
UC Irvine
UC Irvine Previously Published Works

Title
The Effects of Approximate Multiplication on Convolutional Neural Networks

Permalink
https://escholarship.org/uc/item/30g8q297

Journal
IEEE Transactions on Emerging Topics in Computing, 10(2)

ISSN
2376-4562

Authors
Kim, Min Soo
Del Barrio, Alberto A
Kim, HyunJin
et al.

Publication Date
2022

DOI
10.1109/tetc.2021.3050989

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/30g8q297
https://escholarship.org/uc/item/30g8q297#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

1

The manuscript has been accepted for publication in the
IEEE Transactions on Emerging Topics in Computing.

IEEE Copyright Notice

© 2021 IEEE. Personal use of this material is permit-
ted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprint-
ing/republishing this material for advertising or promo-
tional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

ar
X

iv
:2

00
7.

10
50

0v
2

 [
cs

.L
G

]
 9

 J
an

 2
02

1

2

The Effects of Approximate Multiplication on
Convolutional Neural Networks

Min Soo Kim, Alberto A. Del Barrio, Senior Member, IEEE , HyunJin Kim, Nader
Bagherzadeh, Fellow, IEEE

Abstract—This paper analyzes the effects of approximate multiplication when performing inferences on deep convolutional neural
networks (CNNs). The approximate multiplication can reduce the cost of the underlying circuits so that CNN inferences can be
performed more efficiently in hardware accelerators. The study identifies the critical factors in the convolution, fully-connected, and
batch normalization layers that allow more accurate CNN predictions despite the errors from approximate multiplication. The same
factors also provide an arithmetic explanation of why bfloat16 multiplication performs well on CNNs. The experiments are performed
with recognized network architectures to show that the approximate multipliers can produce predictions that are nearly as accurate as
the FP32 references, without additional training. For example, the ResNet and Inception-v4 models with Mitch-w6 multiplication
produces Top-5 errors that are within 0.2% compared to the FP32 references. A brief cost comparison of Mitch-w6 against bfloat16 is
presented where a MAC operation saves up to 80% of energy compared to the bfloat16 arithmetic. The most far-reaching contribution
of this paper is the analytical justification that multiplications can be approximated while additions need to be exact in CNN MAC
operations.

Index Terms—Machine learning , Computer vision, Object recognition, Arithmetic and logic units, Low-power design

F

1 INTRODUCTION

THE computational costs of convolutional neural net-
works (CNNs) have increased as CNNs get wider and

deeper to perform better predictions for a variety of ap-
plications. For deep learning to have revolutionary impact
on real-world applications, their computational costs must
meet the timing, energy, monetary, and other design con-
straints of the deployed services. Many approaches have
been studied to reduce the computational costs at all levels
of software and hardware, from advances in network ar-
chitectures [1], [2] down to electronics where even memory
devices have been extensively researched [3], [4].

Although training requires more computations when
compared to inference, it is still important to reduce the cost
of inference as much as possible because it is the inference
that is usually subject to more strict real-world design
constraints. Many hardware-based approaches have shown
significant improvements for the computational costs of
CNN inferences, but there are two limitations commonly
found in these works. Some techniques are computationally
expensive in order to optimize their methods for each net-
work model, or to retrain networks to compensate for the
performance degradation from their methods [5], [6]. Also,
many techniques such as [7] are only effective for small
networks and cannot scale to deeper CNNs as they report
much worse performance results when tested for deeper
networks. They leverage the fact that a small number of
bits are sufficient for small CNNs, but more complex net-
works require more bits to properly represent the amount
of information [8].

One promising hardware-based approach is the appli-
cation of approximate multiplication to CNN inference [9].
It involves designing and applying multiplication circuits
that have reduced hardware costs but produce results that
are not exact. Unlike aggressive quantization that trades

off numeric precision, the multipliers trade off arithmetic
accuracy that is less dependent on the network models,
making them better suited for deeper CNNs. The approach
does not involve any optimization to a target network model
or require additional processing of the network models,
allowing easy adaptation into the ASIC and FPGA accel-
erators.

While optimizing CNN inference through approximate
multiplication was demonstrated in several previous stud-
ies, there was limited understanding of why it worked well
for CNNs. The promising results led to the general obser-
vation that CNNs were resilient against small arithmetic
errors, but none of them identified the complete reason
behind that resilience. Specifically, it was unclear how the
CNN layers preserved their functionalities when all their
multiplications have a certain amount of error. The lack of
understanding made it challenging to identify the suitable
approximate multiplier for each network model, leading to
expensive search-based methodologies in some studies [10].

This paper investigates how the errors from approximate
multiplication affect deep CNN inference. The work is moti-
vated by hardware circuits but it focuses on the implications
from the Deep Learning perspective.

The contributions are summarized as follows:

• Explaining how convolution and fully-connected
(FC) layers maintain their intended functionalities
despite approximate multiplications.

• Demonstrating how batch normalization can prevent
the buildup of error in deeper layers when its param-
eters are properly adjusted.

• Discussing how these findings also explain why
bfloat16 multiplication performs well on CNNs de-
spite the reduction of precision.

3

• Performing experiments to show that deep CNNs
with approximate multiplication perform reasonably
well.

• Discussing the potential cost benefits of the method-
ology by briefly comparing the hardware costs
against those of bfloat16 arithmetic.

2 PRELIMINARIES

The convolution layers in CNNs consist of a large number
of multiply-accumulate (MAC) operations and they take up
the majority of computations for CNN inferences [11]. The
MAC operations are ultimately performed in the hardware
circuits, and it is important to minimize the cost of these cir-
cuits to perform more computations with the same amount
of resources. For MAC operations, multiplications are more
complex than additions and consume most resources. The
proposed methodology consists of minimizing the cost of
multiplication by replacing the conventional multipliers
with approximate multipliers.

Approximate multipliers are significantly cheaper com-
pared to the exact multipliers but they introduce errors
in the results. There are many different types of approxi-
mate multipliers with various costs and error characteristics.
Some designs use the electronic properties [12] and some
approximate by intentionally flipping bits in the logic [13],
while others use algorithms to approximate multiplication
[14].

This paper studies the effects of approximate multipli-
cation with the approximate log multiplier presented in [9]
as well as a few other promising designs. The approximate
log multiplication is based on the Mitchell’s Algorithm [15]
that performs multiplications in the log domain. Fig. 1
shows the difference between the conventional fixed-point
multiplier and the log multiplier. An important benefit of
the algorithm-based approximation is the consistent error
characteristics which allow for consistent observation of
the effects across various CNN instances. The other types
of approximation have more inconsistent errors that make
them ill-suited for the study. For example, approximate
multipliers based on electronic properties depend not only
on the operands but also on Process, Voltage, and Tempera-
ture (PVT) variations, making it difficult to get consistent
observations. The findings of this study are not limited
to log multiplication, however, and may help explain the
viability of other approaches when they meet the conditions
discussed in Section 3.2.

The errors from approximate log multiplication are de-
terministic and depend on the two input operands, similarly
to the other algorithmic approximation methods. Fig. 2
shows the error patterns of the original Mitchell log mul-
tiplier [15] and Mitch-w6 [9] with a million random input
pairs. The relative error is defined as Equation 1 where
|Z| is the magnitude of the exact product and |Z ′| is the
magnitude of the approximate product.

errorrelative =
|Z ′| − |Z|
|Z|

. (1)

Approximate log multiplication requires separate sign han-
dling and does not affect the signs of the products [9].
Compared to the original Mitchell log multiplier, Mitch-w6

Fig. 1: Difference between (a) the conventional fixed-point
multiplication and (b) the approximate log multiplication.
k stands for characteristic and m stands for mantissa of
logarithm.

has a small frequency of high relative errors caused by the
1’s complement (C1) sign handling, but they are acceptable
as CNNs consist of MAC operations [9]. It should be noted
that the approximate log multipliers have reasonably even
distributions of errors across the input ranges, but can only
have negative errors that cause the products to have less
magnitudes compared to the exact products. The mean
error of an approximate multiplier is measured by repeating
many multiplications with random inputs, and the Mitchell
multiplier has the biased mean error of -3.9% at 32 bits while
Mitch-w6 has -5.9%.

Besides the convolution layers, the FC layers also have
MAC operations but they have fewer computations com-
pared to convolution [11]. Our methodology still applies
to approximate multiplication of FC layers to be consistent
with networks that use 1x1 convolution for classifiers. The
effect of approximating FC layers is minimal because of
the reasons discussed in Section 3. On the other hand, the
operations in batch normalization are not approximated be-
cause they can be absorbed into neighboring layers during
inferences [16].

It is important to understand the difference between
the method of quantization and the approximate multipli-
cation. Quantization is the process of converting floating-
point values in the CNN models to fixed-point for more
cost-efficient inferences in the hardware [16]. The goal of
quantization is to find the minimum number of fixed-point
bits that can sufficiently represent the distribution of values.
In fact, there are some approximations with small numbers
of fixed-point bits that cannot match the range and precision
of the floating-point format. The error from this approxima-
tion depends on the network models as each has different
distributions of values [8], [17]. The network dependency
is the reason why more complex networks require a higher
number of bits and the benefits of aggressive quantization

4

(a) Error pattern of the original Mitchell multiplier with
exact sign handling, given two signed inputs.

(b) Error pattern of Mitch-w6 with C1 approximated sign
handling, given two signed inputs.

(c) Error pattern of Mitch-w6, viewed from the side.

Fig. 2: Error patterns of approximate log multipliers.

diminish. While many studies have successfully demon-
strated the effectiveness of quantization, they usually report
significant degradation of CNN prediction accuracies when
using only 8 bits on deep CNNs [18].

Approximate multiplication is less dependent on the
networks because its source of error is from the approxi-
mation methods, not any lack of range and precision. Given
proper quantization, the approximate multiplication further
minimizes the cost of multipliers for the given number of
bits. Approximate multiplication is an orthogonal approach

to quantization as approximate multipliers may be designed
for any number of bits, and it complements quantization to
maximize the computational efficiency of CNN inferences.

3 ACCUMULATED ERROR IN CONVOLUTION

This section explains how the convolution and FC layers
achieve their intended functionalities despite the errors from
approximate multiplication.

3.1 Understanding Convolution and FC Layers
Explaining the effects of approximate multiplication must
begin with understanding how the convolution and FC
layers achieve their intended functionalities. Fig. 3 is taken
from [9] and shown here to visualize the outputs of convo-
lution and FC. The CNN convolution layers achieve abstract
feature detection by performing convolution between their
input channels and kernels. They produce feature maps, as
shown in Fig. 3a and 3b, where the locations that match
the kernel are represented by high output values relative
to other locations. Unlike a sigmoid or step activation, the
widely used ReLU activation function simply forces the
negative output values to zero and does not have absolute
thresholds with which the abstract features are identified.
That means the abstract features are not identified by their
absolute values but by the relatively higher values within
each feature map, and this claim is also supported by the
fact that convolution is often followed by a pooling layer.
Similarly, when the FC layers classify an image based on
the abstract features, the probabilities of classes are decided
by the relative strengths and order among all FC outputs.
CNNs simply select the best score as the most probable
prediction instead of setting a threshold with which a pre-
diction is made.

Because the features are represented with relative values
as opposed to absolute values, it is much more important
to minimize the variance of error between the convolution
outputs than minimizing the absolute mean of errors when
applying approximate multiplication to convolution [9]. In
other words, it is acceptable to have a certain amount
of error in multiplications as long as the errors affect all
outputs of convolution as equally as possible. The FC layers
behave in the same way so that it is important to minimize
the variance of error between the nodes. Fig. 3 demonstrates
this principle and shows that the Mitchell log multiplier can
produce a correct inference because all outputs are affected
at the same time. Fig. 3 also shows that the variances of
accumulated errors in the convolution and FC layers are
very small when the approximate log multiplier is applied,
and the convolutions are still able to locate the abstract
features albeit with smaller magnitudes. The previous work
[9], however, did not identify the reason why the variance
of accumulated error was minimized when approximate
multiplication was applied.

3.2 Minimized Variance of Error
This paper provides the analytical explanation for why the
variance of accumulated error was minimized in the con-
volution and FC layers. These layers consist of large num-
bers of multiplications and accumulations that converge the

5

(a) Convolution by Log Mult. (b) Convolution by Float Mult. (c) The final scores

Fig. 3: Convolution outputs and the final raw scores of a sample inference from LeNet [9].

Fig. 4: Accumulation of many products with varying
amount of error converges the combined errors to a mean
value.

accumulated errors to a mean value. The variance of the
accumulated error is minimized and all outputs of the layers
are equally affected because of this convergence, and then
maintaining the relative magnitudes between the outputs
preserves the functionality of abstract feature detection.

Equation 2 shows the multi-channel convolution where
feature s at (i,j) is the accumulation of products between
kernel w and input x across the kernel dimensions (m,n)
and the input channels (l).

si,j =
∑
l

∑
m

∑
n

wl,m,n · xl,i−m,j−n . (2)

The distributions of weights and inputs are different
for each CNN model and layer [8], [11], [17]. The in-
put operands to multiplication, weights and input pixels,
are numerous and practically unpredictable with pseudo-
randomness, which in turn makes the error from approxi-
mate multiplication pseudo-random. The approximate log

multipliers have evenly distributed error patterns across
the input ranges, as shown in Fig. 2, and therefore the
expected value of the error is close to the mean error of the
approximate multiplier regardless of the different ranges of
inputs from CNNs. When each convolution output accu-
mulates many products from approximate multiplication,
the accumulated error statistically converges closer to the
expected value, which is the mean error of the approximate
multiplier. This convergence reduces the variance of the
accumulated error between the outputs and the values
scale by roughly the same amount, minimizing the effect
of varying error on feature detection. Fig. 4 shows the
abstraction of this mechanism and Fig. 3 shows an example.
Equation 3 describes the feature s′i,j when multiplications
are associated with the mean error of e.

s′i,j =
∑
l

∑
m

∑
n

wl,m,n · xl,i−m,j−n · (1 + e) , (3)

s′i,j = (1 + e) · si,j . (4)

Therefore, the features are simply scaled by the mean error
of the approximate multiplication when a large number of
products are accumulated.

The above observations hold only for the approximate
multiplications with the symmetric errors between positive
and negative products so that Equations 3 and 4 hold. The
approximate multipliers studied in this paper satisfy this
condition because all of them handle the signs separately
from magnitudes.

Although we primarily used the Mitch-w multiplier to
develop this hypothesis, the hypothesis does not depend
on the inner workings of the log multiplier but only on
the output error characteristics. Therefore, the theory can
be similarly applied to any approximate multiplier that
meets the assumptions made in this section, namely the
evenly distributed error and the symmetric errors between
positive and negative products. Having only negative errors

6

Fig. 5: Depthwise Convolution has a reduced number of
accumulations and convergence of error per output.

like Mitch-w is not a requirement. It should be noted that
the assumption of an evenly distributed error is used to
accommodate different ranges of inputs, and may be relaxed
when an approximate multiplier can produce a consistent
expected value of error for particular input distributions.
In this paper, we also used DRUM6 [19] and the truncated
iterative log multiplier [20] for the experiments in Section
6 to show that the hypothesis may be applied to other
approximate multipliers.

3.3 Impact on Convolution and FC
The number of accumulations in convolution is finite so
the convergence does not completely nullify the variance of
accumulated error. The small amount of error variance from
approximate multiplication is acceptable, however, because
CNNs are designed to be general and robust against small
variations by nature. The techniques of regularization, such
as pooling and dropout, intentionally lose some informa-
tion to suppress overfitting and increase the generality of
CNN predictions. Some studies have observed that small
arithmetic errors have similarly positive effects [9], [21], [22].
For example, an eye needs to be recognized as an eye even
when it is a little different from the training samples. CNNs
are designed to overlook such small differences, and some
computational inaccuracies are not only tolerable but often
beneficial in providing such generality.

Deep CNNs typically start with smaller numbers of
convolution channels to obtain general features, and the
number of channels increases in the deeper layers where
features become more specific. Approximate multiplication
on such CNNs exhibits the desired trend of having smaller
effects in the wide and deep layers as required. The larger
variance of accumulated error in the shallow layers is toler-
able because the feature detection needs to account for the
small variations in the input images. In fact, some previous
works, such as [14], [23], had claimed that earlier layers can
be approximated more in neural networks.

This hypothesis implies the importance of exact addi-
tions in CNNs because the multiplication errors will not
converge properly with inexact accumulations. This agrees

with the work in [13] where approximating the additions
had a larger impact on the CNN accuracies. As multipliers
in fixed-point arithmetic are much more expensive than
adders, approximating only the multipliers gains the most
benefit with minimal degradation in CNN inferences.

Approximate multiplication also benefits from the fact
that the convolution outputs receive inputs from the same
set of input channels. For each convolution output, there are
two types of accumulations. One type occurs within each
input channel across the kernel dimensions while the other
occurs across the input channels to produce the final output.
The intra-channel accumulation combines the products from
the same input channel and kernel, and therefore each
channel has a specific range of values within which features
are located. The inter-channel accumulation may have more
varying ranges of products because each input channel has
its own kernel and input values. Different input ranges may
trigger different error characteristics on the approximate
multiplier, but every convolution output accumulates from
all input channels so that it does not affect the variance of
accumulated error between the outputs. An implication of
this observation is that approximate multiplication does not
work as well when every output does not accumulate from
the same set of data, as in the cases of grouped convolution
and branches in CNN architectures.

The FC layers are also resilient against the effects of ap-
proximate multiplication as the same factors help converge
errors in the outputs. There is usually a large number of
accumulations per each output and all outputs share the
same set of inputs. Thus, CNN accuracies show minimal
differences when the FC layers have approximate multipli-
cations as demonstrated in Section 6.

3.4 Grouped and Depthwise Convolutions

The benefits of approximate multiplication with conven-
tional convolution are best understood and verified by com-
paring against grouped and depthwise separable convolu-
tion. Depthwise separable convolution consists of depth-
wise convolution followed by pointwise convolution [2].
Depthwise convolution is a special case of grouped convo-
lution that eliminates the accumulation across input chan-
nels, and the reduced number of accumulations leads to
an increase in the variance of accumulated error in the
outputs. Fig. 5 shows the comparison of the accumulation
pattern between conventional convolution and depthwise
convolution. Also, each output channel receives inputs from
only one input channel and the difference of error between
output channels is subject to another approximate mul-
tiplication and variance of error before the inter-channel
accumulations occur in the following pointwise convolu-
tion. More accurate approximate multipliers are required for
CNNs that use depthwise separable convolution because
errors from approximate multiplication do not converge
well. A sufficiently accurate approximate multiplier can still
perform reasonably well, as demonstrated in Section 6.

Another technique that reduces the number of accumu-
lations is 1x1 convolution, but it is found to be compatible
with approximate multipliers. 1x1 convolution does not
have any intra-channel accumulation but accumulates the
products across input channels. Because deep CNNs require

7

Fig. 6: Abstract overview of batch normalization.

large numbers of channels appropriate for their deep struc-
tures, inputs to 1x1 convolutions usually consist of many
input channels and therefore provide enough accumulations
for the error convergence. Each output of 1x1 convolution
also receives inputs from all input channels, which provides
more consistent accumulation of error between the outputs.

4 EFFECT OF BATCH NORMALIZATION

The approximate log multiplication with Mitchell’s Algo-
rithm generates negative error in the results, meaning that
the product has less magnitude compared to the exact multi-
plication [15]. It is evident from Equation 4 that the features
have less magnitudes with the log multiplication in each
convolution layer. There are many convolution layers that
repeatedly cause the reduction, and the previous work had
reported that this became a problem for deeper layers [9]. Its
adverse effect on the network performance was observable
in AlexNet with only 8 layers of convolution and FC, and
it was unclear how the mean error accumulation would
behave in much deeper networks. Having tens or hundreds
of convolution layers significantly reduces the magnitudes
of the features so that the deeper layers receive input distri-
butions that are difficult to distinguish. On the other hand,
if an approximate multiplier has a positively biased mean
error, it is possible to amplify the values beyond the range
set by quantization, resulting in the arithmetic overflow.
These adverse effects are under the best-case scenario of
ReLU activation, and the other types such as a sigmoid
function may suffer additional errors in activations. The
ReLU function simply forces the negative values to zero and
does not change the magnitudes of positive inputs, but the
same is not true for other activation functions where the
magnitudes of positive inputs cause changes in activations.

Batch normalization [24], the popular technique used
in most deep CNNs, can alleviate this problem and help
approximate multiplication go deeper into the networks.
A critical function of batch normalization is to redistribute
the output feature maps to have more consistent input
distributions for deeper layers. While the training process
necessitates this function, the inferences on the resulting
models still need to go through the normalization with the
stored global parameters of expected distributions. These
global parameters can be appropriately adjusted to account
for the changes in the distributions due to approximate
multiplication, and this can prevent the accumulation of
mean error across the layers.

The abstract overview of batch normalization is shown
in Fig. 6. During training, each batch normalization layer
calculates and stores the mean and variance values of the
input distributions. These mean and variance values are
used to normalize the input distributions to generate the
normalized distributions with the mean value of zero and
the variance of one. Then, batch normalization uses learn-
able parameters to scale and shift the normalized distribu-
tion to restore the representation power of the network [24].
In essense, batch normalization redistributes the feature
maps before or after the activation function so that the
next layer may receive consistent distributions of inputs. All
these parameters are learned during training and stored as
numerical values in CNN models, and they can be easily
modified if necessary. CNN inferences use these stored pa-
rameters to perform normalization assuming they represent
the same input distributions during inferences.

The mean and variance parameters are a source of error
for approximate multiplication without proper adjustments
because the distribution of convolution outputs changes as
the result of approximate multiplication. Equations 7 and 10
show the mean (µ′) and variance ((σ′)2) of the convolution
output distribution, when the features s′i,j have the mean
error e from Equation 4.

µ′ = 1/m
∑
i,j

s′i,j , (5)

µ′ = 1/m
∑
i,j

(1 + e) · si,j , (6)

µ′ = (1 + e)µ . (7)

(σ′)2 = 1/m
∑
i,j

(s′i,j − µ′)2 , (8)

(σ′)2 = 1/m
∑
i,j

(1 + e)2(si,j − µ)2 , (9)

(σ′)2 = (1 + e)2 · σ2 . (10)

Therefore, the stored mean values for batch normalization
must be scaled by (1 + e), while the variance values are
scaled by (1 + e)2. With the adjusted parameters, the batch
normalization layers correctly normalize the convolution
outputs and scale them back to the desired distributions.
In the process, the mean and variance of the outputs match
those of exact multiplication and the effect of mean error
accumulation disappears. Failing to adjust these parameters
results in incorrect redistribution of feature maps, and worse

8

CNN accuracies. The proposal only requires the scaling
of the stored parameters and significantly improves the
performance of approximate multipliers on deep neural
networks. It does not introduce any new operations and
does not prevent the ability of batch normalization to fold
into neighboring layers.

Designing an approximate multiplier with an unbiased
mean error near zero is another effective solution, but it is
much harder to make changes to hardware designs. The
unbiased designs usually have a small amount of mean
error because it is difficult to create a perfectly unbiased de-
sign, and the problem is only deferred to deeper networks.
Also, depending on the approximation method, it may take
additional hardware resources to make a design unbiased.
The networks that do not use batch normalization have no
choice but to use the unbiased multipliers, but otherwise
the proposed adjustment is simpler, less costly, and more
flexible to accommodate different approximation methods
with biased mean errors.

5 ARITHMETIC REASON FOR BFLOAT16 SUCCESS

The discoveries in Sections 3 and 4 are not limited to the
error of approximate multiplication but apply to all sources
of arithmetic error. They also provide deeper understanding
of why bfloat16 [22] has been widely successful at accelerat-
ing CNNs despite its reduced precision. The bfloat16 format
is an approximation of the FP32 floating-point format that
simply truncates the 16 least significant bits from the 23
fractional bits. By truncating the less significant fractional
bits, converting an FP32 value to bfloat16 generates a small
negative error from 0% to -0.78% relative to the original FP32
value. The factors discussed in Section 3 also minimize the
adverse effects of this varying error and they explain why
using the full FP32 accumulator after bfloat16 multiplica-
tion produces the best results [25], in agreement with the
observation that the accumulations need to be exact. The
accumulation of mean error discussed in Section 4 should
also be present, but the mean error of bfloat16 is too small
to cause any problems for the studied CNNs.

The successful application of bfloat16 to CNNs has been
explained by the high-level interpretation that the small
amount of error helps the regularization of a CNN model.
The interpretation is still valid and also applies to approxi-
mate multiplication, and the findings of this paper provide
deeper understanding with the arithmetic explanation. They
also explain why the bfloat16 format has slightly degraded
performances with the networks that use grouped convolu-
tion as presented in Section 6.2.

6 EXPERIMENTS

6.1 Setup

The experiments are performed in the Caffe framework to
evaluate the impact of approximate multipliers on deep
CNN models [26]. Caffe has limited features compared to
contemporary tools but its lack of encapsulation allows easy
modification of underlying matrix multiplication, making it
suitable for the study. The code that performs floating-point
matrix multiplication in GPU is replaced by the CUDA C++

TABLE 1: Pre-trained CNN models used for the experiments

Network Model Source BatchNorm Grouped Conv.

VGG16 [26]

GoogLeNet [26]

ResNet-50 [27]
√

ResNet-101 [27]
√

ResNet-152 [27]
√

Inception-v4 [28]
√

Inception-ResNet-v2 [29]
√

ResNeXt-50-32x4d [30]
√ √

Xception [28]
√ √

MobileNetV2 [31]
√ √

functions that emulate the behavior of the target approxi-
mate multipliers. These functions are verified against RTL
simulations of the HDL code of the multipliers.

The Mitch-w6 multiplier with the C1 sign handling is
chosen because the comparison against the other multipliers
showed that it was cost-efficient while performing well on
AlexNet [9]. Mitch-w multipliers consume significantly less
resources compared to the Mitchell log multiplier. DRUM6
multiplier [19] is also added to the experiments because it
performed very well on AlexNet while being more costly
than Mitch-w6 [9]. The truncated iterative log multiplier in
[20] has higher accuracy than these multipliers and is tested
for networks that have depthwise separable convolution.
Unlike Mitch-w, DRUM6 and the truncated iterative log
multiplier have the unbiased mean errors close to zero.
The FP32 floating-point results are included for comparison,
and the bfloat16 results provide additional data points (see
Section 5).

The target application is object classification with the
ImageNet ILSVRC2012 validation dataset of 50,000 images.
Only single crops are used for experiments because the
C++ emulation of the approximate multipliers is very time-
consuming compared to the multiplication performed in
actual hardware, so the presented CNN accuracies may
differ from the original literature that use 10-crops. Table 1
shows the list of CNN models used for the experiments, and
the networks that use batch normalization and grouped con-
volutions are marked for comparative discussion. The pre-
trained CNN models for the experiments are publicly avail-
able from online repositories, and the source is indicated
with each model. Any training or retraining of a network
model is purposefully avoided to achieve reproducibility
and to show that the proposed methodology works with
many network models with only minor scaling of batch
normalization parameters.

The experiments assume quantization to 32 fixed-point
bits without rounding (statically assigned to 16 integer and
16 fractional bits) as it is sufficient for all the tested network
models. As discussed in Section 2, approximate multiplica-
tion is an orthogonal approach to quantization and we used
generous quantization to minimize the quantization errors
and study the effects of approximate multiplication in isola-
tion, in order to clearly evaluate the hypothesis presented in
this paper. This paper focuses on establishing approximate
multiplication as a viable approach, and combining various

9

Fig. 7: Comparison of Top-5 errors between the FP32 reference and the approximate multipliers.

Fig. 8: Comparison of Top-1 errors between the FP32 reference and the approximate multipliers.

quantization methods with approximate multiplication is
beyond the scope of this paper.

6.2 Impact of Approximate Multiplication on CNNs
Fig. 7 and 8 show the Top-5 and Top-1 errors when the
approximate multipliers are applied to the CNNs, compared
against the FP32 reference values. For the networks with
conventional convolution, the studied approximate multi-
pliers produce predictions that are nearly as accurate as
the exact FP32 floating-point as they show Top-5 errors
within 0.2% compared to the reference values, except for
Mitch-w6 on Inception-ResNet-v2 (0.5%) and the networks
without batch normalization. On the contrary, the CNNs
with grouped convolution suffer degraded accuracies when
there are errors in multiplications, from approximate mul-
tiplication as well as bfloat16. The difference of CNN ac-
curacies between different convolution types supports the
hypothesis presented in Section 3.

In order to demonstrate the increased variance of error
for grouped and depthwise convolution, all convolution
outputs are extracted for the first 100 sample images of
the ILSVRC2012 validation set with FP32 and Mitch-w6
multiplications. The errors from approximate multiplica-
tion are measured by comparing the results. The variance

of accumulated error within each channel is measured as
well as the variance between the convolution outputs. The
geometric means are taken across all channels as channels
had wildly varying ranges of values. Table 2 shows the
measured values for various CNNs and it demonstrates the
increased variance of accumulated error for grouped and
depthwise convolutions as discussed in Section 3.4. The con-
ventional convolution results also provide the evidence that
the accumulated errors have much less variance compared
to the distribution of outputs, and therefore have less impact
on the functionality of feature detection.

While the 100 images may seem like a small number
of samples, the geometric means are actually taken across
millions of convolution feature maps produced from the
images. The samples include sufficient numbers of data
points to demonstrate the point. It is extremely difficult to
process the entire dataset because of the large amount of
internal data generated by CNNs. Changing the sample size
had little effect on the observation and the samples likely
represent the behavior of the entire set for these models.

The measured variances in Table 2 do not directly corre-
late to the performance of Mitch-w6 in Fig. 7 and 8 because
Table 2 only shows the error variance within each channel
and does not account for the error variance across chan-

10

TABLE 2: Measured error variance with Mitch-w6

Conv. Type Network Error Vari. Output Vari. Pct.

Conventional ResNet-50 2.31E-3 6.13E-2 3.8%

ResNet-101 1.69E-3 3.52E-2 4.8%

ResNet-152 1.50E-3 2.72E-2 5.5%

Inception-v4 6.79E-3 1.22E-1 5.6%

Inception-ResNet-v2 1.18E-3 1.85E-2 6.3%

Grouped ResNeXt-50-32x4d 1.50E-4 1.35E-3 11.2%

Depthwise Xception 1.81E-2 8.91E-2 20.4%

MobileNetV2 2.00E-2 1.34E-1 14.9%

Fig. 9: Low impact on CNN accuracies when FC layers do
not use approximate multiplication. The experiments are
performed with Mitch-w6.

nels. The approximate multiplication in ResNeXt-50-32x4d
causes more degradation in the prediction accuracy because
ResNeXt networks have many branches in their architec-
tures where different amounts of error accumulate. The
Inception networks have relatively shorter branches and
show slightly more degradation compared to the ResNet
models that have none. The theoretical principle discussed
in Section 3.3 agrees with this analysis, though Table 2 could
not capture these differences.

When the convergence of errors diminishes for grouped
and depthwise convolutions, the outcomes become statisti-
cally uncertain and each CNN model may favor different
approximate multipliers depending on their error patterns.
DRUM6 has a different error pattern compared to Mitch-
w6 and it performs worse than Mitch-w6 on the ResNeXt50
model despite the fact that it generally produces smaller
errors, as shown in Fig. 7 and 8. On the contrary, DRUM6
performs very well on the Xception model and it is con-
jectured that the errors from DRUM6 work well with this
particular pre-trained model.

For CNNs with grouped convolutions, a sufficiently
accurate approximate multiplier can still be used to perform
accurate inferences, as demonstrated with the truncated
iterative log multiplier in Fig. 7 and 8. When the converging
effect of accumulation is reduced, the variance of accumu-
lated error may be reduced by producing a smaller range of
errors at the cost of more hardware resources.

Fig. 9 shows the effects on CNN accuracies when the
FC layers perform exact multiplication instead of approx-
imate multiplication. Despite the fact that approximating

Fig. 10: Accumulation of mean error on VGG16.

Fig. 11: Effect of batch normalization on ResNet-50.

later layers in CNNs have more influence on the outputs
compared to earlier layers [14], [23], Fig. 9 demonstrates
that approximating FC layers at the end of CNNs has
minimal impact on CNN accuracies. The FC layers have
a large number of accumulations per each output and the
higher convergence of error preserves the relative order
between the final outputs. This is the desirable property of
approximate multiplication for CNN inferences as discussed
in Section 3.3.

6.3 Effect of Batch Normalization
Fig. 10 demonstrates the accumulation of mean error in
VGG16 with Mitch-w6, averaged over the 100 sample im-
ages. Because the network lacks batch normalization, the
deeper layers receive the inputs that are repeatedly scaled
down when the errors in multiplication are biased. It ex-
plains the poor performance of Mitch-w6 on VGG16 and
GoogLeNet in Fig. 7, while the unbiased DRUM6 performs
well. The last three layers that disrupt the trend are the FC
layers where the added bias values become more significant
when the inputs have reduced magnitudes.

Fig. 11 shows the effect of batch normalization with
properly adjusted parameters, on ResNet-50 with Mitch-w6
averaged over the 100 sample images. For Mitch-w6 with a
mean error of -5.9%, the mean and variance parameters in
batch normalization are scaled by 0.941 and 0.885 respec-
tively. With the proper adjustments, batch normalization
eliminates the accumulation of mean error across layers and
helps approximate multiplication work with deep CNNs.
Fig. 11 shows that the mean error per layer hovers around
the mean error of Mitch-w6, which supports the conver-
gence of accumulated error as well as the effectiveness

11

TABLE 3: Impact of batch normalization adjustment with
Mitch-w6 on ResNet models

Top-1 Error Top-5 Error

Original Adjusted Original Adjusted

ResNet-50 31.7% 27.2% 10.5% 9.0%

ResNet-101 31.8% 26.0% 12.0% 8.2%

ResNet-152 31.2% 25.2% 11.5% 7.7%

of the adjusted batch normalization. Failing to adjust the
parameters not only accumulates error in deeper layers but
also becomes an additional source of error with incorrect re-
distribution of feature maps, resulting in an unstable pattern
of accumulated error. Table 3 shows the impact on the Top-
1 and Top-5 errors of the ResNet models. Incorrect batch
normalization results in performance degradation while
the corrected batch normalization layers help approximate
multiplication perform well for deep ResNet models.

7 COMPARISON OF COSTS

Using the bfloat16 format significantly reduces the hard-
ware costs compared to the FP32 floating-point format and
has been widely adopted in Machine Learning hardware
accelerators. While its ease of use and the ability to perform
training as well as inference are undeniably advantageous,
its arithmetic units are slower and consume more energy
compared to the discussed multipliers based on the fixed-
point format. It is plausible to have a use-case scenario
where embedded systems perform only inferences under
strict design constraints, while communicating to datacen-
ters where training occurs. This section presents a brief com-
parison of the hardware costs against a bfloat16 MAC unit
to give an idea of the potential benefits of the approximate
log multiplication.

Table 4 compares the costs among the MAC units of
FP32, bfloat16 and the Mitch-w, as synthesized with a 32nm
standard library from Synopsys. The Mitch-w6 HDL code
is available in [32], the FP32 MAC design is from [33], and
we modified the FP32 design to create the bfloat16 MAC.
Synopsys Design Compiler automatically synthesized the
fixed-point MAC, and Mitch-w6 is followed by an exact
fixed-point adder. The 32-bit Mitch-w6 design represents
the circuit used for the experiments while the 16-bit design
represents what is potentially achievable with the proper
quantization such as [18]. It is clear from Table 4 that
applying approximate multiplication to CNNs can save a
significant amount of resources for inferences.

The presented figures do not consider the potential
benefits when adopting multiple log multipliers, where
additional optimization for resource sharing can be per-
formed depending on the design of the hardware acceler-
ator. Oliveira et al. [34] proposed that certain parts of the
log multiplier can be removed or shared between multiple
instances of MAC units depending on the accelerator de-
sign.

8 RELATED WORKS

There have been a number of previous works that applied
approximate multipliers to CNN inferences. This paper ex-

TABLE 4: Hardware costs of FP32, bfloat16, fixed-point and
Mitch-w6 MAC units

N=16 N=32

bfloat16 Fixed Mitch-w6 FP32 Fixed Mitch-w6

Delay (ns) 4.77 2.07 2.74 7.52 4.29 4.39

Power (mW) 1.47 1.17 0.50 5.80 4.36 0.98

Energy (pJ) 7.01 2.42 1.37 43.62 18.70 4.30

Energy vs. bfloat16 100% 35% 20% 622% 267% 61%

plains the underlying reason why some of these methods
perform well despite the error and how to extend the
methodologies to deep CNNs with batch normalization.
To the best of our knowledge, this is the first work to
demonstrate that one approximate multiplier design can
perform successful inferences on the various ResNet and
Inception network models without retraining.

One study in [35] applied various approximate multi-
pliers with varying accuracies to the VGG network, and
it provided more evidence that approximate multiplication
was compatible with CNN inferences. Their work included
interesting experimental results that support our hypothe-
sis. They found that approximating the convolution layers
with higher numbers of channels resulted in less degrada-
tion of CNN accuracy, and this agrees with our finding that
variance of accumulated error decreases with more inter-
channel accumulations.

The works presented in [10], [13], [21], [36], [37] had
used logic minimization to create the optimal approximate
multipliers for each network model. Logic minimization
intentionally flips bits in the logic to reduce the size of the
operators, and these techniques use heuristics to find the
optimal targets. While these studies demonstrate promising
results for improving the efficiency of CNN inferences, the
heuristics involve the costly exploration of a large design
space and do not ensure that the optimal multipliers for one
situation would be optimal for another.

The Alphabet Set Multiplier proposed in [14] stores mul-
tiples of each multiplier value as alphabets and combines
these alphabets to produce the products. Because the stored
multiples require memory accesses, the authors eventually
proposed the design with a single alphabet that had per-
formed reasonably well for the simple datasets. However,
the design was too inaccurate to handle the more complex
dataset of ImageNet [9].

Approximate log multiplication from Mitchell’s Algo-
rithm had been applied to small CNN models in [9], [38],
[39]. The iterative log multipliers that increase accuracy
by iterating log multiplication had been also studied [5],
[20], [40]. They were mostly effective at performing CNN
inferences but the reason for the good performances largely
remained unsolved. This paper provides deeper under-
standing of the effects of approximate multiplication on
CNNs.

The log multipliers should be distinguished from the log
quantization presented in [41], [42]. The log quantization
performs all operations in the log domain and suffers from
inaccurate additions, which may explain why the perfor-
mances drop for more complex networks. The Mitchell’s
Algorithm still performs exact additions in the fixed-point

12

format which helps maintain the CNN performance, as
discussed in Section 3.

There are many other ways of approximating multiplica-
tion that had not been applied to deep CNNs, such as [43],
[44], [45] among countless others. While we believe that the
studied multiplier designs are the most promising, there are
most likely other related opportunities for improving CNNs.

9 CONCLUSION

This paper provides a detailed explanation of why CNNs
are resilient against the errors in multiplication. Approx-
imate multiplication favors the wide convolution layers
with many input channels and batch normalization can be
adjusted for deeper networks, making it a promising ap-
proach as the networks become wider and deeper to handle
various real-world applications. The proposed approximate
multipliers show promising results for CNN architectures,
and the arithmetic explanations provide a new and effective
way for designing hardware accelerators. They also help
explain some of the phenomenon observed in the related
works while providing guidelines for extending to deeper
CNNs with batch normalization.

The most widely applicable insight of this paper is that
the multiplications in CNNs can be approximated while
the additions have to be accurate. The implications are far-
reaching and may help analyze and justify a variety of
other approximation techniques that were previously only
supported by empirical evidence. In this paper, we provide
the arithmetic reason behind the success of bfloat16 approx-
imation [22] and also conjecture that log quantization [42]
loses CNN accuracy because of inaccurate additions. For
quantization, the convergence theory can justify the reduced
number of bits used for weights while accumulations are
done with a higher number of bits. The findings may help
justify the analog processing of neural networks where the
multiplication resistors may have some process variation
[4]. These are only a few examples and new approximation
techniques may be evaluated in the similar fashion in terms
of the variance of accumulated error. Various studies on
approximation of CNN inferences have relied only on the
end results as the inner workings of CNNs are often treated
as black boxes. This paper seeks to contribute towards
a more analytical understanding of CNN approximation
based on arithmetic.

ACKNOWLEDGMENTS

This work has been partially supported by the CPCC at UCI,
the Community of Madrid under grant S2018/TCS-4423,
the EU (FEDER) and the Spanish MINECO under grant
RTI2018-093684-B-I00, and the NRF of South Korea funded
by the Ministry of Education (2017R1D1A1B03030348).

REFERENCES

[1] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2015, pp. 1–9.

[2] F. Chollet, “Xception: Deep learning with depthwise separable
convolutions,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2017, pp. 1251–1258.

[3] X. Sun, X. Peng, P.-Y. Chen, R. Liu, J.-s. Seo, and S. Yu, “Fully par-
allel rram synaptic array for implementing binary neural network
with (+ 1,- 1) weights and (+ 1, 0) neurons,” in 2018 23rd Asia
and South Pacific Design Automation Conference (ASP-DAC). IEEE,
2018, pp. 574–579.

[4] Y. Shim, A. Sengupta, and K. Roy, “Low-power approximate con-
volution computing unit with domain-wall motion based “spin-
memristor” for image processing applications,” in Design Automa-
tion Conference (DAC), 2016 53nd ACM/EDAC/IEEE. IEEE, 2016,
pp. 1–6.

[5] J. Kung, D. Kim, and S. Mukhopadhyay, “A power-aware digi-
tal feedforward neural network platform with backpropagation
driven approximate synapses,” in Low Power Electronics and Design
(ISLPED), 2015 IEEE/ACM International Symposium on. IEEE, 2015,
pp. 85–90.

[6] Q. Zhang, T. Wang, Y. Tian, F. Yuan, and Q. Xu, “Approxann: An
approximate computing framework for artificial neural network,”
in 2015 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 2015, pp. 701–706.

[7] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-
net: Imagenet classification using binary convolutional neural
networks,” in European Conference on Computer Vision. Springer,
2016, pp. 525–542.

[8] L. Lai, N. Suda, and V. Chandra, “Deep convolutional neural
network inference with floating-point weights and fixed-point
activations,” arXiv preprint arXiv:1703.03073, 2017.

[9] M. S. Kim, A. A. Del Barrio, L. T. Oliveira, R. Hermida, and
N. Bagherzadeh, “Efficient Mitchell’s approximate log multipliers
for convolutional neural networks,” IEEE Transactions on Comput-
ers, vol. 68, no. 5, pp. 660–675, 2018.

[10] V. Mrazek, S. S. Sarwar, L. Sekanina, Z. Vasicek, and K. Roy,
“Design of power-efficient approximate multipliers for approxi-
mate artificial neural networks,” in 2016 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), 2016, pp. 1–7.

[11] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang,
N. Xu, S. Song, Y. Wang, and H. Yang, “Going deeper with
embedded fpga platform for convolutional neural network,” in
Proceedings of the 2016 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, 2016, pp. 26–35.

[12] V. K. Chippa, D. Mohapatra, A. Raghunathan, K. Roy, and S. T.
Chakradhar, “Scalable effort hardware design: Exploiting algo-
rithmic resilience for energy efficiency,” in Design Automation
Conference. IEEE, 2010, pp. 555–560.

[13] Z. Du, K. Palem, A. Lingamneni, O. Temam, Y. Chen, and C. Wu,
“Leveraging the error resilience of machine-learning applications
for designing highly energy efficient accelerators,” in 2014 19th
Asia and South Pacific Design Automation Conference (ASP-DAC),
2014, pp. 201–206.

[14] S. S. Sarwar, S. Venkataramani, A. Raghunathan, and K. Roy,
“Multiplier-less artificial neurons exploiting error resiliency for
energy-efficient neural computing,” in 2016 Design, Automation
Test in Europe Conference Exhibition (DATE), 2016, pp. 145–150.

[15] J. N. Mitchell, “Computer multiplication and division using binary
logarithms,” IRE Transactions on Electronic Computers, vol. EC-11,
no. 4, pp. 512–517, Aug 1962.

[16] D. Lin, S. Talathi, and S. Annapureddy, “Fixed point quantization
of deep convolutional networks,” in International Conference on
Machine Learning, 2016, pp. 2849–2858.

[17] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and
A. Moshovos, “Stripes: Bit-serial deep neural network comput-
ing,” in 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2016, pp. 1–12.

[18] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard,
H. Adam, and D. Kalenichenko, “Quantization and training of
neural networks for efficient integer-arithmetic-only inference,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 2704–2713.

[19] S. Hashemi, R. I. Bahar, and S. Reda, “Drum: A dynamic
range unbiased multiplier for approximate applications,” in 2015
IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD), 2015, pp. 418–425.

[20] H. Kim, M. S. Kim, A. A. Del Barrio, and N. Bagherzadeh,
“A cost-efficient iterative truncated logarithmic multiplication for
convolutional neural networks,” in 2019 IEEE 26th Symposium on
Computer Arithmetic (ARITH). IEEE, 2019, pp. 108–111.

[21] M. S. Ansari, V. Mrazek, B. F. Cockburn, L. Sekanina, Z. Vasicek,
and J. Han, “Improving the accuracy and hardware efficiency of

13

neural networks using approximate multipliers,” IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, vol. 28, no. 2,
pp. 317–328, 2019.

[22] S. Wang and P. Kanwar, “Bfloat16: the secret to high performance
on cloud tpus,” Google Cloud Blog, August, 2019.

[23] D. Kim, J. Kung, and S. Mukhopadhyay, “A power-aware digital
multilayer perceptron accelerator with on-chip training based on
approximate computing,” IEEE Transactions on Emerging Topics in
Computing, vol. 5, no. 2, pp. 164–178, 2017.

[24] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Interna-
tional Conference on Machine Learning, 2015, pp. 448–456.

[25] G. Henry, P. T. P. Tang, and A. Heinecke, “Leveraging the bfloat16
artificial intelligence datatype for higher-precision computations,”
in 2019 IEEE 26th Symposium on Computer Arithmetic (ARITH).
IEEE, 2019, pp. 69–76.

[26] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture
for fast feature embedding,” in Proceedings of the 22Nd ACM
International Conference on Multimedia, 2014, pp. 675–678.

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770–778.

[28] Y. Liu, C. Chen, R. Zhang, T. Qin, X. Ji, H. Lin, and M. Yang, “En-
hancing the interoperability between deep learning frameworks
by model conversion,” in Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2020, pp. 1320–1330.

[29] N. Silberman, “Tf-slim: A lightweight library for defining, training
and evaluating complex models in tensorflow,” 2017.

[30] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated
residual transformations for deep neural networks,” in Proceedings
of the IEEE conference on computer vision and pattern recognition, 2017,
pp. 1492–1500.

[31] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Pro-
ceedings of the IEEE conference on computer vision and pattern recogni-
tion, 2018, pp. 4510–4520.

[32] A. Del Barrio, M. S. Kim, R. Hermida, and N. Bagherzadeh,
“log-arithmetic,” 2019. [Online]. Available: https://github.com/
albertodbg/log-arithmetic

[33] A. A. Del Barrio, N. Bagherzadeh, and R. Hermida, “Ultra-low-
power adder stage design for exascale floating point units,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 13, no. 3s,
pp. 1–24, 2014.

[34] L. T. Oliveira, M. S. Kim, A. A. Del Barrio, N. Bagherzadeh,
and R. Menotti, “Design of power-efficient fpga convolutional
cores with approximate log multiplier,” in European Symposium
on Artificial Neural Networks, Computational Intelligence and Machine
Learning, 2019, pp. 203–208.

[35] I. Hammad and K. El-Sankary, “Impact of approximate multipliers
on vgg deep learning network,” IEEE Access, vol. 6, pp. 60 438–
60 444, 2018.

[36] V. Mrazek, Z. Vasicek, L. Sekanina, M. A. Hanif, and M. Shafique,
“Alwann: Automatic layer-wise approximation of deep neural
network accelerators without retraining,” in 2019 IEEE/ACM In-
ternational Conference on Computer-Aided Design (ICCAD). IEEE,
2019, pp. 1–8.

[37] S. De, J. Huisken, and H. Corporaal, “Designing energy efficient
approximate multipliers for neural acceleration,” in 2018 21st
Euromicro Conference on Digital System Design (DSD). IEEE, 2018,
pp. 288–295.

[38] M. S. Kim, A. A. D. Barrio, R. Hermida, and N. Bagherzadeh,
“Low-power implementation of mitchellś approximate logarith-
mic multiplication for convolutional neural networks,” in Proceed-
ings of the 23rd Asia and South Pacific Design Automation Conference,
2018, pp. 617–622.

[39] M. S. Ansari, B. F. Cockburn, and J. Han, “An improved loga-
rithmic multiplier for energy-efficient neural computing,” IEEE
Transactions on Computers, 2020.

[40] U. Lotrič and P. Bulić, “Applicability of approximate multipliers
in hardware neural networks,” Neurocomputing, vol. 96, pp. 57–65,
2012.

[41] E. H. Lee, D. Miyashita, E. Chai, B. Murmann, and S. S. Wong,
“Lognet: Energy-efficient neural networks using logarithmic com-
putation,” in 2017 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2017, pp. 5900–5904.

[42] D. Miyashita, E. H. Lee, and B. Murmann, “Convolutional neural
networks using logarithmic data representation,” arXiv preprint
arXiv:1603.01025, 2016.

[43] W. Liu, J. Xu, D. Wang, C. Wang, P. Montuschi, and F. Lombardi,
“Design and evaluation of approximate logarithmic multipliers
for low power error-tolerant applications,” IEEE Transactions on
Circuits and Systems, vol. 65, no. 9, pp. 2856–2868, 2018.

[44] S. Salamat, M. Imani, S. Gupta, and T. Rosing, “Rnsnet: In-memory
neural network acceleration using residue number system,” in
2018 IEEE International Conference on Rebooting Computing (ICRC).
IEEE, 2018, pp. 1–12.

[45] M. Imani, M. Masich, D. Peroni, P. Wang, and T. Rosing, “Canna:
Neural network acceleration using configurable approximation
on gpgpu,” in 2018 23rd Asia and South Pacific Design Automation
Conference (ASP-DAC). IEEE, 2018, pp. 682–689.

Min Soo Kim received the BA.Sc degree in En-
gineering Science from the University of Toronto
in 2008, and the M.S. and Ph.D. degrees in
Computer Engineering from the University of
California, Irvine, in 2011 and 2020 respectively.
He currently works at NGD Systems as an AI
Software Engineer, and his research interests
include computational storage and hardware ac-
celeration of convolutional neural networks.

Alberto A. Del Barrio received the Ph.D. degree
in Computer Science from the Complutense
University of Madrid (UCM), Madrid, Spain, in
2011. Since 2020, he is an Associate Profes-
sor of Computer Science with the Department
of Computer Architecture and System Engineer-
ing, UCM. His research interests include Design
Automation, Arithmetic as well as Video Coding
Optimizations.

HyunJin Kim is an associate professor in the
School of Electronics and Electrical Engineering
at Dankook University, Republic of Korea. He
received a Ph.D in Electronics and Electrical
Engineering (2010) from Yonsei University. He
worked as a mixed-signal VLSI circuit designer
at Samsung Electromechanics (2002∼2005),
and as a senior engineer in a flash mem-
ory controller project at Samsung Electronics
(2010∼2011). His current research interests in-
clude approximate & stochastic computing for

neural network implementation methodology, string matching engines,
and energy-aware embedded systems.

Nader Bagherzadeh is a professor of computer
engineering in the Department of Electrical Engi-
neering and Computer Science at the University
of California, Irvine, where he served as a chair
from 1998 to 2003. Dr. Bagherzadeh has been
involved in research and development in the
areas of: computer architecture, reconfigurable
computing, VLSI chip design, network-on-chip,
3D chips, sensor networks, computer graphics,
memory and embedded systems, since he re-
ceived a Ph.D. degree from the University of

Texas at Austin in 1987. He is a Fellow of the IEEE.

https://github.com/albertodbg/log-arithmetic
https://github.com/albertodbg/log-arithmetic

	1 Introduction
	2 Preliminaries
	3 Accumulated Error in Convolution
	3.1 Understanding Convolution and FC Layers
	3.2 Minimized Variance of Error
	3.3 Impact on Convolution and FC
	3.4 Grouped and Depthwise Convolutions

	4 Effect of Batch Normalization
	5 Arithmetic Reason for Bfloat16 Success
	6 Experiments
	6.1 Setup
	6.2 Impact of Approximate Multiplication on CNNs
	6.3 Effect of Batch Normalization

	7 Comparison of Costs
	8 Related Works
	9 Conclusion
	References
	Biographies
	Min Soo Kim
	Alberto A. Del Barrio
	HyunJin Kim
	Nader Bagherzadeh

