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Use the Spear as a Shield: A Novel Adversarial
Example based Privacy-Preserving Technique

against Membership Inference Attacks
Mingfu Xue, Chengxiang Yuan, Can He, Zhiyu Wu, Yushu Zhang, Zhe Liu, and Weiqiang Liu

Abstract—Recent researches demonstrate that machine learning models are vulnerable to privacy leakage attacks. Among them, the
membership inference attack poses a serious threat to the privacy of confidential training data. In the membership inference attack,
the adversary uses a membership inference model to determine whether a given data belongs to the training set of the target model
based on the prediction of the target model. Few defenses have been proposed, but suffer from compromising the performance or
quality of the target model, or cannot effectively resist against membership inference attacks. This paper proposes a novel adversarial
example based privacy-preserving technique (AEPPT), which adds the crafted adversarial perturbations to the prediction of the target
model to mislead the adversary’s membership inference model. The added adversarial perturbations do not affect the accuracy of target
model, but can prevent the adversary from inferring whether a specific data is in the training set of the target model. Since AEPPT
only modifies the original output of the target model, the proposed method is general and does not require modifying or retraining the
target model. Experimental results show that the proposed method can reduce the inference accuracy and precision of the membership
inference model to 50%, which is close to a random guess. The recall of the membership inference model drops from 88.7% to 51.9%

on the CIFAR100 dataset and drops from 98.5% to 17.1% on Purchase dataset. Moreover, the performances of the proposed method
under various factors (i.e., perturbation step size, number of adversary’s data, number of target model’s output classes, and different
membership inference models) are evaluated, which demonstrate that the proposed method can resist membership inference attacks
under different factors. Further, for those adaptive attacks where the adversary knows the defense mechanism, the proposed AEPPT is
also demonstrated to be effective. Compared with the state-of-the-art defense methods, e.g., the truncating method, the dropout method,
and the adversarial regularization method, the proposed defense can significantly degrade the accuracy and precision of membership
inference attacks to 50% (i.e., the same as a random guess). Meantime, the normal performance and utility of the target model will not
be affected.

Index Terms—Membership inference attack, privacy-preserving machine learning, adversarial examples, artificial intelligence security.
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1 INTRODUCTION

MACHINE learning techniques are widely used in
many fields, such as image classification, natural

language processing and financial analysis, etc. As an in-
creasingly popular business model, many companies (e.g.,
Google and Amazon) deploy machine learning as a service
(MLaaS) for various clients, such as data processing, model
training and data prediction. Users can upload data to these
service providers to construct machine learning models, or
use these models through prediction application program-
ming interfaces (APIs).

However, recent studies [1]–[5] have shown that attack-
ers can infer the training data information of the machine
learning model through membership inference attacks [1].
The attackers first train a membership inference model,
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which is essentially a binary classifier. Then, according to
the output of the target model, attackers use the trained
membership inference model to determine whether a given
data belongs to the training set of the target model [1]. If an
adversary can correctly infer that a specific data has been
used to train the target model, the target model has the risk
of privacy leakage [1].

To date, only a few defense techniques against member-
ship inference attacks have been proposed, which can be
divided into two categories. The first method is to modify
the output of the target model so that the model leaks
less private information, such as the rounding method [1]
(also called as the truncating method). The second method
is to prevent the target model from overfitting, such as
the dropout method [2], model stacking [2], L2-norm regu-
larization [1], and adversarial regularization [3]. However,
the first method can only slightly mitigate membership
inference attacks, and will affect the utility of predictions
(because only a very rough confidence information are
provided to the user). For example, if the confidence score of
two labels in a prediction is 0.2501 and 0.2599, the prediction
of truncating method (with 2 decimals) on these two labels
will be the same (i.e., 0.25), which makes the final prediction
inaccurate. The second method needs to modify the target
model or modify its training process, and requires to sacri-
fice the model’s performance to resist against membership
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inference attacks.
In this paper, we propose a novel adversarial example

based privacy-preserving technique (AEPPT) against mem-
bership inference attacks. Inspired by adversarial examples
that can mislead machine learning models, we convert the
prediction of a target model into the adversarial prediction
to mislead attackers’ membership inference models. First,
the AEPPT trains a substitute membership inference model
using member data (that has been used to train the target
model) and non-member data (that has not been used to
train the target model). Then, according to the output of
the substitute membership inference model, AEPPT crafts
small perturbations that can mislead the attacker but do not
affect the utility of the predictions. In our experiments, we
exploit the L1-norm [6] to calculate the size of the added
perturbations. The smaller the value of the L1-norm is,
the smaller the adversarial perturbations are added, i.e.,
the difference between the adversarial prediction and the
original prediction is more difficult to be noticed. Finally,
AEPPT adds the perturbations to the prediction of the target
model to generate adversarial prediction, which makes the
attacker unable to correctly determine whether a given data
is in the training set of the target model.

The major contributions of this paper are as follows:
1) A novel privacy-preserving technique that uses ad-

versarial examples to resist membership inference
attacks is proposed. Adversarial example used to be
an attack method targeting machine learning models.
However, in this work, we are doing the opposite. We
take advantage of adversarial examples to protect the
privacy of the training data of the model. The proposed
method adds perturbations on the original prediction of
the target model to construct the adversarial prediction,
which can successfully mislead the attacker’s member-
ship inference model. Experimental results show that
the proposed method can make the inference accuracy
of three different membership inference models reduce
to a random guess (i.e., 50%). It also greatly reduce the
precision and recall of different membership inference
models of the attackers.

2) The proposed method does not modify or retrain
the target model, thus is a general method and can
be used to protect most machine learning models
against membership inference attacks. The proposed
method only modifies the output of the target model to
resist membership inference attacks without affecting
the target model. In the experiment, we use the AlexNet
network and the fully connected neural network to
train the target model respectively, and then evaluate
the proposed method on the two target models. For
these two target models under the protection of the
proposed method, the inference accuracy of adversary’s
membership inference attacks is only around 52% and
51% respectively, which are close to that of a random
guess. Moreover, the accuracy of the target model with
defense is close to the accuracy of the target model
without defense.

3) The proposed method does not affect the utility
of the prediction. In existing works, the methods of
modifying the output of the target model will make
the final prediction inaccurate, e.g., truncating the con-

fidence scores in the prediction to 2 or 3 decimals.
Hence, these methods seriously affect the utility of the
prediction, and reduce the quality of services [7]. The
proposed AEPPT only adds small size of adversarial
perturbations (0.2637 in CIFAR100 [8] and 0.0868 in
Purchase [9]) on the original prediction, which means
that the average modifications on the confidence score
of each class label is as low as 0.002637 (CIFAR100) and
0.000868 (Purchase), respectively. Therefore, the added
perturbations will not affect the prediction of the target
model, and the generated adversarial prediction is close
to the original one. Meanwhile, the generated adver-
sarial prediction can make the membership inference
attack fail.

4) The proposed method is robust under various factors
and strong adaptive attacks. First, the performance
of the proposed method under different factors are
evaluated, including: the size of added perturbations,
the number of target model’s output classes, the num-
ber of the adversary’s data, and different membership
inference models. Experimental results show that these
factors will not affect the defensive performance of the
proposed method, and the proposed AEPPT can resist
membership inference attacks under different factors.
Second, for those more complex adaptive attacks (flip
attack, rounding attack [1], [10], and adversarial train-
ing attack [11]), the proposed AEPPT method is also
demonstrated to be robust and effective.

This paper is organized as follows. Section 2 reviews
membership inference attacks and related defense works.
Section 3 describes the background of adversarial examples
and the evaluation metrics used in this work. Section 4 elab-
orates the proposed defense method. Experimental results
are presented in Section 5. Section 6 concludes this paper.

2 RELATED WORKS

Earlier membership inference attacks were targeting at
biomedical data or genomic data. For instance, some re-
searches [12], [13] have shown that a specific individual can
be identified or inferred from statistics of the genome-wide
association studies (GWAS). Recently, membership infer-
ence attacks are applied to machine learning models. Shokri
et al. [1] present the first membership inference attack in
the context of machine learning models. They use the target
model’s prediction of member data and non-member data to
train a membership inference model which acts as a binary
classifier [1]. The generated membership inference model
can infer whether or not a specific data was used to train
the target model. However, the attack method in [1] makes a
lot of assumptions, such as the adversary needs to know the
structure and the training algorithm of the target model, and
the data obtained by the attacker has the same distribution
of the target model’s training data. Hence, Salem et al. [2]
propose attack method with fewer assumptions, in which
the attacker first uses a number of different models to
mimic the behavior of the target model. Then, the attacker
combines different model’s predictions to perform member-
ship inference attacks without the knowledge of the target
model’s structure and the training algorithm [2]. Hayes et
al. [14] show that Generative Adversarial Networks (GANs)
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are also vulnerable to membership inference attacks. They
train a GAN model to learn the information of the target
generative model and use the trained GAN model to dis-
tinguish member data or non-member data of the target
model’s training set [14]. However, if the discriminator in
the GAN does not provide the query function, this method
cannot attack successfully.

The defense against membership inference attacks can be
divided into two categories: 1) change the confidence score
in the prediction of the target model to a rough value; 2)
prevent the target model from overfitting.

Change the Confidence Score in the Prediction of the
Target Model to a Rough Value. Since the adversary per-
forms membership inference attacks based on the prediction
of the target model, Shokri et al. [1] mitigate membership
inference attacks by modifying the prediction of the target
model in the following ways. The first method is that the
prediction returned by the target model only contains the
confidence scores of the top k classes [1]. The second method
rounds (i.e., truncates) the confidence score in the prediction
and returns an approximate prediction confidence [1]. The
third method modifies the output layer of the neural net-
work to reduce the correlation between the output and the
input of the model [1]. Shokri et al. [1] demonstrate that
these methods can slightly reduce the inference accuracy
of the membership inference model, but cannot reduce the
inference accuracy to 50% (i.e., as a random guess). In other
words, these methods cannot defend against membership
inference attacks effectively. In addition, these methods re-
turns an approximate prediction to the users, which will
affect the utility of the prediction and reduce the quality
of the MLaaS [7]. Compared with these methods proposed
in [1], the proposed AEPPT only adds small adversarial
perturbations to the predictions of the target model, which
will not affect the utility of the prediction. Moreover, the
added adversarial perturbations can significantly reduce the
inference accuracy of the membership inference model to
that of a random guess, i.e., 50%, which means the attack
completely failed.

Prevent the Target Model from Overfitting. Some stud-
ies [4], [5] have shown that overfitting is a sufficient but
unnecessary condition for the success of membership in-
ference attacks. In other words, overfitting is an important
but not the only reason for the success of membership
inference attacks [1]. Several existing methods resist mem-
bership inference attacks by preventing the target model
from overfitting. Shokri et al. [1] use L2-norm regulariza-
tion to mitigate the overfitting of the target model. Salem
et al. [2] use dropout and model stacking to reduce the
risk of privacy leakage of the target model’s training data.
Specifically, the dropout method [2] drops a neuron with
a certain probability in each training iteration. The model
stacking method [2] combines the output of multiple dif-
ferent models to resist against membership inference at-
tacks. However, the dropout method is only suitable for
neural networks, and the model stacking method requires
the defender to train multiple different models. Nasr et
al. [3] use adversarial regularization method to train the
target model, which minimizes the classification loss of
the model and the successful rate of membership inference
attacks. The defense mechanism of our proposed AEPPT

is completely different from the adversarial regularization
method [3]. First, the adversarial regularization method [3]
adds the adversarial regularization term to the loss function
of the target model, which aims to defeat the membership
inference attack by mitigating the overfitting of a target
model. The proposed AEPPT is inspired by the adversarial
examples, and generates the adversarial prediction based on
the target model’s output, so as to mislead the adversary’s
membership inference model to make incorrect output.
Second, the adversarial regularization method [3] needs to
modify the training process of the target model, and their
experiment results show that this will cause a drop in the
prediction accuracy of the target model. In other words,
the work [3] requires a trade-off between the performance
of the target model and the ability to resist membership
inference attacks. However, the proposed AEPPT method
only adds adversarial perturbations on the original output
of the target model, thus it can successfully defeat the
membership inference attack without affecting the model’s
performance.

The Concurrent Work. We proposed the idea of this
paper in May 2019, and applied for a Chinese patent [15]
in July 2019. To date, the only concurrent work with this
paper is MemGuard [10]. Jia et al. [10] turn the prediction of
the target model into adversarial examples to resist against
membership inference attacks. The method formulates the
defense of membership inference attacks as solving the
optimization problem. Specifically, they first search for noise
that does not affect the utility of the target model but can
mislead the membership inference models. Then, they add
the noise to the prediction of the target model with a certain
probability [10].

There are several differences between the proposed
method and the MemGuard method [10]. First, the Mem-
Guard method generates adversarial perturbations by solv-
ing the optimization problem, i.e., the optimization-based
method. The proposed method crafts adversarial pertur-
bations by calculating the gradient of the loss function,
i.e., the gradient-based method. Since solving the optimiza-
tion problem requires expensive computational overhead,
the proposed method generates adversarial predictions
faster than MemGuard. Second, researches have shown that
the adversarial examples generated by the gradient-based
method have better transferability than the adversarial
predictions generated by the optimization method, which
means that the proposed method can defend more mem-
bership inference models than MemGuard [10]. Third, the
MemGuard method adds adversarial perturbations to the
prediction of the target model with a certain probability. The
proposed AEPPT multiplies the perturbations by a random
step size and adds it to the prediction of the target model.
Therefore, compared with the MemGuard method, the per-
turbations added by the proposed method are more difficult
to be found by the adversary. Lastly, compared with [10]
that assumes the attacker has only black-box access to the
target model, the attacker of this paper has more knowledge
and has stronger capabilities, which demonstrates that the
proposed method can defeat more powerful attackers than
work [10]. In conclusion, both the proposed AEPPT and the
MemGuard [10] can effectively resist against membership
inference attacks, but the proposed AEPPT can resist more
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powerful attackers, and is more secure, more general and
can generate adversarial predictions faster than the Mem-
Guard method [10]. In Section 5.9, we will compare and
analyze the defense performance of our proposed AEPPT
method and the MemGuard method [10].

3 PRELIMINARY

In this section, we first describe the background of adversar-
ial examples and the transferability of adversarial examples
in Section 3.1. Then, the evaluation metrics used in this work
are described in Section 3.2.

3.1 Adversarial Examples

Ideally, given a trained machine learning model and an in-
put, the model will output a predicted label. The adversarial
example attack is to add small perturbations to the input to
generate an adversarial example, which can cause the model
to produce an erroneous output [16]. Generally, adversarial
example attacks can be divided into white-box attacks, grey-
box attacks and black-box attacks. If the adversary has full
knowledge of the target model, the adversarial example
attack is a white-box attack [17]. Conversely, if the adversary
does not have any knowledge of the target model, it is a
black-box attack [17]. If the adversary has some knowledge
of the target model (e.g. knows the architecture information
of the target model, but does not know the parameter
settings of the target model), it is a grey-box attack [18].

3.2 Evaluation Metrics

To demonstrate the defensive performance of the proposed
method, we evaluate the performance of the membership
inference model (from the attacker’s perspective) and the
target model (from the defender’s perspective) with and
without defense, respectively. The similarity between the
original prediction and the adversarial prediction is also
evaluated. The evaluation metrics are as follows.

Metrics for Evaluating the Membership Inference
Model: Inference accuracy, precision, and recall are used to
evaluate the impact of the proposed method on the at-
tacker’s membership inference model. Inference accuracy is
the proportion of data (including member data and non-
member data) that correctly inferred by the attacker among
all the data [19]. Precision is the proportion of the true
member data among all inferred member data [19]. Recall
is the proportion of correctly inferred member data among
all the member data [19].

Similar to the experimental settings in [1], [3], [20], the
number of member data and non-member data used to
evaluate the membership inference attacks are set to be
equal in this experiment. Hence, the inference accuracy and
precision of an adversary using random guess is 50%, which
is the lower bound of the inference accuracy and precision
of an adversary. For the recall of the adversary, the lower
bound is 0%. The goal of the proposed method is to make
the inference accuracy and precision of the membership
inference model close to that of a random guess (50%), and
to make the recall of the membership inference model as
low as possible.

Metrics for Evaluating the Target Model: To further
demonstrate that the proposed method does not affect the
performance of the target model, we also compare the
accuracy of the target model with and without defense on
the training set and test set. The training accuracy is the
proportion of training data that are correctly classified by
the target model [19]. The test accuracy is the proportion of
test data that are correctly classified by the target model
[19]. The goal is to ensure that the proposed defense method
will not affect the training accuracy and test accuracy of the
target model.

Metrics for Evaluating the Similarity Between the
Original Prediction and the Adversarial Prediction: We
use the size of the added perturbations to represent the
similarity between the original prediction and the adver-
sarial prediction. The size of the added perturbations is
calculated as follows [6]: ‖δ‖1 =

∑n
i=0 ‖δi‖. The smaller

the value of ‖δ‖1 is, the smaller the added adversarial
perturbation on each confidence score of a prediction. In
other words, the difference between the original prediction
and the adversarial prediction is more imperceptible.

4 THE PROPOSED AEPPT
4.1 Threat Model
If a defense method can successfully resist membership
inference attacks in the worst case, then the method can
provide effective and strong protection for the target model.
As defenders, they need to resist the most capable attackers.
Therefore, in this work, we assume that the adversary has
strong capabilities in two aspects: the adversary’s knowl-
edge, and the adversary’s data.

The adversary’s knowledge about the target model is as
follows: the adversary knows the structure and the training
algorithm of the target model [2]. In a common scenario
for current MLaaS, the adversary can only query the target
model and obtain the prediction [3].

The training data used by the target model is denoted
as Dtar , and the adversary’s data is denoted as Dadv . D
represents the distribution of the data. The relationship
between the adversary’s data and the training data of the
target model is as follows:

• Dtar ∩ Dadv = Dadv : The adversary knows part of
the training data of the target model.

• Dtar ∼ D, Dadv ∼ D: The adversary’s data is from
the same distribution as the training data of the
target model [5].

In this paper, we consider a more complex inference
attack scenario than the black-box settings, where the adver-
sary’s data Dadv is entirely from the training data Dtar of
the target model, i.e., Dtar ∩Dadv = Dadv . In this way, the
attacker can train the membership inference model better
to implement more powerful membership inference attacks.
The experiments in Section 5.3 show that, the proposed
AEPPT method is still effective under such complex attack
scenario.

4.2 Overall Flow of the Proposed Method
To resist against membership inference attacks, AEPPT
needs to ensure that the generated adversarial prediction
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can mislead the membership inference model successfully.
However, the membership inference model is generally
a black-box model for the defender in practice, i.e., the
defender does not have the knowledge about the adver-
sary’s membership inference model. To solve this prob-
lem, before generating adversarial prediction, the AEPPT
first constructs a substitute membership inference model to
mimic the behavior of the attacker’s membership inference
model. Then, the adversarial prediction is generated based
on the substitute membership inference model, which can
mislead the adversary’s membership inference model and
resist membership inference attacks.
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Fig. 1: Overall flow of the proposed AEPPT.

The overall flow of the proposed AEPPT is illustrated in
Fig. 1. In the first step, the substitute membership inference
model is trained. AEPPT first obtains the predictions of
member data and non-member data from the target model.
Then, member data, non-member data, and corresponding
predictions constitute the new training data which is used
to train the substitute membership inference model. In the
second step, the adversarial prediction is generated. When
the target model f receives a given input x, the target
model first calculates the prediction result f(x). Then, the
prediction f(x) is converted to a label ŷ using one-hot
encoding [21], i.e., the maximum component of f(x) is
set to be 1, and the other components in f(x) are set to
be 0. After that, the prediction result f(x) of the target
model and the converted label ŷ are input to the substitute
membership inference model I ′. The substitute membership
inference model calculates the probability of that the data
(x, y) is in the training set of the target model, which is
denoted as I ′(f(x), ŷ). According to the output I ′(f(x), ŷ)
of the substitute membership inference model, AEPPT crafts
perturbations δ and adds them to the output f(x) of the
target model to generate the adversarial prediction f(x)adv .
Finally, the adversarial prediction f(x)adv is used as the new
output of the target model.

The proposed method of training the substitute mem-
bership inference model is described in Section 4.3, and the
proposed method of generating the adversarial prediction
against membership inference attacks is presented in Section
4.4.

4.3 Training the Substitute Membership Inference
Model
Fig. 2 shows the training process of the substitute mem-
bership inference model. First, the training data of the

substitute membership inference model is constructed. The
training data of the substitute membership inference model
consists of two types of data: member data D and non-
member data D̄. Member data D is the data that has been
used to train the target model, while non-member data D̄ is
the data that has not been used to train the target model [1].
In order to avoid a low accuracy of the substitute member-
ship inference model due to the large difference between the
number of member data and the number of non-member
data, the number of member data should be equal to the
number of non-member data. The training data of the substi-
tute membership inference model is constructed as follows.
For a record (x, y) ∈ D, the target model outputs the
prediction result f(x). Then, the label y, the prediction result
f(x), and the integer 1 are combined to form a training data
(y, f(x), 1) of the substitute membership inference model.
Similarly, for a record (x̄, ȳ) ∈ D̄, the target model outputs
the prediction result f(x̄). The label ȳ, the prediction result
f(x̄), and the integer 0 are combined to form a training data
(ȳ, f(x̄), 0) of the substitute membership inference model.
The integer 1 indicates that the data x is a member data,
while integer 0 means that x is a non-member data.

Target
Model f
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,x y

, ( ),1y f x

, ( ), 0y f xD

D

( )f xx

( )f x d+

y

d+

ŷ

'( ( ), )I f x y
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Inference
Model I'

New

Training

Data

Train

Fig. 2: Training process of the substitute membership infer-
ence model.

In this work, the structure of the substitute membership
inference model is similar to the structure of the member-
ship inference model used in [3], which is composed of
three separate fully connected sub-networks [3]: prediction
network, label network, and connection network. The input
of the prediction network is the prediction vector of the
target model, and the input of the label network is the
true label y [3]. The input of the connection network is
the output of prediction network and label network, and
the output of the connection network is the probability of
that the data x is in the training set of the target model [3].
Compared with the membership inference model used in
[3], the layer sizes of the three sub-networks in the substitute
membership inference model are different from that in [3].
The structure of the substitute membership inference model
is illustrated in Fig. 3. The layer sizes of the prediction
network, label network, and connection network in the
substitute membership inference model are [100, 256], [100,
256], and [512, 64, 1], respectively.

Since the substitute membership inference model mim-
ics the behavior of the adversary’s membership inference
model, intuitively, the defensive performance of the adver-
sarial prediction may be affected by the substitute member-
ship inference model. To demonstrate that the generated ad-
versarial prediction is effective when facing different mem-
bership inference models, we use membership inference
models that are different from the substitute membership
inference model to evaluate the proposed method in Section
5.7.
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4.4 Generating the Adversarial Prediction against
Membership Inference Attacks

We propose an adversarial prediction generation algorithm,
as shown in Algorithm 1. Specifically, based on the ad-
versarial examples generation method, such as [22]–[24],
the proposed adversarial prediction generation algorithm
modifies the prediction of target model to resist membership
inference attacks. First, the algorithm converts the target
model’s original prediction f(x) to ŷ, and computes the out-
put of the substitute membership inference model. Then, the
adversarial prediction f(x)adv is initialized. After that, the
perturbations are added to f(x)adv by iterative optimization
to generate the final adversarial prediction. The process of
optimizing the added perturbations is described as follows.

Algorithm 1 Adversarial Prediction Generation Algorithm

Input: target model’s prediction f(x), substitute member-
ship inference model I ′, the step size ε, the number of
iterations T

Output: adversarial prediction f(x)adv

1: Convert f(x) to ŷ
2: Compute the output of the substitute membership infer-

ence model: I ′(f(x), ŷ)
3: Initialize f(x)adv : f(x)adv0 ← f(x)
4: for t = 0 to T − 1 do
5: Compute the output of the substitute membership

inference model: I ′(f(x)advt , ŷ)
6: if I ′(f(x), ŷ) ≥ 0.5 then
7: δt ← sign[∇f(x)J(I ′(f(x)advt , ŷ), 1)]
8: else
9: δt ← sign[∇f(x)J(I ′(f(x)advt , ŷ), 0)]

10: end if
11: Determine the random step size ε′:

ε′ ← random(0, 1) · ε
12: Update f(x)advt+1: f(x)advt+1 ← f(x)advt + ε′ · δt
13: f(x)advt+1 ← Clip{f(x)advt+1, 0, 1}
14: end for
15: f(x)adv ← f(x)advT

16: return f(x)adv

Different from the adversarial examples generation
methods, e.g., [22]–[24], which add perturbations to the in-
put data of the target model, the proposed method generates
and adds perturbations to the output of the target model.
Specifically, the prediction f(x) of target model contains N
components, each of which represents the confidence score

of a different class label (N classes in total). The proposed
defense method adds the perturbation on each component
of the prediction f(x). In other words, the generated per-
turbations will be distributed on the N confidence scores
of the original prediction f(x) to construct the adversarial
prediction f(x)adv . Based on the basic iterative method [23],
the adversarial prediction can be calculated as follows [23]:

f(x)adv0 = f(x), f(x)advt+1 = Clip{f(x)advt + ε · δt} (1)

where t represents the t-th round of iteration, and ε is the
size of added perturbations in each iteration. To prevent
the added perturbations from being too large, a clipping
function Clip{} [23] is used to constrain the value of each
element in the generated adversarial prediction to between
0 and 1. The added perturbations are calculated as follows
[23]:

δt = sign[∇f(x)J(I ′(f(x)advt , ŷ), Y )] (2)

where J(·) is a loss function, and ∇f(x)J(·) is the gradient
of the loss function. Y indicates whether x is in the training
set of the target model or not. If Y is 1, it means that x is in
the training set of the target model. If Y is 0, it means that x
is not in the training set of the target model.

For the output I ′(f(x), ŷ) of the substitute membership
inference model, if I ′(f(x), ŷ) is greater than or equal to
0.5, it represents that the data (x, y) is in the training set
of the target model. Otherwise, the data (x, y) is not in the
training set of the target model. To ensure that the generated
adversarial prediction can fool the membership inference
model successfully, the added perturbations can be opti-
mized according to the prediction result of the substitute
membership inference model. Specifically, if the data (x, y)
is in the training set of the target model originally, the goal of
the added perturbations is to make the attacker infer that the
data (x, y) is not in the training set of the target model. On
the contrary, if the data (x, y) is not in the training set of the
target model originally, the goal of the added perturbations
is to make the attacker infer that the data (x, y) is in the
training set of the target model. Therefore, in the proposed
method, the added perturbations are generated as follows:

δt =

{
sign[∇f(x)J(I ′(f(x)advt , ŷ), 1)], I ′(f(x), ŷ) ≥ 0.5

sign[∇f(x)J(I ′(f(x)advt , ŷ), 0)], I ′(f(x), ŷ) < 0.5
(3)

In the adversarial prediction generation process, using
the same step size ε and the same number of iterations
may produce the same components in different adversar-
ial predictions. As a result, an attacker may suspect that
perturbations are deliberately added to the prediction of
the target model. In this paper, to prevent the adversary
from finding the added perturbations in a generated ad-
versarial prediction, we add the random size perturbation
into the prediction at each iteration process, so that the
perturbations on each adversarial prediction f(x)adv are
different. Specifically, in each iteration, a random number
between 0 and 1 is generated, and then the random number
is multiplied by the input step size ε to obtain a random
step size ε′. The generated perturbations δ multiplied by
the random step size ε′ are added to f(x)adv . Thus, the
size of the added perturbation in each iteration is variable.
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After multiple iterations, even if the two original predictions
are the same, there will be a slight difference between the
final generated adversarial predictions. In this way, even
the attacker queries the same input data for multiple times,
the adversarial perturbations added on the prediction at
each query will be different. In other words, except for
the predicted label, the attacker cannot gain any additional
information from those generated adversarial predictions.

5 EXPERIMENTAL EVALUATION

First, datasets and models used in the experiment are de-
scribed in Section 5.1 and Section 5.2, respectively. Then,
the performance of the proposed method is evaluated on
the adversary’s membership inference model and the target
model in Section 5.3. The factors that may affect the defen-
sive performance are analyzed in Section 5.4∼Section 5.7,
respectively. The defense performance under three adaptive
membership inference attacks are evaluated in Section 5.8.
Section 5.9 compares the proposed method with the state-
of-the-art defense works.

5.1 Dataset
CIFAR100 [8]: This dataset contains 60,000 images (50,000
training images and 10,000 test images), and the size of
each image is 32 × 32 [8]. The images in the dataset are
classified into 100 classes, such as fish, chair, cloud, bicycle,
etc. Each class contains 500 training images and 100 test
images. In the experiment, we divide this dataset according
to the adversary’s knowledge, and then use these data to
train the target model and membership inference model,
respectively.

Purchase [9]: This dataset is constructed based on the
data from the “acquire valued shoppers” challenge on Kag-
gle [25]. The goal of this challenge is to find customers
who are most likely to repeat purchase according to the
purchase history. Because the raw data provided by this
challenge contains a lot of redundant information, such as
the number of the product purchase, the date of purchase,
and the amount of the purchase, we use the same method
as in [1] to simplify the dataset. The simplifying process is
as follows. Each record with 600 binary features represents
a customer, and each feature represents a product [1]. If
the customer has purchased the product, the value of the
corresponding feature is set to be 1. Otherwise, it is set to be
0. Then, we cluster these records into 100 classes, and set the
corresponding label for each record [1]. Finally, we use the
simplified data to train the target model and membership
inference model, respectively.

5.2 Target Model and Membership Inference Model
Target Model: For CIFAR100 dataset, we use the AlexNet
architecture proposed in [26] to train the target model.
We use the cross-entropy loss function to train the target
model based on Pytorch1, and set the learning rate and
the maximum epochs of training to be 0.0001 and 100,
respectively. For the Purchase dataset, we use the same fully
connected neural network as in [3] to train the target model.

1. https://pytorch.org

The layer size and activation function of the fully connected
neural network are the same as those in [3], which are
[1024, 512, 256, 100] and Tanh. We train the target model
with cross-entropy loss function, and set the learning rate
and the maximum epochs of training to be 0.0001 and 100,
respectively. We divide the data in the dataset into training
data Dtar and non-training data D̄tar , and use training data
to train the target model. The number of training data and
non-training data on the CIFAR100 and Purchase datasets
are shown in Table 1.

TABLE 1: The Number of Training Data Dtar and Non-
training Data D̄tar on the CIFAR100 and Purchase Datasets.

Dataset Dtar D̄tar

CIFAR100 50,000 10,000
Purchase 20,000 20,000

Substitute Membership Inference Model: The structure
of the substitute membership inference model is described
in Section 4.3. The activation function of the substitute
membership inference model is ReLU (Rectified Linear
Unit) [27]. We use the cross-entropy loss function [28] to
train the substitute membership inference model, and set
the learning rate and the maximum epochs of training to
be 0.001 and 100, respectively. The training data of the
substitute membership inference model consists of member
data (denoted as Dsub) and non-member data (denoted as
D̄sub). We use training data Dtar and non-training data
D̄tar as member data Dsub and non-member data D̄sub,
respectively. The number of member data Dsub is equal to
the number of training data (i.e., |Dsub| = |Dtar|), and the
number of non-member data D̄sub is equal to the number of
non-training data (i.e.,

∣∣D̄sub

∣∣ =
∣∣D̄tar

∣∣).
Adversary’s Membership Inference Model: In the ex-

periment, the structure of the adversary’s membership in-
ference model is the same as that in [3]. For simplicity,
we denote this membership inference model as MIM0. The
layer sizes of three sub-networks and activation function of
MIM0 are the same as those in [3], which are [100, 1024,
512, 64], [100, 512, 64], [128, 256, 64, 1] and ReLU [27],
respectively. We use the cross-entropy loss function [28] to
train the adversary’s membership inference model, and set
the learning rate and the maximum epochs of training to
be 0.001 and 100, respectively. The training data of the ad-
versary’s membership inference model consists of member
data (denoted as Dadv) and non-member data (denoted as
D̄adv). As discussed in Section 4.1, this paper assumes that
the attacker has strong knowledge about the training data of
the target model. Specifically, we randomly select data from
training data Dtar and non-training data D̄tar as member
data Dadv and non-member data D̄adv , respectively. The
number of member data Dadv is half of the training data
(i.e., |Dadv| = 1

2
|Dtar|), and the number of non-member data

D̄adv is half of the non-training data (i.e.,
∣∣D̄adv

∣∣ = 1
2

∣∣D̄tar

∣∣).
5.3 Experimental Results
Evaluation on the Membership Inference Model: In the
experiment, for each output class of the target model, we
evaluate the inference accuracy, precision, and recall of
the membership inference model, and obtain the empirical

https://pytorch.org
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(a) CIFAR100 Dataset

(b) Purchase Dataset

Fig. 4: Empirical CDF of inference accuracy, precision, and recall of the membership inference model on the CIFAR100 and
Purchase datasets.

cumulative distribution function (CDF) [29] of the infer-
ence accuracy, precision, and recall. For a given value w,
the empirical CDF represents the proportion of all results
(w1, w2, ..., wm) that are less than or equal to the value w,
which can be calculated as follows [29]:

Pm(w) =
#{wi, s.t. wi < w}

m
(4)

where w1, w2, ..., wm represent the results of m times. Fig.
4 shows the empirical CDF of inference accuracy, preci-
sion, and recall of the membership inference model on the
CIFAR100 and Purchase datasets, respectively. The results
show that the proposed defense method can make the in-
ference accuracy of membership inference model reduce to
that of a random guess, which means the proposed method
can make the membership inference attack completely fail.
For example, the proposed method reduces the inference
accuracy of the membership inference model from 76%
to 51% on the Purchase dataset, and reduces from 59%
to 52% on the CIFAR100 dataset. Under the protection
of the proposed method, the precision and recall of the
adversary’s membership inference model are also greatly
reduced. For example, on the Purchase dataset, the recall of
the membership inference model against the target model
without defense is higher than 96%, while the recall of the
membership inference model against the target model with
defense is lower than 25%. Therefore, the proposed defense
method can effectively resist membership inference attacks,
and protect the training data of the target model.

Fig. 5 shows the value of loss function of the adversary’s
membership inference model during the adversarial predic-

tion generation. It is shown that the generated adversarial
prediction can affect the loss function of the attacker’s
membership inference model. The more iterations, the larger
the loss function. The larger the loss function, the lower
the inference accuracy of the membership inference model.
After multiple rounds of optimizations, the loss function of
the adversary’s membership inference model has stabilized.
Finally, the generated adversarial prediction can prevent the
attacker from correctly inferring whether a specific data is
in the training set of the target model.

Fig. 5: The value of loss function of the adversary’s member-
ship inference model during the generation of adversarial
prediction.

Evaluation on the Target Model: We train the target
model on the CIFAR100 dataset and Purchase dataset,
respectively. On the CIFAR100 dataset, the target model
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has stabilized after 75 rounds of iterative training. On the
Purchase dataset, the target model has stabilized after 50
rounds of iterative training. Table 2 shows the training
accuracy and test accuracy of the target model with and
without defense on the CIFAR100 and Purchase datasets.
It is shown that, the proposed method will not affect the
normal performance of target model, where the fluctuation
of the training accuracy and test accuracy is as low as 0.1%.
Such an accuracy fluctuation is common when training the
same DNN model for multiple times, which is negligible.
As discussed in Section 4.4, the proposed method does not
modify or retrain the target model, but only adds small
perturbations to the original prediction of the target model
to generate an adversarial prediction. In this way, the gen-
erated prediction does not affect the accuracy of the target
model, but can effectively mislead membership inference
models.

TABLE 2: Training Accuracy and Test Accuracy of the Target
Model with and without Defense on CIFAR100 and Pur-
chase Datasets.

Dataset

CIFAR100 Purchase
Training
Accuracy

Test
Accuracy

Training
Accuracy

Test
Accuracy

Without Defense 96.1% 50.2% 99.3% 79.7%
With Defense 96.0% 50.2% 99.2% 79.4%

5.4 Defensive Performance with Different Perturbation
Step Size

In the proposed method, the size of the added perturbations
in the prediction of the target model has an impact on
the defensive performance. To this end, we evaluate the
inference accuracy, precision, and recall of the membership
inference model under different perturbation step sizes.

Table 3 and Table 4 show the size of the added per-
turbations and the inference accuracy of the membership
inference model under different perturbation step sizes on
the CIFAR100 and Purchase datasets, respectively. As shown
in Fig. 5, the loss function of the adversary’s membership
inference model is stable when the adversarial perturbations
has been optimized for about 100 rounds. This indicates
that the proposed AEPPT method has already reduced the
accuracy of membership inference attacks to a stable value
(around 50%). Therefore, in our experiments, the number of
iterations to generate the adversarial perturbations is set to
be 100.

The L1 distance is used to calculate the size of the
added perturbations, i.e.,

∥∥∥f(x)adv − f(x)
∥∥∥
1

[6]. It is shown in
Table 3 and Table 4 that, the proposed method only needs
to add small perturbations to the original prediction to
make the inference accuracy of the membership inference
model reduce to about 50%. As discussed in Section 4.4,
the generated adversarial perturbations are distributed on
each component (i.e., each confidence score) of the original
prediction. For instance, when the perturbation step size
is set to be 2 × 10−5, the size of the perturbations on the
adversarial prediction is 0.0868 on the Purchase dataset. The
average modifications on each component (100 components
in total) is only 0.000868. The larger the added perturbations

TABLE 3: Size of Added Perturbations and the Inference Ac-
curacy of the Membership Inference Model under Different
Perturbation Step Sizes on the CIFAR100 Dataset.

Perturbation
Step Size ε

Size of Added
Perturbations

Inference
Accuracy

0 0 58.7%
7× 10−4 0.1842 52.2%
8× 10−4 0.2208 51.4%
9× 10−4 0.2637 50.3%
1× 10−3 0.2961 49.1%

∗ The size of added perturbations is the sum of perturbations that
added on the confidence score of all classes (100 in total), and the

average perturbation on each confidence score is as low as 0.001842.

TABLE 4: Size of Added Perturbations and the Inference Ac-
curacy of the Membership Inference Model under Different
Perturbation Step Sizes on the Purchase Dataset.

Perturbation
Step Size ε

Size of Added
Perturbations

Inference
Accuracy

0 0 76.0%
1× 10−5 0.0485 74.2%

1.5× 10−5 0.0736 61.7%
2× 10−5 0.0868 50.6%

2.5× 10−5 0.0882 47.4%
∗ The size of added perturbations is the sum of perturbations that
added on the confidence score of all classes (100 in total), and the

average perturbation on each confidence score is as low as 0.000485.

is, the lower the inference accuracy of the membership
inference model. The reason is that a large perturbation
step size makes the added perturbations in the adversarial
prediction large, and the generated adversarial prediction
is more likely to mislead the membership inference model.
The goal of the proposed method is to make the infer-
ence accuracy and precision of the membership inference
model reduce to around 50%. Therefore, for CIFAR100 and
Purchase datasets, the perturbation step size ε is set to be
9 × 10−4 and 2 × 10−5, respectively, which ensures that
the accuracy of membership inference model is close to a
random guess.

Fig. 6 presents an example of the original prediction and
the generated adversarial prediction on CIFAR100 and Pur-
chase datasets, respectively. For simplicity, we only shows
the confidence scores of the first 10 classes on each pre-
diction. It is shown that the added perturbation on the
confidence score of each class is small, and the size of
perturbation on each component is in the order of 10−3.
Therefore, the proposed defense will not affect the utility of
the final prediction of the target model.

5.5 Effect of the Number of the Target Model’s Output
Classes
In [1], the authors indicate that the more the number of
the target model’s output classes, the more information the
adversary can obtain from the target model, and the higher
the success rate of the membership inference attack. In order
to evaluate the effect of the number of the target model’s
output classes on the defensive performance of the proposed
method, we cluster the data in Purchase dataset into 2, 10,
20, 50, 100 classes [1], respectively. Then, we train target
models with different number of output classes respectively
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TABLE 5: Inference Accuracy, Precision, and Recall of the Adversary’s Membership Inference Model against Target Models
with Different Numbers of Output Classes on Purchase Dataset.

Target Model Without Defense With Defense
Number of

Classes
Training
Accuracy

Test
Accuracy

Inference
Accuracy

Precision Recall Inference
Accuracy

Precision Recall

2 99.3% 98.9% 49.5% 49.5% 47.9% 50.8% 50.8% 50.5%
10 99.6% 95.2% 54.5% 52.4% 97.2% 49.6% 49.4% 33.0%
20 99.8% 93.0% 61.1% 57.3% 88.0% 52.7% 53.4% 42.3%
50 99.4% 86.6% 69.2% 62.0% 99.4% 48.0% 47.2% 33.0%
100 99.3% 79.7% 76.0% 68.0% 98.5% 50.6% 51.7% 17.1%

Original Prediction Adversarial Prediction

CIFAR100

Purchase

[0.0000171745, 0.0000000248, 

0.0000251502, 0.0000000000, 

0.0000000006, 0.0000000751, 

0.0000000000, 0.0000000079, 

0.0000000000, 0.0000000017]

[0.0099494923, 0.0099493209, 

0.0099495705, 0.0097144963, 

0.0099493209, 0.0099493219, 

0.0099493209, 0.0099375444, 

0.0099493209, 0.0099493209]

[0.0093927989, 0.0093927840, 

0.0093927840, 0.0093927840, 

0.0093927840, 0.0093927840, 

0.0093927840, 0.0094254930, 

0.0093927840, 0.0093927840]

[0.0102927992, 0.0084927836, 

0.0102927843, 0.0102927843, 

0.0102927843, 0.0102927843, 

0.0084927836, 0.0103254933, 

0.0102927843, 0.0102927843]

Fig. 6: An example of the original prediction and the gen-
erated adversarial prediction on CIFAR100 and Purchase
datasets, respectively.

[1], and evaluate the inference accuracy, precision, and recall
of the membership inference model.

Table 5 shows the inference accuracy, precision, and
recall of the membership inference model against target
models with different number of output classes on Purchase
dataset. For target models without defense, the more the
number of the target model’s output classes, the higher the
inference accuracy of the membership inference model. For
instance, when the number of the target model’s output
classes is only two, the inference accuracy and precision of
the membership inference model are around 50%. When
the number of the target model’s output classes is 100,
the inference accuracy and precision of the membership
inference model are 76% and 68%, respectively. For target
models with defense, the inference accuracy and precision of
the membership inference model against target models with
different numbers of output classes are all close to that of a
random guess. In other words, the proposed method can
effectively resist membership inference attacks regardless of
the number of the target model’s output classes.

5.6 Effect of the Number of the Adversary’s Data

The adversary’s data also affects the performance of mem-
bership inference model. In the above experiments, the
number of adversary’s data is set to be half of the number of
the training data of the target model. To evaluate the effect
of the number of adversary’s data on the performance of the
proposed method, three adversaries with different numbers
of data are evaluated: adversary 1 (Adv1), adversary 2
(Adv2), and adversary 3 (Adv3). The numbers of the three
adversaries’ data are set as follows:

• Adv1: |Dadv| =
1

4
|Dtar|

• Adv2: |Dadv| =
1

2
|Dtar|

• Adv3: |Dadv| =
3

4
|Dtar|

Fig. 7 shows the empirical CDF of inference accuracy,
precision, and recall of the three different adversaries’ mem-
bership inference models on the Purchase dataset. It is
shown that the more data the adversary has, the higher
inference accuracy and precision of the membership infer-
ence model against the target model without defense is.
Under the protection of the proposed method, the inference
accuracy of the three adversaries’ membership inference
models is between 48% and 54%, which is close to the in-
ference accuracy of a random guess. Similarly, the precision
and recall of the three adversaries’ membership inference
models are also greatly reduced. For example, the proposed
method significantly reduces the recall of the Adv1’s mem-
bership inference model from 98.1% to 34.2%. Therefore,
regardless of the amount of data the adversary has, the
proposed method can effectively prevent the adversary from
performing membership inference attacks.

5.7 Defensive Performance against Different Member-
ship Inference Models
The proposed method uses the adversarial prediction gen-
erated based on the substitute membership inference model
to resist the adversary’s membership inference models. To
evaluate the effect of similarity between the substitute mem-
bership inference model and the adversary’s membership
inference model on defense performance of the proposed
method, and the effect of training data distribution of the
substitute membership inference model on defense per-
formance of the proposed method, we use three different
membership inference models (MIM1, MIM2 and MIM3)
to evaluate the proposed defense method. The member
data used to train MIM1, MIM2 and MIM3 are the same
as the member data used to train MIM0 (which is the
adversary’s membership inference model used in Section
5.3∼Section 5.6). The settings of non-member data used to
train MIM1, MIM2 and MIM3 are shown in Table 6. The
structure and loss function of the three different member-
ship inference models are also presented in Table 6. Note
that, the layer sizes of MIM1 network is [1024, 512, 256,
1]. The other settings of MIM1, MIM2, and MIM3 are the
same as that of MIM0. Table 7 shows the performance of
the three membership inference models and the substitute
membership inference model. The recall of MIM1, MIM2
and MIM3 are significantly higher than the recall of the
substitute membership inference model. Hence, the perfor-
mance of MIM1, MIM2 and MIM3 is different from that



11

0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti

v
e 

P
ro

b
ab

il
it

y

Inference Accuracy

0.4 0.5 0.6 0.7 0.8

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti

v
e 

P
ro

b
ab

il
it

y

Precision

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti

v
e 

P
ro

b
ab

il
it

y

Recall

0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti

v
e 

P
ro

b
ab

il
it

y

Inference Accuracy

0.4 0.5 0.6 0.7 0.8

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti

v
e 

P
ro

b
ab

il
it

y

Precision

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti

v
e 

P
ro

b
ab

il
it

y

Recall

 With Defense (Adv1)        With Defense (Adv2)         With Defense (Adv3)

 Without Defense (Adv1)   Without Defense (Adv2)    Without Defense (Adv3)

Fig. 7: Empirical CDF of inference accuracy, precision, and recall of three different adversaries’ membership inference
models on the Purchase dataset.

 With Defense (MIM1)          With Defense (MIM2)         With Defense (MIM3)  

 Without Defense (MIM1)     Without Defense (MIM2)    Without Defense (MIM3)

0.45 0.50 0.55 0.60 0.65 0.70

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti

v
e 

P
ro

b
ab

il
it

y

Inference Accuracy

0.50 0.55 0.60 0.65

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti

v
e 

P
ro

b
ab

il
it

y

Precision

0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti

v
e 

P
ro

b
ab

il
it

y

Recall

0.45 0.50 0.55 0.60 0.65 0.70

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti

v
e 

P
ro

b
ab

il
it

y

Inference Accuracy

0.50 0.55 0.60 0.65

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti

v
e 

P
ro

b
ab

il
it

y

Precision

0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti

v
e 

P
ro

b
ab

il
it

y

Recall

Fig. 8: Empirical CDF of inference accuracy, precision, and recall of different membership inference models (MIM1, MIM2,
MIM3) on the Purchase dataset.

of the substitute membership inference model. Next, we
evaluate the performance of the proposed method on these
different membership inference models.

TABLE 6: Detailed Settings of MIM1, MIM2, and MIM3.

Model Structure Loss function Distribution of
non-member data

MIM1
A fully

connected
neural network

Cross-
entropy loss

function

Same as
substitute MIM

MIM2 Same as MIM0 L2 loss
function

Same as
substitute MIM

MIM3 Same as MIM0
Cross-

entropy loss
function

Different from
substitute MIM

TABLE 7: Performance of the Three Membership Inference
Models and the Substitute Membership Inference Model.

Model
Inference
Accuracy

Precision Recall

Substitute MIM 67.6% 69.8% 62.2%
MIM1 70.4% 64.9% 88.4%
MIM2 75.1% 67.7% 96.0%
MIM3 67.2% 60.5% 99.3%

Fig. 8 shows the empirical CDF of inference accuracy,
precision, and recall of different membership inference mod-
els on the Purchase dataset. MIM1, MIM2 and MIM3 are
used to evaluate the effects of the structure of the member-
ship inference model, the loss function of the membership
inference model and the distribution of the adversary’s non-
member data on the defense performance of the proposed
method, respectively. Under the protection of the proposed
method, the inference accuracy of MIM1 drops from 67% to
51%, and the precision of MIM1 drops from 62% to 51%. The
results of MIM1 show that the proposed method can resist
against membership inference models with different struc-
tures. This is because the adversarial prediction generated
based on the substitute membership inference model has a
good transferability, and can mislead different membership
inference models. Under the protection of the proposed
method, the inference accuracy of MIM2 drops from 71%
to 51%, and the precision of MIM2 drops from 64% to 51%.
The results of MIM2 show that, even if the loss function used
by the adversary’s membership inference model is different
from that used by the substitute membership inference
model, the proposed method can also resist against these
membership inference models. Under the protection of the
proposed method, the inference accuracy of MIM3 drops
from 64% to 53%, and the precision of MIM3 drops from
58.5% to 53%. The results of MIM3 show that the distribu-
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tion of the adversary’s non-member data has a certain im-
pact on the defensive performance of this method. However,
the proposed method can still greatly reduce the inference
accuracy of MIM3, and resist against MIM3. Therefore, the
proposed method has good defensive performance against
membership inference models that differ from the substitute
membership inference model.

5.8 Defensive Performance against Adaptive Member-
ship Inference Attacks

Next, we evaluate the performance of the proposed defense
method against adaptive membership inference attacks,
where the attacker knows the specific defense mechanism.
Specifically, we consider the following three adaptive mem-
bership inference attacks. Table 8 shows the performances of
the proposed defense under the three adaptive membership
inference attacks.

Flip attack. As discussed in Section 4.4 (i.e., Equation
(3)), if the substitute membership inference model I ′ pre-
dicts a data x as a member (non-member) of the target
model, the proposed AEPPT will add the adversarial per-
turbations δt on the prediction. In this way, the generated
adversarial perturbation will mislead the adversary’s mem-
bership inference model to infer the data x as a non-member
(member) of the target model. However, an adaptive adver-
sary can simply flip the prediction result of his membership
inference model to launch the inference attacks, i.e., the data
x is considered to be a non-member if the membership
inference model predicts it as a member.

However, such adaptive membership inference attack
will not work under the defense of our proposed method.
The reason is that, as mentioned in Section 5.3, the proposed
AEPPT can reduce the inference accuracy of membership
inference model to the random guess (52% on CIFAR100
dataset and 51% on Purchase dataset). Since all the predic-
tion results of adversary’s membership inference model will
be flipped, the inference accuracy of such adaptive attack
will be flipped as well. Specifically, in our experiments, the
accuracy of flip attack on CIFAR100 and Purchase datasets is
48% (100%-52%) and 49% (100%-51%), respectively. In this
way, even the attacker knows the defense mechanism and
flips the prediction results, the accuracy of the flip attack is
still close to that of a random guess (i.e., 50%).

TABLE 8: Performances of the Proposed AEPPT under Three
Adaptive Membership Inference Attacks.

Adaptive Attacks Flip
Attack

Rounding
Attack

Adversarial
Training Attack

Inference
Accuracy

CIFAR100 48% 49.71% 50.79%
Purchase 49% 40.46% 62.90%

Rounding attack [1], [10]. The proposed method adds
the perturbation to each component of an original prediction
to generate the adversarial prediction, so as to mislead
the adversary’s inference model. The adaptive attacker can
round the generated adversarial prediction to remove these
added perturbations, and then use these rounding predic-
tions to train his membership inference model. Specifically,
in our experiments, we assume that the attacker rounds each
confidence score in the prediction to 3 decimals.

The experimental results in Table 8 show that, the in-
ference accuracy of rounding attack is as low as 49.71%
(CIFAR100) and 40.46% (Purchase), respectively. This indi-
cates that even the adaptive attacker truncates the generated
adversarial prediction, the proposed AEPPT method is also
effective, and can significantly degrade the inference accu-
racy of membership inference attacks.

Adversarial training attack [11]. The adversarial train-
ing is considered to be an effective approach against the
adversarial examples attacks [11]. Therefore, an adaptive
attacker can exploit the proposed adversarial prediction
generation algorithm (i.e., Algorithm 1 in Section 4.4) to con-
struct the adversarial perturbations. Then, those generated
adversarial predictions can be used to train his membership
inference model to make it robust. As shown in Table 8,
under this complex attack scenario, the inference accuracy
of adversarial training attack on CIFAR100 and Purchase
datasets is only 50.79% and 62.90%, respectively, which
indicates that such adaptive attack is failed.

Overall, under these more stronger adaptive member-
ship inference attacks, where the adversary knows the de-
fense mechanism and attempts to eliminate the effectiveness
of the proposed method, the proposed AEPPT is demon-
strated to be robust and can greatly reduce the inference
accuracy of these adaptive attacks.

5.9 Comparison with Other Defense Methods

Finally, we compare the proposed method with the state-
of-the-art defense methods: 1) methods of modifying the
output of the target model; 2) methods of preventing the
target model from overfitting. Particularly, the method of
modifying the output of the target model is the rounding
method (i.e., truncating method) [1]. We round the con-
fidence scores in the prediction to 3 floating points (i.e.,
r = 0.001) and 2 floating points (i.e., r = 0.01), respectively.
The methods of preventing the target model from overfitting
are the dropout method [2] and the adversarial regulariza-
tion method [3]. To compare the experimental results, in the
experiment, we adopt the same experimental setup as in [3].
For the CIFAR100 dataset, the number of the adversary’s
data is half of the training data of the target model (i.e.,
|Dadv| = 1

2
|Dtar|), and the structure of the target model is

AlexNet [26]. For the Purchase dataset, the number of the
adversary’s data is one quarter of the training data of the
target model (i.e., |Dadv| = 1

4
|Dtar|), and the structure of the

target model is a 4-layer fully connected neural network [3].
The membership inference model is MIM0 (as described in
Section 5.2). In our experiments, the data used to evaluate
the membership inference attacks under those defenses are
randomly selected from the training data Dtar and non-
training data D̄tar of the target model. Specifically, we
select 10,000 member data and 5,000 non-member data from
CIFAR100 dataset, and select 10,000 member data and 10,000
non-member data from Purchase dataset, respectively.

Fig. 9 shows the comparison between the proposed
defense method and other defense methods (the rounding
method [1], the dropout method [2], and the adversarial
regularization method [3]). For the rounding method with
r = 0.001, the method cannot reduce the inference accuracy,
precision and recall of the membership inference model. In
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Fig. 9: Comparison between the proposed defense method and the state-of-the-art defense methods ( [1], [2], and [3]) from
the following aspects: the training accuracy and test accuracy of the target model, and the inference accuracy, precision and
recall of the membership inference model.

other words, the rounding method with r = 0.001 cannot
resist against membership inference attacks. For the round-
ing method with r = 0.01, the method slightly reduces the
performance of the membership inference model. The in-
ference accuracy of the membership inference model drops
from 63.7% to 58.3% on the CIFAR100 dataset, and drops
from 76.0% to 60.0% on the Purchase dataset. Therefore,
the rounding method can slightly mitigate membership
inference attacks only when the number of floating points
in confidence score is set to be less than or equal to 2,
but it cannot effectively resist membership inference attacks.
Moreover, the rounding method makes the model’s predic-
tions inaccurate. Specifically, when the floating point num-
ber in confidence score is less than or equal to 2, the user
can only obtain an approximate confidence returned by the
target model. In this way, the rounding method significantly
reduces the utility of the model’s predictions and the quality
of the MLaaS. Compared with the rounding method [1],
the proposed method can significantly reduce the inference
accuracy and precision of the membership inference model
to around 50% (i.e., like a random guess), which means the
membership inference attacks completely failed. Besides,
the perturbation in the adversarial prediction generated by
the proposed method is extremely small. The adversarial
prediction is close to the original prediction of the target
model, thus doesn’t affect the quality of the MLaaS. In
terms of the training accuracy and test accuracy of the
target model, the rounding method [1] and the proposed
method hardly affect the accuracy of the target model. In
conclusion, compared with the rounding method [1], the
defensive performance of the proposed method is much
better than that of the rounding method [1] and doesn’t
affect the performance or quality of the model.

For the dropout method [2] and the adversarial regular-
ization method [3], the defensive performance of these two
methods [2], [3] is close to that of the proposed method.

These methods can also reduce the inference accuracy and
precision of the membership inference model to about 50%
on CIFAR100 and Purchase datasets. However, the dropout
method [2] and the adversarial regularization method [3]
affect the accuracy of the target model on training data
and test data. Compared with these two methods [2], [3],
the proposed method doesn’t affect the training accuracy
and test accuracy of the target model. The reason is as
follows. To ensure that the prediction of the target model
is indistinguishable, the dropout method [2] and the adver-
sarial regularization method [3] need to make the training
accuracy of the target model close to the test accuracy, which
will sacrifice the performance of the target model on the
training data and test data. For the proposed method, it
makes the generated adversarial prediction indistinguish-
able by adding small perturbations to the original prediction
of the target model. The added perturbations only mislead
the membership inference model, but do not affect the
accuracy of the target model. In summary, compared with
other defense methods, the proposed method can effectively
protect the privacy of the target model’s training data with-
out affecting the performance and utility of the target model.

Note that, there are several insurmountable difficulties
when comparing the proposed AEPPT with the MemGuard
method [10]. First, the work [10] does not provide the
detailed parameter settings of their optimization function,
and the experiments of the two works are deployed on
different platforms (Tensorflow for [10] and Pytorch for this
paper), thus we cannot reproduce their whole implemen-
tations in our local devices. Second, the target model and
experimental datasets of work [10] are different from ours,
which makes it difficult to compare the MemGuard method
[10] with the proposed AEPPT under the same evaluation
conditions. Nonetheless, we have compared the concurrent
work [10] with this paper in three different aspects, and the
comparison results are concluded in Table 9.
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TABLE 9: Comparison of the Proposed AEPPT Method and
the MemGuard Method [10].

Defenses MemGuard [10] AEPPT
Defensive performance Around 50% 51%

Size of added perturbations 0.8 0.2637

Adversary’s
knowledge

Training data 20% 50%

Target model Black-box Model’s structure &
training algorithm

First, the MemGuard [10] and the proposed AEPPT can
achieve the similar defensive performance. Both of which
can degrade the inference accuracy of membership inference
attacks to that of a random guess, i.e., 50%. Second, the
defensive performance of MemGuard [10] improves as the
size of added perturbations (also called confidence score
distortion in [10]) increases. More specifically, to reduce
the accuracy of adversary’s membership inference attacks
to around 50%, the L1-norm of added perturbations in
their three experimental datasets all increases to 0.8 [10].
However, for the proposed AEPPT method, the size of gen-
erated adversarial perturbations is only as low as 0.2637 on
CIFAR100 dataset. This indicates that the proposed AEPPT
method only needs to add smaller modifications on the
original prediction of the target model than MemGuard
method [10]), which makes the added perturbations more
difficult to be noticed by the adversary. Finally, the work
[10] considers the adversary only has black-box access to
the target model, while this paper assumes a more powerful
attacker that knows the target model’s structure and the
training algorithm. Moreover, compared to the work [10]
where the adversary is assumed to know only 20% of
the training data, this paper considers a stronger inference
attacker who knows half of the target model’s training
data (i.e., |Dadv| = 1

2
|Dtar|). Therefore, the proposed AEPPT

method can defeat more powerful attackers.

6 CONCLUSION

We propose a novel and effective method to preserve the
privacy of model’s training data resisting membership in-
ference attacks. Inspired by the adversarial example at-
tack which was used to be an attack method, we present
an adversarial prediction generation algorithm for privacy
protection of the machine learning models. The proposed
method is general, and does not modify the architecture or
the training process of the target model. Experiment results
on CIFAR100 and Purchase datasets show that the proposed
method can make the inference accuracy and precision of
the adversary’s membership inference model close to that
of a random guess, and also greatly reduce the recall of
the membership inference model. Evaluation under differ-
ent experimental settings indicates that the number of the
target model’s output classes, the number of the adversary’s
data, the training data distribution, and different adver-
sary’s membership inference models hardly affect the per-
formance of the proposed defense method. blueMoreover,
the proposed AEPPT is also demonstrated to be effective
under three adaptive attacks where the adversary knows
the defense mechanism. In summary, the proposed defense
method can effectively resist membership inference attacks

without affecting the normal performance of the model or
the quality of the model’s services. Privacy-related attacks
on machine learning models pose serious threats to both
the model provider and the user. Privacy-preserving ma-
chine learning techniques in various scenarios, including
distributed or Internet of Things scenarios, are important
and open topics. In future works, we will study defense
techniques against other privacy related attacks on machine
learning models.
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