtained from apply-
ing the rescheduling algorithm is measured as follows.
The rescheduling solutions are (i) visualized and
inspected using a train timetable visualization tool, (ii)
compared using the chosen evaluation metrics.

2) Increase in speedup.
The percentage increase in speedup of the parallel algo-
rithm when employing a relaxed pruning criterion is
measured.

For each disturbance scenario, for a run of the algorithm
(corresponding to a criterion Pi), the number of explored
branches is denoted by NðPiÞ. This value represents the
number of alternative solutions investigated before reaching
at the solution set comprising the rescheduling solutions. We
define %NðPijÞ as the percentage increase in the number of
explored branches when changing from criterion Pi to Pj

(see Equation (3)).

%NðPijÞ ¼ NðPjÞ � NðPiÞ
NðPiÞ � 100: (3)

The speedup SðPiÞ compares the speed of the parallel algo-
rithm with respect to the sequential algorithm.

SðPiÞ ¼ Sequential algorithm run time
Parallel algorithm run time

¼ tseq for Pi

tpar for Pi
: (4)

TABLE 1. Algorithm parameters in the experiment.

Parameter Scale

Nature of the algorithm Categorical: {Sequential, Parallel}
Number of threads Numerical: f1; 2; 3; . . .g
Pruning criterion and
corresponding objectives

Categorical: fP1;P2; . . .;P63g

TABLE 2. Considered pruning criteria and their respective

pruning metrics.

Criterion Pruning metrics used in the criterion

P1 TFD
P2 TFD, TAD2
P3 TFD, TAD2, TPD2
P4 TFD, TAD2, TPD2, #D2pax
P5 TFD, TAD2, TPD2, #D2pax, #Dtrains
P6 TFD, TAD2, TPD2, #D2pax, #Dtrains, #D2sectr

TABLE 3. Factors and levels used in the experiment.

Factor Level

Type of the heuristic algorithm (Sequential, Parallel)
Number of threads (1, 64)
Pruning criterion ðP1;P2; . . .P6Þ
Disturbance scenario number ð1; 2; . . .40Þ
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The percentage increase in speedup %SðPijÞ is computed as
follows.

%SðPijÞ ¼ SðPjÞ � SðPiÞ
SðPiÞ � 100: (5)

Theoretically, for a given input scenario, with a relaxed prun-
ing criterion, the algorithm takes longer to reach completion.
For example, tseq for P6 � tseq for P1, and tpar for P6 �
tpar for P1. Note that for any input scenario, when the values
of tseq and tpar are recorded through the experiment, the
resulting value of%SðPijÞ can be negative as well.

C. FACTORS, LEVELS, DESIGN POINTS AND TRIALS

A factor is a parameter that is explicitly manipulated in the
experiment. A level is a value assigned to a factor in an
experiment. Table 3 lists the factors and the levels assigned
to them. A design point is a particular combination of levels
that are tested in the experiment. In this experiment, not all
combinations of the levels listed in Table 3 are tested.
The sequential program uses one thread to explore the

branches of the tree sequentially, in a depth-first manner. For
each disturbance scenario, the pruning criteria Pi where i ¼

f1; 2. . .6g are employed and the 40 scenarios (see Table 4)
are solved. This gives rise to 1� 6� 40 ¼ 240 design
points. For the 40 design points corresponding to P1, the per-
formance indicator %NðP16Þ is recorded. These values serve
to investigate Proposition 1.
The parallel program is also used to solve the 40 distur-

bance scenarios in Table 4. The number of threads that
explore multiple branches of the tree in parallel is set to 64.
Only the pruning criteria P1 and P6 are employed. This gives
rise to 1� 2� 40 ¼ 80 design points. For the 40 design
points corresponding to P1, the performance indicator
%SðP16Þ is recorded. These values serve to investigate Prop-
osition 2.
A single run of the program at a specific design point,

which produces a measurement of the performance indicator
is called as a trial or a test [26]. At each design point, 5 trials
are conducted.

D. IMPLEMENTATION AND PLATFORM DETAILS

The train rescheduling algorithms, originally devised in [5],
have been implemented in C++. These C++ implementations
of the sequential and parallel algorithms are improved and

TABLE 4. Disturbance scenarios and results.
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reused for the experiment in this study. Noteworthy improve-
ments are discussed as follows.
The implementations of the algorithms in [5] construct a

tree data structure (using the Boost Graph Library 1.64)
while searching the solution space. This data structure stores
rescheduling details related to the tree nodes and edges.
These details are crucial for the visualization of the decisions
taken by the algorithms. In practice, building such a data
structure is meaningful as intelligent decision support sys-
tems require information visualization. However, in the
implementations used in this study, tree data structures are
not built during solution space navigation.
The implementations of algorithms in [5] use the domi-

nance operator to prune solution branches. In this study, the
weak dominance operator is used for pruning, as explained
in Section V-B3.
The experiment is performed on a laptop equipped with a

quad-core CPU (Intel Core i7-8550U). The available ran-
dom-access memory is 16 GB. The underlying operating sys-
tem is Windows 10 Education, and the compiler used to
compile the C++ code is Microsoft C/C++ Optimizing Com-
piler Version 19.14.26431 for x64.

VII. RESULTS AND ANALYSES

The results of the experiment are presented in Table 4. For
the sake of brevity, the values of NðPiÞ for i > 1 are not pre-
sented. For scenarios 17, 32, 35, 37 and 40, the execution
times could not be recorded as either (i) the algorithm could
not reach completion even within 15 min, or (ii) the recursive
implementation of DFS led to the overflow of the call stack.
The optimal solutions for single-objective rescheduling
(i.e., using P1) are obtained by means of an MILP model out-
lined in [27].
When the pruning criterion is relaxed from Pi to Pj, where

i; j 2 f1; 2; 3; . . .6g and i < j, the following is observed.
Typically, the sequential as well as the parallel algorithm
take more time to reach completion. When the pruning crite-
rion is changed from P1 to P6, the average execution time of
the sequential algorithm increased from 2.22 sec to 28.63

sec, while that of the parallel algorithm increased from 0.18
sec to 3.81 sec. Note that, on average, both the algorithms
execute in less than 30 sec (also, see Table 4).
The reason for the increased execution times is that a larger

portion of the search tree is explored, while retaining branches
that were otherwise pruned when employing the stricter crite-
rionP1. While employingP6, the average increase in the num-
ber of solution branches explored by the sequential algorithm
is 1044%. Results show that this increase in the explored solu-
tions is typically associated with an improved solution set that
has additional better solutions.

A. IMPROVEMENT IN SPEEDUP

Table 4 shows the execution times of the algorithms for crite-
ria P1 and P6 for the 40 disturbance scenarios. Figure 4
shows the increase in speedups across the scenarios when the
train rescheduling algorithm is run in parallel on a quad-core
computer. These values are computed using Equations (4)
and (5). The average speedups for the single-objective and
multi-objective train rescheduling are 2:22

0:18 � 12 and 28:63
3:81 � 8

respectively. Though the former speedup is greater than the
latter, for some disturbance scenarios, the speedup attained
with P6 is greater than that attained with the use of P1 (see
Figure 4, Table 4).
The results in Figure 4 show that the percentage increase in

speedup%SðP16Þ can be greater than 350%, for time-consum-
ing3 disturbances (e.g., scenarios 10, 24). For few disturbance
scenarios, changing the pruning criterion from P1 to P6

decreased the speedup attained by the use of parallel algo-
rithm. However, such a decrease in speedup is of less impor-
tance. The reason is that, despite a decrease in speedup, the
parallel algorithm still runs very fast. For example, see sce-
nario 21 in Table 4. Even though the value of %SðP16Þ ¼
�61%, the time taken by the parallel algorithm is 2.56 sec,
compared to 114.82 sec taken by the sequential algorithm.
The increase in speedup achieved for other scenarios is

FIGURE 4. Percentage increase in speedup:%SðP16Þ, when pruning criterion is changed from P1 to P6 (see Equation (5)).

3scenarios that are time-consuming to solve using the sequential algorithm
with P6.
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significant, both for time-consuming scenarios (e.g., scenario
24) and for easier scenarios (e.g., scenario 38).
From the aforementioned results, the following is

observed. When the number of explored branches grows
large, the distribution of the desirable solution(s) in the
search tree is a property that can significantly affect (i.e.,
increase) the execution time of the sequential DFS algorithm.
In contrast, the execution time of the parallel search algo-
rithm is often only slightly affected by this property. For
example, see the scenarios in Table 5.

B. DISCUSSIONS ON SELECTED SCENARIOS

A detailed discussion of the results obtained for selected dis-
turbance scenarios are as follows.
Scenario 3. In the solution obtained by the use of pruning

criterion P1 (see Table 6), along with the originally disturbed
Train 1,250, two other trains experience a final delay of
approximately 4 minutes each, totalling to 12.7 minutes.
When the pruning criterion is changed to P2, more branches
of the search tree are explored, but the final solution set
remains the same, i.e., no new solutions are obtained.
When P3 is used as the pruning criterion, two additional

solutions with lower TPD2 (of 9.1 hr, 9.5 hr) are obtained
(see Table 6). This reduction in TPD2 is achieved at the cost
of increasing both TFD and TAD2. Also, for one of the solu-
tions, a reduction in TPD2 is achieved at the cost of increased
number of delayed passengers. Table 7 presents the metrics
related to some of the rescheduled trains in the solution with
TFD = 21 min.
Using pruning criterion P4, a higher number of additional

solutions are obtained. However, for most of these solutions,

along with a decrease in the number of delayed passengers,
a significant increase in TAD2 and TPD2 can be noticed
(see Table 6). Using P5 or P6, no additional solutions are
obtained.

1) IMPROVEMENT IN PUNCTUALITY AT COMMERCIAL

STATIONS

Scenario 8. Figure 5 shows a small portion of the reschedul-
ing solution obtained by the use of pruning criterion P1. In
this solution, the initially disturbed Train 6175 does not
experience a delay at its final station. This train gains signifi-
cant time at the station labelled €OND1 (see Figure 5(b)).
However, Train 1263 experiences a delay of 10.3 min at its
final station. This train has a TAD2 of 39.4 min and 66 pas-
sengers experience a delay of > 2 min (in total, 8.3 hr) while
alighting. Though the Train 6175 reaches all its commercial
stations as well as its final destination without any delay,
it experiences delays at a few intermediary stations, thus
causing 14 passengers to experience a delay of > 2 min
(in total, 1.1 hr) while alighting.
Apart from these trains, two other trains undergo platform

track reassignments.
When the pruning criterion is changed to P2, the resched-

uled trains are more punctual at commercial stops compared
to the previous solution (see Table 8). At final stations, the
disturbed train experiences a delay of around 2 min, while
two other trains experience a delay of around 5 min (see
Table 9). Compared to the previous solution, the punctuality
of Train 1263 at commercial stops is increased, since TAD2

reduced from 39.4 min to 27.8 min. This solution is a good
alternative to the previously obtained solution.
The significant increase in the TPD2 is shown in Figure 6.

The number of passengers alighting each station is shown in
the figure. It can be seen how the value of TPD2 can easily
increase even though another metric improves.
When the pruning criterion is changed to P3, an additional

solution is obtained in which two trains experience a final
delay of 37 sec and 14 sec. Ignoring these minor delays, the
obtained solution has a (TFD, TPD2) = (13.9 min, 12.1 hr).
Compared to the previous solution’s (13 min, 12.3 hr), for an
increase in TFD of 1 minute, the TPD2 can be reduced by
around 0.2 hr. From a passenger perspective, this solution is
certainly of a better quality compared to the previously
obtained solution. Using pruning criterion P4, a solution

TABLE 5. Execution times of parallel algorithm for two time-

consuming scenarios.

Disturbance
scenario

Criterion
Explored branches Execution time

Seq Seq Par4

24
P1 12,025 2.18 0.19
P6 1,218,979 150.52 2.87

26
P1 53,336 7.4 0.09
P6 3,297,678 488.59 5.5

TABLE 6. Additional solutions obtained with each pruning

criterion (Scenario 3).

TABLE 7. Metrics related to few rescheduled trains for

Scenario 3, P3.

Train TFD TAD2 TPD2 #D2pax

Train 1250 4.9 min 4.4 min 1.9 hr 24
Train 1095 6.5 min 0 1.5 hr 15
Train 1263 5.8 min 11.7 min 2.4 hr 25
Train 1857 3.8 min 8.3 min 1.9 hr 28

Note: Due to the random passenger flow distribution, we have 15 passengers
of Train 1095 alighting at a non-commercial station, thus giving a non-zero
TPD2 and #D2pax, even though the TAD2 is 0.
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with (TAD2, #D2pax) = (27.8 min, 110) is obtained. The use
of pruning criteria P5 and P6 did not give any new solutions.

2) BETTER SOLUTION QUALITY FROM A PASSENGER

PERSPECTIVE

The use of pruning criterion P6 often produces one or more
additional solutions of significantly better quality compared to

P1. An example is Scenario 24, which is discussed as follows.
In this scenario, Train 6175 experiences an initial delay of 17
min at section CR1-KAP. In the rescheduling solution obtained
with the use of P1 (see Figure 7(a)), Train 1076 is rescheduled
early on in its itinerary. As a consequence of rescheduling Train
1076, Train 1109 is also rescheduled quite early in its itinerary
(not shown in Figure 7) to avoid conflicts. These rescheduling
decisions cause delays at several stations along the single-
tracked line. As a result, the number of delayed passengers and
the accumulated passenger delay are quite high (400 passen-
gers and 58.7 hr respectively).
In a rescheduling solution obtained with the use of P6,

though the total final delay increases by 8.2 minutes, the
TAD2 is reduced by 8.9 minutes. The particular advantage
of this solution is that the rescheduling is limited to a

FIGURE 5. A portion of original and rescheduled timetables for

scenario 8, P1.

TABLE 8. Additional solutions obtained with each pruning

criterion (Scenario 8).

Pi TFD TAD2 TPD2 #D2pax #Dtrains #D2sectr

1 10.3 min 39.4 min 9.4 hr 80 1 1
2 13 min 27.8 min 12.3 hr 129 3 2
3 13.9 min 27.8 min 12.1 hr 129 5 2
4 18.1 min 27.8 min 13.3 hr 110 4 2

TABLE 9. Metrics related to few rescheduled trains for

Scenario 8, P2.

Train TFD TAD2 TPD2 #D2pax

Train 6175 2.1 min 0 4.3 hr 39
Train 1097 5.2 min 0 1.9 hr 24
Train 1263 5.7 min 27.8 min 6.1 hr 66

FIGURE 6. Delays experienced by few trains at their stations in

solutions obtained with P1 = 1 and 2 (see Table 8).
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FIGURE 7. A portion of rescheduled timetables for Scenario 24. The solid lines are the initial scheduled train paths. The dotted lines are

the paths after rescheduling. Significant delays as a result of rescheduling are shown in bold dotted lines. For the on-time trains, the

solid and the dotted lines overlap.
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comparatively smaller portion of the infrastructure (see
Figure 7(b)). As a result, significant improvement is seen
with respect to TPD2 and #D2pax (see Table 10).
For disturbance scenario 30, the heuristic algorithm returns

an optimal solution with respect to TFD. Using P6, an addi-
tional rescheduling solution with desirable properties is
obtained. In this solution, though the TFD and TAD2 are
increased by 8.8 and 8.5 minutes respectively, 47 fewer pas-
sengers are delayed (see Table 11).
In Scenario 37, employing the pruning criterion P6 did not

run to completion even within 15 minutes. However,
employing P4 gives an additional solution which slightly
increases the value of TFD for an improvement in all other
metrics. With an increase in TFD by 5.4 min, this new
rescheduling solution is significantly better from a passenger
perspective (see Table 12).

VIII. CONCLUSION

This study investigated how a parallel heuristic search algo-
rithm can be used to better solve a real-time railway resched-
uling problem while considering multiple perspectives. In
this study, solving from a single perspective corresponded to
the use of pruning criterion P1. Solving the problem while
considering multiple perspectives meant relaxing the pruning
by using multiple metrics.
The conclusions with respect to Proposition 1 are as fol-

lows. For the input disturbance scenarios, when pruning is
relaxed from criterion P1 to P6, the average increase in the
number of solution branches explored by the sequential algo-
rithm is 1044%. The number of explored solution branches
can increase by as much as 10037% (scenario 24, Table 4).
Thus, the algorithm searches a larger number of tree
branches, which were otherwise pruned off when criterion
P1 was employed. The analysis presented in Section VII
shows that the obtained solution set (when using P6) often

contains several additional desirable solutions, particularly
from a passenger perspective.
The conclusions with respect to Proposition 2 are as fol-

lows. For the input disturbance scenarios, the speedup
attained by parallel multi-objective train rescheduling is not
always greater than that attained by parallel single-objective
train rescheduling. However, for time-consuming distur-
bance scenarios, multi-objective rescheduling using the par-
allel search algorithm led to significant speedups; even
greater than the speedups attained by parallel single-objective
rescheduling. When pruning based on multiple metrics,
larger portions of the search tree are explored, leading to lon-
ger execution times, thus making the use of parallel comput-
ing very relevant.
Criterion P4 considers four pruning metrics: total final

delay, total accumulated delay, total passenger delay and
number of delayed passengers. Criterion P5 relaxes the prun-
ing by additionally considering the number of delayed trains.
Criterion P6 further relaxes the pruning by also including
another metric: number of trains with secondary delays. For
few disturbance scenarios, e.g., scenario 24, the use of P5

and P6 resulted in no additional solutions in the obtained
solution set, compared to the use of P4. For few scenarios,
e.g., scenarios 32, 37, the algorithms (sequential and parallel)
did not reach completion even within 15 minutes when using
P5 and P6. The reason is that a significantly larger portion of
the search tree had to be explored when pruning criterion is
relaxed to P5 or P6. Results indicate that using criterion P4

is, for several disturbance scenarios, sufficient to obtain a
good set of solutions. The obtained solution set often con-
tained additional desirable solutions, e.g., compared to the
use of P1, particularly from a passenger perspective.
Based on the results, we conclude that in the context of

train rescheduling and solution space navigation, a parallel
tree search algorithm which (i) prunes based on multiple met-
rics, and (ii) maintains a set of upper bounds, can be benefi-
cial in the following ways. It can improve the quality of the
obtained rescheduling solutions and give better speedups
with respect to the sequential algorithm.
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