
Approximation-Based Fault Tolerance
in Image Processing Applications

MATTEO BIASIELLI , CRISTIANA BOLCHINI , (Senior Member, IEEE),
LUCA CASSANO , (Member, IEEE), ANDREA MAZZEO, AND ANTONIO MIELE , (Senior Member, IEEE)

CORRESPONDING AUTHOR: ANTONIO MIELE (antonio.miele@polimi.it)

ABSTRACT Image processing applications exhibit an intrinsic degree of fault tolerance due to i) the redun-
dant nature of images, and ii) the possible ability of the consumers of the application output to effectively
carry out their task even when it is slightly corrupted. In this application scenario the classical Duplication
with Comparison (DWC) scheme, that rejects images (and requires re-executions) when the two replicas’ out-
puts differ in a per-pixel comparison, may be over-conservative. In this article, we propose a novel light-
weight fault tolerant scheme specifically tailored for image processing applications. The proposed scheme
enhances the state-of-the-art by: i) improving the DWC scheme by replacing one of the two exact replicas
with an approximated counterpart, and ii) allowing to distinguish between usable and unusable images
instead of corrupted and uncorrupted ones by means of a Convolutional Neural Network-based checker. To
tune the proposed scheme we introduce a specific design methodology that optimizes both execution time
and fault detection capability of the hardened system. We report the results of the application of the proposed
approach on two case studies; our proposal achieves an average execution time reduction larger than 30%
w.r.t. the DWC with re-execution, and less than 4% misclassified unusable images.

INDEX TERMS Fault tolerance, image processing, approximate computing, convolutional neural networks,
reliability

I. INTRODUCTION

IMAGE processing applications are largely employed for
perception functionalities in unmanned-, autonomous-, or
assisted-control in a variety of scenarios spanning from
autonomous driving to robot and spaceship control. In such
scenarios, computing systems are generally classified as
safety-/mission-critical, and therefore, fault detection/toler-
ance mechanisms are generally applied to guarantee the nec-
essary reliability level. State-of-the-art hardening solutions
either employ special-purpose radiation-hardened devices [1],
generally slower and more expensive than commercial ones,
or rely on duplication/triplication and on a bit-wise compari-
son of the computed output [2], [3]. All these solutions entail
a significant cost increase and performance degradation w.r.t.
power consumption and execution time.
When exploring possibilities to reduce the overhead intro-

duced by hardening techniques, two different considerations
should be drawn. First, in systems belonging to the previously

mentioned scenarios (e.g., automotive, robotic and aerospace)
safety-critical applications and non-critical ones may co-exist.
As an example, in an on-board satellite computing system, the
navigation sub-system is a mission-critical component while
the payload, frequently an image processing application, is
not [4]. Moreover, image processing applications typically
expose an inherent resilience to errors such that a certain degree
of quality loss in the result can be intrinsically tolerated.
On the one hand, these applications work with input data

that are frequently noisy or quantized, and this, in turn, intro-
duces errors in the computations. On the other hand, the
downstream user of the application output (either a human or
another application) may be able to perform the subsequent
tasks even if the computed output is noisy or partially altered.
Such an intrinsic resilience has been exploited in the last
decade under the Approximate Computing (AC) umbrella,
trading-off the quality of the result with the performance/
energy consumption of the system [5], [6].

Matteo Biasielli is with King Digital Entertainment PLC., 11157 Stockholm, Sweden
Cristiana Bolchini, Luca Cassano, Andrea Mazzeo, and Antonio Miele are with the Dipartimento di Elettronica,

Informazione e Bioingegneria, Politecnico di Milano, 20133 Milano, Italy
This work was supported by Intel Corporation through Award titled Adaptive Application-oriented Fault Detection for Reliable Image Processing

Received 28 December 2020; revised 27 April 2021; accepted 14 July 2021.
Date of publication 3 August 2021; date of current version 7 June 2022.

Digital Object Identifier 10.1109/TETC.2021.3100623

648
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0

License. For more information, see ht _tps://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 10, NO. 2, APRIL-JUNE 2022

https://orcid.org/0000-0002-1804-9422
https://orcid.org/0000-0002-1804-9422
https://orcid.org/0000-0002-1804-9422
https://orcid.org/0000-0002-1804-9422
https://orcid.org/0000-0002-1804-9422
https://orcid.org/0000-0001-5065-7906
https://orcid.org/0000-0001-5065-7906
https://orcid.org/0000-0001-5065-7906
https://orcid.org/0000-0001-5065-7906
https://orcid.org/0000-0001-5065-7906
https://orcid.org/0000-0003-3824-7714
https://orcid.org/0000-0003-3824-7714
https://orcid.org/0000-0003-3824-7714
https://orcid.org/0000-0003-3824-7714
https://orcid.org/0000-0003-3824-7714
https://orcid.org/0000-0003-3197-0723
https://orcid.org/0000-0003-3197-0723
https://orcid.org/0000-0003-3197-0723
https://orcid.org/0000-0003-3197-0723
https://orcid.org/0000-0003-3197-0723

In the context of fault tolerant computing for image proc-
essing applications, this intrinsic error resilience has been
exploited in the recent past to define a new fault detection
paradigm [7]. This paradigm shifts the focus from the classi-
cal identification of corrupted results based on a exact (bit-
wise) comparison, towards the classification of the results as
usable/unusable based on the prediction of the capability of
the downstream application to exploit them and to correctly
perform the subsequent tasks. Hardening image processing
applications based on this strategy allows for identifying
cases where the corrupted output image does not affect the
downstream application execution and final outcome. In
these situations, any action to handle the occurrence of a
problem that marginally altered the processed image would
be redundant and should be avoided, as it introduces costs
without providing real benefits. When considering software-
based fault management techniques, it corresponds to the
possibility of avoiding redundant re-executions causing time
(and power) penalties.
The proposal in [7] exploits the usable/unusable paradigm

and reduces the average recovery time, however it suffers
from the same performance overhead as the Duplication with
Comparison (DWC). Indeed, in a scenario where the two
application’s replicas and the checker are sequentially exe-
cuted on a single-core CPU, the execution time is more than
2x w.r.t. the of the nominal application. To reduce this impact,
AC has been exploited to reduce the replica computations in
redundancy-based fault mitigation schemes, such as approxi-
mate/inexact Triple Modular Redundancy (TMR) [8]–[10], or
fault detection ones [11], [12]. Common denominator to all
these approaches is performing error checking/mitigation at
the granularity of the single logic or scalar value, instead of
considering the quality of the entire output image/signal as a
whole to decide whether to trigger a re-execution or not.
Given these premises, we propose a lightweight fault toler-

ant scheme for image processing applications that extends
the classical DWC. Our scheme combines application-level
AC with the image usability classification paradigm defined
in [7]; the former allows to drastically reduce the time over-
head introduced by duplication (both when faults occur and
when they do not) while the latter enables avoiding (when
possible) unnecessary re-executions, to further save time (in
the case of fault occurrence). We adopt a Convolutional Neu-
ral Network (CNN)-based Smart Checker (SC) instead of the
classical Two-Rail Checker (TRC) to classify usable versus
unusable images, as in [7]. On the other hand, differently
from [7], we build the hardened system by pairing the nomi-
nal image processing pipeline with a number of lightweight
Control Blocks (CBs), each one dedicated to one of the stages
of the pipeline. The CBs work on downscaled versions of the
images taken in input by the corresponding pipeline stage:
such application-level approximation allows the proposed
scheme to save time w.r.t. both the DWC with re-execution
and the solution in [7].
For the first time, we are here using the image downscaling

technique, frequently used to trade-off results quality and

power saving (as in [13]), for fault tolerance purposes. Such
an approximation-based duplication approach leads to a
novel, more challenging, definition of the CNN-based
checker than in [7]. Indeed, the output images of the nominal
replica and the ones produced by the CBs are different also
when no faults occur during the processing. Therefore, the
CNN-based checker must be able to analyse two images and
differentiate physiological differences due to approximation,
from pathological differences due to faults.
A preliminary version of the proposed approach has been

presented in [14]; we here extend it to achieve a mature pro-
posal that includes the following novel contributions:

� a refined and parametric architecture of the proposed
fault tolerant scheme;

� a semi-automated design flow to configure the approxi-
mation level, and train and optimize the SC;

� a design-space exploration-based approach to tune the
parameters of the CBs and SCs;

� an in-depth experimental campaign comprising two dif-
ferent image processing applications to demonstrate the
effectiveness of both the proposed fault tolerant scheme
and companion design flow.

We applied our proposal to two case studies: one for the
identification of buildings in aerial pictures and the other one
for motion detection in highway videos. The achieved time
savings, measured on a single-core commercial embedded
microprocessor, range from 36.52% to 33.39% w.r.t. the tra-
ditional DWC and [7]. As a counterpart to such benefits, the
approach fails to correctly identify and handle corrupted
unusable outputs with an incidence of less than 4%, that we
believe is an acceptably low rate, comparable to [7].
The paper is organized as follows. Section II introduces the

state-of-the-art related to fault detection/tolerance for image
processing applications and approximate computing for fault
detection/tolerance, our working context. Motivations and pre-
liminaries of the proposed approach are presented
in Section III, followed by our proposed fault tolerant scheme
in Section IV and its companion design methodology
(Section V). Section VI presents the considered case studies
and the results of the experimental evaluation of the approach
while Section VII draws conclusions.

II. RELATEDWORK

Traditional hardening techniques introduce redundancies in
the system to achieve fault detection or mitigation capabilities
at the cost of a dramatic area or execution time increase.
Approximate Computing (AC) has been exploited to limit
such an overhead by lightening the redundant computations
with the drawback of not offering a 100% fault coverage. Like
for traditional hardening techniques, also AC-based techni-
ques have been investigated and applied at different abstrac-
tion levels. We review here the most relevant ones.
Several approaches defined approximate hardening schemes

at the logic level, by enhancing TMR (e.g., [8], [9], [15]), or
DWC (e.g., [16], [17]) or focusing on the specific voter/checker
component [18]. The focus is on a combinational function

VOLUME 10, NO. 2, APRIL-JUNE 2022 649

Miele et al.: Approximation-Based Fault Tolerance in Image Processing Applications

having a single-bit output; the basic strategy these works adopt
is to approximate the redundant circuit to minimize its area
while limiting the error rate, i.e., the percentage of not detected/
mitigated faults. Moreover, several logic synthesis approaches
have been proposed to automatically apply such schemes [8],
[9], [15].
When working at the Register-Transfer Level (RTL), a

commonly-used AC technique to trade accuracy and circuit
area is the reduction of the data precision of each processed
scalar value. This technique has been adopted in [10], [19],
[20], to define approximate TMR schemes where the redun-
dant replicas elaborate only on a selected subset of the most
significant bits. Therefore, a new voting module is defined to
check the numeric distance between the fully-accurate nomi-
nal output value and the two lower-precision redundant ones;
the effect is to confine errors in a subset of the least signifi-
cant bits of the output values.
An alternative domain-aware approach for low-cost fault

detection at the RTL consists in exploiting the specific pecu-
liarities of the application under design to replace the exact
replica with an estimator of the nominal functionality. Simi-
larly to the previously presented reduced-precision redun-
dancy approaches, the checker verifies whether the difference
between the outputs of two redundant computations is lower
than a given threshold. This idea has been first proposed
in [11] for signal processing applications; it has also been
demonstrated that for some specific applications the replica is
even not necessary because the nominal output can be directly
checked against the application input. The scheme is extended
in [21] with the data precision reduction, and in [12] for fault
mitigation adopting an N-Modular Redundancy (NMR)
scheme.
The main difference between the existing approaches and

the current proposal is that the former ones work on the sin-
gle piece of processed information, being the single bit at
logic level or a scalar value at RTL. Our proposal focuses
instead on the entire processed information at once, i.e., the
manipulated image, with the aim of deciding whether the
output is usable by the downstream application, even if pos-
sibly corrupted, or not. All the discussed approaches can be
adopted in the context of image processing to mitigate the
effects of faults at the granularity of single pixels (or single
bits). However, there is no straightforward extension to eval-
uating/checking the usability of the overall image. On the
other hand, the idea in [11] of exploiting the specific pecu-
liarities of the application domain to define approximate rep-
licas is somehow similar to what we are here proposing.
There are very few works exploiting AC for fault detec-

tion/tolerance at system level. In [22] an approximation-
based NMR scheme is defined at application level together
with a mapping and scheduling approach; each software task
is associated with a set of approximate replicas to reduce the
execution time. Such a scheme requires an advanced voter
module able to evaluate the similarity of redundant images
processed at different approximation levels, however the
paper does not discuss how this voter can be designed. A

similar scheme is discussed in [23] where an application-
level approximated DWC is proposed. The authors investi-
gate the definition of a checker for comparing redundant
results that are numerically different due to the approxima-
tion. The solution is similar to the one adopted for RTL
schemes (such as [11]) based on the comparison of the
numerical distance between redundant scalar results against a
threshold. As a conclusion, this approach suffers from the
same limitations of the previous ones if the aim is to evaluate
the quality of the entire image.
As it has been discussed in the introduction, the only sys-

tem level approach that analyses the usability of the entire
output image is the one proposed in [7]. This approach
exploits a CNN-based checker to perform a classification of
the output image based on the usability of the output image.
However, this approach suffers from the classical 2x over-
head caused by the two exact replicas inherited by the DWC.
The work proposed in the current paper moves from [7] and,
based on the preliminary results presented [14], proposes a
new solution, based on AC to evaluate the entire image as
usable or not, and at the same time to drastically reduce the
execution time of the hardened application. Finally, it is
worth mentioning the system-level fault detection scheme
proposed in [24] where, similarly to [11], no replica is
required; however, this scheme is tailored to a specific image
processing algorithm and cannot be applied in general.

III. PRELIMINARIES

We here present the working scenario and the necessary
background to introduce the proposed approach.

A. THE APPLICATION MODEL AND HW PLATFORM

The proposed fault tolerance approach is meant for image
processing applications that take in input images and produce
filtered/enhanced images or a set of features extracted from
the input image. As shown in Figure 1, the image processing
application to be hardened is part of a larger system where
the input images are taken from cameras or received from
communication channels, and the output image/data is fed to
a downstream application.
The application is internally composed of a pipeline of fil-

ters, each one receiving in input an image or a feature map
(i.e., a multi-dimensional array) and producing a modified/
enhanced image or feature map. We assume that the applica-
tion to be hardened has already been designed and tuned to
produce results at the specific quality level required by the
designer. Therefore, we do not consider to apply approxima-
tion techniques to the application itself.

FIGURE 1. Overview of the considered system.

650 VOLUME 10, NO. 2, APRIL-JUNE 2022

Miele et al.: Approximation-Based Fault Tolerance in Image Processing Applications

According to the literature, image processing applications
can be executed on a variety of processing platforms. We here
consider an embedded general purpose CPU commonly
employed in mission-critical embedded systems, such as space
missions (e.g., [25]). The execution model considers a hypervi-
sor for the isolated execution of each filter in a time-triggered
fashion, so that misbehaviors are not propagated [26]. None-
theless, since the proposed approach works at the application
level, it can be employed also on other processing platforms,
such as GPUs and FPGAs; future work will explore these
directions.

B. THE FAULT MODEL

In this paper we consider Single Event Upset (SEU) faults
affecting CPU registers, assuming the cache and main memory
to be protected via Error Correction Codes (ECC). Moreover,
we assume the input image and the CNNs parameters to be
always loaded frommass storage devices, which, again, are typ-
ically protected via ECC. Provided that faults are rare events,
we here assume that a single SEU may occur during one run of
the application. When considering the execution of the applica-
tion within the hypervisor, the single SEU may cause the fol-
lowing effects in the execution of the single filter: i) software
crashes or operating system/hypervisor exceptions blocking the
execution, ii) software hangs leading to a non-termination, and
iii) Silent Data Corruptions (SDCs), where the executed filter
terminates producing an erroneous output, without any
alert [27]. It is safe to assume that faults causing effects in the
first two classes are autonomously detected by the hypervisor
by using, for example, watchdogs. On the other hand, SDCs
represent the most critical class of effects, requiring the adop-
tion of fault detection/tolerancemechanisms, focus of our work.

C. IMAGE USABILITY CLASSIFICATION

We borrow the concept of usability proposed in [7] that may
be summarized as follows. Considering the system presented
in Figure 1, the (intermediate) result of a filter within the
image processing application affected by a fault during its
execution is classified as usable if the corresponding final
output of the application will lead the downstream counter-
part to take the same decision that would have been taken
when using a fault-free output, otherwise it is unusable.
As an example, let us consider the case of a motion detection

application1 employed to identify cars moving on a highway,
and a downstream application building a 3Dmodel of the scene
to subsequently compute a trajectory for an autonomous driv-
ing car. Figures 2(a), 2(b) and 2(c) show the input image, the
intermediate image showing the areas where a motion is
detected and the output image enhanced with bounding boxes
around the identified moving cars, respectively. In case an
SEU occurs during the processing of a filter inducing an
observable alteration of the final output image, one of two fol-
lowing situations apply:

i) The fault causes a relevant alteration in the detection of
the motions (Figure 2(d)), such that three wrong bound-
ing boxes are added (Figure 2(e)). Thus, the downstream
application will add to the 3D model three “ghost” cars
introducing wrong obstacles in the trajectory computa-
tion. The corrupted output is therefore unusable.

ii) The fault causes a minor alteration consisting in larger
blobs in the intermediate image (Figure 2(f)); the effect
in the final image (Figure 2(g)) consists in bounding
boxes with a slightly different shape. In such a situa-
tion, the downstream application will decide correctly
the trajectory therefore the corrupted output is usable.

While the classical difference between correct and cor-
rupted output is general, the classification of the output w.r.t.
the usability is strictly context-related. Moreover, like in [7],
usability classification is then employed for fault tolerance
purposes. A fault tolerant scheme based on such estimated
usability analysis may decide a possibly corrupted intermedi-
ate output image is to be discarded (D) being considered too
damaged to be usable, or not discarded (/D). Then, to evalu-
ate the correctness of such a decision, we may ideally use
such a corrupted output image to feed the downstream appli-
cation so that we have the actual response, i.e., usable (U) or
unusable (/U). Table 1 reports the resulting four classes. In
particular, due to the stochastic nature of the CNN classifica-
tion leading to D versus /D, this fault tolerant scheme may
incur in errors: i) a usable image is discarded (false positive,

FIGURE 2. Examples of fault effects on processed images.

1All details of this case study will be provided in Section VI.

VOLUME 10, NO. 2, APRIL-JUNE 2022 651

Miele et al.: Approximation-Based Fault Tolerance in Image Processing Applications

i.e., D U), or ii) an unusable image is accepted (false negative,
i.e., /D /U). False positives affect the efficiency of the fault
tolerance approach in terms of execution time increase,
because re-computations are performed when not needed.
On the other hand, false negatives affect the effectiveness of
the solution, impacting the achieved reliability level.

D. THE BASELINE SOLUTIONS

A baseline approach for fault tolerance in the considered sce-
nario is represented by DWC with re-execution: two exact rep-
licas of each filter composing the application are executed in
sequence and a routine implementing a TRC is run to perform
a bit-wise checking on the replicas’ outputs. Upon detection of
an error the filter is re-executed. The bit-wise comparison trig-
gers a re-execution independently of the impact of the corrup-
tion on the processed image, thus being a very conservative
solution. We do not compare against the TMR solution typi-
cally adopted to achieve fault tolerance, because it is more
expensive than the DWC with re-execution, introducing an
additional replica also in fault-free executions (having the voter
and TRC similar overheads). We also refer to another baseline
solution, the scheme proposed in [7], where usability analysis
is exploited although using a nominal replica of the application.
The metrics we adopted to evaluate our proposal and to

compare it against the baseline solutions are: i) the average
execution time of the single run of the application to measure
the overhead introduce by fault tolerance, and ii) the percent-
age of fault negatives (/D /U), to measure the actual vulnera-
bility of the hardened solution.

IV. THE FAULT TOLERANT SCHEME

Figure 3 depicts a block-diagram view of the proposed fault
tolerant scheme applied to a generic image processing pipeline.
Each filter fi is paired with a Control Block (CB) cbi that is

used to decide whether to discard (D) the output of fi or not
(/D). As we previously mentioned, our proposal adopts the
image usability classification paradigm. Therefore, the goal of
each CB is to decide whether to discard the possibly corrupted
output image of the corresponding filter by predicting the
usability of the final output image (output image) that the pipe-
line will produce. To obtain such usability prediction each CB
is equipped with a Smart Checker (SC) that features a CNN.
The CNN has to distinguish between i) physiological differen-
ces between the nominal (intermediate) output and the approxi-
mated output due to approximation and ii) pathological
differences due to the occurrence of faults during the execution.
Indeed, approximation and faults cause dissimilar distributions
in the pixel-wise difference between the nominal and the
approximated outputs; the CNN has to learn these differences
to correctly classify usable versus unusable cases.
It is worth mentioning that, after discarding the output of a

filter, the proposed scheme adopts re-execution at the granu-
larity of the single corrupted filter to compute the correct
result. Moreover, as a general consideration, we point out
that in our proposal, replication has to be intended as time
redundancy although, for the sake of clarity, it is represented
as space redundancy in the figures.
In the remainder of this section we will present the inter-

nals of the CB and the SC.

A. THE CONTROL BLOCK ARCHITECTURE

The internal structure of the generic CB cbi associated with fil-
ter fi is depicted in Figure 4. It is composed of an input down-
scale module, two replicas of fi working in parallel, namely f̂i,
a TRC and the SC. The generic cbi receives the input and
output images of fi, namely in imgi and out imgi, and
input image, i.e., the global input image of the pipeline.
Image in imgi is first downscaled by a factor di (applied to
both image dimensions) and then the two replicated filters f̂i
are executed in parallel on the downscaled image. The execu-
tion on downscaled images constitutes the application-level
approximate computing technique exploited by the proposed
scheme to achieve lightweight fault tolerance.2 The output

TABLE 1. Performance evaluation: notation and classification.

D Discarded the scheme classifies the output as unusable
/D Not Discarded the scheme classifies the output as usable
U Usable the output is usable
/U Unusable the output is unusable

D /U Correctly handled corrupted output
/DU Achieved execution time savings
DU Not exploited execution time savings – false positive
/D /U Erroneously accepted data – false negative

FIGURE 3. A high-level representation of the proposed fault

tolerant scheme.

FIGURE 4. Internal structure of cbi.

2It is worth pointing out that the structure and working principles of the pro-
posed fault tolerant scheme are independent of the adopted AC technique.
However, the specific parameters, e.g., CNN weights, downscaling factors,
are designed and optimized based on the adopted AC technique, as well as
on the considered application.

652 VOLUME 10, NO. 2, APRIL-JUNE 2022

Miele et al.: Approximation-Based Fault Tolerance in Image Processing Applications

images of the two replicated filters, namely ctrl imgi and
ctrl img 2i, are bit-wise compared with a classical TRC and
the response, dubbedðok=failÞi is fed to the SC. The SC takes
in input also ctrl imgi, out imgi and input image.
The downscaling factor di is a key parameter to optimize

the execution time of the hardened application and the fault
detection accuracy at the same time. The larger di, the
smaller the image processed by the redundant replicas and
consequently the shorter the execution time. On the other
hand, a large di may negatively affect the classification accu-
racy of the SC since the resulting ctrl imgi and ctrl img 2i
images may be too small and lose relevant details. Nonethe-
less, the largest value for di highly depends on the sensitivity
and the complexity of each specific filter in the application
pipeline. Therefore, to minimize the execution time of the
hardened application and to maximize the fault tolerance
capability, di needs to be specifically optimized for each CB,
as described in Section V.
The DWC scheme between the redundant replicas in the

CB allows for detecting faults corrupting either ctrl imgi or
ctrl img 2i. In the case a single filter is instantiated in the
CB, a fault corrupting ctrl imgi or ctrl img 2i may induce
the SC to classify out imgi as unusable although it is actually
uncorrupted. On the other hand, the DWC schema in the CB
detects and notifies the occurrence of any fault affecting
either ctrl imgi or ctrl img 2i on the ðok=failÞi output. There-
fore, under the adopted single fault assumption (as it will be
discussed in the following subsection) the SC determines the
output of the nominal filter not to be corrupted when the
ðok=failÞi output is fail, preventing the CNN execution.
When ðok=failÞi is ok no assumptions can be made by the
SC and the CNN needs to be executed.
Finally it is worth mentioning that ctrl imgi and ctrl img 2i

are exclusively exploited for fault tolerance purposes, and
they can never be considered as an alternative output of the
nominal pipeline due to their sensibly lower quality w.r.t. the
nominal counterpart. Therefore, even if the proposed scheme
comprises three modules for each filter (the nominal filter and
the two replicated ones), the solution does not represent an
approximate TMR as done in [10], where the system tolerates
the occurrence of faults and is able to provide an approxi-
mated result in case the nominal pipeline fails.

B. THE SMART CHECKER ARCHITECTURE

This is the main component of the proposed fault tolerant
scheme, constituting the brain, in charge of deciding whether
to discard images and trigger re-executions (D) or not (/D).
As previously discussed, one SC is instantiated for each CB.
A high-level representation of the SC for a generic nominal
filter fi is shown in Figure 5. The ith SC receives i) the output
image of fi (out imgi), ii) the output image produced by one of
the two f̂i (ctrl imgi), iii) the input image of the pipeline
(input image) and iv) the ðok=failÞi message produced by the
TRC. Based on these three images the SC decides whether to
discard out imgi and to trigger a re-execution of the ith stage
of the pipeline or not. The reason for the SC to be fed also

with the input image is that the comparison between out imgi
and ctrl imgi only allows to identify the modification intro-
duced by a fault in the image manipulated by the nominal
processing. However, to predict the impact of such modifica-
tion on the usability of the final output we empirically
observed the need for correlating it with the input image.
Since out imgi and ctrl imgi are not identical also in a

fault-free execution, the SC must discriminate between dif-
ferences due to approximation and those caused by the
occurrence of faults (on top of approximation). Furthermore,
when the latter situation occurs, the SC must predict the
impact on the final output, such that it will be usable or not,
and in this case the output of the ith stage of the pipeline is
discarded and a filter re-execution is triggered. To do so,
each checker exploits a CNN that will notify the predicted
usability (U�) or not (/U�).
To summarize, when the ðok=failÞi signal is a fail, the

output of the SC will be automatically set to /D: in this sce-
nario a fault indeed occurred in one of the two replicated fil-
ters, therefore the output of the nominal one is fault-free.
When the ðok=failÞi signal is ok, the CNN is invoked. As
mentioned and shown in Figure 5, images imgi, ctrl imgi and
input image are downscaled before being fed to the CNN. In
fact imgi and input image are larger than ctrl imgi, while the
designed CNN input is required to be a single three-dimen-
sional matrix, where the three images are stacked. Therefore,
imgi and input image are downscaled to match the size of
ctrl imgi. Moreover, as it has already been demonstrated
in [7], images imgi and input image can be sensibly down-
scaled to reduce the execution time of the CNN while pre-
serving its classification accuracy. Indeed, the redundant
filters are more susceptible to aggressive downscaling than
the CNN. Therefore, imgi and input image can be addition-
ally resized with a dcnn i factor, and ctrl imgi consistently
with a dcnn i

di
downscaling factor, thus obtaining three smaller

images of the same size to be stacked. Finally, should
ctrl imgi and imgi be feature maps or heat maps (instead of
images) having values in a range different from the color
intensity of the pixels of input image, input image is normal-
ized. This is a necessary step to create more uniform inputs
and ease the CNN training, also increasing the model predic-
tion capability.

FIGURE 5. Internal structure of the ith SC.

VOLUME 10, NO. 2, APRIL-JUNE 2022 653

Miele et al.: Approximation-Based Fault Tolerance in Image Processing Applications

The output of the CNN is a probability value ucnn that esti-
mates the usability of the final output of the application; the
value is finally compared with a threshold Uth, producing the
final classification, U� or /U�.

V. THE SMART CHECKER DESIGN METHODOLOGY

The design of the proposed fault tolerant scheme involves
several aspects that need be tuned opportunely to achieve the
desired accuracy and time savings, and because each stage of
the pipeline consists of a filter with its own peculiarities, the
associated CB is independently designed. More precisely, we
defined a methodology that, for each ith CB, supports the
implementation of 1) the AC technique to be adopted for the
approximated filter replicas (and the preceding resize mod-
ule), 2) the resize and normalization blocks in the SC, and 3)
the CNN in the SC.
The design flow, shown in Figure 6, starts by analyzing the

specific ith filter fi and by selecting a number of approxima-
tions. The outcome of this first activity is a list of approxi-
mated versions of fi, namely f̂ ji . For each f̂ ji , a CB, and the
corresponding SC, is designed; to this end, the necessary
training, validation and test datasets have to be defined. The
procedure is based on the generation of a large set of cor-
rupted images by applying classical fault injection (or error
simulation) techniques. The corrupted images are labelled as
U or /U by means of an Oracle. Indeed, the Oracle, borrowed
from [7], mimics the downstream application, thus it is able
to predict whether a corrupted output of the image processing
application will be usable. Such sets are then used to run the
classical training and evaluation procedures for the CNN
within the CB.
Given a filter fi of the nominal application, the design of an

SC for each approximated filter f̂ ji produces a solution space
where each point presents a different trade-off w.r.t. the two
considered metrics: i) the percentage of unusable images erro-
neously accepted by the SC (false negatives), and ii) the aver-
age execution time of the protected application. The former is
the most critical one from a reliability point of view, impact-
ing the accuracy of the hardening strategy, whereas the latter
measures the benefits of the solution. Moreover, for each CB
and the included CNN, the trade-off between the aforemen-
tioned metrics can still be tuned by leveraging the Uth thresh-
old. Indeed, Uth may be interpreted as the degree of
confidence on the usability of the inputs the CNN requires for
the image to be classified as usable. Intuitively, the larger Uth,

the less the images that will be accepted by the CNN. This, in
turn, has the potential to reduce the amount of false negatives
(unusable corrupted images wrongly accepted) but increase
the amount of false positives (usable corrupted images or
even uncorrupted images that lead the CNN to trigger unnec-
essary re-executions). Given the solution space including the
explored alternatives, we select the CNN with the best trade-
off between the percentage of false negatives and the time sav-
ing, to optimize its implementation by means of pruning.
When all stages are finalized, they are integrated to build

the overall hardened application, for an assessment of the
resulting architecture w.r.t. accuracy and time savings.
The rest of the section details the various steps of the

design flow; all steps are applied to all i stages of the applica-
tion pipeline, before the final integration.

A. APPROXIMATE COMPUTING TECHNIQUE

APPLICATION

The starting step of the design flow is the selection of the
appropriate AC techniques to generate approximate filters f̂ ji
for the filter fi. The designer is the one to perform the selec-
tion based on the expertise and knowledge on the entire
application. Although the methodology is general and vari-
ous AC techniques can be exploited, for the sake of simplic-
ity in this work we adopt the downscaling technique and the
discussion refers to it. In this context, the designer selects a
set of suitable values for the downscaling factor di, being 1
the lower bound, that corresponds to no approximation/
downscaling. The upper bound dmax i is identified by adopt-
ing the strategy in [7]. More precisely, to identify such an
upper bound we iteratively increase the downscaling factor
of the inputs of the CNN, while not approximating the rep-
lica, until the obtained classification accuracy is high and sta-
ble before a change of trend. Once dmax i is identified, values
in the ½1; dmax i� interval are included by selecting all possible
divisors of the sizes of the input image.

B. TRAINING, VALIDATION AND TEST SETS

GENERATION

Each CNN requires three sets of samples: the training, vali-
dation and test sets, each one including both pristine and cor-
rupted images, that constitute – for each set – the fault-free
subset (e.g., TRS=faulty, VS=faulty and TES=faulty) and the faulty
subset (e.g., TRSfaulty, VSfaulty and TESfaulty), respectively.
Since all procedures for the generation of these sets are

FIGURE 6. The design flow for cbi and related SC.

654 VOLUME 10, NO. 2, APRIL-JUNE 2022

Miele et al.: Approximation-Based Fault Tolerance in Image Processing Applications

similar, we present the process for the training set generation,
leaving the application to the validation and test sets to the
reader.
The fault-free training subset TRS=faulty is generated by

processing a set of images in nominal conditions, i.e., with-
out any fault. Input images should be representative of the
working scenario where the pipeline will work, e.g., similar
altitude, range of colors, sizes. For a nominal filter fi and the
corresponding approximate filter f̂ ji , each item in the training
set is a tuple of the form:

< input image; out imgi; ctrl img
j
i; output image; U > ;

where, according to Section IV, input image and
output image represent the global input and output of the
application, respectively, out imgi is the output of fi and
ctrl imgji is the output of f̂

j
i . output image is the pristine output

of the nominal processing, therefore the tuple is labelled as U.
The faulty training subset TRSfaulty is generated by corrupt-

ing the execution of filter fi. Each item in the set is a tuple of
the form:

< input image; out img�i ; ctrl img
j
i; output image

�; u > :

The input of this filter is the nominal output produced by
the previous stages of the pipeline, while the execution of fil-
ter fi is corrupted because of the fault effect, having an impact
on the computed output out img�i . This intermediate altered
output is propagated to the remaining stages of the pipeline
to produce the final global potentially modified output
output image�. The usability of output image� is determined
by feeding this image as input to the Oracle, which in turn
decides whether the downstream application would correctly
carry out its task using the image or not. Such usability pre-
diction is used to label the tuple, u, as usable (U) or not (/U).
That is to say, we train each checker to “predict” the usability
of the final corrupted pipeline’s output image based not only
on how the fault modified the image produced by the specific
stage affected by the fault but also on how the functionality
implemented by the subsequent stages of the pipeline is
affected to the corrupted image.
The corruption of the execution of an application is gener-

ally carried out by means of the classical fault injection. In our
scenario the generation of the faulty training subset represents
a relevant issue: indeed, it is necessary to generate a very large
number of intermediate images img�i really corrupted by the
fault. However, when running a fault injection campaign, it is
common that many of the experiments lead to uncorrupted
results because either the fault is not activated or it is absorbed
by the subsequent elaborations. Therefore, we here adopt the
strategy proposed in [7], where the generation of corrupted
images is split into two subsequent steps. First, a fault injector
specific for the considered hardware architecture is used to
inject faults in the system executing filter fi and to collect a set
of corrupted images. Then, by analysing these corrupted
results, recurrent error models can be identified and then used

in an error simulation campaign. This alternative solution
exploiting a tailored error simulation allows for a faster gener-
ation of a large large set of corrupted intermediate outputs
(img�i) and associated global outputs (output image

�).

C. CNN TRAINING AND EVALUATION

A standard approach based on the Adam optimizer [28] is
adopted to train the CNN by means of the training set defined
in the previous step of the design flow. Adam is an algorithm
for first-order gradient-based optimization of stochastic
objective functions that has proven to work well in several
Neural Network optimization problems. It combines the ben-
efits of AdaGrad [29], an optimization algorithm performing
well with sparse gradients, and RMSProp [30], suitable in
on-line settings. Since the training problem is quite similar to
the one presented in [7], we tuned the process, its parameters
and objective loss function in the same way. Moreover, to
prevent overfitting, Early Stopping [31], Dropout [32] and
Ridge Regularization [33] are employed.
When the training is completed, the CNN is evaluated by

means of the validation set; in particular, for each tuple of
the validation set the CNN is fed with input image, out imgi
(or out img�i) and ctrl imgi contained in each tuple; the corre-
sponding CNN output value ucnn is computed and it is
appended to the tuple itself.

D. BEST CONFIGURATION SELECTION

The result of the previous steps is a set of CNNs, one for each
f̂ ji . Each CNN is still parametric since the threshold Uth

(which the output of the CNN, ucnn, is compared against) has
not yet been specified. Moreover, only after a value is set for
Uth, the classification accuracy of the obtained CNN (and
thus also of the SC) can be evaluated. When considering the
fault-free validation set VS=faulty, since all images are pristine,
D /U and /D /U are empty and any variation of Uth will
only affect performance.
When considering the faulty validation set VSfaulty, the

selection of value Uth 2 ð0; 1Þ drives the trade-off between
accuracy and time savings of the final solution. By moving
Uth towards the upper bound, accuracy is favored as the num-
ber corrupted images that will trigger a re-execution increases
(by increasing the number of D /U and D U cases). By moving
Uth towards the lower bound, the opposite effect is achieved,
by increasing the number of /D /U and /D U cases, corre-
sponding to lower accuracy and higher time savings.
As a result, the solution space we explore is defined by i) all

CNNs associated with the possible approximated filters f̂ ji ii)
for each CNN, all possible valuesUth 2 ð0; 1Þ. Each combina-
tion of these elements identifies an SC implementation, evalu-
ated and compared to identify the most promising solution.
A multi-objective selection approach needs to be adopted

to optimize two conflicting aspects. On the one hand, the
CNN is required not to miss the identification of unusable
corrupted images; this first optimization metric is computed
as the ratio between the number of tuples classified /D /U in
VSfaulty and the overall size of such a subset:

VOLUME 10, NO. 2, APRIL-JUNE 2022 655

Miele et al.: Approximation-Based Fault Tolerance in Image Processing Applications

%=D=U ¼ j=D =U 2 VSfaultyj
jVSfaultyj : (1)

On the other hand, the overall hardened application has to
exhibit high performance; thus, the second metric is the aver-
age execution time of the filter, computed as follows:

Texec ¼ Tf þ 2 � Tf̂ þ ðTcnn þ Tdsin þ Tdsout Þ þ Tf �%DVS;

(2)

where the overall time is computed by summing the execu-
tion times of the nominal filter Tf , of the two replicated filters
Tf̂ , of the checker (expanded in the execution times of the
downscaling steps Tdsin and Tdsout and of the CNN Tcnn). The
re-execution time is computed as Tf weighted by the percent-
age of times an image is discarded%DVS.
The estimated percentage value of re-executions for both

the fault-free subset (%DVS=faulty) and the faulty one (%DVSfaulty)
within the validation set can be computed as the ratio between
the number of discarded images D (D /U and D U) and the
overall size of the subset. We here report the formula for the
faulty validation subset VSfaulty:

%DVSfaulty ¼
jD =U 2 VSfaultyj þ jD U 2 VSfaultyj

jVSfaultyj : (3)

Do note that %DVS=faulty can be computed in the same way; no
faults have been injected, therefore the number of D /U is 0.
Then, the two results can be combined based on the expected
fault rate frate of the working scenario:

%re-ex ¼ %DVSfree þ frate �%DVSfaulty

1þ frate
: (4)

It is worth mentioning that in a common scenarios frate is
generally very small, therefore, most of the time is spent in
the fault free scenario. As a result, %DVS is almost the same
as %DVSfree . This formulation allows us to highlight the sig-
nificant reduction of the time overhead of the adopted fault
tolerance mechanism with respect of existing solutions, and
in particular [7].
Each CNN (i.e., each filter) is therefore characterised by

two indices, %=D=U and Texec, associated with the setting of
its Uth. We plot on a curve all the points corresponding to the
different possible values of Uth, in the %=D=U and Texec
space, obtaining a Pareto front.
The result of this evaluation is a set of curves, one for each

CNN, in a chart presenting %=D=U and Texec on the two axes.
We get a (large) set of points, each one corresponding to a d,
Uth pair, as shown in Figure 7, where we use different colors
for different d values, for additional information.
When the distribution of the points is evenly distributed

w.r.t. the %=D=U values, the most convenient solution is
selected by weighting the benefits on time saving versus the
loss of accuracy, as in the case of Figure 7. In this example,
the selected solution is characterized by di ¼ 10 and

Uth ¼ 0:4, as reported in the figure. If the different combina-
tions of di and Uth values generate solutions that heavily
impact %=D=U, the selection of the final solution is driven by
a maximum%=D=U value the designer can afford, identifying
the corresponding di and Uth values of the CNN.

E. CNN PRUNING

The pruning activity aims at reducing the size of a CNN by
removing redundant connections, neurons and convolutional
filters; the effect is a considerably lower execution time of
the checker. We apply to the chosen CNN two state-of-the-
art strategies to reduce the amount of redundant connections
in Neural Networks: Average Percentage of Zeros (APoZ)
and Sum of Absolute Weights (SoAW) [34]. After the execu-
tion of the pruning, the obtained CNN has to be first retrained
to adjust the weights of the remaining connections and re-
evaluated in terms of its classification accuracy. The three
steps (pruning, re-training and evaluation) are repeated sev-
eral times until the difference between the accuracy of the
pruned CNN and of the original one is below a given thresh-
old, i.e., as long as the pruning does not invalidate the effec-
tiveness of the checker.
Ideally, the pruning should be applied before the selection

of the final configuration in the solution space; this would
guarantee the selection of the best solution. However, since
the pruning activity is extremely time consuming, reversing
the order of the two steps is not affordable time-wise,
because of the number of possibilities. Nonetheless, we
empirically noticed that in general the proposed order of the
operations does not affect the final result.

F. FINAL EVALUATION

The final step consists in the integration of the designed CBs
together with the nominal filters to build the final hardened
application. At this step, images from the test set are used to
evaluate the average execution time and the percentage of
misclassified unusable outputs %=D=U. This final evaluation
is carried out by executing the overall application pipeline a
number of times both in fault-free and faulty scenarios. At
every iteration, an image from the test set is randomly
selected and the pipeline is executed. When the faulty sce-
nario is evaluated, the corrupted intermediate image is
“injected” on the output of a stage that is chosen by weight-
ing the probability of each stage to be faulty by its execution

FIGURE 7. An example plot of the various configurations.

656 VOLUME 10, NO. 2, APRIL-JUNE 2022

Miele et al.: Approximation-Based Fault Tolerance in Image Processing Applications

time. The %=D=U is calculated as the ratio between the num-
ber of =D=U and the total number of experiments carried out
in the faulty scenario, while the average execution time is
calculated as the average execution time of the final hardened
application in the fault-free scenario. Indeed, to optimize the
overall design time needed to carry out the methodology, it
is possible to postpone the generation of the test set to this
final step, once the approximation levels for all filters have
been selected.

VI. EXPERIMENTAL EVALUATION

This section presents the results of the experimental evalua-
tion of the proposed approach on two case studies.

A. THE CONSIDERED CASE STUDIES

Case Study #1: Buildings Identification in Aerial Photos
Our first application is meant for the identification of

buildings in aerial photos. The application receives a bitmap
and produces a heatmap of the same size where each pixel
represents the probability of the corresponding pixel in the
input image to belong to a building. The application is com-
posed of four steps: i) a sharpening filter; ii) a thresholding
stage that performs a pixel-wise classification based on spe-
cific values for each pixel channel; iii) a reshape&convolu-
tion (R&C) stage that performs a classification based on
image reshaping and then a convolution. The two previous
classification steps take the sharpened image and produce
two probability matrices. Finally, iv) an aggregation stage
performs a pixel-wise multiplication between the outputs of
the two previous steps to generate the output heatmap. As a
simple downstream application, we implemented an Oracle
that, given a (possibly faulty) heatmap and the corresponding
pristine counterpart, outputs a usable label if the areas identi-
fied as buildings in the two heatmaps overlap for at least the
85%. To build TRS, VS and TES, we employed 1,000
1080x720 images downloaded from MS Bing Maps.
Case Study #2: Motion Detection in Highway Videos
The second case study is an application detecting moving

cars in images taken by a camera on the highway. The applica-
tion produces the list of coordinates of the bounding boxes
around the identified cars. The application is composed of
four steps: i) an RGB to gray scale conversion; ii) a Gaussian
filter to remove the noise in the image; iii) aGaussian Mixture
Model (GMM) stage producing a black/white image reporting
the blobs on the moving cars in the scene; and iv) an Erosion
filter to improve the shape of the blobs. Finally, a bounding
box detector computes the coordinates of the bounding boxes
and draws them around the blobs. This last step has to not
been considered in this study; in fact, since it does not produce
an image/heatmap in output, the proposed scheme cannot be
applied on it. Thus, it has be hardened with a classical DWC.
The Oracle classifies the usability by checking the number

and the position of the bounding boxes based on the Jaccard
index as in [35]. To build TRS, VS and TES, we employed
1,000 600x300 images downloaded from Italian highway
webcams.

B. EXPERIMENTAL SETUP

A Python tool implements our design flow, automating all
methodology steps. In particular, all the datasets are obtained
by means of error simulation while CNN training, evaluation
and pruning exploit the TensorFlow and Keras frame-
works [36]. For the datasets generation, error models are
manually defined as in [37]; we performed fault injection
campaigns (by means of LLFI [27]) for each filter and we
extracted the recurrent distortion patterns.
The CNNs featured by the Control Blocks are constituted

by a number of convolutional layers interleaved with max-
pooling layers, followed by two fully-connected layers, the
last of which outputs the final classification. All the models
are sequential, meaning that each layer takes as input the out-
put of the previous one and feeds the next one with its output.
All the convolutional layers have kernels of size 2x2 or 3x3
and all the max-pooling layers have a 2x2 kernel. Finally, all
the activation functions are ReLU with the exception of the
last layer, which for classification purposes uses a Sigmoid
activation. The downscaling module has been implemented
as an average-pooling since it offers good execution time
while preserving the relevant information in the image, with
the only exceptions of the Gaussian Mixture Model and Ero-
sion filters where given the type of the elaboration the max-
pooling is more appropriate. Finally, we chose all possible
divisors of the image sizes as di values in order not to intro-
duce padding.
Both the nominal and the hardened image processing

applications have been implemented in C++. The required
execution times have been profiled on an Odroid XU3 Board,
pinning the application on a single-core Arm A15 core work-
ing at 1.6GHz.

C. EXPERIMENTAL RESULTS

We here report the results of the application of our approach
to the two case studies. First, we present the execution time
required by the design flow to achieve the final implementa-
tion of the checkers. We sequentially executed all the activi-
ties of the design flow on a home personal computer
equipped with an i7-7700HQ CPU, 16 GByte RAM and an
NVIDIA GeForce GTX 1050 (4 GByte dedicated memory).
Considering Case Study #1, the design flow took about 180
hours overall; in details: 36 hours for the generation of all the
training, validation and test sets, 2 hours for the training of
each one of the three considered CNNs for each one of the
four application stages and 30 hours for the pruning of the
four selected CNNs (one for each application stage). Similar
considerations can be drawn for Case Study #2, for which
the proposed design flow took about 45 hours (the signifi-
cantly shorter time is due to the reduced size of the input
images w.r.t. Case Study #1).
Then, we present the peculiarities of the solution space

definition and exploration, and the comparison of the final
selected hardened implementations against the two adopted
baselines, i.e., the traditional DWC and the solution in [7].
For each one of them, we present:

VOLUME 10, NO. 2, APRIL-JUNE 2022 657

Miele et al.: Approximation-Based Fault Tolerance in Image Processing Applications

� For each step of the application, the solution spaces,
where each point corresponds to a solution with a Uth

value and a downscaling factor: Figure 8 for Case
Study #1, and Figure 9 for Case Study #2, respectively.
The selected best configuration is marked in red report-
ing also the Uth value.

� For each stage, the distribution of discarded/not dis-
carded, usable/unusable cases characterizing the selected
configurations after pruning to implement the SC and
CB: Tables 2 and 5.

� For each stage, the execution times of the nominal fil-
ter, of the corresponding duplicated approximated fil-
ters in the CB and of the SC: Tables 3 and 6.

� The comparison of our approach against the DWC and
[7] in terms of average execution time and percentage
of false negatives when the complete hardened applica-
tion is considered: Tables 4 and 7.

The analysis of the results allows to draw the following
considerations. As it can be noticed, in general, different lev-
els of approximation generate partially overlapping sets of
points, and consequently none of the approximation levels
dominates the others from the Pareto dominance point of
view. Thus, the best configuration has been selected among
the subset of Pareto dominant points in order to limit the
number of /D /U and at the same time minimize the

execution time. In case the values on the %=D =U axis are
limited to a small range close to the origin, as for the Gauss-
ian filter in Case Study #2, we selected the point right before
the curve becomes flat (i.e., the “elbow” of the curve). In
fact, further decreasing the threshold Uth of the classification
model causes an increase of the %=D =U that is higher than
what we deemed tolerable to achieve an only marginal extra
time saving. In other cases, as for all filters in Case Study #1,
the points are distributed on a large range of %=D =U values;
therefore, given our priority to limit the percentage of false
negatives, in these experimental sessions we assumed a max-
imum %=D =U equal to 3% and based on that we identified
the best configuration.
Then, considering the classification distribution for the

selected configuration presented in Tables 2 and 5, we may
notice that the proposed approach presents false positives
(D U cases) also in the fault-free scenario (due to approxima-
tion and the use of CNNs). This means that also in absence
of faults, the SC may trigger unnecessary re-executions.
Indeed, the amount of triggered re-executions heavily
depends on the complexity of the filter and its susceptibility
to the downscaling of the input. However, as it will be shown
later, this does not prevent the proposed approach to still pro-
vide a significant time saving (again, due to approximation).
This is due to the fact that, as it can be observed from
Tables 3 and 6, the execution times of the the nominal filters

FIGURE 8. Case study #1: best configuration selection for each filter.

TABLE 2. Stage output classification and handling in the selected configuration for the SCs of case study #1.

Stage Fault-free execution Faulty execution

D /U /D U D U /D /U D /U /D U D U /D /U

Sharp. 0.00% 99.80% 0.20% 0.00% 55.89% 41.07% 2.22% 0.82%
R&C 0.00% 98.70% 1.30% 0.00% 54.36% 41.75% 3.10% 0.79%
Thresh. 0.00% 93.90% 6.10% 0.00% 47.66% 41.35% 8.51% 2.48%
Aggreg. 0.00% 99.20% 0.80% 0.00% 39.62% 54.52% 4.92% 0.94%

TABLE 3. Execution times for each stage of case study #1.

Stage Nominal Approx. SC

Sharp. 97.00 ms 11.30 ms 16.31 ms
R&C 184.00 ms 17.38 ms 6.48 ms
Thresh. 32.00 ms 3.80 ms 4.80 ms
Aggreg. 34.00 ms 5.70 ms 6.46 ms

TABLE 4. Comparative analysis of the fully hardened casestudy #1.

Approach Avg. Time /D /U

Our approach 414.40 ms 0.90%
DWC 652.80 ms 0.00%
[7] 652.80 ms 0.20%

658 VOLUME 10, NO. 2, APRIL-JUNE 2022

Miele et al.: Approximation-Based Fault Tolerance in Image Processing Applications

is in general considerably larger than the ones of their
approximated counterparts hardened with DWC and of the
corresponding SC, thus leading to significant time savings
although the unnecessary re-executions.
We also performed an in-depth analysis of the intermediate

and final results of several runs of each case study, which
confirmed the discussion reported in Section III.C. In particu-
lar, by referring to the example images in Figure 2 we can
say that, as expected, in the case of no fault occurrence
(Figure 2(b)), as well as in the case of a fault that slightly cor-
rupts the intermediate output (Figure 2(f)) our approach cor-
rectly continues the execution of the application without
discarding the output. When a fault causes the disruption of
the intermediate output (Figure 2(d)) our approach correctly
discards the output and triggers a re-execution.
Finally, we can analyse the execution time and the percent-

age of false negatives for the complete hardened applications

and we can compare these results with the DWC and [7]. In
particular, when looking at Tables 4 and 7 we can see that
we achieve time savings ranging of 36.52% and 33.39% w.r.
t. the DWC and [7], for the two case studies.3 When taking
into account the number of false negatives (/D /U), it ranges
from 0.90% and 3.70% for the two case studies. This result
is an absolute loss w.r.t. the DWC approach that never fails,
but is comparable w.r.t. [7], deemed acceptable for not criti-
cal tasks.
As a final consideration, we report the memory occupation

for the proposed solution. The memory footprint of the final
pruned CNNs adopted to harden the considered applications is
about 150KByte on average. Therefore, the total occupation of
all the checkers is about 600KByte. By considering that the
memory occupation for Case Study #1 is about 40MByte, and
that for Case Study #2 is about 12MByte, we have an area
occupation overhead of about 1.5% and 5%, respectively. This
overhead is totally comparable with that of the baseline in [7];
on the other hand, the memory overhead introduced by the
TRC employed in the classical DWC is negligible.

VII. CONCLUSION

We presented a novel lightweight fault tolerant scheme specifi-
cally tailored for image processing applications. The proposed
scheme enhances the classical DWC by: i) replacing one of the
two exact application replicas with an approximated counter-
part, and ii) adopting a usability-based classification of (inter-
mediate) outputs through the use of Convolutional Neural
Network-based checkers. A companion design methodology
supports the designer in the application and tuning of the

TABLE 5. Stage output classification and handling in the selected configuration for the SCs of case study #2.

Stage Fault-free execution Faulty execution

D /U /D U D U /D /U D /U /D U D U /D /U

RGB-Gray 0.00% 100.00% 0.00% 0.00% 62.85% 33.65% 1.09% 2.41%
Gaussian 0.00% 90.20% 9.80% 0.00% 38.90% 53.69% 5.77% 1.64%
GMM 0.00% 73.26% 26.73% 0.00% 26.20% 51.23% 19.04% 3.53%
Erosion 0.00% 80.00% 20.00% 0.00% 59.69% 28.34% 8.01% 3.96%

TABLE 6. Execution times for each stage of case study #2.

Stage Nominal Approx. SC

RGB-Gray 2.44 ms 0.71 ms 1.39 ms
Gaussian 84.90 ms 0.79 ms 1.47 ms
GMM 60.46 ms 1.81 ms 1.38 ms
Erosion 25.70 ms 1.15 ms 4.02 ms

TABLE 7. Comparative analysis of the fully hardened casestudy #2.

Approach Avg. Time /D /U

Our approach 231.68 ms 3.70%
DWC 347.80 ms 0.00%
[7] 347.80 ms 1.30%

FIGURE 9. Case study #2: best configuration selection for each filter.

3Note that in the fault free scenario the behaviour (and therefore the execu-
tion time) of the DWC and [7] is the same.

VOLUME 10, NO. 2, APRIL-JUNE 2022 659

Miele et al.: Approximation-Based Fault Tolerance in Image Processing Applications

proposed scheme to optimize both the performance and the
fault tolerance capabilities of the hardened system.
The approach has been applied to two case studies; it

achieves time savings larger than 30% w.r.t. the traditional
DWC with re-execution approach and the proposal in [7]. At
the same time, the percentage of false negatives is always
lower than 4%, acceptably low and comparable with the one
in [7]. Future work will investigate the application of the pro-
posed approach on different HW platforms, the capability to
deal with permanent faults and will better refine the
approximation-based hardening strategy, for instance in
the direction of replacing both the replica and the checker
with a CNN.

REFERENCES

[1] J. Andersson, M. Hjorth, F. Johansson, and S. Habinc, “LEON processor
devices for space missions: First 20 years of LEON in space,” in Proc. Int.
Conf. Space Mission Challenges Inform. Tech., 2017, pp. 136–141.

[2] M. Fayyaz and T. Vladimirova, “Fault-tolerant distributed approach to sat-
ellite on-board computer design,” in Proc. Aerosp. Conf., 2014, pp. 1–12.

[3] L. Sterpone, M. Porrmann, and J. Hagemeyer, “A novel fault tolerant and
runtime reconfigurable platform for satellite payload processing,” IEEE
Trans. Comput., vol. 62, no. 8, pp. 1508–1525, Aug. 2013.

[4] R. L. Davidson and C. P. Bridges, “Error resilient GPU accelerated image
processing for space applications,” IEEE Trans. Parallel Distrib. Syst.,
vol. 29, no. 9, pp. 1990–2003, Sep. 2018.

[5] S. Mittal, “A survey of techniques for approximate computing,” ACM
Comput. Surv., vol. 48, no. 4, pp. 62:1–62:33, 2016.

[6] S. Venkataramani, S. T. Chakradhar, K. Roy, and A. Raghunathan,
“Approximate computing and the quest for computing efficiency,” in
Proc. Des. Autom. Conf., 2015, pp. 1–6.

[7] M. Biasielli, C. Bolchini, L. Cassano, E. Koyuncu, and A. Miele, “A neu-
ral network based fault management scheme for reliable image process-
ing,” IEEE Trans. Comput., vol. 69, no. 5, pp. 764–776, May 2020.

[8] I. Albandes, et al., “Improving approximate-TMR using multi-objective
optimization genetic algorithm,” in Proc. Latin-Amer. Test Symp., 2018,
pp. 1–6.

[9] A. J. Sanchez-Clemente, L. Entrena, R. Hrbacek, and L. Sekanina, “Error mit-
igation using approximate logic circuits: A comparison of probabilistic and
evolutionary approaches,” IEEE Trans. Rel., vol. 65, no. 4, pp. 1871–1883,
Dec. 2016.

[10] A. Ullah, P. Reviriego, S. Pontarelli, and J. A. Maestro, “Majority voting-
based reduced precision redundancy adders,” IEEE Trans. Device Mater.
Rel., vol. 18, no. 1, pp. 122–124, Mar. 2018.

[11] R. Hegde and N. R. Shanbhag, “Soft digital signal processing,” IEEE
Trans. Very Large Scale Integr. Syst., vol. 9, no. 6, pp. 813–823,
Dec. 2001.

[12] B. Shim and N. R. Shanbhag, “Energy-efficient soft error-tolerant digital
signal processing,” IEEE Trans. Very Large Scale Integr. Syst., vol. 14,
no. 4, pp. 336–348, Apr. 2006.

[13] A. Raha and V. Raghunathan, “Towards full-system energy-accuracy
tradeoffs: A case study of an approximate smart camera system,” in Proc.
Des. Autom. Conf., 2017, pp. 1–6.

[14] M. Biasielli, L. Cassano, and A. Miele, “An approximation-based fault
detection scheme for image processing applications,” in Proc. Des. Autom.
Test Europe Conf., 2020, pp. 1331–1334.

[15] I. A. C. Gomes, M. G. A. Martins, A. I. Reis, and F. LimaKastensmidt,
“Exploring the use of approximate TMR to mask transient faults in logic
with low area overhead,”Microelectron. Rel., vol. 55, no. 9, pp. 2072–2076,
2015.

[16] M. R. Choudhury and K. Mohanram, “Approximate logic circuits for low
overhead, non-intrusive concurrent error detection,” in Proc. Des. Autom.
Test Eur. Conf., 2008, pp. 903–908.

[17] M. R. Choudhury and K. Mohanram, “Low cost concurrent error masking
using approximate logic circuits,” IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst., vol. 32, no. 8, pp. 1163–1176, Aug. 2013.

[18] K. Chen, J. Han, and F. Lombardi, “Two approximate voting schemes for
reliable computing,” IEEE Trans. Comput., vol. 66, no. 7, pp. 1227–1239,
Jul. 2017.

[19] B. Pratt, M. Fuller, and M. Wirthlin, “Reduced-precision redundancy on
FPGAs,” Int. J. Reconfigurable Comput., vol. 2011, pp. 1–12, 2011.

[20] G. S. Rodrigues, J. Fonseca, F. Benevenuti, F. LimaKastensmidt, and A.
Bosio, “Exploiting approximate computing for low-cost fault tolerant
architectures,” in Proc. Symp. Integr. Circuits Syst. Des., 2019, pp. 1–6.

[21] B. Shim, S. R. Sridhara, and N. R. Shanbhag, “Reliable low-power digital
signal processing via reduced precision redundancy,” IEEE Trans. Very
Large Scale Integr. Syst., vol. 12, no. 5, pp. 497–510, May 2004.

[22] F. Baharvand and S. G. Miremadi, “LEXACT: Low energy N-Modular
redundancy using approximate computing for real-time multicore process-
ors,” IEEE Trans. Emerging Top. Comput., vol. 8, no. 2, pp. 431–441,
Apr.–Jun. 2020.

[23] G. S. Rodrigues, A. Barrosde Oliveira, A. Bosio, F. L. Kastensmidt,
and E. Pignatonde Freitas, “ARFT: An approximative redundant tech-
nique for fault tolerance,” in Proc. Conf. Des. Circuits Integr. Syst.,
2018, pp. 1–6.

[24] C. Bolchini, L. Cassano, A. Miele, and M. Biasielli, “Lightweight fault
detection and management for image restoration,” in Proc. Int. Symp.
Defect Fault Tolerance Very Large Scale Integr. Syst., 2020, pp. 1–6.

[25] G. et al., “Towards the use of artificial intelligence on the edge in space
systems: Challenges and opportunities,” IEEE Aerosp. Electron. Syst.
Mag., vol. 35, no. 12, pp. 44–56, Dec. 2020.

[26] A. Biondi, F. Nesti, G. Cicero, D. Casini, and G. Buttazzo, “A safe, secure,
and predictable software architecture for deep learning in safety-critical
systems,” IEEE Embedded Syst. Lett., vol. 12, no. 3, pp. 78–82, Sep. 2020.

[27] J. Wei, A. Thomas, G. Li, and K. Pattabiraman, “Quantifying the accuracy
of high-level fault injection techniques for hardware faults,” in Proc. Intl.
Conf. Dep. Syst. Netw., 2014, pp. 375–382.

[28] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. Learn. Representations, Poster, 2014.

[29] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for
online learning and stochastic optimization,” J. Mach. Learn. Res., vol. 12,
pp. 2121–2159, 2011.

[30] G. Hinton, “Overview of mini-batch gradient descent.” Accessed: Dec. 14,
2020. [Online]. Available: http://www.cs.toronto.edu/�tijmen/csc321/
slides/lecture_slides_lec6.pdf

[31] R. Caruana, S. Lawrence, and C. L. Giles, “Overfitting in neural nets:
Backpropagation, conjugate gradient, and early stopping,” in Proc. Neural
Inf. Process. Syst., 2001, pp. 402–408.

[32] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
nov, “Dropout: A simple way to prevent neural networks from overfitting,”
J. Mach. Learn. Res., vol. 15, pp. 1929–1958, 2014.

[33] S. M. Kakade, S. Shalev-Shwartz, and A. Tewari, “Regularization techniques
for learning with matrices,” J. Mach. Learn. Res., vol. 13, pp. 1865–1890,
2012.

[34] J.-H. Luo, J. Wu, and W. Lin, “ThiNet: A filter level pruning method for
deep neural network compression,” in Proc. IEEE Intl. Conf. Comput.
Vis., 2017, pp. 5068–5076.

[35] F. Fernandes dosSantos, L. Carro, and P. Rech, “Kernel and layer vulnera-
bility factor to evaluate object detection reliability in GPUs,” IET Comput.
Digi. Techn., vol. 13, no. 3, pp. 178–186, 2019.

[36] M. Abadi et al., “TensorFlow: Large-scale machine learning on heteroge-
neous systems.” Accessed: Jul. 7, 2021. [Online]. Available: www.
tensorflow.org/

[37] C. Bolchini, L. Cassano, A. Mazzeo, and A. Miele, “Error modeling for
image processing filters accelerated onto SRAM-based FPGAs,” in Proc.
Intl. Symp. On-Line Testing Robust Syst. Des., 2020, pp. 1–6.

MATTEO BIASIELLI received the MSc degree in
computer science engineering from the University
of Illinois at Chicago and from Politecnico di
Milano in 2019. His research interests include arti-
ficial intelligence and machine learning, working
on solutions for fault tolerance in image processing
applications.

660 VOLUME 10, NO. 2, APRIL-JUNE 2022

Miele et al.: Approximation-Based Fault Tolerance in Image Processing Applications

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
www.tensorflow.org/
www.tensorflow.org/

CRISTIANA BOLCHINI (Senior Member, IEEE)
received the PhD degree in automation and computer
engineering from Politecnico di Milano in 1997. She
is currently a professor with Politecnico di Milano.
She has coauthored more than 130 papers in peer-
reviewed international journals and conferences. Her
research focuses on methodologies for the design and
analysis of digital systems with a specific focus on
dependability and self-awareness for heterogeneous
system architectures. In 2019, she was the technical
programme chair of the conference IEEE/ACM
DesignAutomation and Test in Europe.

LUCA CASSANO (Member, IEEE) received the
BS, MSc and PhD degrees in computer engineering
from the University of Pisa, Italy. He is currently an
assistant professor with Politecnico di Milano, Italy.
His research interests include definition of innovative
techniques for fault simulation, testing, untestability
analysis, diagnosis, and verification of fault tolerant
and secure digital circuits and systems. With the PhD
thesis, titled “Analysis and Test of the Effects of Sin-
gle Event Upsets Affecting the Configuration Mem-
ory of SRAM-based FPGAs”, he was the recipient of

the European semifinals of the 2014 TTTC’s E. J. McCluskey Doctoral Thesis
Award and he classified as runner-up at the world finals.

ANDREA MAZZEO received the MSc degree in
2019 in computer science engineering from Politec-
nico di Milano, where he is currently working
toward the PhD degree in computer science engi-
neering. His research interests include machine
learning, deep learning, re-configurable hardware
devices, and the analysis and the design of fault-tol-
erant image processing applications.

ANTONIO MIELE (Senior Member, IEEE)
received the MSc degree in computer engineering
from Politecnico di Milano, a the MSc in computer
science from the University of Illinois at Chicago,
and the PhD degree in information technology from
Politecnico di Milano. He is currently an associate
professor with Politecnico di Milano. He has coau-
thored more than 80 peer-reviewed publications. His
main research interests include design methodologies
for embedded systems, in particular fault tolerance
and reliability issues, runtime resource management
in heterogeneous multi-/many-core systems, and
FPGA-based systems design.

VOLUME 10, NO. 2, APRIL-JUNE 2022 661

Miele et al.: Approximation-Based Fault Tolerance in Image Processing Applications

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

