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PLSM: A Parallelized Liquid State Machine for
Unintentional Action Detection
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Abstract—Reservoir Computing (RC) offers a viable option to deploy AI algorithms on low-end embedded system platforms. Liquid
State Machine (LSM) is a bio-inspired RC model that mimics the cortical microcircuits and uses spiking neural networks (SNN) that can
be directly realized on neuromorphic hardware. In this paper, we present a novel Parallelized LSM (PLSM) architecture that
incorporates spatio-temporal read-out layer and semantic constraints on model output. To the best of our knowledge, such a
formulation has been done for the first time in literature, and it offers a computationally lighter alternative to traditional deep-learning
models. Additionally, we also present a comprehensive algorithm for the implementation of parallelizable SNNs and LSMs that are
GPU-compatible. We implement the PLSM model to classify unintentional/accidental video clips, using the Oops dataset. From the
experimental results on detecting unintentional action in video, it can be observed that our proposed model outperforms a
self-supervised model and a fully supervised traditional deep learning model. All the implemented codes can be found at our repository
https://github.com/anonymoussentience2020/Parallelized LSM for Unintentional Action Recognition.
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1 INTRODUCTION

To enable the deployment of cutting edge AI algorithms
on low-end embedded platforms to solve real-time problems,
a recent surge of interests have been channelised towards the
development of bio-inspired neuromorphic systems [1], [2]. These
systems mimic the neuronal information processing techniques
used in the human brain and allow researchers to realise neural
systems directly in hardware [3]. This offers great potential to
develop computationally light algorithms for real-time problems.
The neural networks used in these systems are also called Spiking
Neural Networks (SNNs). Unlike the non-spiking neurons used
in conventional deep networks like Convolutional Neural Net-
works (CNNs) and Recurrent Neural Networks (RNNs), SNNs
employ neurons that communicate using spikes (mathematically
represented as a Dirac delta function), instead of propagating
analog values. However, the neuromorphic neuronal systems very
often suffers from under-performance when compared to its deep
learning counterparts. This happens especially because the ac-
tivation functions (unit step functions) used in SNNs are non-
differentiable, which obstructs the use of traditional backprop-
agation and gradient descent learning methods. This becomes
even more challenging for complex tasks like activity and action
recognition from video, which are performed seamlessly by fully
supervised traditional deep frameworks. However, conventional
deep learning frameworks (specially RNNs) are computationally
expensive to train and sometimes unstable (vanishing and explod-
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ing gradient problems), which hinder their deployment on low-end
embedded platforms.

Complex task like spatio-temporal data analysis is a growing
field of interest for deep learning researchers, though it has been
explored less compared to image, audio and text analysis. This
is mainly because of the complexity of information processing
required to perform substantially on video data. Tasks like action
[4] and activity recognition [5] from video demand both spatial
and temporal feature extraction, along with the abstraction of high
level information. Further, inferring information like motives or
intentions portrayed in a video adds another level of complexity
and computational resource overhead to the algorithms. This not
only hinders the training of the deep learning models, but also the
deployment of the same on user-end devices [2].

A paradigm of computational models, known as Reservoir
Computing (RC) [6], has also gained substantial attention in
the recent times. The RC algorithms were initially proposed by
two independent research groups as Liquid State Machine (LSM)
[7] and Echo State Network (ESN) [8]. The algorithms try to
bypass the problem of training highly recurrent neural networks
by assuming that even a randomly connected fixed weight RNN
possesses enough computational ability to project the input data
to a very high dimensional sparse latent space so that data from
distinct classes become almost linearly separable. The LSM model
makes use of SNNs whereas the ESN model uses non-spiking
neurons.

The major problem that hinders the growth of reservoir com-
puting algorithms like LSMs, is the inability to simulate spiking
neurons in a parallelizable or GPU-compatible fashion. Therefore,
taking into consideration all the stated problems, we present an
algorithm that parallelizes spiking neurons in general. We find
that the parallelized spiking neurons function identical to the
traditional spiking neurons. The algorithm is further developed to
implement a parallelized LSM. Eventually, we assess the computa-
tional capability of bio-inspired neuromorphic SNNs, based on the
parallelized LSM model, to predict unintentional actions in videos.
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In contrast to object recognition tasks in videos [9], predicting
intention incorporates a harder challenge of understanding com-
plex dynamics of video frame contents and temporal correlations
among them. We use the recently released Oops dataset [10],
which contains unconstrained in-the-wild fail/accidental videos.
We devise a novel LSM architecture, the Parallelized Liquid State
Machine (PLSM), for this specific task. Experiments show that
our proposed PLSM model outperforms the state-of-the-art self-
supervised and fully supervised model. However, we recognize the
parallelization of spiking neurons/LSMs as the primary motive and
contribution of this work.

The major contributions of this work are :

1) Implementation of parallelizable spiking neural networks
that are GPU-compatible. To the best of our knowledge,
such an implementation is done for the first time in
literature.

2) Construction of a novel LSM architecture, the PLSM
model (using the developed parallelized spiking neurons
formulation), that performs better than state-of-the-art
self-supervised and fully supervised deep learning model
at predicting unintentional action in video.

3) Use of a novel convolutional read-out layer for the LSM
that incorporates both spatial and temporal information.

4) Design of a novel masking technique to incorporate
temporal/semantic structure in the predicted output of the
LSM model.

The remainder of this paper is organized as follows: Section
2 presents an insight into the existing literature of video analysis,
the Oops dataset and reservoir computing. In Section 3, we discuss
the proposed methodology in detail. The dataset description and
implementation details are described under Sections 4.1 and 4.2.
In Section 4.3, we present the quantitative results obtained by our
proposed model, followed by an ablation study in Section 4.4.
Finally, Section 5 concludes the paper.

2 RELATED WORK

Video analysis and action recognition: Our primary goal of
predicting accidental/unintentional actions in video is a subset of
a larger domain of video analysis. Object recognition from videos
[9] had only been the beginning in this field. Intrinsically, objects
have a nature of lucid persistence in form across video frames.
However, recognizing action, that incorporates dynamic changes
in form of content in a video, is a more challenging task. In earlier
times, classifying action from video [11], [12], [13], [14], [15]
made use of feature descriptors for given video frames. However,
with the advent of deep CNNs, trainable features became the trend.
Consequently, informative feature representation techniques like
visual information fusion [16], [17], 3D CNNs [18] and bilateral
CNNs [19] became the state-of-the-art. Further, researchers have
also proposed LSTM on visual features extracted by CNN [20]
and combining motion sensors with visual features [21].
The Oops Dataset: Recognizing accidental/unintentional actions
in videos is a very recent sub-category of video analysis. With the
release of the Oops dataset [10], a benchmark had been created
to explore this direction. Further, this dataset contains in-the-wild
videos, which are captured by amateur videographers in the real
world. Exploring methodologies that would work in these scenar-
ios would greatly help to develop models that could be deployed
in real-life and real-time situations. In the baseline work [10], the

authors explore the potential of self-supervised feature extractions
in detail, namely video speed, video context and event order. Using
these features, three different tasks were addressed: classification,
localization and anticipation. They achieve an accuracy of 61.6%,
65.3% and 56.7% in the respective tasks.
Reservoir Computing: Recent advancements in deep learning,
which are befitting for high-end computational platforms, often
suffer from deployment problems when considering low-end em-
bedded platforms. Reservoir computing (RC) [6] addresses this
issue by bypassing the need for training highly recurrent neural
networks or reservoirs. Liquid State Machine (LSM) [7] (uses
spiking neurons) and Echo State Networks (ESN) [8] (uses non-
spiking neurons) are the two primary algorithms of RC. Recently,
Convolutional Drift Networks (CDN) [22] were proposed to per-
form power and computational resource efficient video activity
recognition. CDNs used CNNs to extract features from video
frames and an ESN was used as the reservoir that captured
the temporal dynamics. Additionally, [2] presented a hierarchical
deep-LSM model along with attention models to solve the problem
of activity recognition from egocentric video. Apart from videos,
several works have used ESN and LSM for image processing [23],
speech recognition [24], and even for reinforcement learning [25].
However, LSMs offer a greater opportunity than ESNs, because
of the recent developments of neuromorphic hardware [1]. These
systems implement spiking neural networks directly in hardware,
minimizing the simulation cost immensely.

In this work, we leverage the inherent potential of LSMs,
modify the general architecture to our advantage and present a
viable solution to spatio-temporal information processing.

3 PROPOSED METHODOLOGY

To elucidate the scheme proposed in this work, we present the
details of the proposed scheme in hierarchically. Firstly, we
describe the neuronal dynamics of the spiking neurons, and the
GPU-compatible parallelized version of the equations in Section
3.1. Secondly, we describe the architecture and dynamics of the
PLSM model proposed in this work in Section 3.2. The complete
architecture of the proposed PLSM model is visualized in Fig. 1.

3.1 Spiking Neurons
We use the Leaky-Integrate-and-Fire (LIF) [26] model to im-
plement the dynamics of spiking neurons in our work, which is
described by the following equation:

τm
dV (t)

dt
= −(V (t)−Vrest) + RmI (t) (1)

where V (t) is the membrane potential of a spiking neuron at
time t, and Vrest is the resting membrane potential that V (t)
decays to, at a decay rate governed by the time constant τm.
The membrane resistance is defined as Rm and I(t) is the
instantaneous input current. When the neuron does not receive an
input current (I(t) = 0), the membrane potential decays at a rate
proportional to its instantaneous potential, until it settles at Vrest.
However, when V (t) reaches a threshold potential Vth (which is
always greater than Vrest) on receiving successive spikes in a short
time window, the neuron spikes by emitting an output voltage of
magnitude Vspike, as expressed in Eq. 2:

V (t) =

{
Vspike, if V (t) ≥ Vth
V (t), otherwise

(2)
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Fig. 1. The PLSM architecture: Schematic diagram of the complete PLSM model. The LSM cube visualized in the diagram includes the input layer
of the LSM as well.

Algorithm 1: Generic implementation of a LIF neuron’s
state update routine

Input: Instantaneous current I(t)
Output: Membrane potential at time = t
if refraction is False then

V (t) = V (t− 1) +
[
−V (t−1)+Vrest+RmI(t)

τm

]
∗∆t

if V (t) ≥ Vth then
V (t) = Vspike
refraction = True
counter = τref

else
V (t) = Vrest
counter = counter - 1
if counter is 0 then

refraction = False

The activation function (Eq. 2) is conditional and non-
differentiable in nature, due to which the traditional backpropaga-
tion based learning algorithm (which involves chained differentia-
tion) cannot be deployed in spiking neural networks. Additionally,
once a neuron spikes, it enters a refractory period for τref
timesteps, within which it’s membrane potential stays constant
at Vrest. Generally, for the purpose of numerical simulations, Eqs.
1 and 2 are implemented using classical conditional statements, as
described in algorithm 1.

Note that, the membrane potential update routine, presented
in Algorithm 1, is presented for a single timestep (∆t) and
for a single spiking neuron. However, for implementing large
networks that include thousands of spiking neurons, such a
generic implementation makes the process of network inference
highly iterative and time consuming. To tackle this problem, we
reformulate the neuron state update algorithm (Algorithm 1) in
terms of vector/matrix operations and data type conversions. In
this approach, for a layer containing L spiking LIF neurons, we
compute a L-dimensional membrane voltage vector V(t) for the

current timestep as follows:

∆V(t) =
−V(t)⊕Vrest ⊕ (I(t)⊗ Rm)

τm
(3)

V(t) = V(t)⊕ (∆V(t)⊗∆t) (4)

where ⊕ and ⊗ represent element-wise addition and multipli-
cation of a scaler with each element of a vector, respectively.
Vrest is an L-dimensional vector where all elements are Vrest,
and I(t) is the input current vector. To carry the information about
refracting neurons across timesteps, we use a refraction counter
vector Rc(t). Further, we compute a binary vector Rf , which
represents whether a neuron is in refractive state, as follows:

Rf = int(bool(Rc(t)) (5)

where,

bool(x ) =

{
True, if x 6= 0

False, if x = 0
(6)

int(x ) =

{
0, if x = False
1, if x = True

. (7)

The bool(·) function plays an instrumental role here in detecting
zero-crossings. Depending on the states computed and stored
in Rf , we update the membrane voltages using the following
equation.

V(t) = [(1 −Rf )� V(t)]⊕ (Rf �Vrest), (8)

where, � represents element-wise multiplication. The event S,
wherein a neuron’s membrane potential (V(t)) crosses the thresh-
old magnitude Vth, is detected using Eq. 9, where [0]L represents
a L-dimensional zero vector.

S = int(bool([max ([0]L, [V(t)	Vth])])), (9)

where 	 and Vth represent element-wise subtraction and a L-
dimensional vector where all elements are Vth. A vector N(t)
is computed containing the instantaneous output of the entire
layer using Eq. 10. Consequently, any element in N(t) will either
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Fig. 2. Parallelized LIF layer: Using the Eqs. 3-13, a parallelized LIF
layer containing L neurons can be represented in a modular fashion.

be 0 or a non-zero scalar of magnitude Vspike. Therefore, a L-
dimensional vector Vspike, whose all elements are Vspike, is used
in the computation of N(t).

N(t) = S�Vspike. (10)

After each timestep, the refraction counter vector Rc(t) is decre-
mented for the refracting neurons using Eq. 11.

Rc(t + 1 ) = Rc(t)	Rf . (11)

Finally, at the end of each timestep, V(t + 1) and Rc(t + 1) is
calculated for the next timestep using Eqs. 12 and 13. Neurons that
have spiked in the current timestep update Rc(t) with a magnitude
of τref , representing a transition from normal to refractory mode.
After τref timesteps, these neurons exit the refractory period.

V(t + 1 ) = ((1 − S)�V(t))⊕N(t). (12)

Rc(t + 1 ) = (S⊗ τref )⊕Rc(t + 1 ). (13)

Note that, in the above formulations, all the vectors are L-
dimensional, considering a single LIF layer processing a single
spike-train of dimension L×TST , where TST is the temporal
length of the spike train. However, it can be easily scaled up
to batch-wise prediction mode by considering L×B dimensional
matrices instead, for all the state vectors, where B is the input
batch size (considering the parallel processing of B spike-trains).
Fig. 2 presents a modular representation of Eqs. 3-13 for a LIF
layer containing L neurons.

3.2 Liquid State Machine (LSM)
Initially proposed by [7], an LSM is composed of three basic
parts: i) Input Layer, ii) Liquid Layer, and iii) Read-out Layer.
The input layer is composed of a set of neurons that receives
spike trains over time. The received spikes are then propagated to
the liquid layer through a sparsely connected fixed weight matrix.
The weight matrix is generated during the initialization phase of
the LSM. Inside the liquid layer, the neurons are primarily divided
as: primary neurons and auxiliary neurons, based upon whether
a neuron receives input from input layer [2]. They are further
classified as excitatory (E) and inihibitory (I) neurons, based
upon whether their outputs influence other neurons positively or
negatively. Only the primary excitatory neurons receive direct
input from the input layer of the LSM. The input layer to liquid

layer weight matrix (WLI ) is initialized in a way such that each
primary excitatory neuron receives input from a sparse number
of random input layer neurons. This scheme allows a uniform
excitation of the liquid layer’s excitatory neurons by the input
spike train.

The liquid layer plays the most important role in an LSM. It
is composed of a set of neurons (LIF neurons in this work), which
are sparsely connected to each other following some initialization
scheme. We maintain a ratio of 4:1 excitatory to inhibitory neuron
ratio in the liquid layer, following [2], [25]. A liquid layer weight
matrix (WL) determines the interconnections among the liquid
layer neurons. WL forms the recurrence within the liquid layer,
and it is kept fixed during the entire experiment. In the initializa-
tion phase of the LSM, the probability that any two neurons ni
and nj will have a connection is given by the following equation:

P(wi,j 6= 0) = Ce(
−D(i,j)

λ )2 (14)

where C determines the maximum probability of a connection
(based upon the type of neurons (E or I) and the direction of
connection), λ determines how sharply the probability decreases
with distance, and D(·) computes the Euclidean distance between
the positions of neurons ni and nj . Finally, in the event of
a successful connection, the absolute weight of the connection
is decided based upon the type of neurons and direction of
connection. The values of C, λ and connection weights used in
this work are mentioned in the supplementary material, along with
other LSM and LIF neuron parameters. Further, we also use a
parameter Wscale to scale the overall weight distribution of the
input and liquid weight matrix, since the distribution of synaptic
strengths plays an important role in determining the dynamics of
the LSM [27].

The read-out layer presents the final output of a LSM. A
fully connected weight matrix (WRL) maps the activation of all
excitatory neurons in the liquid layer to the read-out layer neurons.
However, in a generic LSM model, the activation of the liquid
layer is compressed temporally by computing the mean spike
count for each neuron. This yields a 1D vector, which is then
transformed by WRL. Depending on the type of the problem at
hand, one can choose the activation function for the read-out layer
neurons. Finally, to train a LSM, traditional backpropagation can
be used to optimize the weights of WRL.

The details of a LSM discussed so far considers a generic
model. However, in this work we incorporate some modifications
which aid our specific purpose of detecting unintentional actions
in video. These are discussed in the following sub-sections.

3.2.1 Synaptic delay
In the liquid layer of a LSM, the computation at each iteration can
be expressed as,

IL(t) = [WL ∗N(t− 1)] + [WLI ∗ II(t)], (15)

where, IL(t) is the final input current at time t for all the neurons
in the liquid layer, N(t − 1) is the previous state of the liquid
layer and II(t) is the instantaneous input current that arrived
from the input layer. IL(t) is then used to update the state of the
liquid layer neurons using the Eq. 3-13. Therefore, in this generic
implementation, it is considered that when a spike originates in
any liquid layer neuron (say ni), it reaches all other post-synaptic
neurons (neurons that ni connects to) exactly in the next iteration.
However, considering a physical environment wherein the liquid
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Fig. 3. LSM state update: The LSM state update routine mentioned in algorithm 2 is visualized in this schematic diagram. I(t) denotes the input
current and N(t) represents the liquid layer’s state for each timestep.

Algorithm 2: LSM update routine with delayed synaptic
connections

Input: Input spike-train of length T
Output: Activation of liquid layer
for t→ T do

Nprev
s = WL �Buffer.pop()

N(t− 1) =
∑
Nprev
s , across columns

IL(t) = N(t− 1) + [WLI ∗ II(t)]
N(t) = update(IL(t))
// Stack N(t) L times across columns

N(t) = [NT (t), NT (t), ..., NT (t)]
Buffer.push(N(t))
activation[t] = N(t)

layer neurons reside, it is trivial that the time required by a signal
to travel different lengths of connections will be different (since ni
is at different distances from different post-synaptic neurons). This
brings in the concept of connections with delay [28]. Algorithm
2 describes the state update routine for a liquid layer containing
L spiking neurons that incorporates synaptic delay, and Fig. 3
visualizes the algorithm schematically.

In algorithm 2, the update(·) function represents the state
update of the liquid layer LIF neurons (using Eq. 3-13), and
activation[·] contains the final output of the liquid layer. The
foundation of algorithm 2 is based on the use of a Queue data
structure, that we call the Buffer. The queue is essentially
3D, wherein the data elements are 2-dimensional (L×L neuronal
states), and the third axis represents time. After each timestep,
the elements within the queue are shifted one place along the time
axis, representing the temporal flow of spikes through inter-neuron
connections. A signal element si,j in N(t) represents a spike
transmitted from neuron nj to ni. However, the timestep at which
si,j reaches ni is determined by the distance between ni and nj
and this is reflected in the length of the queue that carries si,j
along the time axis specifically. Since distance between any two
neurons is unique, the queue length (and therefore the delay) for
each connection is also unique. This yields an uneven pop surface.
Therefore, to implement a pop operation of the queue, we use a
masking technique. The mask is also a 3D matrix of dimension

L×L×Tmax, same as the dimension of the queue/Buffer. The
mask and the pop operation using mask can be defined as:

Mask(i , j , t) =

{
1, if D(i, j) = t

0, otherwise
(16)

pE (t) = Mask � Buffer(t), (17)

where D(·) computes the Euclidean distance between neuron ni
and nj , and pE(t) is the popped element/matrix at time t. Also,
we consider that a signal takes one timestep to traverse a unit
distance. The technique of using a Queue and a masking-pop
operation enables us to sample spikes in a parallelized fashion
from each and every synapse, wherein the signals have traversed
different lengths/suffered different delays.

3.2.2 Spatio-temporal read-out

In contrast to generic LSM models, where spatio-temporal ac-
tivation of the liquid layer is compressed to obtain a 1D mean
spike count vector followed by a fully-connected network for
the read-out action, we devise a 3D CNN read-out layer. Firstly,
we preserve the spatial information of neurons by reshaping the
obtained 1D liquid layer state vectors back to its original 3D cubic
form. This is because we hypothesize that the spatial arrangement
of neurons carry significant information since connections in the
liquid layer are initialized using a spatial probability function
(Eq.14). Secondly, we do not compress the activations along the
time axis completely. Instead, we perform mean over the liquid
layer state vectors for every W timesteps, such that T/W is an
integer, where T is the total number of timesteps for which the
liquid layer activation is obtained. This creates a richer represen-
tation of the liquid layer’s activation over space and time.

3.2.3 Semantic masking

Considering the classification problem (discussed later in Section
4.2) addressed in this work, the LSM model predicts whether a
given clip of video is either pre-accidental (class 0), transitional
(class 1) or post-accidental (class 2). To preserve temporal infor-
mation over an entire video, we use the LSM in a sliding window
fashion. Therefore, the LSM predicts a class label for each clip,
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depending upon only the present and past inputs. This generally
yields an output of the following form for a given video input:

Output = [2 , 1 , 1 , 0 , 2 , 0 , ..., 1 , 2 ] (18)

However, we observe that the model prediction must follow a
semantic constrain in which a post-accidental label (class 2)
should not be predicted before a transitional label (class 1) is
predicted, and same for class 1 and 0. This inherent temporal
structure of the output can be described by defining a semantically
correct model output as:

Output = [0 , 0 , ..., 0 , 1 , 1 , ..., 1 , 2 , 2 , ..., 2 ] (19)

Therefore, to enforce a semantic constrain on the LSM’s output,
we apply a deterministic masking technique that incorporates
previous outputs of the model. The mask is defined as:

Masksem =


[1, 1, 0], if last prediction = 0

[0, 1, 1], if last prediction = 1

[0, 0, 1], if last prediction = 2

(20)

Finally, to obtain the LSM model’s output, we perform:

Output = Masksem � PCNN (21)

where PCNN is the probability distribution output of the convo-
lutional read-out layer over the 3 classes.

4 EXPERIMENTS

4.1 Dataset
The Oops dataset [10] used in this work is a collection of
videos that contains unintentional human actions. Analysis of
the dataset reveals that it contains 20,723 videos, in which
6170 are labelled videos for training, 4791 are labelled videos
video for validation and the remaining are unlabeled videos.
The dataset contains in-the-wild videos that comprises of diverse
actions, environments and intentions. Videos of length greater
than 30 seconds and lesser than 3 seconds were not considered
in the experiments, since they often contain out-of-context or
no-context information [10]. A more vivid description of the
dataset statistics is presented in [10] and the dataset is available at
https://oops.cs.columbia.edu/data/#download.

The primary motive of this work is to present the parallelizable
version of spiking neurons, that enable the simulation of large
spiking neuron reservoirs like liquid state machine. The proposed
PLSM architecture validates our parallelized framework on the
Oops dataset, specifically. Therefore, to verify the effectiveness of
PLSM across datasets, we performed an experiment on a subset
of HMDB-51 datatset (containing in-the-wild videos of human
actions), comprising of 5 distinct action classes. We choose to
prove the effectiveness of the proposed parallelizable SNN model
for benchmark action recognition tasks. Therefore, for a fair
comparison of the performance, we keep the number of classes
selected from HMDB-51 dataset close to the number of classes in
Oops dataset.

4.2 Implementation Details
The problem is formulated in a way such that each video is divided
into C overlapping clips (clip ∈ RF×W×H×3). Following the
baseline work [10], we maintain a clip length F as 16 frames and
an overlap of 12 frames between any two consecutive clips. This

was done to ensure that the number of predicted labels matches the
number of annotated labels for any video. Each frame of every clip
was resized to 112× 112× 3, followed by Z-score normalization.
Eventually, we use a DenseNet-161 CNN model, pre-trained on
the ImageNet dataset, to extract features from the clips frame-
wise. Alternatively, we also experimented with ResNet-50, pre-
trained on ImageNet dataset, as the primary feature extractor.
However, DenseNet-161 was chosen as the final backbone since
it yielded better validation accuracy (refer Table 3). To reduce the
2208-dimensional feature vector (from DenseNet-161) to a 512
dimensions, we train another auto-encoder. The yielded feature
vectors are then spike encoded using Poisson’s spike encoding
scheme [29].

TABLE 1
Initialization values for LSM and LIF neuron hyperparameters

(I: Inhibitory neurons, E: Excitatory neurons)

LSM and LIF neuron parameters Values

LSM cube dimensions 10×10×10 neurons
C [EE, EI, II, IE] [0.6, 1, 0.2, 0.8]

Λ 6
Synaptic weight [EE, EI, II, IE] [3, 2, -1, -4]

Wscale 0.01
Input layer size 512
E:I neuron ratio 0.8

Input feature selection density 0.1
Primary to auxiliary ratio 0.5

Spike encoding window size (τenc) 50
Vth 0.1
Vrest 0.0
Vspike 1.0
τm 5.0
Rm 10.0
τref 1.0

We explicitly use the LSM in a sequential manner over each
video, in contrast to the baseline work. In [10], the dataset has
been broken down into discrete clips of 16 frames, each associated
with its respective label. The models presented are then trained on
these collection of discrete clips, which are presented in a random
order. However, in this work, we hypothesize that training a model
in a sequential fashion over video helps to retain information
from preceding clips. This increases the richness of the temporal
information extracted by the LSM over multiple clips. Also, such
a formulation provides the LSM with enough time to uniformly
excite its liquid layer neurons over time. Therefore, the state
vectors of the LSM are reset only after each video, and not after
every clip. Note that, for the HMDB-51 subset dataset, we do
not use the semantic masking module, since it does not require
sequential class labelling.

Finally, we use a categorical cross-entropy loss function (Eq.
22), along with learning-rate schedular, to optimize the weights
of the convolutional read-out layer and train the network for 500
epochs. The performance of the PLSM model proposed in our
work is subject to careful initialization of network parameters.
We provide the specific values of the LSM and LIF neuron
hyperparameters used in our work. Using the specified values
mentioned in Table 1 shall ensure smooth reproducibility of the
work.

https://oops.cs.columbia.edu/data/#download
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TABLE 2
Classification Accuracy: We compare the validation accuracy

obtained by our PLSM model and the baselines presented in [10] for
the Oops dataset.

Method Accuracy

Baseline [10]

Kinetics Supervision 64.0 %
Video Speed 61.6 %

Video Context 60.3 %
Video Sorting 60.2 %

Motion Magnitude 44.0 %

Ours PLSM 66.3 %

L(y , ŷ) = −
n∑

i=0

yi logŷ . (22)

4.3 Performance Comparison

The primary goal of this work is to: i) validate the parallelized
formulation of spiking neurons to simulate large spiking reser-
voirs; ii) assess the potential of spike-based bio-inspired reservoir
computing algorithm, namely LSM, to solve complex problems in
real-life and real-time scenarios like detecting unintentional action
in realistic video. In this perspective, we compare our results
obtained using the PLSM model with the baselines presented in
[10].

Table 2 presents our result obtained on the Oops valida-
tion dataset. The self-supervised methods proposed in [10] use
a Resnet3D model (pre-trained on Kinetics action recognition
dataset) to extract features from video clips. These features are
then used to train a self-supervised model to predict video speed,
context and order. Later, these models are used as feature extrac-
tors to classify clips using a linear classifer. On the contrary, our
PLSM model extracts features using a DenseNet-161 model (pre-
trained on ImageNet database) and the liquid layer of the PLSM.
Therefore, only the convolutional read-out layer is imposed to
training, reducing training cost. Additionally, we also present a
result from [10], which is obtained using simple motion detec-
tion (Motion Magnitude). For this, histogram of optical flow is
computed over the videos. A multi-layer perceptron model is then
trained on these features. Finally, we mention the result obtained
by a fully supervised model (Kinetics Supervision) pre-trained on
the full annotated Kinetics action recognition dataset.

Experiments prove that our parallelized formulation of spiking
neurons is functional and the PLSM model outperforms all the
mentioned methodologies in terms of validation accuracy. We
hypothesize that the PLSM’s superior performance is obtained
mainly because: i) we use the model in a sequential fashion over an
entire video, retaining temporal information from previous clips,
and ii) we use semantic masking to constrain the model’s output
to predict temporally/semantically correct labels. This enables the
use of prior knowledge about the output sequence. Moreover,
the dynamics of a LSM is well suited for modelling complex
spatio-temporal data [2], [25]. However, using the LSM states as
extracted features need a fine-grain read-out layer which acts as
an interpreter. The 3D CNN read-out layer, proposed in this work,
serves this purpose and enhances the overall performance of the
PLSM model.

Fig. 4. Comparative results of parallelization: Our parallelized LIF
neurons outperform generic LIF neurons by several orders of magnitude
for a single layer with increasing neurons (left). We also implement a
layer of 500 LIF neurons to evaluate the performance in batch-mode of
different sizes (BS) (right).

Also, the PLSM achieves a validation accuracy of 62.5% on
the HMDB-51 subset dataset. This proves that the parallelized
spiking neurons, constituting the PLSM reservoir, function appro-
priately across datasets.

4.4 Ablation Study

The results obtained by our PLSM model on the Oops dataset are
highly subject to specific module selection and network hyper-
parameter selections. Table 3 presents the ablation of different
modules used in our overall architecture. Additionally, we exper-
iment with different hyper-parameters of significant parts of the
architecture to justify our proposed model.

Parallelization: We evaluate the significant leverage obtained
using parallelized spiking neural networks in contrast to generic
implementation. Fig. 4 (left) outlines the significant gain in pro-
cessing speed for a layer of LIF spiking neurons. As mentioned in
Section 3.1, our implementation of parallelized SNN layers can
be easily upgraded to perform in batch-wise prediction mode.
This is achieved by adding another dimension to all the state
vectors of the SNN layer. The gain in processing speed while
using batch-wise prediction mode for a layer of 500 LIF neurons
is plotted in Fig. 4 (right). The results are presented for a input
spike train having 100 timesteps. It is clear from the plots that
with increasing number of neurons/batch-size, our parallelized
SNN implementation outperforms the generic implementation
algorithm with a huge margin. It is because of this computational
speed that our PLSM model was able to train on a considerably
big dataset like Oops in tractable amount of time.

Temporal precision: We use a 3D convolutional read-out
layer to classify clips from features extracted by the PLSM’s liquid
layer. Conventionally, the features obtained from the liquid layer
are averaged over the time axis to obtain a mean spike count.
However, the use of 3D CNN enables us to use the temporally
distributed features by stacking them across the channel axis of
the CNN’s input. Fig. 5 (left) shows the variation in classification
accuracy with respect to different values of T/W (refer Section
3.2.2). It is observed that preserving features across time enhances
the overall performance.

3D CNN output channel size: Our convolutional read-out
layer consists of a single 3D convolutional layer, followed by
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TABLE 3
Architectural ablation: Ablation of different modules using 7 different setups for the Oops dataset.

Modules 1st 2nd 3rd 4th 5th 6th 7th

Backbone : DenseNet-161 – – X – X – X

Backbone : ResNet-50 X X – X – X –
Auto-Encoder for dimension reduction – X X X X X X

Using mean spike count as reservoir activation X X X – – – –
3D-CNN on spatio-temporal activation – – – X X X X

Semantic Masking – – – – – X X

Validation accuracy 39.3% 45.7% 49.5% 56.2% 57.6% 64.3% 66.3%

Fig. 5. Temporal precision and Cout: We find that preserving features
across time increases PLSM’s performance (left). For T/W=100, exper-
iments show that Cout=64 provides the optimum result (right).

dropout, 3D max-pooling and a fully connected layer. We ex-
perimented with multiple cascaded 3D convolutional layers, but
increasing the number of trainable parameters caused overfitting.
Therefore, a single 3D convolutional layer was used, which learns
Cout number of kernels to detect features from 3D liquid layer
state vectors. For an ablation, we evaluate different values for
Cout and present our result in Fig. 5 (right). We find that the best
result is obtained for Cout = 64.

Semantic Masking: Lastly, we evaluate the semantic masking
module added at the end of the 3D CNN read-out layer, which
plays an instrumental role. A classification accuracy of 53.3%
is achieved without the masking. This proves that the masking
improves the PLSM model’s performance by almost 13%.

5 CONCLUSION

This work investigates the potential of bio-inspired spike-based
reservoir computing algorithm, namely LSM, as an alternative
to traditional deep learning models for achieving computationally
light deployment of AI algorithms on low-end embedded systems.
A novel LSM architecture, the PLSM, is proposed for this purpose,
that achieves significant results on a task of unintentional action
detection in realistic videos. We also provide a comprehensive for-
mulation of implementing SNNs and LSMs in a GPU-compatible
parallelized fashion. Even though there remains further scope for
improvement of performance, this work paves the way towards
future development of neuromorphic systems.

REFERENCES

[1] Steve B Furber, Francesco Galluppi, Steve Temple, and Luis A Plana.
The spinnaker project. Proceedings of the IEEE, 102(5):652–665, 2014.
1, 2

[2] Nicholas Soures and Dhireesha Kudithipudi. Deep liquid state machines
with neural plasticity for video activity recognition. Frontiers in neuro-
science, 13:686, 2019. 1, 2, 4, 7

[3] Johannes Schemmel, Andreas Grubl, Karlheinz Meier, and Eilif Mueller.
Implementing synaptic plasticity in a vlsi spiking neural network model.
In The 2006 IEEE International Joint Conference on Neural Network
Proceedings, pages 1–6. IEEE, 2006. 1

[4] Amin Ullah, Jamil Ahmad, Khan Muhammad, Muhammad Sajjad, and
Sung Wook Baik. Action recognition in video sequences using deep
bi-directional lstm with cnn features. IEEE Access, 6:1155–1166, 2017.
1

[5] Neil Robertson and Ian Reid. A general method for human activity
recognition in video. Computer Vision and Image Understanding, 104(2-
3):232–248, 2006. 1
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