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A BF16 FMA is All You Need for DNN Training
John Osorio, Adrià Armejach, Eric Petit, Greg Henry, and Marc Casas

Abstract—Fused Multiply-Add (FMA) functional units constitute a fundamental hardware component to train Deep Neural Networks
(DNNs). Its silicon area grows quadratically with the mantissa bit count of the computer number format, which has motivated the adoption
of the BrainFloat16 format (BF16). BF16 features 1 sign, 8 exponent and 7 explicit mantissa bits. Some approaches to train DNNs
achieve significant performance benefits by using the BF16 format. However, these approaches must combine BF16 with the standard
IEEE 754 Floating-Point 32-bit (FP32) format to achieve state-of-the-art training accuracy, which limits the impact of adopting BF16. This
paper proposes the first approach able to train complex DNNs entirely using the BF16 format. We propose a new class of FMA operators,
FMAbf16

n m , that entirely rely on BF16 FMA hardware instructions and deliver the same accuracy as FP32. FMAbf16
n m operators achieve

performance improvements within the 1.28-1.35× range on ResNet101 with respect to FP32. FMAbf16
n m enables training complex DNNs

on simple low-end hardware devices without requiring expensive FP32 FMA functional units.

Index Terms—Neural Nets, machine learning, reduced precision, FMA Operators, BF16, FP32, swamping, computer arithmetic,
emulation, hardware.

✦

1 INTRODUCTION

FUSED Multiply-Add (FMA) functional units compute the
operation D = A ·B + C and constitute a key hardware

component to train Deep Neural Networks (DNNs), since
they support the vast majority of floating-point instructions
required for DNN training [1]. FMA input datatypes and,
in particular, their mantissa bit counts drive the performance
and the hardware cost of FMA units. Indeed, the silicon area
of FMA units feature a quadratic growth with respect to
the number of mantissa bits. For example, a 16-bit multiplier
using 8 mantissa bits requires 82 = 64 units of area, while a 32-
bit multiplier considering 24 mantissa bits employs 242 = 576
units [2], [3], [4]. This advantage in terms of area budget has
motivated the adoption of the BrainFloat16 format (BF16),
which features 1 sign, 8 exponent, and 7 explicit mantissa bits,
by many hardware vendors [2], [5]. Specialized hardware
units targeting FMA computations based on the BF16 format
deliver more floating point throughput than FP32 units while
using the same silicon area [2], [5].

Despite these advantages, the potential of using BF16
during the entire training process is not fully exploited by any
proposal. Previous work has described the numerical issues
of BF16, which are caused by its reduced mantissa bits budget
[6], [7]. To overcome them, previous approaches combine
the BF16 format with the standard IEEE 754 32-bit Floating-
Point (FP32) format when computing FMA instructions. The
accumulation step uses FP32 arithmetic to combine A · B
with C, and represent the final output D. In addition, some
frequently used routines like Weight Update (WU) operations
or Batch Normalization (BN) must entirely rely on the FP32
format to achieve state-of-the-art accuracy [6], [7].
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There are more aggressive proposals that use 4-bit (FP4)
datatypes for ultra-low precision training [8] or that dy-
namically employ between 3 and 8 bits of precision [9],
[10]. However, these proposals require tailored hardware,
extensive modifications to software frameworks, and very
complex ad-hoc steps to guarantee training convergence. In
addition, these techniques require 32-bit precision floating-
point arithmetic for WU or FMA accumulators. In addition,
these proposals do not achieve FP32 training accuracy.

This paper proposes the first approach to train state-of-
the-art DNNs entirely using the BF16 format, without code
and hyper-parameters tuning, while delivering the same
accuracy as FP32. We propose a new class of FMA operators,
FMAbf16

n m , that entirely rely on BF16-based datatypes for
its inputs and outputs. When computing an FMA operation,
FMAbf16

n m represents input operands A and B using N
BF16 literals, which we call BF16XN representations, while
input C and output D use M BF16 literals, i.e. BF16XM
types. FMAbf16

n m operators can be used for the entire training
process of DNNs, effectively removing the need for FP32
architectural support at the hardware and ISA levels.

To evaluate the numerical behavior of FMAbf16
n m we

implement SERP (Seamless Emulation of Reduced Precision
Formats), a binary analysis tool. SERP uses Intel Pin [11]
to intercept FMA instructions and modify its floating-point
operands. SERP works on major software frameworks like
Tensorflow, Caffe, or PyTorch seamlessly. Using SERP we
evaluate 7 FMAbf16

n m variants on a wide range of DNNs:
ResNet (18, 34, 50, 101) [12] and MobileNetV2 [13] on the
CIFAR10 and CIFAR100 datasets, LSTMx2 model on Penn
Treebank (PTB) dataset [14], two transformer-based models
using IWSLT16 [15] and Multi30K dataset [16], [17] , and
the Neural Graph Collaborative Filtering (NGCF) [18] a
recommender system applied to the MovieLens: ML-100k
dataset [19] We demonstrate that FMAbf16

n m achieves the
same accuracy as FP32 training, while never resorting to
FP32 FMA computations.

In addition, we perform micro-architectural simulations
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Fig. 1: BF16XN Data Formats.

using Snipersim [20] to evaluate the performance of FMAbf16
n m

operators when replacing 32-bit FMA functional units on a
Skylake-like processor. Our evaluation shows that FMAbf16

1 2
and FMAbf16

2 2 reach 1.34× and 1.28× speed-up on ResNet101,
respectively, with respect to FP32 at equivalent area.

To the best of our knowledge, FMAbf16
n m is the first

proposal enabling the exclusive use of BF16 arithmetic
while achieving the same accuracy properties as FP32 for
a large variety of networks, while providing performance
improvements within the 1.28-1.34× range with respect to
FP32. Thereby, enabling training of complex DNNs on simple
low-end hardware devices by lifting the requirement of
having FP32 hardware support and expensive FP32 FMA
units.

2 THE BF16XN DATA REPRESENTATION

The BF16XN data representation format is a compound
datatype composed of N BF16 literals. It is a generalization
of BF16X3, which was proposed by Henry et al. [2] to replace
FP32 in High-Performance Computing (HPC) workloads.
The BF16X1 format uses 1-bit and 8-bits storage for sign and
exponent, like FP32, and 7 explicit mantissa bits. As shown
in Figure 1, by concatenating three BF16 numbers we have
24 bits to represent the mantissa, 7 explicit bits and 1 implicit
bit per BF16 literal, which is equivalent to the FP32 mantissa
(23 explicit and 1 implicit bits). In this paper we consider
BF16X3 and two more computer number formats based on
the BF16XN compound datatypes: BF16X1 and BF16X2.

To describe the conversion from FP32 to BF16XN, we
define the conversion operand BF (·) as the rounding process
of an FP32 expression to BF16 via the Rounding to Nearest
Even (RNE) algorithm. The BF (·) operand converts a generic
FP32 value to its BF16X2 representation via the first two
equations of Formula 1, or to its BF16X3 compound datatype
representation using the three equations of Formula 1 [2].
The BF16 expression a0 contains the same sign and exponent
bits as the FP32 number a plus its top 7 mantissa bits. The 8th
mantissa bit of a0 is defined by RNE. Similarly, a1 contains in
its mantissa the second set of 8 bits of the BF16XN expression,
which is at least 8 bits away of a0 least significant bit. Finally,
a2 contains in its mantissa the third set of 8 bits which are
at least 8 and 16 bits away of a0 and a1 least significant bit,
respectively. BF16XN expressions are trivially converted back
to FP32 by accumulating the ai values on a FP32 register.

a0 = BF (a)

a1 = BF (a− a0)

a2 = BF (a− (a0 − a1))

(1)

These equations are still valid for FP32 number a = 0,
in that case all ai terms will be zeros. However we need

a special case for +/ − Inf . In this case, to avoid NaN
we will set all ai to the corresponding infinity. We cannot
use a1 = a2 = 0 since it will lead to NaN values in later
Mul/FMA operations while the FP32 value would have
produced the expected +/− Inf .

2.1 Computing FMA instructions with BF16XN
An FMA with BF16XN datatypes for the a · b product can be
reduced to a set of partial products using BF16X1. Equation
2 shows the FMA operation c := c + a · b where a and
b are represented as BF16X3, i.e., a := a0 + a1 + a2 and
b := b0 + b1 + b2; and c in FP32. The FMA is expressed as
nine partial products and the addition of c [2].

c := c+ a · b = c+ a0 · b0 + a0 · b1 + a0 · b2
+a1 · b0 + a1 · b1 + a2 · b0
+a1 · b2 + a2 · b1 + a2 · b2

(2)

Henry et al. [2] analyze the error of the BF16X3 format
and demonstrate that accumulating the six most significant
partial products is enough to keep FP32 precision for a wide
range of values. Indeed, the a1 · b2 and a2 · b1 products most
significant bits are at least 24 bits behind the result’s most
significant bits. For the same reasons, the a2 · b2 product is at
least 32 bits behind. Their sum is therefore 23 bits behind the
result’s most significant bits. Therefore, the maximum level
of error of a BF16X3 FMA compared to a FP32 FMA is in the
same order of magnitude as round-off effects.

Based on these observations, the three least significant
multiplications (see Equation 3) can be avoided, while
providing accuracy within the [23, 24] bit range.

c := c+ a · b ≈ c+ a0 · b0 + a0 · b1 + a0 · b2
+a1 · b0 + a1 · b1 + a2 · b0

(3)

BF16X2 decomposes an FP32 number into two BF16
literals, which provides an intermediate format between
BF16X1 and FP32 with significantly lower compute cost
than FP32 and similar bandwidth requirements. When
multiplying two BF16X2 numbers, we have to compute
four partial multiplications, as Equation 4 shows.

a · b = (a0 + a1) · (b0 + b1)

a · b = a0 · b0 + a0 · b1
a1 · b0 + a1 · b1

(4)

Following a similar reasoning as Henry et al. [2] with
BF16X3, we can drop the last term, a1 · b1 while still keeping
[15, 16] bits of mantissa accuracy for a wide range of values.

Henry et al. [2] require FP32 support for the accumulator
input c, and for the conversion between FP32 and BF16XN.
Our proposed FMAbf16

n m operators, introduced in Section 4,
do not require FP32 support as all input and output operands
are expressed as BF16 literals.

3 SUITABILITY OF BF16XN FOR DNN TRAINING

This section illustrates how BF16XN delivers the required
accuracy to enable DNN training using BF16 arithmetic
exclusively, including critical routines like Weight Updates
(WU) or Batch Normalization (BN).
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Fig. 2: Error with respect to FP32 representation for different
BF16XN formats for all possible mantissa combinations over
a fixed exponent (223 samples).

3.1 BF16XN Representation Errors

Figure 2 shows numerical errors of BF16X1, BF16X2, and
BF16X3 FMAs, when representing all the 223 possible
representations of FP32 explicit mantissa bits. Without lose
of generality, we consider the exponent value to be fixed at 2.
The x-axis represents the 223 samples sorted in terms of the
absolute numerical error of BF16X1, BF16X2, and BF16X3
when representing them. The y-axis displays the magnitude
of such error.

When using BF16X1, only 3.84% of the samples experi-
ence an error below 10−4. This representation error has been
shown in prior works to prevent DNN training convergence
when applied to the entire training process [6], [7]. When
employing BF16X2, 41.95% of the samples display errors
below 10−6. The remaining 58.05% present errors between
10−6 and 10−5. Figure 2 shows how the BF16X2 error is
consistently 3 orders of magnitude lower than BF16X1. As
Section 7 demonstrates, this low error enables full DNN
training with the BF16X2 datatype. Finally, the BF16X3
format has no significant error compared to FP32. Indeed,
it has enough mantissa bits to exactly represent all FP32
samples.

3.2 Swamping Issues in DNN Training

During the accumulation phase of FMA instructions, the
mantissa of the smallest value shifts according to the ex-
ponent difference between the operands. This shift brings
the possibility to eliminate the smallest operand when the
exponent difference is bigger than the number of mantissa
bits. This full absorption issue is known as swamping [4] in
the deep learning community.

Figure 3 shows the percentage of FMAs without swamping
issues on the y-axis for a given number of accumulator
mantissa bits, represented in the x-axis. We collect this data
when training ResNet101 on CIFAR100 across different
epochs. Section 6 describes in detail our experimental setup.
We show that swamping would appear on 40% of the FMA
operations when using BF16X1 on the accumulator input,
on 12% with BF16X2, and nearly 0% with BF16X3. Our
experiments evaluate the impact of swamping and reveal a
correlation between swamping prevalence and the applicabil-
ity of BF16XN data types.
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Fig. 3: Percentage of FMAs without swamping for a given
number of mantissa bits.

Diminishing the number of mantissa bits makes DNNs
more sensitive to swamping and may lead to critical informa-
tion loss. In fact, the use of BF16X1 leads to a substantial
amount of swamping that prevents reaching state-of-the-art
training accuracy levels [4]. The BF16X2 and BF16X3 data
formats entirely rely on BF16 arithmetic functional units and
do not suffer from the common numerical issues of BF16X1
that Figures 2 and 3 display.

4 FMA OPERATORS BASED ON BF16 ARITHMETIC

This section introduces a new class of FMA operators,
FMAbf16

n m , that entirely rely on BF16-based operands. When
performing an FMA operation D = A · B + C, FMAbf16

n m
represents operands A and B via the BF16XN format, while
it uses a representation with a potentially different number
of BF16 literals, BF16XM, for C and D.

4.1 The FMAbf16
n m operators

We propose and evaluate four new FMAbf16
n m operators:

FMAbf16
1 2 , FMAbf16

1 3 , FMAbf16
2 2 , and FMAbf16

3 3 . The first two
operators, which are represented in Figures 4b and 4c, use
the BF16X1 representation for inputs A and B. The FMAbf16

1 2
operator uses the BF16X2 number format for parameters C
and D, while FMAbf16

1 3 uses BF16X3 to represent them.
The other two FMAbf16

n m operators use compound data
types in all of their inputs. We term these two operators
FMAbf16

2 2 (Figure 4d) and FMAbf16
3 3 (Figure 4e). As Section 2

describes, the FMAbf16
2 2 operator can be implemented using

three or four partial products. We denote these two variants
as FMAbf16

2 2 {3} and FMAbf16
2 2 {4}, respectively. Equation 5

defines FMAbf16
2 2 with four products. In addition, FMAbf16

3 3
can consider six or nine partial products, as Equations 3
and 2 indicate. We call these operators FMAbf16

3 3 {6} and
FMAbf16

3 3 {9}.

c = c+ a · b ≈ (c0 + c1) + a0 · b0 + a0 · b1
a1 · b0 + a1 · b1

(5)

Figure 4 defines the semantics of the operators in terms
of input and output datatypes. The internal implementation
of the operators can be done in different ways, and it is
orthogonal to the underlying hardware and ISA definitions.
For example, a possible implementation for the FMAbf16

2 2
operator is to perform the four partial products, as shown in
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Fig. 4: FMAbf16
n m Operators

TABLE 1: FMAbf16
n m characterization in terms of mantissa bits, bitwidth, number of BF16 multiplications, area units required

to implement the entire operator, and expected speed-up over FP32 FMAs at equivalent area.

FMAbf16
n m FMAbf16

1 1 FMAbf16
1 2 FMAbf16

1 3 FMAbf16
2 2 {3} FMAbf16

2 2 {4} FMAbf16
3 3 {6} FMAbf16

3 3 {9} FP32

Multiplier mantissa bits 8 8 8 [15, 16∗] 16 [23, 24∗∗] 24 24
Maximum input bitwidth 16 32 48 32 32 48 48 32

# BF16 multiplications 1 1 1 3 4 6 9 N/A
# Area Units 64 64 64 192 256 384 576 576

Speed-up wrt FP32 (equivalent area) 9.0× 9.0× 9.0× 3.0× 2.3× 1.5× 1.0× 1.0×
∗ For a number > 2−111; ∗∗ For a number > 2−103

Equation 4, and then perform an intermediate accumulation
step to reduce the number of BF16 literals from four to
two, which matches the data type of the other input of the
accumulator (C), as depicted in Figure 4. These internal
accumulation step does not require FP32 arithmetic as it ex-
clusively involves BF16 literals. Finally, the last accumulation
step can be done by adding BF16 literals of each input in
pairs, where each literal addition produces an output literal
of D.

Our experimental campaign in Section 7 demonstrates
that FMAbf16

n m operators achieve comparable accuracy with
respect to FP32 executions on large and complex DNNs. Our
FMAbf16

n m operators entirely use BF16 arithmetic, that is, they
do not employ FP32 computations on any layer, including
BN, Softmax, and WU routines.

4.2 Characterization of FMAbf16
n m units

To characterize our FMAbf16
n m units we use the observation

that the area of an FMA is dominated by the multiplier as
it grows quadratically with mantissa bits [3], [4]. An FP32
FMA requires 242 = 576 area units, while an FMA with BF16
multiplier inputs would require just 82 = 64 units. Therefore,
BF16 FMAs are 9.0× smaller than FP32 FMAs. Moreover,
the use of dense hardware units (e.g., NVIDIA’s tensor
cores [21] or Google’s TPU [22]) leads to efficient matrix
compute engines that can deliver 8-32× more FLOP/S than
equivalent FP32 hardware [2]. For example, NVIDIA A100’s
can deliver up to 19.5 TFLOP/S in FP32, but when using
BF16 tensor cores they reach 312 TFLOP/S peak throughput,
i.e., 16.0× more FLOP/S.

Table 1 characterizes FMAbf16
n m operators in terms of: the

number of multiplier mantissa bits, the maximum bitwidth of

input parameters, the number of BF16 partial multiplications
required by the corresponding FMAbf16

n m unit, the number
of area units required to implement the operator, and the
attainable theoretical speed-up in compute throughput at
equivalent area with respect to FP32. In the case of FMAbf16

1 1 ,
FMAbf16

1 2 and FMAbf16
1 3 the peak floating-point throughput

gain with respect to FP32 hardware is 9.0× since we can
accommodate 9 FMA BF16 functional units in the area of a
single FP32 FMA unit. In the case of FMAbf16

2 2 {3} and FMAbf16
2 2

{4} three and four BF16 products are required, respectively.
Therefore, their maximum theoretical throughput is 3.0× and
2.3× larger than FP32 FMAs, respectively. When considering
FMAbf16

3 3 {6} and FMAbf16
3 3 {9}, six and nine BF16 products

are required, which means these units deliver 1.5× and
1.0× more floating-point throughput than a single FP32 unit,
respectively, with the same area.

While Table 1 characterizes FMAbf16
n m units in terms of

their maximum floating-point throughput, the performance
they reach when training DNNs depends on many other
factors. For example, operators employing BF16X3 will
require more memory traffic and register storage than those
using BF16X2. Section 7 provides performance in terms of
total elapsed time with respect to FP32 using an accurate
micro-architectural simulator.

5 SERP: AN FMABF16
N M EMULATION TOOL

To assess the numerical properties of DNN training work-
loads when they are exposed to the FMAbf16

n m units, we
develop SERP (Seamless Emulation of Reduced Precision
Formats), a binary analysis tool based on Intel Pin 3.7 [11].
There is no hardware supporting FMA units relying entirely
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TABLE 2: Instruction mix on three well-known DNN work-
loads.

Model Other FP FP FMA Non FP

AlexNet 1.02% 57.42% 41.54%
Inception 1.13% 60.93% 37.94%
ResNet 1.19% 62.95% 35.86%

on the BF16 format. Indeed, hardware products that support
the BF16 format use mixed-precision FMA units that combine
BF16 with higher precision inputs (e.g., FP32) [22], [23],
[24]. Alternatively, [25] and [6] use highly-tuned low-level
implementations applied at the source code level to modify
floating-point instructions. However, these approaches re-
quire extensive modifications of the complex mathematical
libraries supporting DNN frameworks like Tensorflow, Py-
Torch, or Caffe. Besides these difficulties, the modification of
proprietary mathematical libraries like Intel MKL [26] is not
possible for most users as the code is not publicly available.

5.1 SERP Design
Our goal is to use SERP to perform fast, accurate and seamless
emulation of FMAbf16

n m operators. In addition, we want
to be able to emulate code of external dynamically linked
libraries, as many applications rely on such libraries which
contain key optimized routines. Therefore, we propose to
leave the target application unmodified and operate at binary
level intercepting the executed machine instructions. By
identifying key floating point instructions, for which we can
modify the input and output operands, SERP can seamlessly
work on any application and DNN framework including
dynamically linked external libraries.

Table 2 shows the instruction mix breakdown for three
well-known DNN workloads. As can be seen, the bulk of
floating-point instructions are of the type FMA. Therefore,
continuing with the previous example, if we are able to
identify and instrument these instructions from the dynamic
execution instruction flow we can perform fine-grain emula-
tion of FMAbf16

n m operations seamlessly.

5.2 SERP Implementation
SERP relies on dynamic binary translation (DBT) to modify
the dynamic instruction flow of the application binary. These
modifications are done during the instrumentation step, which
is executed only once.

SERP is configured through a simple configuration file
that specifies the desired parameters in terms of routines
and instructions to be instrumented as well as the emulated
reduced precision format and rounding method. The step
that performs code instrumentation goes through each
statically defined basic block once, and for each instruction
of interest SERP inserts the code. In our context, we want to
perform the following checks:
1) Before the instruction is executed: Insert code that

converts the source registers of the instruction to the
desired BF16XN depending on the FMAbf16

n m operator
emulated.

Listing 1: Code to convert an FP32 FMA to FMAbf16
2 2 {3}

1 inline void process_operands(__m512* operand1,
2 __m512* operand2, __m512* operand3,
3 __m512* destination)
4 {
5 __m512 sumind2, sumind3, sum1, sum2;
6 __m512 multiplier, sumfull;
7

8 // Multiplier inputs
9 __m512 sx1_op1, sx2_op1;

10 __m512 sx1_op2, sx2_op2;
11

12 // Accumulator input
13 __m512 sx1_op3, sx2_op3;
14

15 // Multiplier result
16 __m512 sx1_mult, sx2_mult;
17

18 // Convert multiplier inputs to BF16x2 with RNE
19 convert_float_to_two_bfloats_vec(operand1,
20 (__m512*)&sx1_op1, (__m512*)&sx2_op1);
21 convert_float_to_two_bfloats_vec(operand2,
22 (__m512*)&sx1_op2, (__m512*)&sx2_op2);
23

24 //Convert the accumulator input to BF16x2 with RNE
25 convert_float_to_two_bfloats_vec(operand3,
26 (__m512*)&sx1_op3, (__m512*)&sx2_op3);
27

28 //Multiplication with 3 partial products
29 sumind3 = _mm512_mul_ps(sx1_op1, sx2_op2);
30 sumind3 = _mm512_fmadd_ps(sx2_op1, sx1_op2, sumind3);
31 sumind2 = _mm512_mul_ps(sx1_op1, sx1_op2);
32 multiplier = _mm512_add_ps(sumind3, sumind2);
33

34 //Convert multiplier output to BF16x2 with RNE
35 convert_float_to_two_bfloats_vec((__m512*)&multiplier,
36 (__m512*)&sx1_mult, (__m512*)&sx2_mult);
37

38 // Addition
39 sum1 = _mm512_add_ps(sx1_mult, sx1_op3);
40 sum2 = _mm512_add_ps(sx2_mult, sx2_op3);
41 sumfull = _mm512_add_ps(sum1, sum2);
42 *destination = sumfull;
43 }

2) Instruction: In some cases, the instruction can be executed
as is with the modified source registers, for example for
FMAbf16

1 1 . In other cases, when the numerical format will
not execute as expected on the existing instruction or
available hardware, the instruction needs to be replaced
by equivalent code that emulates the intended behaviour.
For example, when emulating the FMAbf16

2 2 operator the
semantic of the instruction changes.

3) After the instruction is executed: Insert code that converts
the output to the desired output format.
Listing 1 shows the C++ source code injected during the

instrumentation of AVX512 FMA instructions when emulat-
ing the FMAbf16

2 2 {3} operator. Lines 5-16 define temporary
variables used for the multiplication and accumulation steps.
SERP uses Equation 1 in lines 18-26 to convert each input
operand (a, b, and c) to its BF16X2 representation. Lines 29-
31 implement the 3 partial products using the BF16 literals,
which means we drop the last term: a1 · b1 (see Equation 5).
The variable multiplier in line 32 is the output of the multiplier
within the FMA operator. In line 35 we convert the multiplier
output back to FMAbf16

2 2 to proceed with the accumulation
step, that adds the BF16 literals from the multiplier output
with input c in lines 39 and 40. Finally, line 41 packs the two
resulting BF16 literals into an FP32 representation in order to
store the result back into the destination FP32 register of the
original instrumented instruction (line 42).

Once the code has been instrumented at basic block
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level, the next step is analysis. During the analysis step
the instrumented dynamic instruction flow, which includes
external libraries, is executed. Analysis is the most compute
expensive step as the modified instruction flow with code
insertions is executed.

SERP seamlessly works on frameworks such as Tensor-
flow, PyTorch or Caffe without requiring any source code
modification. SERP is open source and can be found with
concrete installation and execution steps at:
https:\\urlredacted.

6 EXPERIMENTAL METHODOLOGY

Our experimental methodology considers the FMAbf16
1 1 ,

FMAbf16
1 2 , FMAbf16

1 3 , FMAbf16
2 2 {3}, FMAbf16

2 2 {4}, FMAbf16
3 3

{6}, and FMAbf16
3 3 {9} operators. In contrast with prior

proposals [6], [7], we do not employ FP32 precision on
any routines to improve training convergence. Therefore,
when using FMAbf16

n m operators, all FMA instructions use
BF16 arithmetic for the whole training process. We compare
the training accuracy of FMAbf16

n m approaches against two
baselines: A full FP32 training and an approach that uses
mixed-precision FMAs, described in Section 6.6. The latter
uses FP32 accumulators during the whole training process,
and full FP32 FMAs to process batch normalization (BN)
layers and compute weight updates (WU).

6.1 Object Classification Models

We consider the following object classification models:
ResNet18, ResNet34, ResNet50, ResNet101 [12], and Mo-
bilenetV2 [13] on both CIFAR10 and CIFAR100 datasets [27].
We use the hyperparameter setup recommended by the state-
of-the-art [8]. We train all networks for 160 epochs using the
SGD Optimizer. We use a batch size equal to 128, an initial
learning rate equal to 0.1, which we divide by a factor of 10
at epochs 82 and 122. We use momentum equal to 0.9 and
a weight decay of 10−4. For ResNet18, we do not use the
weight decay value.

6.2 Natural Language Processing Models

We consider three natural language processing models:
The LSTMx2 model [14] applied to the PTB dataset. We

train it for a total of 39 epochs and use a batch size of 20, an
initial learning rate equal to 1, two LSTM layers, a hidden
size of 650, a sequence length of 35, and a dropout equal to
0.5. We follow the details in [14] to train the medium size
model; our test uses the source code available in [28].

A transformer-based model [15] applied to the IWSLT16
dataset to translate between Dutch and English. We train the
model termed base for 20 epochs using the Adam Optimizer
with β1 = 0.9, β2 = 0.98, and ϵ = 10−9. We use a batch size
of 12000 and 4000 warm-up steps. We use the source code
available in [29]. All additional details are in [15], [29].

Finally, we train a simple transformer-based model on
the Multi30k dataset [16] to translate between English and
Dutch. We train this model for ten epochs using the Adam
optimizer with a fixed learning rate equal to 5 · 10−4 and a
batch size equal to 128. This implementation uses the source
code available in [30].

6.3 Recommender System

We consider a recommender system based on Graph Neural
Networks (GNN), the Neural Graph Collaborative Filtering
(NGCF) [18]. This model is applied to the MovieLens: ML-
100k dataset [19]. We train it for a total of 400 epochs with a
batch size of 1024 and a learning rate of 0.0001. The number
of embeddings is 64. Additional details regarding this model
are described in the literature [31].

6.4 Training Accuracy of FMAbf16
n m Operators

Our training accuracy experiments using SERP run on a node
with two 24-core Intel Xeon Platinum 8160 processors with
AVX512 support. To train and validate ResNet, LSTMx2, the
transformer-based models and the recommender system we
use a source code compiled version of PyTorch [32] (version
1.8.0), Intel MKLDNN [33] (version 1.22.0) and the Intel MKL
library [26] (version 2019.4).

6.5 Performance of FMAbf16
n m

We evaluate the impact of using FMAbf16
n m operators in

terms of performance using the Snipersim micro-architectural
simulator [20]. While SERP enables highly accurate analysis
on the ability of FMAbf16

n m operators to successfully train
state-of-the-art DNN networks, it does not provide any
information in terms of performance. Sniper implements
a realistic processor model from which we can estimate the
performance benefits of using FMAbf16

n m . Both Sniper and
SERP use Intel Pin 3.7 [11], which enables an easy interaction
between them.

We extend Sniper to support the AVX512 ISA, including
its FMA instructions. We simulate a standard Xeon processor
by considering the hardware setup that Table 3 details. We
consider the execution of one training batch of ResNet101
on CIFAR10; a Transformer based model on the Multi30K
dataset and a LSTMx2 model on the PTB dataset. We use the
FP32 baseline and the FMAbf16

1 1 , FMAbf16
1 2 , and FMAbf16

2 2 {4}
operators.

Since all FMAbf16
n m operators rely on BF16 arithmetic,

our AVX512 model assumes BF16 support per each 16-bit
lane. To simulate the additional throughput achievable for
each FMAbf16

n m operator at equivalent FP32 area, we model
wider functional units using the throughput numbers from
Table 1. Architectural implications, e.g. memory bandwidth
requirements, of having such wider functional units are taken
into account. We coalesce up to 32 16-bit FMA instructions
into a single 512-bit FMA instruction, which we send to the
out-of-order core pipeline. These coalesced instructions fetch
the required amount of data from memory, and go through
the pipeline fulfilling all the dependencies of the original
individual FMA instructions.

(BF16x1)

(BF16x1)

A

B C

D
(FP32)

(FP32)

* +

Fig. 5: Mixed Precision Fused Multiply-Add (FMA).
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TABLE 3: Simulation parameters

Component Simulated parameter

Core 2.1 GHz out-of-order, 192 entries
reorder buffer, 2 x AVX512 FP32 FMAs

L1 ICache 32KB, 4-way associative, private
L1 DCache 32KB, 8-way associative, private
L2 Cache 1MB, 8-way associative, private
L3 Cache 32MB, 16-way associative, shared (24 cores)
Bandwidth 30 GB/s per core

6.6 Mixed-Precision FMA
Our evaluation considers the Mixed-Precision (MP) FMA
instruction used by the Intel Advanced Matrix Extensions
(Intel AMX) [34] or the Nvidia Ampere architecture [5].
Figure 5 illustrates an MP FMA. It considers the BF16 format
for inputs A and B, and FP32 for input C and output D.
Having a 32-bit output to store the accumulation of A · B
and C reduces the risk of numerical hazards related to
swamping [4]. MP training also employs full FP32 FMAs
to process BN and WU layers.

7 EVALUATION

We evaluate training accuracy of the FMAbf16
1 1 , FMAbf16

1 2 ,
FMAbf16

1 3 , FMAbf16
2 2 {3}, FMAbf16

2 2 {4}, FMAbf16
3 3 {6}, and

FMAbf16
3 3 {9} operators when training object classification and

natural language processing models in Sections 7.1 and 7.2,
respectively. We also consider FP32 and MP, which we
describe in Section 6. Section 7.4 evaluates the performance
improvements of FMAbf16

n m operators with respect to FP32.

7.1 Training Accuracy: Object Classification
Figure 6 shows the MobileNetV2 validation accuracy on CI-
FAR100 when using FP32, MP and seven FMAbf16

n m operators.
The x-axis represents the epoch count while the y-axis shows
the top1 accuracy achieved by the model over the validation
set. FP32, MP, FMAbf16

1 2 and FMAbf16
1 1 obtain accuracies

of 75.04%, 75.16%, 74.85% and 73.92%, respectively. The
FMAbf16

1 1 approach fails to deliver similar accuracy as FP32.
In contrast, FMAbf16

1 2 outperforms FMAbf16
1 1 and reaches

similar accuracy as FP32 and MP. Higher precision operators
like FMAbf16

2 2 {3} or FMAbf16
3 3 {6} reach 74.82% and 75.31%

accuracy, respectively. They obtain similar or better accuracy
than FMAbf16

1 2 .
Figure 7 shows our evaluation results considering the

ResNet18 model using the CIFAR100 dataset. FMAbf16
1 1 dis-

plays similar accuracy as FP32, it is just a 0.45% lower
in validation accuracy. The other approaches also match
FP32 accuracy. These results indicate that not very deep
networks do not require the most accurate FMAbf16

n m versions
to be trained. Figure 8 shows results for ResNet34. In this
case, the FMAbf16

1 1 approach loses almost 1.0% compared
to FP32, while FMAbf16

1 2 outperforms the FP32 approach
by 0.73%. As networks become deeper, a half-precision
(BF16) accumulator fails to deliver state-of-the-art accuracy,
while FMAbf16

n m operators using at least BF16X2 to store
accumulations obtain the same accuracy levels as FP32. This
can be clearly observed when considering the validation

accuracy that FMAbf16
n m approaches achieve when training

the ResNet50 and ResNet101 models, which are displayed
in Figures 9 and 10, respectively. FMAbf16

1 1 accuracy is
significantly lower than FP32.
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Fig. 6: MobilenetV2 Accuracy on CIFAR100 Validation Set.
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Fig. 7: ResNet18 Accuracy on CIFAR100 Validation Set.
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Fig. 8: ResNet34 Accuracy on CIFAR100 Validation Set.

In ResNet50 FMAbf16
1 2 already achieves similar accuracy

when compared to FP32 and MP. In contrast, in ResNet101
FMAbf16

1 2 does have a slight drop with respect to FP32, from
75.93% to 73.75%, respectively. However, the use of FMAbf16

2 2
{3} leads to a training accuracy of 76.00%, which is again on
par with that obtained with FP32.

Additionally, using CIFAR10 we obtain similar results.
We again observe that as networks become deeper, more
precision is needed to obtain the same levels of accuracy as
FP32 or MP. Figure 11 shows the results training ResNet34
using the CIFAR10 dataset, again the trend is that operators
using more accumulator bits obtain better accuracy results.
In this specific case, FMAbf16

1 2 attains a validation accuracy
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Fig. 9: ResNet50 Accuracy on CIFAR100 Validation Set.
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Fig. 10: ResNet101 Accuracy on CIFAR100 Validation Set.

of 93.86%, which is comparable to that achieved by FP32
(94.30%). In ResNet50 with CIFAR10, Figure 12, FMAbf16

1 3
obtains the best accuracy results, 94.10%, being on par with
respect to FP32. However, this operator needs to use 48
bits to save the result, which consumes additional storage
and bandwidth. The FMAbf16

2 2 operator displays the same
levels of accuracy (94.05%) with better trade-offs in terms of
storage and bandwidth requirements. Finally, similar results
are obtained in ResNet101 (Figure 13), where the FMAbf16

1 2
operator gives an accuracy result of 94.31% while FP32
obtains a 94.71%.

Tables 4 and 5 summarize the maximum top1 validation
accuracy achieved by FP32, MP, and the 7 FMAbf16

n m ap-
proaches on the 4 ResNet models and MobileNetV2 for the
CIFAR10 and CIFAR100 datasets, respectively. We observe
that FMAbf16

1 1 fails to deliver the same accuracy as FP32 for
the deepest models, i.e., ResNet34, ResNet50, and ResNet101.
FMAbf16

1 2 also achieves worse accuracy than FP32, particularly
for the case of ResNet101 and the CIFAR100 data set. In
contrast, the two FMAbf16

2 2 variants behave very similarly as
FP32 and MP. The very deep nature of ResNet101 requires an
operator like FMAbf16

2 2 {3}, which increases the representation
accuracy of some FMA input parameters.

Some high-precision FMAbf16
n m operators sometimes

behave worse than others even if they have larger numerical
precision. Audhkhasi et al. [35] explain this effect where noise
can speed-up convergence during backpropagation. This can
be observed in ResNet50 with CIFAR100 where FMAbf16

2 2 {4}
has lower accuracy than FP32 and FMAbf16

1 2 ; however, in
ResNet101 FMAbf16

2 2 {3} achieves the highest accuracy.
In conclusion, FMAbf16

n m operators, which are entirely
based on BF16 FMA units, have the capacity to deliver
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Fig. 11: ResNet34 Accuracy on CIFAR10 Validation Set.
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Fig. 12: ResNet50 Accuracy on CIFAR10 Validation Set.

comparable training accuracy with respect to FP32. In
particular, the 2 FMAbf16

2 2 variants deliver comparable state-
of-the-art accuracy with respect to FP32 while potentially
providing better performance. Section 7.4 evaluates FMAbf16

2 2
{4} in terms of performance.

7.2 Training Accuracy: Natural Language Processing

We consider three natural language processing models in this
section. Figure 14 shows the LSTMx2 model training process
on the PTB data set. The y-axis represents test perplexity
and the x-axis displays epoch count. The FMAbf16

1 1 operator
fails to converge, giving a NaN output after epoch thirteen.
However, the other techniques obtain similar test perplexities
as FP32, which is equal to 83.17. We run an additional
experiment to explain the low accuracy of the FMAbf16

1 1
operator. We compute the portion of FMA operations that
do not suffer from numerical swamping effects at different
epochs during the training of the LSTMx2 model. Figure 15
shows in the y-axis the percentage of FMA operations not
suffering from swamping and in the x-axis the number of
mantissa bits of the FMA accumulator input operand. We
display results considering 4 different epochs. With the
FMAbf16

1 1 format (8 mantissa bits) only around 55% of the
FMAs have no swamping for epochs 10, 12, and 13. This leads
to a catastrophic loss of information after epoch 13, as we see
in the test perplexity metric of Figure 14. However, with an
operator like FMAbf16

1 2 (16 mantissa bits in the accumulator),
85% of FMAs present no swamping at epoch 12, which allows
training to complete successfully as shown before.

The second NLP model we consider is a transformer-
based DNN trained to solve a Neural Machine Translation
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TABLE 4: Accuracy on Validation Set for CIFAR10

Model FP32 MP FMAbf16
1 1 FMAbf16

1 2 FMAbf16
1 3 FMAbf16

2 2 {3} FMAbf16
2 2 {4} FMAbf16

3 3 {6} FMAbf16
3 3 {9}

ResNet18 92.62% 92.99% 92.22% 92.31% 92.01% 92.86% 92.55% 92.16% 92.58%
ResNet34 94.30% 94.28% 92.39% 93.86% 94.00% 92.92% 93.24% 94.60% 94.29%
ResNet50 94.03% 94.00% 90.28% 93.77% 94.10% 93.66% 94.05% 93.07% 93.51%
ResNet101 94.71% 94.73% 91.19% 94.31% 94.30% 93.68% 94.07% 93.49% 93.31%

MobileNetV2 93.58% 93.91% 93.11% 93.93% 94.09% 93.70% 94.06% 93.95% 93.94%

TABLE 5: Accuracy on Validation Set for CIFAR100

Model FP32 MP FMAbf16
1 1 FMAbf16

1 2 FMAbf16
1 3 FMAbf16

2 2 {3} FMAbf16
2 2 {4} FMAbf16

3 3 {6} FMAbf16
3 3 {9}

ResNet18 71.91% 71.89% 71.46% 72.31% 71.30% 71.95% 72.06% 71.67% 71.36%
ResNet34 73.21% 73.86% 72.83% 73.94% 74.59% 72.66% 73.87% 73.68% 73.94%
ResNet50 74.78% 74.25% 69.24% 73.93% 74.24% 72.57% 72.91% 71.32% 72.35%
ResNet101 75.93% 75.65% 67.10% 73.76% 74.65% 76.00% 74.75% 75.19% 74.98%

MobileNetV2 75.04% 75.16% 73.92% 74.85% 75.08% 74.82% 75.04% 75.31% 74.99%
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Fig. 13: ResNet101 Accuracy on CIFAR10 Validation Set.
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Fig. 14: LSTMx2 Test Perplexity on PTB dataset

Task (NMT) using the IWSLT16 dataset. Figure 16 has the
BLEU Score evolution doing the translation from Dutch to
English. For this network, all of the approaches produce
comparable results with respect to FP32. Transformer-based
models display robust numerical properties, as FMAbf16

1 1
produces state-of-the-art results [36].

We consider an additional experiment involving NMT on
Multi30K dataset using a transformer-based model. Again,
all approaches obtain state-of-the-art levels of accuracy.
Figure 17 shows that the models converge reaching the same
training perplexity. We also compute the final BLEU Scores,
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Fig. 15: Swamping analysis on LSTMx2 Model.
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Fig. 16: Transformer BLEU Score on IWSLT16.

which are 35.67, 36.05, 36.33 and 36.08 for FP32, FMAbf16
1 1 ,

FMAbf16
2 2 {4} and FMAbf16

3 3 {6}, respectively. Another exam-
ple that transformer-based models display robust numerical
properties with BF16 low precision operators.

To explain the good performance of FMAbf16
1 1 with

transformer models, we carry out the swamping analysis
on several epochs when training IWSLT16. Figure 18 shows
how FMAbf16

1 1 is enough to represent at least 70% of all
FMA calculations without swamping. In comparison, for the
LSTMx2 network this number is just 55%.

In conclusion, FMAbf16
n m operators match the accuracy of
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Fig. 17: Transformer Training Perplexity on Multi30k.
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Fig. 18: Swamping analysis on Transformer model using
IWSLT16 dataset.

FP32 when training NLP models without the need of FP32
arithmetic. The best suited operators are FMAbf16

1 2 and the
two FMAbf16

2 2 variants, as FMAbf16
1 1 fails to converge on the

LSTMx2 model.

7.3 Training Accuracy: Recommender Systems

Figure 19 shows the training process of the recommender
system introduced in Section 6.3. The y-axis shows the
Normal Discounted Cumulative Gain (NDCG), which is
a metric to quantify the accuracy of the recommender
system. As in most previous models, FMAbf16

1 1 fails to deliver
competitive results. FP32 and MP obtain the same score
of 66.76%, and the rest of the approaches deliver similar
results that are within ±0.2%. The best result is obtained
by FMAbf16

2 2 {4} with 66.95%. We can again conclude that
FMAbf16

n m operators can deliver state-of-the-art accuracy.

7.4 Performance Evaluation

We use the Sniper simulator to evaluate the performance
benefits of the FMAbf16

1 1 , FMAbf16
1 2 , and FMAbf16

2 2 {4} operators.
Table 6 shows the performance gains we have when training
ResNet101 (CIFAR10), the transformer model (Multi30k),
and LSTMx2 (PTB) with respect to an FP32 baseline. The
obtained speed-ups in ResNet101 are 1.35×, 1.34× and 1.28×
for FMAbf16

1 1 , FMAbf16
1 2 , and FMAbf16

2 2 {4} respectively. The
transformer model presents similar results, while LSTMx2
shows a slightly reduction on the performance improvements
due to an instruction mix with a lower FMA instruction
count.
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Fig. 19: Normal Discounted Cumulative Gain on MovieLens
Dataset.

TABLE 6: Performance speed-up estimations using the Sniper
Simulator

Model One Batch
FP32 FMAbf16

1 1 FMAbf16
1 2 FMAbf16

2 2 {4}

ResNet101 1.00× 1.35× 1.34× 1.28×
Transformer (Multi30k) 1.00× 1.37× 1.35× 1.29×

LSTMx2 1.00× 1.31× 1.30× 1.22×

Performance gains stem from the additional throughput
provided by the wider FMA functional units. However,
our micro-architectural simulations consider all executed
instructions, not just FMAs. The larger the percentage of
FMA instructions is with respect to the total instruction
count, the more potential FMAbf16

n m operators have in terms
of performance improvements. For example, the instruction
mix of ResNet101 has 57.6% non-floating point instructions
(i. e. 42.4% are FP), and 39.5% of the total instruction
count are FMAs. The FMAbf16

1 2 operator accelerates FMA
instructions by 2.80× with respect to FP32, which leads
to the reported 1.34× for the whole execution. FMAbf16

n m
provides larger floating-point throughput than FP32 units.
Therefore, memory- or software-level optimizations to feed
these compute units more efficiently could provide additional
benefits.

These results demonstrate that FMAbf16
n m operators

not only achieve state-of-the-art accuracy, but also deliver
substantial performance improvements with respect to FP32
functional units for the same area budgets.

8 RELATED WORK

As the complexity of new DNN models increases [37],
training these models translates into large computational
and environmental costs [10], valued at millions of dollars.
Multiple proposals try to reduce these costs by using reduced
precision strategies in order to take advantage of the favor-
able area and power trade-offs associated with narrower
hardware units [3].

Several studies show that reduced precision tech-
niques [3], [8] diminish computing time and energy consump-
tion when training DNNs. Micikevicius et.al [7] proposes an
MP technique using FP16 on Nvidia GPUs while Kalamkar
et.al [6] use BF16; however, both require FP32 arithmetic
to compute critical sections such as WU and BN layers.
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Additionally, Graphcore [38] presents a hardware accelerator
that also targets MP training with FP16 datatypes. They
also define a new numerical datatype called AI-Float, which
uses stochastic-rounding hardware to keep accuracy across
models. While these methods achieve comparable accuracy
with respect to FP32 training in their evaluations, they rely
on FP32 computations in critical layers and accumulators to
aid training convergence on deep networks.

Sun et.al [8] propose a complex methodology to enable
ultra-low precision training using a 4-bits numerical format.
This proposal delivers worse precision than the state-of-the-
art and requires additional steps, such as: (i) a new GradScale
technique to adjust the gradients to the FP4 range on a
layer-by-layer basis, and (ii) a hybrid approach to change
to FP8 in some cases where FP4 fails to converge. While
the gains can be large, this approach requires significant
hardware and software modifications to existing platforms
and frameworks, and does not avoid the need of 32-bits
accumulations. Moreover, this approach requires an ad-hoc
recipe to train each network, which severely undermines its
generality and applicability.

Fu et.al [9], [10] propose a dynamic precision training
approach that cyclically employs between three and eight
bits of precision. Again, such a methodology requires ad-hoc
hardware and additional steps, such as: (i) to compute the
lower bound of precision at the beginning of the training, and
(ii) a scheduling method used during the training process
to select the numerical formats. This approach requires WU
calculations to use full FP32 FMAs during DNN training, and
all FMA accumulators use FP32. Moreover, these works do
not compare directly against FP32 but to other low precision
schemes as [39], [40].

In contrast, FMAbf16
n m relies on the already well-known

and widely adopted BF16 datatype to offer different precision
tiers. Additionally, applying FMAbf16

n m does not require
additional ad-hoc steps that vary depending on the DNN
model. FMAbf16

n m can be deployed in the context of low-end
computing systems as it just requires a small and cheap BF16
FMA unit. FMAbf16

n m provides different accuracy levels and
FMAbf16

1 2 or FMAbf16
2 2 arithmetic can be used when FMAbf16

1 1
is not enough, thereby lowering training costs with respect
to conventional FP32 arithmetic while delivering state-of-the-
art accuracy.

9 CONCLUSION AND FUTURE WORK

In this paper we propose a new class of FMA opera-
tors, FMAbf16

n m , that rely entirely on BF16 arithmetic but
can achieve FP32 accuracy through compound datatypes
(BF16XN). We analyze the suitability of these BF16XN
datatypes for DNN training and find that they are able to
significantly mitigate the representation errors and swamping
issues commonly observed when using a single BF16 literal.
We then define and characterize seven FMAbf16

n m operators
that feature different levels of accuracy and theoretical
throughput improvements at iso-area with respect to an
FP32 FMA unit.

To evaluate training accuracy of the proposed operators
on a wide range of DNN workloads we develop SERP, a
binary analysis tool that enables FMAbf16

n m emulation and
seamlessly works with PyTorch, Caffe, or Tensorflow. For

all the evaluated networks, the proposed FMAbf16
2 2 {4} or

FMAbf16
1 2 operators obtain comparable FP32 state-of-the-art

accuracy. Demonstrating that it is possible to train DNNs
exclusively with BF16 arithmetic for all layers. In addition,
we evaluate FMAbf16

n m in terms performance speed-ups using
micro-architectural simulations. We show that FMAbf16

1 1 ,
FMAbf16

1 2 , and FMAbf16
2 2 {4} operators achieve speed-ups of

1.35×, 1.34× and 1.28× on ResNet101, respectively, when
compared to FP32 at equivalent area.

As future work we plan to exploit the different FMAbf16
n m

accuracy levels by mapping the different formats to layers
depending on the precision demands of each layer. Finally,
a dynamic approach that switches between two or more
FMAbf16

n m operators can help increase precision while using
the cheapest FMA operator (FMAbf16

1 1 ) for a large portion of
the computations.
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