© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works. DOI 10.1109/TETC.2021.3101922

Achieving Diverse Redundancy for GPU Kernels

Sergi Alcaidetf, Leonidas Kosmidis', Carles Hernandez?, Jaume Abella’
! Universitat Politécnica de Catalunya (UPC) T Barcelona Supercomputing Center (BSC)
§ Universitat Politécnica de Valencia (UPV)

Abstract—Autonomous driving requires high-performance computing
devices including general-purpose CPUs as well as specific accelera-
tors, with GPUs having a key role due to their flexibility. Safety-critical
microcontrollers have achieved ASIL-D compliance by implementing
diverse redundancy with lockstep execution on-chip. However, a GPU
does not provide diverse redundancy natively, thus failing to reach ASIL-
D, which could only be reached with fully redundant lockstepped GPUs
(2 GPUs) or pairing a GPU with another accelerator. However, both
options may be infeasible due to procurement costs, and additional
power, space and reliability costs to accomodate two devices. In this
work, we present a variety of solutions to enable diverse redundant ex-
ecution using only one GPU by taking advantage of the already internal
redundancy of GPUs. We provide two lowly-intrusive hardware solutions
and a software-only solution, with the latter evaluated directly on a real
platform. In the case of the software-only solution, kernel execution on
the GPU may require tailoring some parameters. With that objective,
we also propose an algorithm that performs such tailoring automatically
to guarantee software-only diverse redundancy on GPUs. Overall, our
solutions allow achieving ASIL-D with a single GPU either with software-
only solutions on a Commercial off-the-shelf GPU, or in a more efficient
manner by introducing minor changes in the GPU design.

1 INTRODUCTION

The advent of Autonomous Driving (AD) imposes the adoption
of high-performance hardware in critical real-time embedded sys-
tems (CRTES) for the execution of object detection and tracking
algorithms, as well as for driving decisions. However, hardware
designs for CRTES must undergo a strict design, Verification and
Validation (V&V) process to guarantee that failure risks are resid-
ual in accordance with automotive safety regulations (ISO26262
and 1SO21448). This V&V process typically clashes with the de-
sign of high-performance hardware, where performance optimiza-
tion prevails over controllability and observability requirements
needed for V&V. Instead, safety requirements include detecting
faults and preventing hazardous situations, and these requirements
propagate to system items.

Graphical Processing Units (GPUs) are becoming a highly
popular accelerator for AD. To respond to these opposing re-
quirements, namely high performance, and functional safety, some
hardware vendors have recently deployed specific products for
the automotive market and, particularly, for AD applications. For
instance, Renesas R-Car H3 [1] and NVIDIA Xavier [2] product
families deliver a multicore CPU together with a GPU, where
the latter is in charge of executing high-performance and parallel
kernels so that the system can meet the stringent performance
requirements of AD applications.

Functionalities in automotive systems are classified into dif-
ferent Automotive Safety Integrity Levels (ASILs) as dictated by
1SO26262. ASILs are determined by the exposure, severity and
controllability upon a failure of hazardous events. As long as an
item inherits some safety requirements, its ASIL ranges between
A to D, being D the highest level and A the lowest. If the item does
not inherit any safety requirement, then it is regarded as Quality
Managed (QM).

AD functionalities include braking, accelerating, and steering,
so they are naturally classified as ASIL-D. To reach ASIL-D,
any functionality needs to build upon some form of diverse
redundancy to avoid Common Cause Failures (CCFs), which are
those failures caused by a single fault (e.g., a fault affecting
similarly redundant and non-diverse items). Diverse redundancy
(e.g., dual-core lockstep execution in CPUs) is normally deployed
so that faults are detected timely (i.e. with redundancy) even if they
affect redundant components, since those components provide
diversity by either being heterogeneous or by holding different
internal state at any time. Error Detection and/or Correction Codes
(EDC/ECC) such as SECDED (Single Error Correction/Double
Error Detection) or Cyclic Redundant Check (CRC) are often used
as a means to achieve diverse redundancy for storage and com-
munication. Environment sensing achieves diverse redundancy by
building on different technologies such as cameras, LiDAR, and
radar. Finally, computation often builds upon staggered lockstep
execution, deployed in automotive CPUs, such as for instance, the
Infineon AURIX microcontroller family [3], where identical cores
run the same software simultaneously with some staggering (i.e.,
time shift) across cores. Such a solution is beneficial for several
reasons:

1) Cost: a single hardware and software design is needed
since redundant cores and software executed are identical.

2) Performance and power: on-chip comparison can be per-
formed.

3) Reliability and space: keeping activities on-chip avoids
involving additional physical components.

In the case of GPUs, hardware manufacturers claim ASIL-B
compliance and enabling ASIL-D compliance, where the latter can
be achieved by either setting up two redundant ASIL-B GPUs with
some form of diversity or by using diverse components such as
the GPU and the NVDLA (NVIDIA Deep Learning Accelerator)
accelerator as in the case of NVIDIA [2]. However, these solutions
defeat at least 2 out of the 3 benefits indicated above. Using
two GPUs reduces the performance and doubles the power while
also reducing reliability. Instead, using two diverse components

ASIL D ASIL D

|ASIL B| |ASIL B| | oM | |ASII. D|

Fig. 1: Usual decomposition patterns for ASIL-D items.

increases the cost by requiring to design, not only two different
ASIL-B hardware components but also two different ASIL-B soft-
ware implementations to perform the same functionality, which
ultimately also doubles the V&V costs.

Given the intrinsic internal redundancy of Commercial Off-
The-Shelf (COTS) GPUs, this work proposes alternative solutions
to reach ASIL-D building on a single COTS GPU, one by
software-only means and the others with lowly-intrusive hardware
modifications!. These solutions address successfully the three
challenges presented above in terms of (i) cost, (ii) performance
and power, and (iii) reliability and space by exploiting the intrinsic
redundant nature of GPU designs.

The rest of the paper is organized as follows. Section 2 pro-
vides some background on automotive functional safety and GPU
architecture. Section 3 introduces key concepts and strategies to
achieve diverse redundancy on GPUs. Section 4 presents our two
solutions based on hardware modifications. Section 5 presents our
software-only solution. All solutions are evaluated and compared
in Section 6. Related work is described in Section 7. Finally,
Section 8§ summarizes this work.

2 BACKGROUND
2.1 ASIL Decomposition in 1SO26262

ASIL decomposition is often used for the highest integrity levels
as an economically viable way to meet safety requirements by
using appropriate combinations of lower ASIL items. This relates
to the fact that reaching certain coverage levels and failure rates
needed for the highest ASILs may impose excessive costs (or
simply be unreachable) if a single item is used, whereas lower
ASIL items are cheaper to design and verify. However, in order
to meet safety requirements and avoid common cause failures
(CCFs)?, the two lower ASIL components used redundantly must
be proven to be sufficiently independent. This imposes the use of
some form of diversity across redundant items. For example, using
two power supplies, one per each component, could avoid a failure
due to a voltage droop.

ASIL-D compliant CPUs are available in the market, such as
for instance, the Infineon AURIX family [3]. Those CPUs reach
ASIL-D by using redundant identical cores that execute the same
instruction stream, but with some staggering (i.e., one core is
ahead of the other by few cycles). So that core’s internal state
differs and, upon a fault affecting both redundant cores, the impact
in their state will differ and lead to different states, thus allowing
to detect the errors before they become a failure. However, high-
performance accelerators do not reach ASIL-D in general, and for
GPUs in particular, which challenges their use in safety-related

1. This work combines, extends and compares our previous work in [4] on
hardware solutions and [5], [6] on software solutions.

2. CCFs are those failures where a single fault affecting redundant elements
leads to undetectable errors (e.g., both items deliver identical erroneous
outputs), so that, despite redundancy, errors remain undetected and can become
failures.

2

systems. Note that, as discussed before, some chip vendors, such
as NVIDIA, already deploy GPUs for AD systems but failing to
reach ASIL-D with a single GPU.

Automotive systems have been traditionally regarded as fail-
safe, meaning that they have a safe state that, in general, consists
of transferring the control to the driver. Hence, a valid ASIL
decomposition pattern consists of using an ASIL-D microcon-
troller monitoring faults and transferring the system to a safe state
whenever needed, and a QM high-performance computing unit,
thus without safety requirements, see Figure 1 (right). However,
such a fail-safe system is not fault-tolerant since, upon an error, the
system transitions to the safe state and becomes unavailable. For
instance, consider an ASIL-D system based on a QM accelerator
(e.g., a GPU) in charge of the decision system of a car and
a monitor regarded as ASIL-D, which monitors the accelerator
execution (Figure 1 right). A failure in the accelerator, will be
noticed by the monitor and will put the system in a safe state but
will not carry out the task timely. However, the highest autonomy
levels in AD must be fail-operational, meaning that they operate
correctly at all times with no safe state available (e.g., the car may
even lack a steering wheel).

Instead, fail-operational systems must build on a different
ASIL decomposition, such as that shown in Figure 1 left, where
ASIL-D is reached through the combination of diverse redundancy
of lower ASIL (yet with some ASIL) items. For instance, a scheme
with two GPUs with some sort of diversity would allow detecting
erroneous outputs and, upon a fault, restart the task at least in
the fault-free GPU to guarantee operation despite faults. This is
analogous to the use of Dual-Core Lockstep (DCLS) for CPUs.

However, as explained before, using redundant devices is ill-
advised due to a number of reasons related to cost, integration,
and reliability issues (i.e., increasing likelihood of a physical
fault with two devices and their interconnects w.r.t. a single
device). Therefore, ASIL-D must be reached in a single system-
on-chip (SoC), as it is done for CPUs, executing tasks redundantly
in a single GPU with some form of control guaranteeing that
redundancy is effectively diverse. Thus, in this work, we provide
three complete solutions (for any kernel) to achieve some form of
on-chip DCLS for GPUs, two of them by using lowly-intrusive
hardware modifications and the latter by software-only means.

It is worth noting that this work focuses on fault detection
mechanisms, so error handling is out of the scope of this paper,
and additional mechanisms might be required to perform the error
handling tasks. However, such concern is analogous to that of
DCLS in the case of CPUs, so solutions based on restart or
checkpointing apply.

2.2 GPU Architecture and Support for Diverse Redun-
dancy

GPUs in general, and NVIDIA GPUs in particular, which are
explicitly considered in this work, consist of a number of com-
ponents (see Figure 2). First, a kernel scheduler which sched-
ules thread blocks (groups of threads that may synchronize or
communicate through shared memory) to Streaming Multiproces-
sors (SMs). Second, several SMs, where computation effectively
occurs. Each SM has a set of local resources for storage, such
as first level cache memories and register files, and computing
cores (including load/store data units). SMs also share part of the
cache hierarchy (e.g., a second level cache) and communication
and memory interfaces.

! < [Regfie | IO []
| S = oo !

5 N2 I O o

s | 8L | OOr0000d, 8

T . cores e “5

E : g||£

I i _cores (Y E

@ | { < [Regfile | CICICICICICICICC]Y e
x| s I I O
& COooOoooog |

(S T o |

Fig. 2: Schematic of a usual GPU architecture.

As indicated before, storage and communication means are
typically ECC, or CRC protected and, in fact, this is the case
for NVIDIA GPUs. SMs are naturally redundant among them,
so that this feature can be exploited for fault detection. Finally,
the kernel scheduler needs explicit protection through replication.
However, although adding this kind of redundancy brings some
additional hardware cost, the vast majority of the GPU hardware
is devoted to SMs and shared storage, which are implicitly or
explicitly redundant. Hence, making kernel schedulers redundant
is not foreseen as a challenging concern.

Regarding SMs, while they are redundant, it is mandatory to
have some diversity so that redundant computations use different
SMs and they do it at different time instants to avoid CCFs.
Therefore, there are two requirements that must be fulfilled by
redundant operations to guarantee diverse redundancy computa-
tion on a GPU.

1) They must not execute on the same hardware.
2) They must not execute synchronized. Instead, some form
of staggered execution is needed.

3 KEY CONCEPTS TO ACHIEVE DIVERSE REDUN-
DANCY IN A GPU AND SYSTEM MODELING

This section introduces relevant concepts that affect diverse redun-
dant execution in the GPU. We also describe the system considered
and the offloading process of the kernels. Finally, we provide a
schematic of the software modifications made to enable diverse
redundant execution.

3.1 GPU Concepts and Redundancy Granularity

In CUDA (Compute Unified Device Architecture), the program-
ming paradigm for NVIDIA GPUs, kernels and explicit memory
transfers are both assigned to a CUDA stream. In each stream,
kernels and memory transfers are executed serially in order of
arrival (using a FIFO queue). As authors in [7] found, there is
a FIFO queue per each stream, and only when kernels reach the
head of their stream queue are enqueued in a FIFO execution
engine (EE) queue. Only blocks of the kernel at the head of the
EE queue are eligible to be assigned to SMs. Finally, a kernel only
leaves the head of the EE queue (i.e., it is dispatched) when all its
blocks are assigned to SMs®. A block can be only assigned to an
SM when there are enough available resources to accommodate
its execution eg. enough available registers, threads or shared
memory. Therefore, when using different streams, two kernels can
run concurrently as long as:

3. While this description uses explicit NVIDIA concepts, similar concepts
hold for other GPU families such as, for instance, AMD ones.

GPU cores
8
=S |
S |

DOOOOOOOOoOoOd

o OO CCeee
=S
" BHEH-EEEEES

{

Reliable Interconnect i

CPU

imm—

CPU

DMA | Memory Subsystem

Fig. 3: Proposed Computing Platform architecture

1) The first kernel can be fully dispatched (this will remove
it from the head of the EE queue).

2) The second kernel can be fully dispatched while the
first one is still executing (therefore there are enough
remaining resources).

In addition, as pointed out in the CUDA programming
guide [8], none of them can use the default or NULL stream if we
want to achieve kernel concurrency since any CUDA command
to the NULL stream creates an implicit synchronization, and so
kernel serialization.

Redundant execution in a GPU can be achieved at different
granularities, include replication at thread block level [9], [10],
[11], [12], [13], [14], at thread level, and at instruction level [15].
The finer the granularity, the more synchronization required, such
as inter-thread communications (e.g. using the shared memory).
In the context of CCFs, if replication occurs inside an SM (intra-
SM), there is no way to exercise control on whether redundant
operations are executed in different hardware (e.g., ALUs). There-
fore, we select kernel granularity for redundancy because kernels
can be scheduled per SM, so each replicated kernel uses different
SMs*. On the other hand, even if different hardware can be
guaranteed for redundant operations (e.g., different SMs), there
is no straightforward way to enforce staggering.

However, we discovered that, due to the GPU’s kernel of-
floading processes performed by the CPU, an initial staggering
is created automatically between the two kernel executions as
evaluated later.

In particular, the CUDA runtime performs a number of se-
quential actions to offload a kernel to the GPU, which serializes
the offloading of different kernels. GPUs from other vendors are
expected to behave similarly since this is an effect due to the
inherent interaction between the CPU and the GPU.

3.2 System considered

We consider a system — in line with existing AD platforms — in
which an ASIL-D capable microcontroller offloads computation-
intensive work onto the GPU. These computations are organized
as kernels. For each kernel, a redundant copy is sent to the GPU
serially using a different stream. Since the ASIL-D microcontroller
launches the two redundant kernels serially (due to CUDA runtime
serialization), both kernels arrive to the GPU scheduler at different
times, which leads to blackan initial staggered execution inside the
GPU. We regard the other elements outside the GPU safe by either

4. We discuss this issue later in Section 5

CPU GPU
(HOST) Host Launches a Kernel (D EV|CE)
@
W
7
CPU Memory GPU Memor)%

cudaMemc
DtoH Y

®

Fig. 4: Common CUDA Workflow

building on ECC (memory and storage), CRC (Interconnects), or
DCLS (CPUs). In our system design, redundant kernels should ex-
ecute on different GPU hardware with some staggering, and results
are then sent back and compared in the ASIL-D microcontroller.

3.3 Offloading Process

The following steps are taken to offload computation onto the
GPU:

o Offloading preparation process (O allocate memory and @
transfer data from host to the GPU device in Figure 4).

¢ ® Kernel launching.

e @ Collection of the results produced and ® deallocating
memory.

To prepare the execution of the kernel on the GPU, the code
to be run must be sent to the GPU along with the input data,
which must be transferred to the GPU memory. Typically, the
GPU and the microcontroller use the same physical memory.
However, each computing device has separate address spaces,
and hence, independent memory mappings. Therefore, despite
generally data are not physically copied, some bookkeeping and
limited data transfer is needed (e.g. cache contents flushing to
preserve memory consistency), which requires some time to be
performed.

During the complete process, data transfers to/from memory
and on-chip communication beyond the GPU use the same hard-
ware components already used by the ASIL-D microcontroller,
as shown in Figure 3. Hence, as explained before, their ECCs
and CRCs already provide the required protection against errors.
This implies that data transfers occurring in any of the steps of
the kernel execution, namely kernel offloading, launching and
result retrieval, occur on components delivering appropriate safety
measures to reach ASIL-D compliance.

However, computation inside the GPU lacks appropriate sup-
port for safety compliance by default. Therefore, some sort of
safety measures need to be deployed for the execution on the
GPU, being those measures comparable to the ones of the micro-
controller’s DCLS cores. Appropriate safety levels can be achieved
as follows (see Figure 5):

1) Set up two redundant and independent kernels.

2) Duplicate input data.

3) The GPU performs redundant computations on different
components and with some staggering, therefore avoiding
CCFs.

4

4) Data produced by redundant kernels is sent to the micro-
controller where it will be compared.

5) The ASIL-D microcontroller performs the result compar-
ison.

Note that, it would be possible avoiding the replication of read-
only input data. However, then such data would not be replicated
and some form of protection would be needed in the GPU (e.g.
ECC) as a way to mitigate CCFs caused by errors in the non-
replicated input data. Therefore, in this work we assume that all
input data for redundant kernels is replicated, leaving the analysis
of pros and cons of non-replicated read-only data for future work.

3.4 Redundant Kernel Execution Patterns

While our solutions work for any kernel, some kernel character-
istics make a given solution more appealing than others, or even
require methods to enable diverse redundant execution as in the
case of our software-only solution (see section 5). Therefore, we
classify kernels based on whether their execution lasts enough to
overlap, and whether the amount of resources required is small
enough to allow concurrent execution of redundant copies. We
obtain the following three categories (see Figure 6):

e Short kernels. Short kernels last too little to overlap
because the offloading process of the second kernel takes
longer than the execution of the first one, so the first kernel
completes its execution before the second starts.

o Heavy kernels. While heavy kernels run long enough to
overlap, any such kernel needs so many GPU resources
that precludes the other kernel from starting its execution
until the first one finishes (or is close to finish). Therefore,
overlap is tiny — if any — and occurs when the first kernel
is about to finish and starts releasing GPU resources.

o Friendly kernels. Friendly kernels run concurrently in the
GPU since their duration is long enough and the demanded
GPU resources low enough.

Note that the classification of kernels depends on platform specific
characteristics, such as for instance, the amount of GPU resources,
which may make a kernel be heavy or friendly depending on
whether those resources suffice to execute both redundant kernels
concurrently. In the case of automotive applications, they typically
have fixed input data size since input data always comes from
the same sensor (e.g., images from a camera). This allows kernel
classification to be performed a priori statically.

4 HARDWARE SOLUTIONS TO ENABLE DIVERSE
REDUNDANCY ON GPUs

In this section, we describe two HW solutions to achieve diverse
redundant kernel execution on a GPU. Both of them consist
of modifying the default kernel scheduler policy to ensure that
redundant kernels are executed in different hardware and not at
the exact same time.

The scheduling policies proposed, SRRS and HALF, target all
types of kernels, regardless of how much they overlap with their
redundant copies, i.e. no, little or large overlap.

4.1 SRRS policy

The Start, Round-Robin and Serial (SRRS) policy imposes the
following 5 requirements: (1) kernel execution starts only when

//Input and Output data allocation on GPU

float *xd_A, =d_C;

cudaMalloc (d_A, Nxsizeof(float));cudaMalloc(d_C, Nxsizeof
(float));

cudaStream_t Streams|[1];//Stream creation
cudaStreamCreate(&Streams [0]) ;

//Input data transfer to the GPU
cudaMemcpy (d_A, A, Nxsizeof (float),
cudaMemcpyHostToDevice) ;

// Kernel launch

kernel <<<NumBlocks, ThreadsPerBlock, 0, stream[0]>>>(d_A,
d_C, N);

// Results transfer to the CPU

cudaMemcpy (C, d_C, Nxsizeof (float),
cudaMemcpyDeviceToHost) ;

//No comparison

//Input and Output data allocation on GPU
float *xd_A, xd_A_redundant;
float *xd_C, xd_C_redundant;

cudaMalloc (d_A, Nxsizeof (float)); cudaMalloc (
d_A_redundant, Nxsizeof (float));

cudaMalloc (d_C, Nxsizeof(float)); cudaMalloc(
d_C_redundant, Nxsizeof (float));

cudaStream_t Streams[2];//Stream creation

cudaStreamCreate(&Streams [0]) ; cudaStreamCreate(&Streams
[11);

// Input and Replicated input data transfer to the GPU

cudaMemcpy (d_A, A, Nxsizeof (float),
cudaMemcpyHostToDevice) ;

cudaMemcpy (d_A_redundant, A, Nxsizeof (float),
cudaMemcpyHostToDevice) ;

// Redundant Kernel launch

kernel <<<NumBlocks, ThreadsPerBlock, 0, stream[0]>>>(d_A,
d_C);

kernel <<<NumBlocks, ThreadsPerBlock, 0, stream[1]>>>(

d_A_redundant, d_C_redundant);

// Results and Redundant result transfer to the CPU

cudaMemcpy (C, d_C, Nxsizeof (float),
cudaMemcpyDeviceToHost) ;

cudaMemcpy (C_redundant , d_C_redundant, Nxsizeof (float),
cudaMemcpyDeviceToHost) ;

// Comparison of C and C_redundant

(a) Original CUDA code

(b) Applying Redundant Kernel Execution

Fig. 5: Original and modified CUDA code

Dispatch K1

Fig. 6: Kernel categories based on their overlapping when
launched with different streams. (K2 is the redundant kernel of
K1)

the GPU is idle; (2) the SM for the first thread block of the first
kernel is chosen (any SM is acceptable); (3) SM to thread block
allocation follows a round-robin policy starting in the SM just
chosen for the first thread block; (4) the second kernel does not
start its execution until the first one is fully completed (complete
kernel serialization) and uses a different starting SM; and (5) no
new kernel is allowed to execute until the second (redundant) one
completes its execution.

The operation of SRRS enforces diversity implicitly. The first
kernel starts using the specific SM indicated (e.g., SM;). Since the
GPU is idle, round-robin arbitration policy allocates the following
SMs to the thread blocks of this kernel in the corresponding
round-robin order. The first kernel completes the execution and
the GPU becomes idle again. Then, the second kernel starts using
a different SM to the initial one of the first kernel, SM j» where
i # j. Since SMs are again allocated in round-robin and without

interference from other kernels, thread block to SM allocation for
the second kernel occurs analogously to that of the first kernel
but systematically allocating different SMs across kernels to a
given thread block. Regarding staggering, since kernel execution
is serialized, staggering is guaranteed.

4.2 HALF policy

The HALF policy allocates half of the SMs to each kernel so that
they use disjoint sets of SMs. This ensures diversity in terms of
SMs used. Regarding time diversity, the serial kernel launching
provides some initial staggering. If accesses to resources experi-
ence no contention, either because they are not shared or because
they have enough bandwidth to serve requests from both kernels
simultaneously, no contention occurs and hence, staggering is
preserved. If, instead, kernels share a resource serializing requests,
requests from the first kernel arrive before those of the second
kernel due to the initial staggering. By serializing requests, those
from the second kernel can only complete later and hence, some
staggering is necessarily preserved. Therefore, both spatial and
time diversity is guaranteed, hence avoiding CCFs.

4.3 Diverse Redundancy in the Kernel Scheduler

Both policies, SRRS and HALF, guarantee that both instances
of any thread block execute on different SMs and with some
staggering. Based on that, next we analyze the potential impact
that any fault could have on the kernel scheduler:

1) Kernels are executed correctly (producing expected re-
sults) but in different SMs to those originally intended,
however still preserving diverse redundancy. In this sce-

nario there is no actual failure.

2) Kernels are executed correctly (producing expected re-
sults) but in different SMs to those originally intended.
Moreover, diversity is lost, for instance, because the two
redundant copies of at least one thread block execute
on the same SM. ISO26262 calls for considering single
faults from causing failures (e.g. due to a CCF), but
assumes that multiple independent faults are too unlikely
to occur in such a short period of time to be considered.
Hence, if a fault impacts the scheduler leading to diversity
loss, no other fault must be considered, and therefore
execution is expected to complete correctly even without
diversity.

3) At least one of the kernels produces erroneous results or
simply does not terminate properly. Since different thread
blocks of the redundant kernels are being scheduled at
any point in time due to the staggering, a fault will not
lead to the same erroneous decision for both redundant
kernels, and hence, even if both of them may produce
erroneous outputs, those will be naturally different so
that the error will be detected, as needed to comply with
1S0O26262 requirements.

An additional consideration related to ISO26262 is the fact
that a single independent fault must be considered subject to it
being timely detected. This is particularly relevant for case (2)
above, where the impact of a fault is only a decrease in the overall
diversity, but not a functional failure. In that case, if permanent,
the fault must be detected since, otherwise, multiple independent
faults could be possible over a long period of time. Then, we could
have that fault decreasing diversity, and another fault impacting
results but escaping unnoticed due to the loss of diversity. To avoid
this scenario, the kernel scheduler must pass tests periodically so
that permanent faults are detected timely.

4.4 Appropriateness of the Scheduling Policies

Both, SRRS and HALF, allow guaranteeing diverse redundancy
for any kernel, regardless of whether it is short, friendly or heavy.
However, there is a preferable policy for each type of kernel.

o Short kernels have short duration, but may use most of the
GPU resources during that short time. Since kernels do not
overlap, SRRS is generally inoquous because it serializes
already serial kernel executions. However, HALF may
increase the execution time of those kernels by limiting
the number of SMs to use. Still, such impact is low in
absolute terms due to the short duration of this type of
kernels.

o Heavy kernels are serialized, at least to a very large extent,
due to lack of resources to run them simultaneously.
Given that SRRS imposes full serialization, its impact
can only be low. Instead, HALF may have large impact
on performance. By decreasing the number of SMs used
by the kernel, execution time may increase significantly.
Moreover, despite restricting the number of SMs, kernels
may still run with high serialization due to lack of other
resources such as, for instance, registers.

o Inthe case of friendly kernels, they naturally use up to half
of the resources of any type, thus allowing both kernels
to execute simultaneously. In this context, HALF limits
the number of SMs per kernel to half the ones available,
which, indeed, is an equal or higher number of SMs than

6

needed. Therefore, HALF’s impact is expected to be tiny
— if any. However, SRRS fully serializes kernels that can
run simultaneously, thus harming performance noticeably.

In summary, SRRS is better suited for heavy and short kernels,
whereas the best policy for friendly kernels is HALF. The type
of kernel can be determined during system development, prior
to deployment. Hence, we can determine a priori what policy to
use for each kernel during operation. Such policy selection can
be performed during operation by updating the corresponding
configuration register prior to executing each kernel, which is
not different from other features that can already be configured
dynamically, such as activating/deactivating prefetchers, changing
branch predictor policies, and the like.

5 SOFTWARE SOLUTIONS TO ENABLE DIVERSE
REDUNDANCY ON GPUs

This section describes a software-only solution to obtain diverse
redundant kernel execution on a COTS GPU. While this solution
is naturally more constrained than those allowing hardware modi-
fications, it can be directly implemented and evaluated on top of a
real COTS GPU rather than on a simulator.

5.1 SM Sharing

Our software-only solution assumes that SMs cannot be shared
across thread blocks from different kernels simultaneously. In-
stead, we assume that when a kernel starts running, it uses a
number of SMs without interruptions (i.e., SMs are only released
once they are not needed anymore), and during such period no
other kernel can use those SMs. However, as shown in [16], the
scheduling policy for some NVIDIA GPUs may allow, in some
situations, sharing SMs across kernels if intra-SM resources allow
it. Solutions avoiding this behavior relying on some hardware
support (e.g., modifying the kernel scheduler) exist in the liter-
ature [17], and the ones presented in this paper would also solve
this issue. However, our target in this section is to achieve diverse
redundancy by software-only means. SM sharing across threads
can be effectively avoided by building on persistent threads [18],
[19], [20], where each SM can only be used exclusively by one
kernel. Persistent threads bring some lack of flexibility since they
impose a behavior similar to that of our HALF hardware solution,
plus some overheads for the allocation and management of those
threads (e.g., due to polling the GPU on the CPU side to detect
the end of the kernel execution). Since, in general, SMs are rarely
shared in practice, we avoid using persistent threads in our work
and hence, we apply the same software architecture as for the
hardware solutions, which includes: data replication, redundant
kernel launching with a different stream, and result comparison at
the CPU side.

The types of kernels in our software-only solution are analo-
gous to those of hardware solutions, but in this case, they can be
observed on COTS GPUs with the NVIDIA Visual Profiler shown
in Figure 7 for different Rodinia benchmarks [21]. The two bottom
bars of each graph show the execution timespan for the redundant
kernels, one in light red and the other in purple. Note that x-axis
scale changes across graphs. In particular, it is 2.2us for the first
graph (short kernel), 0.1 ms for the second graph (heavy kernel),
and 2,200ms for the third graph (friendly kernel). Like for the
hardware approaches, solutions differ for each type of kernel:

194.49 ms 194.495 ms 19
Runtime API
Stream 14
Stream 15
(a) Short kernel, no overlapping at all (Gaussian application)
162.5 ms 162.6 ms
Runtime API
Stream 14
Stream 15

(b) Heavy kernel, small overlapping (NN application)

055 1s 155 2s
- Runtime API

T s Cl[v
solver 2(int, int, float*, float*

solver 2(int, int, float*, float}

stream 1

* Stream 2

(c) Friendly kernel, large overlapping (Myocyte application)

Fig. 7: Timelines of redundant executions of Rodinia bench-
marks [21] extracted using the NVIDIA Visual Profiler.

e Short kernels: These kernels can be run on the ASIL-
D (lockstep) microcontroller due to their limited compu-
tation time. Using the ASIL-D microcontroller for their
execution provides diverse redundancy as imposed by
1SO26262. However, since execution time may raise no-
ticeably in relative terms, whether the corresponding Fault
Tolerant Time Interval (FTTI) is preserved needs to be
assessed. We can expect the execution time increase to
be affordable since short kernels must last very few us to
be short and do not overlap their execution on the GPU.
Hence, even if their execution time increases by 1 or 2
orders of magnitude in relative terms, in absolute terms it
should be comfortably below 1ms, which is a very short
duration for critical tasks, whose usual duration is in the
order of tens or hundreds of ms.

o Friendly kernels: In the case of friendly kernels, since

they can execute concurrently, our software modifications
are enough to execute them in different functional units
(SMs). As explained before, due to the kernel launches’
serializations, an initial staggering between the redundant
executions is achieved naturally. Thus, obtaining a di-
verse redundant execution in a COTS GPU. Later, in the
evaluation section, we will show evidence of this initial
staggering. Note that, while such staggering is normally
preserved due to the regular and highly deterministic
execution of kernels on a GPU, it cannot be guaranteed
a priori, and we can only assess it a posteriori to some
extent.
Heavy kernels: In the case of this type of kernels, redun-
dant copies are serialized since each one requires more
than half of at least one type of resources. By being
serialized, redundant kernels may end up using the same
components for redundant computations across kernels,
thus challenging diversity. A simple solution for heavy
kernels could be relegating them to execute on the ASIL-
D microcontroller, as for short kernels. However, these
kernels’ execution time (heavy) can be arbitrarily large
(e.g., tens or hundreds of milliseconds). Thus, slowdowns
of 1 or 2 orders of magnitude would easily violate safety
requirements for those systems. Instead, we introduce a
new protocol to transform heavy kernels into friendly,
thus, enabling them to be executed safely and timely, with
diverse redundancy, on the GPU.

5.2 Heavy-to-Friendly Kernel Reshaping Protocol

Next we present our protocol to transform heavy kernels into
friendly ones systematically. Our approach has been tailored to
work with kernels not using shared memory for inter-thread
communication since this is the type of heavy kernels found
in our evaluation. If shared memory is used for inter-thread
communication, then this would need to be managed manually.
Extending our protocol to these scenarios is part of our future
work. We first describe the operators on which our protocol builds,
then the protocol itself, formal validation of its effectiveness, and
finally, we discuss its complexity. In simple words, this protocol
modifies each redundant kernel to fit in half of the SMs of a given
GPU by reducing its parallelism and serializing some threads by
combining them.

5.2.1

Each of the redundant kernels uses a certain amount of resources
(e.g., registers, shared memory). Whenever the requirements of
the combined kernels in terms of resources exceed those available
in the GPU (heavy kernels), the scheduler prevents them from
achieving concurrent kernel execution between the head and
shadow kernels. Our proposal is based on modifying these kernels’
resource requirements, which may increase their execution time,
but allows them to execute concurrently. Our protocol uses two
techniques: Thread Coarsening and Block Division, which we
introduce next.

Thread Coarsening and Block Division Operators

Thread coarsening: Thread coarsening is the process of increas-
ing the amount of work performed by each thread. This technique
can cause some potential performance improvements: (1) Higher
instruction-level parallelism (ILP) [22] by increasing the number
of instructions per thread; (2) More efficient DRAM memory
bandwidth utilization, by reducing the total number of memory-
access instructions [23], for those data that would be otherwise
fetched by more than one threads; and (3) Reduction in the number
of computing instructions due to redundant computations across
threads [24].

This technique, however, can also have several negative ef-
fects: (1) Reduction of the total amount of parallelism by reducing
the number of threads, which can reduce the performance if there
is not enough amount of work (threads) to keep the rest of the
GPU busy; (2) Increase of the number of registers per thread; and
(3) Worse memory access patterns since neighboring threads may
end up accessing non-contiguous memory as stated in [25], which
has detrimental effects on cache behavior.

Authors in [26] applied automatic thread Coarsening at com-
pile time to GPU kernels to achieve a 1.3x speedup in a subset
of Rodinia benchmarks. However, as mentioned before, thread
coarsening may lead to increased cache pressure, thus resulting
in performance degradation. Moreover, in the extreme degenerate
case, thread coarsening would lead to sequential execution by a
single thread, defeating the purpose of using parallel hardware
such as GPUs. Therefore, while thread coarsening may produce
some performance gains, in general, it is not used when the
only concern is performance. However, our primary goal is not
increasing performance but safety, by allowing redundant heavy
threads to run concurrently (i.e., becoming friendly).

Block division: Block Division consists of splitting thread blocks
into smaller ones, i.e., using fewer threads, while the total number
of threads remains the same. This technique can be used when the

1: #SMavaitable < LTOtalSM/ZJ

2: #Registerqvailabie < | Registersa /2|

3: #SMyseq +#T hreadBlocks

4: #RegisterysedpBlock < Y

5: while Kernels not concurrent do

6 TCOF « [ggaresd]

7: ApplyThreadCoarsening(TCF)

8: Recompute(#S My sea),l < #SMusea < #SMavail
9: Recompute(#RegisterysedpBiock)

10: if (#Registerusedpglock >#Registeravailabie) then
W BDF o [y

12: ApplyBlockDivision(BDF)

13: Recompute(#S My sed)

14: else

15: Done (Kernels concurrent)

16: end if

17: end while

Fig. 8: Proposed protocol, where TCF = Thread Coarsening Factor
and BDF = Block Division Factor

requirements per thread block exceed SM’s resources, preventing
the entire kernel from being executed.

This technique is particularly useful to reduce cache pressure
and register requirements per thread block. Obviously, this is the
remedy technique to use when thread coarsening leads to over-
using some resources, and more particularly, registers over-use,
since the lack of registers is the only limitation preventing the
execution of a thread block. Other shared resources, such as cache
space, can lead to lower performance if over-used but would not
prevent a thread block’s execution. Another limited resource is the
shared memory, a scratchpad memory used to allow threads in the
same block to communicate and reduce the DRAM bandwidth. We
choose not to include it as part of our protocol since not using it
will not impede the execution of a thread block, and can just slow
down execution. As said before, performance is not our primary
goal.

5.2.2 Protocol Step by Step

Figure 8 details the protocol followed to transform heavy kernels
into friendly. It builds upon applying thread coarsening and block
division iteratively until the resulting thread block does not exceed
the number of registers available in an SM, and each kernel uses
at most half of the resources available in the GPU. In particular,
starting from a kernel whose thread blocks do not exceed the total
number of registers available in an SM (so it is schedulable),
but uses more than half of the registers of the entire GPU (so
it prevents its shadow kernel from running concurrently), the
protocol does the following: (1) merges threads so that repeated
data fetches and computations can be removed, thus reducing the
total number of registers required, although the number of registers
per thread increases. (2) Divides thread blocks to decrease the total
number of registers per block. Note that, as discussed later, this
process necessarily decreases the number of registers per thread
block in each iteration so that friendliness is achieved eventually.
The protocol first initializes the platform and kernel dependent
variables and checks if the redundant kernels can already be
executed concurrently or not (lines 1-5). If not, we compute the
Thread Coarsening Factor (TCF) by dividing the current number
of SMs used (= number of thread blocks) by the target number of
SMs we want to use (up to half of those available in the GPU), as
shown in line 6. Next, we apply thread Coarsening to reduce the
number of threads by the factor computed (TCF), see line 7. We

8

update the number of SMs used (line 8), which now will be less
or equal to half of the SMs, and the number of registers required
per thread block (line 9). At this point (line 10), if the number of
registers per thread block is lower or equal to half of the SM’s
registers, kernels can execute concurrently (lines 14-15).

If the concurrent execution is not possible yet, then we require
more registers per SM than allowed. Thus, Block Division must be
used. First, we compute the Block Division Factor (BDF) based on
the current register requirements and the registers available (line
11), and then we apply Block Division accordingly (line 12). This
second step can increase the number of SMs used (line 13), which
will require to perform again the thread coarsening technique.
However, as shown next, the registers of the thread block are
reduced with respect to the previous iteration, guaranteeing the
convergence of the process.

5.2.3 Formal validation

We validate our protocol showing that a kernel can be made to fit
in a single SM, so that if the number of SMs per kernel is higher,
the protocol can converge faster.

Let us consider a kernel containing B blocks, where each
block has T' threads and each thread uses R registers. An SM
of the GPU contains S registers being S > R. Then, the number
of registers used are the total number of threads (B - T") multiplied
by the registers per thread (R),so B-T - R

If B-T- R < S, all thread blocks can be allocated in a single
SM. Otherwise, we would use thread Coarsening with a TCF («),
where @ € N and o > 2, to reduce the total number of registers.
Now the total registers used are: % where Y is the registers
used per thread after applying Thread Coarsening.

Due to register reuse, Y can be at most «- R (worst case), but it
will be typically lower. In fact, appropriate compilation constraints
may make merged threads run purely sequentially, thus reusing the
same output registers for each instruction, and thus ensuring that
Y < a - R. Therefore:

B-TY < B-T-(E(orR) - B- TR

«

Since Y < « - R, in the first step, we reduce the total number
of threads, but also the total number of registers used. Now let us
apply block division by a factor 3, where 8 > 1 and 3 € Z. Now,
the total number of registers is:

B8-B-TY _ BTY
B-a - a

As seen, Block division does not affect the total number of
registers used, only the registers per block (% - V). Therefore, at
each iteration of our loop, which includes both Thread Coarsening
and Block division, we reduce the total register requirements.
Considering that the kernel could be executed in the CPU, where
the register file is smaller than the one of the SM, the extreme case
of just using one thread would be valid. Thus, our protocol will
always allow two kernels to be executed concurrently in a GPU
with at least two SMs (one for each redundant kernel).

5.2.4 Complexity

The protocol is guaranteed to terminate, as explained above, since,
in every iteration, we reduce the total number of threads of the
kernels and, eventually, we will reach the case with one thread per
kernel, which is always a functionally valid option. However, such
a degenerate case may be far from being the optimal solution in
terms of performance.

The number of iterations required to reach a solution where
both threads can be executed concurrently depends on the par-
ticular kernel being considered. The factors affecting the number
of iterations relate to (1) the requirements of the initial kernels
(number of SMs used, the total number of threads, number of
thread blocks, ...), and (2) the resources available (number of SMs,
the maximum number of registers per block ...).

Generally, kernels with higher requirements per block will
need more iterations since thread coarsening will easily make
kernels exceed the resources per block limits, and will take more
iterations to find a valid pair of values for TCF and BDF. To
reduce the number of iterations, one could be more aggressive
when calculating the two factors by selecting higher values for
both factors. Once a valid solution is found, it would be a matter
of checking intermediate values not evaluated to search for a likely
better solution with a higher number of threads. Instead, kernels
with small requirements will take fewer iterations to find a valid
solution. In fact, as we see in the evaluation section, in most cases,
one iteration of the loop is enough to achieve a valid solution.

Formally, after adjusting the number of SMs used to be at
most half of those available in the GPU, the number of registers
required per SM is:

#SMused
#SMavail

The worst case occurs when R matches the total number of regis-
ters per SM, thus leading to the largest register per SM exceedance
after thread coarsening. As explained before, in each iteration, the
total number of registers per thread decreases at least by 1 given
that Y < « - R. Thus, the worst case would be that to move
from #registeryscapBiock to R in #RegisterysedpBiock — 1
iterations assuming that the number of SMs used is fixed. In
practice, since the number of SMs that can be used to have a
friendly kernel is between #SM,,q4:1/2 and #SMyyai /4 SMs?,
the number of steps could almost double if the worst case occurs
(i.e. if we end up using #S M yyqi1/4 + 1 SMs), thus leading to up
to 2 - (#RegisterysedpBiock — R) steps.

#RegisterysedpBlock = R - {

6 EVALUATION

In this section, we evaluate the different proposals individually,
and then we compare them on a common ground. We first
describe the experimental setup for the hardware solutions and the
software-only solution. Then, we provide results for the hardware
solutions, and for the software-only solution. Finally, we compare
side-by-side all solutions on a simulator.

6.1 Experimental Setup

In order to evaluate our proposal, we have adapted the Rodinia
benchmark suite [21], [27] with the modifications explained before
to enable software-based redundancy, as shown in the example
in Figure 5. Since Rodinia benchmarks are representative of
general GPU computations, we decided to add an additional
benchmark which is more related to our target application. In the
absence of a GPU benchmarking suite for automotive systems,
we included the cifar_10_multiple complex application from the
GPU4S Bench open source benchmarking suite [28], which targets

5. Our mechanism decreases #S M, scq by an integer factor to not exceed
#S M1 /2. If the value obtained was not exceeding #S M 4,441 /4, then the
factor used could be doubled without exceeding #S Mgy a4 /2.

9

GPU computations in another safety critical domain, space. This
benchmark was developed in the GPU4Space project [29] funded
by the European Space Agency (ESA) which it evaluating the
applicability of GPUs in the space domain. This benchmark,
implements a complex inference application used for computer
vision problems similar to the one found in the perception system
of an autonomous driving vehicle, to classify an image between
10 different categories and it operates over multiple images. In
particular, the application consists of multiple neural network
layers of various types eg. fully connected, convolution, max
pooling etc, which are used together to form a neural network
to perform an image classification task. As such, this benchmark
contains significantly more kernel invocations compared to the
Rodinia benchmarks.

For the hardware solutions, we use GPGPUSim [30] (version
3.2.2) modeling a COTS GPU, an NVIDIA 1050 Ti with 768
Pascal based CUDA cores grouped into 6 SMs, with 4GB GDDRS5
memory. We use a Pascal-based NVIDIA COTS GPU, the same
GPU micro-architecture used in the NVIDIA PX2 AutoChauffer
product, found in modern high-end cars, and only available to
affiliated NVIDIA automotive partners. For our software-only
solution, we use a system that includes the same COTS GPU.
In particular, we use a system with an AMD Ryzen 7 1800x CPU,
an NVIDIA 1050 Ti GPU and 64GB of DDR4 memory.

6.2 Staggering Measurement Experiment on a COTS
GPU

Diversity requires both, time and space diversity. This section
evaluates the impact of serial kernel launching on staggering (i.e.
on time diversity), whereas following sections focus on space
diversity mainly. In particular, this section presents the results
from an experiment measuring how serial kernel offloading favors
staggering.

The kernel off-loading process executes the following routines:
Configure Call, Kernel Setup Arguments, and CUDALaunch. In
this experiment, we modified myocyte benchmark (part of the
Rodinia Benchmark Suite) to make its kernels redundant and
executed it 100 times. We used the NVIDIA profiler and obtained
the results shown in Figure 9. The dark thick line corresponds
to the time elapsed between the start time of both kernels, the
original and redundant ones. Stacked bars show the individual
contribution of each one of the kernel off-loading routines for the
second kernel, which are executed serially on the CPU. There
is some code in between those routines (CUDA calls), whose
execution time covers the gap between the stacked bars and the
total execution time (thick line). However, the NVIDIA profiler
does not provide information about this non-CUDA code.

Kernels are launched on the GPU only after these CUDA calls
and surrounding code are executed on the CPU. The dominant
routine (CUDALaunch) takes around 6pus (if not more), and its
execution time is independent on the characteristics of the kernel
to be launched. This guarantees that there always be such stag-
gering across kernels, although it will be typically higher due to
the remaining code executed for off-loading purposes. Hence, the
staggering across redundant kernels is guaranteed to exist. Since
this behavior is not specific of this GPU but, instead, is intrinsic
to the CPU-GPU relation, we can expect analogous behavior for
different GPUs and even different runtimes (e.g. OpenCL).

Time (in us)

S =

i

|

Fig. 9: Slack observed and subprocedures of the kernel launching for the consecutive executions of the Myocyte kernel

|

SR

s

@ P

s

[g S [

2.2
OGPGPU-SIM (default) BHALF B SRRS
1.8
1.6
1.4
1.2

0.8
0.6
0.4
0.2

backprop
bfs

dwt2d
gaussian
hotspot
hotspot3D
leukocyte
lud
myocyte
nn

nw

geo mean

Fig. 10: Scheduler simulations using GPGPUSim

6.3 HW Solution - Simulation Results

To evaluate SRRS and HALF, we have introduced modifications in
GPGPUSim’s [30] scheduling policy to assign SMs to as dictated
by the proposed HW solutions. For instance, in the case of HALF,
we build on the default GPGPUSim scheduling policy but limiting
each kernel to use just half of the available SMs. We compare the
performance of the default GPGPUSim scheduling policy using
all SMs (6) without any specific limitation against that of SRRS
and HALF policies.

Figure 10 shows results for the different scheduling poli-
cies w.r.t. those of the default GPGPUSim policy executing the
applications modified accordingly to perform redundant kernel
execution.® Given that most benchmarks have friendly kernels and
experiments on GPGPUSim with the full benchmarks are very
costly, we evaluate all short and heavy benchmarks, but only a sub-
set of the friendly kernels for which no further insight is obtained
by running more of them. Results show that the performance of
SRRS and HALF is very close to that of the default scheduler, with
the only exception of myocyte benchmark with SRRS. In particular,
slowdowns are negligible for 9 out of the 11 benchmarks evaluated
in the case of HALF, and the highest slowdown is only 10%

6. GPGPUSim v. 3.2.2 requires applications to be compiled using cuda 4.0,
which is the 2011 version. Although we have been able to compile all the
applications, some of them (e.g. cifar_10) are not able to finish the execution
on the simulator, even with the default scheduler, probably because of some
not supported functionalities. However, all applications run without problems
on the real GPU device, the NVIDIA 1050 Ti.

Il “Configure Call” of the redundant kernel
K “Kernel Setup Arguments” of the redundant kernel

o

[AR
Myocyte E:

10

[1Cudalaunch of the redundant Kernel

M

— Slack Time observed

s

& & @ e A R S > LS

xecutions

1E+07

9E+06

OBaseline ®Redundant serialized

8E+06

B7E+06

@

£ oE+06

=

' 5E+06

S

5 4E+06

3

3

05 3E+06
2E+06
1E+06

n“ﬂ ann badmanabl.

OE+00

L ¥ &P & @ & & P 0P & ¢ & &L

F VT I LS VSN T LEEFSS
3 © & &R e S &«
N & @ @ & Q7

Fig. 11: SRRS implementation by serializing redundant kernels

for lud. In the case of SRRS, slowdowns are higher due to the
serialization imposed by this policy, reaching 99% for myocyte.
Since most of the kernels are friendly, they naturally require less
than half of the SMs. Therefore, HALF is virtually inoquous
and performance penalties are tiny. However, SRRS is particularly
detrimental for friendly kernels since those kernels could naturally
overlap their execution and, instead, SRRS fully serializes them.
On the other hand, SRRS removes interference across kernels (e.g.
in shared caches). However, the detrimental impact of serialization
is generally much higher than the gains due to avoiding inter-
kernel contention. Note that, instead, performance degradation for
some kernels, such as backprop, with SRRS policy is negligible
given that they are short and hence, their natural execution is
already serialized.

6.4 HW Solution - COTS Results

In order to assess the suitability of the proposed redundant execu-
tion in a real environment and understand the impact of redundant
execution w.r.t. non-redundant execution, we have mimicked the
implementation of SRRS on a COTS GPU. To do so, we serialize
the redundant kernel’s execution using the CUDA call cudaDe-
viceSynchronize() that prevents the execution of further operations
until all previous operations on the GPU have been completed.
While such a solution does not enforce diversity due to the lack
of control of the particular SMs used, it causes the same timing
behavior. Note that mimicking HALF is not possible on the COTS
GPU, since CUDA does not provide control over the SMs used by
a kernel.

Figure 11 compares the end to end execution time of the
benchmarks with redundant kernels serialized and without kernel
redundancy. By running on a real platform, we could afford to run

65.45
O Comparison
Result Redundant Transfer
Hnput Redundant Transfer
OKernel

(=

o

w

|

Execution Time normalized
to baseline without redundancy
s~

-
]

i
I
!

c | 3 £ £ £ | c
8 & 8 8 8 8

backp gauspathf srad b+tre hots' 3D leuk lud myo nw lava cfd dwt cifar bfs nn

Fig. 12: Redundant execution times characterization for the Ro-
dinia benchmark suite. Backprop and gaussian are short kernels;
nn and bfs are heavy kernels; and the rest are friendly kernels.

all benchmarks timely. The bars in the plot show the minimum
execution time out of 100 executions for each version. As shown
in the plot, the redundant serialized execution does not incur
significant performance degradation for the workloads analyzed.
In fact, for all the benchmarks but two (cfd and streamcluster) the
impact of redundant execution is negligible. The main reasons for
such behavior are as follows:

1) The impact of SRRS is, in general, low as shown in
Figure 10.

2) The contribution of the kernel execution to the total
execution time of the benchmark is relatively low in
general.

3) The cost of sending input and output data twice and
comparing the kernels’ outputs in the CPU is also very
low in relative terms.

In the case of cfd and streamcluster, the two only notable
exceptions to this behavior, we note that serialization imposed
by SRRS has a relatively significant impact on the execution
of the kernels, and execution time of the benchmarks is largely
dominated by the kernel execution. The latter also makes that the
relative contribution of duplicating input data, transferring back
output data to the CPU twice, and comparing outputs is non-
negligible, thus contributing to the execution time increase w.r.t.
the non-redundant version of the benchmark.

6.5 SW-only Solution - COTS Results

Since the software-only solution does not require any hardware
modification, we can directly evaluate it on the COTS platform.
We have characterized the different parts of the redundant ex-
ecution process in the Rodinia benchmarks as can be seen in
Figure 127. Execution times are normalized per each benchmark
where “1” corresponds to the original benchmark’s normalized
execution time without redundancy. More precisely, we have char-
acterized the execution into kernel execution, the redundant trans-
fers, and the comparison phase, thus, showing all the overheads
created by our strategy. The backprop benchmark also includes a
CPU-only version, which we also included (2nd leftmost bar), as
discussed next.

7. In this experiment we changed the inputs of the bfs benchmark in order
to obtain another heavy kernel for the later evaluation of the heavy-to-friendly
kernel transformation protocol.

11

Default (heavy) configuration
Benchmark Thread | Threads Total Registers
Blocks | x Block | Threads Block
bfs [1954, 17| [512, 1] | 1,000,448 | K1:8,192, K2:7,680
nn [2560, 17256, 1] | 655,360 3,840
Final (friendly) configuration
bfs [3,11 [[512,1]] 1,536 |[KI1:8,192,K2:7,680
nn [2,11 [[256,1] 768 3,840

TABLE 1: Default configuration of the applications that produces
heavy kernels on the NVIDIA GTX 1050 Ti.

Short Kernels (backprop and gaussian): The backprop
benchmark (the leftmost one) is a short kernel. As shown, the
redundant version of this benchmark leads to an execution time
above 2x the execution time without redundancy since redundant
threads do not overlap. Due to the short duration of the kernel, the
relative impact of needing redundant data transfers and having to
compare results is huge w.r.t. GPU execution without redundancy.
The CPU version of this benchmark, which is included in the
benchmark suite, has an execution time 23x higher than the one
for the GPU version. Such slowdown, despite huge in relative
terms, is low in absolute terms, and hence, affordable. In the case
of gaussian, the slowdown due to running it redundantly is below
2x since the execution time includes both, kernel launching in
the CPU and kernel execution in the GPU. Hence, while kernel
execution of both redundant copies does not overlap, the kernel
launching of the second kernel overlaps with the kernel execution
of the first one.

Friendly Kernels: The overlap of these kernels is large, and
thus, the overall execution time to run both redundant kernels
is far below 2x the execution time of the non-redundant kernel.
Redundant execution for friendly kernels causes small overheads,
most of which relate to the comparison of the results and to the
data transfers. Those overheads could be reduced by performing
comparisons redundantly in the GPU to reduce the amount of
data to be transferred back to the CPU, and to parallelize the
comparison. However, while this would be possible, it has not
been explored explicitly in this work.

Heavy Kernels (nn and bfs): Since the redundant kernels
for these benchmarks barely overlap, the impact of running them
redundantly is above 2x in terms of execution time. However, the
protocol introduced before allows converting these heavy kernels
into friendly ones. Their friendly versions are evaluated in the next
section.

6.6 Heavy-to-friendly Protocol Evaluation

As seen, most of the benchmarks turned out to be either friendly
or short, and we only observed one heavy benchmark nn) for
the 1050 Ti. To test the protocol with more workloads, we have
modified the input variables of the benchmark bfs to make it also
heavy.

The default grid configurations of the two applications are
shown at the Table 1 (top rows). We obtain all the information
shown in the Table through Nvidia’s profiler nvprof.

Bfs contains two kernels with the same grid and block
configuration, one using 16 registers per thread and the other 15.
Instead, nn contains only one kernel that uses 15 registers per
thread. Both applications use a high number of thread blocks,
which results in a big TCF, 653 for bfs and 854 for nn. We
obtained these factors by dividing the number of thread blocks by

2
18 T ORed. Kernels execution Time
: OFirst Kerpe[Exec Time
1.6 W Staggering g —
14
£1.2
'_
1
ie]
=0.8
(8]
L%Jo.ﬁ
0.4
0.2
o SpL% 0144% 377%
Heavy | Friendly Heavy | Friendly Heavy @ Friendly
NN BFS K1 BFS K2

Fig. 13: Execution times for the total redundant execution, the
first kernel launched and staggering w.r.t. total kernel redundant
execution (heavy) of each benchmark.

half of the GPU’s SMs (thus, 3 SMs for each redundant kernel),
line 6 in Figure 8.

To facilitate the application of the protocol, we have adapted
the code to enable Thread Coarsening and Block Division as
follows:

1) Add a new parameter to the kernel function, the TCF.

2) Apply Thread Coarsening to the kernel code. In order
to facilitate programming, we add an outer loop that
iterates TCF times. However, while this automates the
application of Thread Coarsening, this solution may not
benefit from some optimizations. For example, memory
instructions from originally different threads, accessing
the same data, will not be performed closely because of
the loop’s body, which may lose potential cache hits. In
order to improve performance, we recommend using the
compiler technique in [26] whenever possible, although it
makes less straightforward applying Thread Coarsening.

3) Modify the kernel launching, in the CPU code, to launch
the kernel with the grid according to the Thread Coarsen-
ing and Block Division factors.

Using the calculated TCEF, the benchmarks were launched. As
expected, the execution of the kernels finished correctly, and the
execution of the redundant kernels overlapped. In particular, we
measured the execution time of the first launched kernel (white
bar), the total kernel execution time (from the starting of the first
until the completion of the second, grey bar), and the staggering
time between them at the launching (black bar). Results for the two
benchmarks are shown in Figure 13 normalized w.r.t. the execution
time of the redundant kernels w.r.t. their baseline (heavy) state.
The results shown for each benchmark are the average of 500
executions in the same COTS GPU used before, an NVIDIA GTX
1050 Ti.

As shown, in all heavy configurations of both benchmarks, the
first kernel takes half of the total execution time, matching with
the staggering time, meaning that both redundant kernels take a
very similar amount of time to execute and are fully serialized. In
the case of the friendly versions of the benchmarks, we observe
that the first and total execution times nearly match, thus meaning
that both redundant kernels finish virtually at the same time. Also,
the fact that the staggering time is tiny indicates that both of
them start almost simultaneously, thus overlapping their execution
completely, with just some little staggering.

12

Note, however, that making kernels friendly impacts total
execution time, which grows by a factor of 1.9x for nn and 1.7x
and 1.6x for bfs kernels. While this effect is undesirable, it is
the price to pay to guarantee diverse redundancy on a COTS GPU
without explicit lockstep support and only by software means.
Such performance loss relates to (1) worse cache access patterns
that lead to an increased miss rate, and thus less efficient DRAM
bandwidth utilization, whose access latency cannot be effectively
hidden, and (2) the loss of parallelism since we reduce the number
of parallel threads per kernel. For the sake of completeness, Ta-
ble 1 (bottom rows) shows the final kernel configurations for both
benchmarks after applying the protocol to make them friendly.

6.7 Fault Injection Campaign

To test the fault tolerance capabilities of our solutions, we have
used the NVBItFi [31] a framework which is built on top of NVidia
Binary Instrumentation Tool (NVBit) [32] that performs error
injection campaigns for GPU application resilience evaluation.
NVBItFI injects errors into the destination register values of
a dynamic thread-instruction by instrumenting instructions after
they are executed, only one injection is done per run. A dynamic
instruction is selected randomly from all dynamic kernels of a
program for error injection. This tool allows 4 different instruc-
tions to inject errors: writes to general purpose registers, single
precision and double precision floating point instructions, and load
instructions. Additionally, the tool supports four different fault
models: one bit-flip in a register, bit-flips in two adjacent registers,
random value in one register, and zero out the value in a register.

For the injections, we have selected one of the Rodinia
benchmarks (backprop). This application contains two kernels
which we will see later that matters when classifying the injection
outcomes. For each fault model available and instruction type we
have performed 10k injections on the baseline application and 10k
for the application with our redundant kernel software approach.
Since this application only uses single precision floats, double
precision injections have been discarded®. For each execution,
the output is analyzed and compared against a golden output (an
output from an error-free execution).

Results from the fault injection can be observed in Figure 14.
For each fault model, we can see three pairs of columns, each
corresponding to a different instruction type targeted by the fault
injection tool. From left to right, floating point instructions (32
bits), load instructions, instructions that write into general purpose
registers’. For each pair, we have the baseline application on the
left (BAS) and the application with our software-only redundant
strategy on the right (RED).

Results follow similar behavior for all fault models. Baseline
applications reported no Silent Data Corruption (SDC) for floating
point injections or load instructions. Instead, injections on general
purpose registers experienced a slight percentage of SDCs unde-
tected from 10.7% to 24% on the baseline approach which are
translated into SDC detected by our fault detection mechanism
(comparison of kernel results). Detected Uncorrectable Errors
(DUEs) only have a significant importance for general purpose
registers and have similar values for the baseline and redundant
application. The tool detects them by using the dmesg command,
but the application could also detect them if the appropriate CUDA
error handling procedures are called (e.g. cudaGetLastError()). In

9. 64-bit floating point instructions are not used by the application targeted,
so we did not perform a fault injection campaign aiming at them.

B Masked

A\

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

SDC detected 7% SDC undetecte

13

D

N\

N\l

UE

BAS RED BAS RED BAS RED BAS RED BAS RED BAS RED BAS RED BAS RED BAS RED BAS RED BAS RED BAS RED

\ fp32 Id gp fp32 Id gp

| fp32 Id gp L fp32 Id gp |

! Y
SINGLE BIT FLIP TWO BITS FLIP

! /
RANDOM VALUE ZERO VALUE

Fig. 14: Fault injection results for each fault model. Masked: Output of the execution was correct. SDC detected: An error was found
by the detection mechanism an reflected in the output of the application. SDC undetected: Mismatch in the output was found which
was not detected. DUE: A detected error prevented to finish the execution.

summary, we observe our redundant diversity scheme provides
protection against single point faults.

6.8 HW and SW Solutions side by side

Last but not least, we show the execution times of all the solutions
side by side. Since hardware solutions could not be integrated in
a COTS platform since the kernel scheduler cannot be modified
(at least to mimic HALF timing behavior), we perform this evalu-
ation on GPGPUSim. In this experiment, we show our solutions’
execution time, the baseline non-redundant version, and the simple
redundant version, which only guarantees diversity for the friendly
kernels. Results are shown in Figure 15.

Note that there is not a SW-based bar for backprop. Backprop
is a short kernel, so this software-only solution is to be executed
only on the CPU, but the simulator only models the GPU cycles.
For this reason, we have not considered the backprop results when
calculating the geometric mean, which are the rightmost bars
labeled as GEO, for any of the solutions.

Generally, the HALF approach is the one that suits best, since
most of these kernels are friendly and serializing them (SRRS)
ends up in a longer execution time. The software-only solution
also fits well when dealing with friendly kernels since the simple
redundant version is applied. For heavy kernels (nn and bfs), we
see that nn execution time is increased up to 2.6x whereas bfs
obtains 1.8x, similar results to the ones tested on the real platform.
Bfs takes advantage of the coalesced memory accesses and that
fewer threads are competing to access memory. With this, the
software solution obtains the best performance in this particular
workload.

7 RELATED WORK

Some authors assessed the effectiveness of FPGA, ASIC, and
GPU designs for AD applications [33]. The suitability of GPU

H Baseline (No redundancy) ® Redundant

35
BHALF ®SRRS

3 SW-based

2.5

2

15

1

0.5

0

&oQ N 6&6 6@@0 @Q& oY G‘\@ \\,b g Gg@ N OQ’O

& & <© & &

Fig. 15: Simulator Cycles of all the solutions

utilization in the context of safety-critical applications from the
point of view of real-time performance has been assessed in
several works [34], [7].

Redesigning GPUs, based on the reliability required for ASIL-
D certification, has been regarded as too costly. Therefore, com-
mercial platforms such as RENESAS R-Car H3 [1], and NVIDIA
Xavier [35] targeting the automotive domain, include a general
purpose high-integrity microcontroller together with a COTS
GPU. Thus, in order to achieve ASIL-D fail-operational capabili-
ties, these platforms rely on diverse software implementations of
complex algorithms or fully redundant SoCs, which comes at the
expense of drastically increasing the design and V&V costs in the
former case, and the hardware cost and reliability concerns in the
latter case.

Previous works use spatial partitioning to improve multi-
tasking performance on a single GPU [36], [37] by exploring
the scheduling per SM. Instead, Wu et al. [38] use a method
that enables program-level spatial scheduling on the GPU by
using SM-centric program transformations, which allow executing
kernels in the desired SMs. Pai et al. [39] focus on enabling better
multi-application concurrency by modifying the GPU runtime to

avoid serialization of memory transfers and kernel executions.
They also developed the idea of elastic kernels, by modifying the
logical threads to avoid underutilization of the GPU resources and
improving the concurrency of multiple kernels. Jain et al. [40] use
a software-only technique to partition the GPU in order to execute
multiple kernels without interference. Although redundant kernels
are not evaluated, computing and also memory partitioning, by
using memory coloring, could be employed in our work if we
would like to replicate the input data of the redundant kernels.
However, none of those solutions provides redundancy per se,
neither provides any means to guarantee diversity since those
solutions do not target critical real-time systems.

Some works have been performed in the high-performance
domain targeting reliability by creating RMT (Redundant Multi
Threading) in a GPU [41] or using automatic compiler transfor-
mations to transform GPU kernels into redundantly threaded ver-
sions [42]. However, none of those solutions guarantees diversity,
as needed for ASIL-D automotive systems. Overall, our work is
the first attempt to deliver diverse redundancy on GPUs, as needed
to reach ASIL-D requirements in automotive systems.

8 CONCLUSIONS

The use of GPUs for highly-critical autonomous driving (AD)
software poses a number of functional safety requirements for
GPUs’ design and utilization. In this work, we propose to exploit
the intrinsic redundancy inside GPUs to achieve diverse redun-
dancy, as needed for ASIL-D software components. With this idea,
we present multiple solutions to achieve it, either by software-only
means or by introducing minimal hardware modifications only in
the kernel scheduler.

The software-only solution requires an early inspection of the
kernel and its behavior on the desired platform since only friendly
kernels are guaranteed to be executed in a diverse redundant
manner. To solve this, we also presented a protocol to transform
any heavy kernel into a friendly one based on the specification of
the COTS GPU targeted. Smaller kernels (short) can be executed
directly on the safe CPU side. Thus, this work delivers a full
software-only solution for any given kernel.

Instead, both hardware solutions proposed in this work,
namely SRRS and HALF, achieve diverse redundancy for any
given kernel without additional software transformations. How-
ever, we show that it is convenient performing the same kernel
classification as for software solutions in order to select the hard-
ware solution that better suits each kernel in terms of execution
time. In general, friendly kernels are executed faster when using
HALF rather than SRRS, whereas heavy kernels may run faster
with SRRS.

We have evaluated each solution alone and finally compared
them side by side on a GPU simulator. As expected, hardware
solutions generally offer lower execution times, but software
solutions can instead be used right away in COTS GPUs.

REFERENCES

[1] “RENESAS R-Car H3,” https://www.renesas.com/en-
us/solutions/automotive/products/rcar-h3.html.

[2] D. Shapiro, “Introducing Xavier, the NVIDIA Al Supercomputer for the
Future of Autonomous Transportation,” NVIDIA blog, 2016. [Online].
Available: https://blogs.nvidia.com/blog/2016/09/28/xavier/

[3] Infineon, “AURIX Multicore 32-bit Microcontroller Family
to Meet Safety and Powertrain Requirements of Upcoming
Vehicle Generations,” http://www.infineon.com/cms/en/about-

infineon/press/press-releases/2012/INFATV201205-040.html.

(4]

(3]

(6]

(7]
(8]
(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]
[22]

(23]

[24]
[25]
[26]

[27]

14

S. Alcaide, L. Kosmidis, C. Hernandez, and J. Abella, “High-integrity
gpu designs for critical real-time automotive systems,” in 2019 Design,
Automation Test in Europe Conference Exhibition (DATE), 2019, pp.
824-829.

S. Alcaide, L. Kosmidis, C. Hernandez, and J. Abella, “Software-only
diverse redundancy on gpus for autonomous driving platforms,” in 2019
IEEE 25th International Symposium on On-Line Testing and Robust
System Design (IOLTS), 2019, pp. 90-96.

S. Alcaide, L. Kosmidis, C. Hernandez, and J. Abella, “Software-only
triple diverse redundancy on gpus for autonomous driving platforms,” in
2020 50th Annual IEEE-IFIP International Conference on Dependable
Systems and Networks-Supplemental Volume (DSN-S), 2020, pp. 82—88.
T. Amert et al., “GPU Scheduling on the NVIDIA TX2: Hidden Details
Revealed,” in RTSS, 2017.

NVIDIA, “CUDA C PROGRAMMING GUIDE,” 2019, https://
docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf.

H. Jeon and M. Annavaram, “Warped-DMR: Light-weight error detection
for GPGPU,” in Proceedings - 2012 IEEE/ACM 45th International
Symposium on Microarchitecture, MICRO 2012, 2012.

M. Dimitrov, M. Mantor, and H. Zhou, “Understanding software ap-
proaches for GPGPU reliability,” 2009.

A. Mahmoud, S. K. S. Hari, M. B. Sullivan, T. Tsai, and S. W.
Keckler, “Optimizing software-directed instruction replication for GPU
error detection,” in Proceedings - International Conference for High
Performance Computing, Networking, Storage, and Analysis, SC 2018,
2019.

S. D. Carlo, G. Gambardella, I. Martella, P. Prinetto, D. Rolfo, P. Trotta,
and P. Di Torino, “An improved fault mitigation strategy for CUDA Fermi
GPUs An improved fault mitigation strategy for CUDA Fermi GPUs,”
Tech. Rep., 2014.

J. E. Rodriguez Condia, P. Narducci, M. S. Reorda, and L. Sterpone, “A
dynamic hardware redundancy mechanism for the in-field fault detection
in cores of GPGPUs,” in 2020 23rd International Symposium on Design
and Diagnostics of Electronic Circuits & Systems (DDECS), 2020.

J. Fu, Q. Yang, R. Poss, C. R. Jesshope, and C. Zhang, “On-demand
thread-level fault detection in a concurrent programming environment,”
in Proceedings - 2013 International Conference on Embedded Computer
Systems: Architectures, Modeling and Simulation, IC-SAMOS 2013,
2013.

M. B. Sullivan, S. K. S. Hari, B. Zimmer, T. Tsai, and S. W. Keck-
ler, “SwapCodes: Error codes for hardware-software cooperative GPU
pipeline error detection,” in Proceedings of the Annual International
Symposium on Microarchitecture, MICRO, 2018.

H. Naghibijouybari, K. N. Khasawneh, and N. Abu-Ghazaleh, “Con-
structing and characterizing covert channels on gpgpus,” in 2017 50th
Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO), 2017.

1. Tanasic, I. Gelado, J. Cabezas, A. Ramirez, N. Navarro, and M. Valero,
“Enabling preemptive multiprogramming on gpus,” in 2014 ACM/IEEE
41st International Symposium on Computer Architecture (ISCA), 2014.
K. Gupta, J. A. Stuart, and J. D. Owens, “A study of persistent threads
style gpu programming for gpgpu workloads,” in 2012 Innovative Paral-
lel Computing (InPar), 2012.

T. Allen, “Improving Real-Time Performance with CUDA Persistent
Threads (CuPer) on the Jetson TX2,” Concurrent Real-Time, Tech.
Rep., March 2018, https://www.concurrent-rt.com/wp-content/uploads/
2016/09/Improving-Real-Time- Performance- With- CUDA-Persistent-
Threads.pdf.

N. Capodieci and P. Burgio, “Efficient Implementation of Genetic
Algorithms on GP-GPU with Scheduled Persistent CUDA Threads,”
in Proceedings - International Symposium on Parallel Architectures,
Algorithms and Programming, PAAP, 2016.

S. Che et al., “Rodinia: A benchmark suite for heterogeneous comput-
ing,” in IISWC, 2009.

V. Volkov and J. W. Demmel, “Benchmarking gpus to tune dense linear
algebra,” in SC, 2008.

Y. Yang et al., “A unified optimizing compiler framework for different
gpgpu architectures,” ACM Transactions on Architecture and Code Opti-
mization (TACO), vol. 9, no. 2, 2012.

A. Magni et al., “A large-scale cross-architecture evaluation of thread-
coarsening,” in SC, 2013.

B. Merry, “Faster gpu-based convolutional gridding via thread coarsen-
ing,” Astronomy and Computing, vol. 16, 05 2016.

N. Stawinoga and T. Field, “Predictable thread coarsening,” ACM Trans.
Arhcit. Code Optim., June 2018.

S. Che et al., “A characterization of the Rodinia benchmark suite with
comparison to contemporary CMP workloads,” IISWC, 2010.

[28]

[29]

[30]
[31]

[32]

[33]
[34]

[35]

[36]

(371

[38]

[39]
[40]
[41]

[42]

I. Rodriguez, L. Kosmidis, J. Lachaize, O. Notebaert, and
D. Steenari, “Gpu4s bench: Design and implementation of an open
gpu benchmarking suite for space on-board processing,” Report,
2019. [Online]. Available: https://www.ac.upc.edu/app/research-reports/
public/html/research_center_index-CAP-2019,en.html

L. Kosmidis, I. Rodriguez, A. Jover, S. Alcaide, J. Lachaize,
J. Abella, O. Notebaert, F. Cazorla, and D. Steenari, “Gpuds:
Embedded gpus in space - latest project updates,” Microprocessors
and Microsystems, vol. 77, p. 103143, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0141933120303100
A. Bakhoda et al., “Analyzing CUDA workloads using a detailed GPU
simulator,” in ISPASS, 2009.

NVLabs, “Nvbitfi: An architecture-level fault injection tool for gpu appli-
cation resilience evaluations,” https://github.com/NVlabs/nvbitfi, 2020.
O. Villa, M. Stephenson, D. W. Nellans, and S. Keckler, “Nvbit: A
dynamic binary instrumentation framework for nvidia gpus,” Proceedings
of the 52nd Annual IEEE/ACM International Symposium on Microarchi-
tecture, 2019.

S.-C. Lin et al., “The architectural implications of autonomous driving:
Constraints and acceleration,” in ASPLOS, 2018.

M. Yang et al., “Avoiding Pitfalls when Using NVIDIA GPUs for Real-
Time Tasks in Autonomous Systems,” in ECRTS, 2018.

NVIDIA, “NVIDIA Announces World’s First Functionally Safe
AT Self-Driving Platform,” https://nvidianews.nvidia.com/news/nvidia-
announces-worlds-first-functionally-safe-ai-self-driving-platform, 2018.
N. K. J. Adriaens, K. Compton and M. Schulte, “The case for GPGPU
spatial multitasking,” in Proceedings - International Symposium on High-
Performance Computer Architecture, 2012.

D. B. J. Janzen and A. Hugo, “Partitioning GPUs for Improved Scala-
bility,” in Proceedings - Symposium on Computer Architecture and High
Performance Computing, 2016.

B. Wu et al., “Enabling and exploiting flexible task assignment on GPU
through SM-centric program transformations,” in Proceedings of the
International Conference on Supercomputing, 2015.

M. T. S. Pai and R. Govindarajan, Improving GPGPU Concurrency with
Elastic Kernels, 2013.

S. Jain et al., “Fractional GPUs: Software-based compute and memory
bandwidth reservation for GPUs,” in RTAS, 2019.

M. Dimitrov, “Understanding software approaches for gpgpu reliability,”
in GPGPU Workshop, 2009.

J. Wadden et al., “Real-world design and evaluation of compiler-managed
gpu redundant multithreading,” in ISCA, 2014.

15

ABOUT THE AUTHORS

Sergi Alcaide received his bachelor’s and mas-
ter degrees from Universitat Politecnica de
Catalunya, Barcelona, Spain, in 2016 and 2018,
respectively. Currently he is in the third year of
his PhD in the CAOS (Computer Architecture
and Operative Systems) group in the Barcelona
Supercomputing Center. His main research in-
terests includes fault-detection mechanisms to
preserve functional safety in safety critical sys-
tems and GPUs.

Dr. Leonidas Kosmidis is a Senior Researcher
at the Barcelona Supercomputing Center (BSC).
He is the recipient of the RISC-V Educator of the
Year 2019 Award from the RISC-V Foundation.
He holds a PhD and a MSc in Computer Archi-
tecture from Universitat Politécnica de Catalunya
(UPC) and a BSc in Computer Science from
University of Crete. In 2013 he interned at the
Media Processing Department of ARM Holdings
at Cambridge. His research interests lie in the
intersection of accelerators and critical systems.
Dr. Kosmidis is the co-coordinator of the GPU4S (GPU for Space) ESA
funded project.

Dr. Carles Hernandez is a senior Researcher
at the Universitat Politecnica de Valéncia. Pre-
viously from 2012 to 2018 he was senior re-
searcher at the CAOS group from Barcelona
Supercomputing Center. In 2012 he worked as
intern at the IP verification group at Intel Mobile
Communications Munich. His area of expertise
includes on-chip interconnects, processor de-
sign, real-time aware hardware design, and relia-
bility. He is currently co-advising 5 PhD students.
Dr. Hernandez is the project coordinator of the
H2020 SELENE project on high-performance computing for safety-
related applications.

Dr. Jaume Abella is a senior PhD. Researcher
in the CAOS group at BSC. He worked at the
Intel Barcelona Research Center (2005-2009).
Since 2009 Jaume is the BSC Principal Inves-
tigator on a number of projects related to hard-
ware and low-level software for safety-relates
space, avionics and automotive systems such
as ECSEL FRACTAL, H2020 DeRISC, H2020
SELENE, H2020 RECIPE, H2020 SAFURE,
and ARTEMIS VeTeSS. He has authored +15
patents and +180 papers in top conferences and

journals.

