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Abstract—Recent advances in memory technology have enabled near-data processing (NDP) to tackle main memory bottlenecks in
modern systems. Prior works partition applications into segments (e.g., instructions, loops, functions) and execute memory-bound
segments of the applications on NDP computation units, while mapping the cache-friendly application segments to host CPU cores
that access a deeper cache hierarchy. Partitioning applications between NDP and host cores causes inter-segment data movement
overhead, which is the overhead from moving data generated from one segment and used in the consecutive segments. This overhead
can be large if the segments map to cores in different parts of the system (i.e., host and NDP). Prior works take two approaches to the
inter-segment data movement overhead when partitioning applications between NDP and host cores. The first class of works maps
segments to NDP or host cores based on the properties of each segment, neglecting the performance impact of the inter-segment data
movement. Such partitioning techniques suffer from inter-segment data movement overhead. The second class of works maps
segments to host or NDP cores based on the overall memory bandwidth savings of each segment (which depends on the memory
bandwidth savings within each segment and the inter-segment data movement overhead between other segments). These works do
not offload each segment to the best-fitting core if they incur high inter-segment data movement overhead. Therefore these works miss
some of the potential NDP performance benefits. We show that mapping each segment (here basic block) to its best-fitting core based
on the properties of each segment, assuming no inter-segment data movement, can provide substantial performance benefits.
However, we show that the inter-segment data movement reduces this benefit significantly.
To this end, we introduce ALP, a new programmer-transparent technique to leverage the performance benefits of NDP by alleviating the
performance impact of inter-segment data movement between host and memory and enabling efficient partitioning of applications
between host and NDP cores. ALP alleviates the inter-segment data movement overhead by proactively and accurately transferring the
required data between the segments mapped on host and NDP cores. This is based on the key observation that the instructions that
generate the inter-segment data stay the same across different executions of a program on different input sets. ALP uses a compiler
pass to identify these instructions and uses specialized hardware support to transfer data between the host and NDP cores at runtime.
Using both the compiler and runtime information, ALP efficiently maps application segments to either host or NDP cores considering 1)
the properties of each segment, 2) the inter-segment data movement overhead between different segments, and 3) whether this
inter-segment data movement overhead can be alleviated proactively and in a timely manner. We evaluate ALP across a wide range of
workloads and show on average 54.3% and 45.4% speedup compared to executing the application only on the host CPU or only the
NDP cores, respectively.

Index Terms—Near-data processing, inter-segment data movement, application partitioning.
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1 INTRODUCTION

N EAR data processing (NDP) paradigm improves over-
all system performance by alleviating the main mem-

ory bottlenecks [1]–[67]. While the cores in modern sys-
tems are provided with deep and large cache hierarchies,
NDP computation units suffer from lack of such an ad-
vantage due to their limited area and thermal budget [9],
[68], [69]. Accordingly, prior works partition applications
into segments (e.g., instructions, loops, functions) and ex-
ecute memory-bound segments of the applications on NDP
computation units, and map the cache-friendly application
segments to host CPU cores that access a deeper cache
hierarchy.
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Gómez Luna, and Onur Mutlu are with the Department of Information
Technology and Electrical Engineering (D-ITET), ETH Zurich, 8092
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If not done properly, partitioning an application’s code
into NDP-friendly and CPU-friendly segments can result
in a large volume of inter-segment data movement (i.e.,
data generated from one segment and used in other seg-
ments). When the segments map to the computation units
on host and NDP systems, the data movement between the
segments, in turn, translates to data movement overhead
between the host and the NDP units and amortizes parts of
the performance benefits of NDP. Prior works take two ap-
proaches to inter-segment data movement when partition-
ing applications between the host and NDP computation
units. The first class of works maps segments to the host or
the NDP computation units based on the characteristics of
each segment by considering the memory access behavior of
each segment individually [20], [70], [71]. Such works offload
the memory-bound application segments to the NDP com-
putation units, and keep the more cache-friendly segments
in the host CPU cores. Since these approaches consider the
memory access behavior of each segment individually and
isolated from the other segments, they suffer from inter-
segment data movement overhead between the host cores
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and NDP computation units. The second class of works
maps application segments to the host or NDP computation
units based on the overall memory bandwidth savings of
each segment, which depends on the memory bandwidth
savings within each segment and the inter-segment data
movement overhead between other segments [21], [72], [73].
These works do not offload each segment to the best-
fitting core if they incur high inter-segment data movement
overhead. Therefore, these works suffer from missing some
of the potential NDP performance benefits.

To our knowledge, no prior work alleviates the cost of
inter-segment data movement. We show that while map-
ping each segment to its best fitting computation unit1 in
the host or the NDP side provides significant benefits (on
average 26.8% and up to 44.1% better than execution only
on the host or NDP computation units), the inter-segment
data movement overhead significantly reduces this potential
and can even lead to slowdown compared to running the
application only on the host computation units (on average
9.5% and up to 56.3% slower).

Our goal in this work is to alleviate the impact of
inter-segment data movement to enable efficient parti-
tioning of applications between NDP and host computa-
tion units. To this end, we propose ALP, a programmer-
transparent hardware-software cooperative mechanism that
Alleviates data movement between different segments when
Partitioning applications between NDP and host computa-
tion units. The key idea of ALP is to alleviate the inter-
segment data movement overhead by proactively and accu-
rately transferring the required data between the segments
that are mapped to the host and NDP computation units.
This is based on the key observation that the instructions
that generate the inter-segment data remain the same across
different executions of a program on different input sets [74].

Quantifying and alleviating the overhead of inter-
segment data movement while partitioning applications
between the NDP and host units is challenging since they
require 1) identifying the inter-segment data that would
cause performance overhead during partitioning, 2) trans-
ferring the inter-segment data to the unit that will execute
the next code segment before the next segment starts, and
3) mapping segments between the NDP and host CPU units
based on both the segment’s internal characteristics and
the resulting inter-segment data movement (considering
the timeliness of proactive inter-segment data transfers).
Jointly considering these factors is challenging since they
are impacted by the complex interaction between many fea-
tures of the application, the input data, and the underlying
architecture.

ALP leverages compile-time and runtime information
and operates in three steps. We assume a system with cores
in the host side connected to a 3D-stacked memory with
cores on its logic layer (i.e., NDP cores). NDP cores access
memory with higher bandwidth and lower latency com-
pared to the host CPU cores. In the first step, the compiler
identifies the segments that the data movement between
them could potentially reduce performance if they map to

1. As our NDP architecture, we consider a 3D-stacked memory with
cores in its logic layer (called NDP cores), accessing memory with
higher bandwidth and lower latency compared to the host CPU cores.

different NDP/host cores. ALP marks these segments as
tightly-connected segments.

In the second step, using compile-time profiling, ALP
finds the instructions that generate the inter-segment data
in the tightly-connected segments [74]. Then, ALP iden-
tifies clusters of tightly-integrated segments in which the
inter-segment data can be proactively transferred from the
generator segment to the producer segment in a timely
manner. To do so, ALP identifies the cases where the time of
transferring the inter-segment data can be fully hidden by
other operations performed in the segments. We identify the
cases in which the time for transferring the data written by
these instructions can be overlapped with the execution of
other instructions in the segments. This way, during the ap-
plication’s runtime, ALP’s hardware can proactively transfer
the inter-segment data to the core that consumes it, while
hiding and eliminating the data movement overhead of this
transfer. Using proactive data transfers, ALP enables start-
ing the execution of the next segments of the applications
as soon as their inter-segment data arrives. For example,
instead of making the NDP computation units wait until
the host writes back all the inter-segment data located in
its large caches, ALP enables the NDP computation units to
start execution as soon as the parts of the inter-segment data
arrives.

In the third step, during runtime, ALP collects informa-
tion regarding input data size, cache sizes, cache miss rates,
and Instructions per Cycle (IPC) of the segments. ALP adds
this information to the compile-time information about the
tightly-connected segments collected in the first two steps.
By collectively considering these factors, ALP efficiently
incorporates the information regarding the inter-segment
data movement overhead in making partitioning decisions.
ALP can be tuned to enrich various partitioning techniques
by alleviating their inter-segment data movement overhead.

We evaluate ALP across workloads from various do-
mains (e.g., graph processing, graphics, machine learn-
ing, bioinformatics, and high-performance computing). For
workloads whose data movement overhead can be alle-
viated via proactive data transfers, ALP achieves almost
all the potential performance benefits of mapping each
segment of the application to its best-fitting core, assuming
no inter-segment data movement overhead. ALP performs
on average 54.3% better than execution only on the host
CPU cores and 45.4% better than execution only on the
NDP cores. For workloads whose data cannot be proactively
transferred, ALP does not incur any performance overhead
by executing all segments in the NDP or host cores. ALP
incurs a modest area overhead of 1.25KB and significantly
improves the energy consumption.

We make the following contributions in this work:

◦ We identify and characterize a critical aspect of efficiently
leveraging NDP: the impact of inter-segment data move-
ment overhead between the NDP and CPU cores when
the application is partitioned between them. We show that
data movement overheads can significantly diminish the
potential performance benefits of NDP.

◦ We propose ALP, a programmer-transparent mechanism
that alleviates the performance impact of data movement
when partitions applications between the NDP and host



CPU cores. ALP identifies the application segments that
would incur high inter-segment data movement over-
head during partitioning, and alleviates this overhead by
proactively and accurately transferring data between the
segments.

◦ ALP orchestrates the compile-time and runtime informa-
tion about the inter-segment data movement overhead.
ALP factors in the characteristics of each segment, the es-
timated inter-segment data movement overhead, and the
timeliness of proactive data transfers during partitioning.

2 BACKGROUND AND MOTIVATION

2.1 Baseline Architecture
The baseline system we assume in this work consists of a
host CPU and a 3D-stacked memory module that supports
processing data on the computation units in the logic layer.
The logic layer and memory layers are connected using
through-silicon vias (TSVs) [75], which provide lower la-
tency and significantly higher bandwidth than a traditional
off-chip interconnection between main memory and the host
CPU cores [3], [4], [6]–[8], [10], [12], [13], [15], [20], [22], [24],
[48], [76]. The host CPU and the NDP logic layer employ
similar out-of-order (OoO) cores with different cache hier-
archies. The host cores use a conventional three-level cache
hierarchy, while the NDP cores use a single-level private
cache. In this section, we model the same computation units
in both host and NDP systems to decouple the effect of
computation capabilities from memory hierarchy and data
movement. We show the effects of different core types in
Section 6. Section 5 shows the details of our system organi-
zation and evaluation methodology.

2.2 The Effect of Inter-Segment Data Movement
In this section, we show the performance impact of inter-
segment data movement as a result of code partitioning be-
tween NDP and CPU cores. Applications can have different
characteristics across different segments (e.g., basic blocks,
loops, functions) [20], [71]. Segments of applications that
suffer from main memory bottleneck take advantage of NDP
execution, while more cache-friendly application segments
take advantage of host CPU cores that access a deeper
cache hierarchy. Therefore, executing the whole application
on the host or NDP cores without partitioning leads to
missing opportunities of mapping each segment to the core
it finds most beneficial. Partitioning applications between
NDP and host cores causes inter-segment data movement
overhead (i.e., overhead from moving data generated from
one segment and used in the consecutive segments). This
overhead can be large if the segments map to cores in
different systems (i.e., host and NDP).

Prior works take two approaches to the inter-segment
data movement overhead when partitioning applications
between NDP and host cores. The first class of works [20],
[70], [71] maps segments to NDP or host cores based on
architecture suitability of each segment. Such partitioning
techniques suffer from inter-segment data movement over-
head. The second class of works [21], [72], [73] maps seg-
ments to host or NDP cores based on the overall memory
bandwidth saving of each segment (which depends on
the memory bandwidth saving within each segment and

the inter-segment data movement overhead between other
segments). These works conservatively do not offload the
segments that would take advantage of NDP cores, but
incur high inter-segment data movement overhead, missing
some of potential NDP performance benefits.

Through an idealized study, we show the potential
benefit of NDP and how the performance impact of inter-
segment data movement overhead on NDP benefits. To do
so, we map each segment of the application to host or
NDP systems based on the architectural suitability of each
segment. We consider each basic block2 as a segment and
measure the execution time of each segment on an NDP core
and on a CPU core to find out the best-fitting system (host
or NDP) for each segment. Based on this oracle information,
we map each segment to the core on which it performs best
and compute the execution time of the programs with and
without considering the performance impact of the inter-
segment data movement overhead between the blocks.

Figure 1 shows the speedup of 1) executing all segments
of the application on the host CPU cores (CPU), 2) executing
all the application on the NDP cores (NDP), 3) partition-
ing the application based on the architectural suitability
of each segment with zero data movement cost (No_DM),
4) partitioning the application based on the architectural
suitability of each segment and with the cost of data move-
ment included (Including_DM). The speedup values are
normalized to the host CPU core’s performance. We make
two observations based on this figure. First, No_DM performs
on average 26.8% (maximum 44.1%) better than the best
average performance of only NDP or only CPU execution.
Second, with Including_DM, the average speedup drops
to 9.5% (worst case 56.3%) worse than CPU.
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Fig. 1: Performance effect of inter-segment data movement
overhead.

2.3 Goal
Based on these observations, we conclude that even though
the potential benefits of partitioning the applications to
NDP and CPU cores in the absence of data movement
overhead is very high, we see significant performance loss
when we consider the effect of data movement in making
offloading decisions. We emphasize that our baseline system
in this study is already equipped with prefetching (Table
1). However, as we see in Figure 1, prefetching is not
acting effectively in alleviating the data movement overhead
because the access pattern of the data moved between the
CPU and NDP cores due to code partitioning are typically

2. We choose this because we find individual instructions to be too
fine-grained for our NDP cores. This study can be performed at other
granularities too.



irregular and non-repetitive. Our goal is to alleviate the
impact of inter-segment data movement to enable efficient
partitioning of applications between NDP and CPU cores

Prior works on partitioning [77]–[79] on heterogeneous
core architectures do not study partitioning in the context
of NDP and do not consider the asymmetry in the memory
hierarchy. This leaves significant challenges to address in
the NDP context. First, performance and energy overhead
of communication between NDP and CPU is very high due
to off-chip communication. Since the goal of NDP is reducing
the overhead of data movement, this extra communica-
tion can amortize the potential benefits of NDP. This calls
for a timely and proactive technique for addressing data
movement issues in NDP. Second, prior works that propose
techniques to alleviate data movement cost in a heteroge-
neous architecture [74] assume fixed and known partitioning
between the segments. In our scenario, we statically do
not know where each segment maps. Third, software or
compiler-assisted prefetching [80], [81] techniques execute
next to the code executing in a different core, and therefore,
do not transfer the data proactively. This cannot be timely
enough for NDP scenarios. Due to these factors, problem
space of partitioning is very complex in this case because we
need to consider (1) the advantage of NDP/CPU execution,
(2) significantly more critical data movement cost, and (3)
the potential for proactive data transfer.

3 ALP
This section describes the three steps of ALP. In the first step
(Section 3.1), during compile time, ALP detects the segments
of the applications that can have high inter-segment data
movement overhead. In the second step (Section 3.2), during
compile time, ALP marks the instructions that generate the
inter-segment data. In the third step (Section 3.3), during
runtime, ALP incorporates the information about input
data and the underlying architecture with the information
collected during compile time and 1) performs proactive
data transfer and 2) partitions applications between the host
and NDP cores.

3.1 Identifying Tightly-Connected Segments

The goal of this section is to identify the segments that
the cost of data movement between them might amortize
the cost of partitioning them. We refer to these segments
as tightly-connected segments. After detecting the tightly con-
nected segments, next steps of ALP try to reduce the over-
head of inter-segment data between these segments. Listing
1 shows an example of two tightly connected segments,
assuming each loop is one segment. In the first loop, the ap-
plication accesses several input arrays with random indices
and generates out, which is the inter-segment data between
these two loops. out is then re-used by the next nested
loop for n_reuse iterations. The random index rand_idx1
parameter in loop 1 is used to model random accesses to the
data. Loop 1 accesses many data structures with random
access patterns and maps better to NDP cores. However,
if n_reuse is high enough, and out is larger than what
would fit in the smaller NDP caches, loop 2 will map better
to the host CPU cores with larger caches. However, if we
consider this mapping, the cost of transferring out to the
host CPU amortizes some of the partitioning benefits.

1 f o r ( u i n t 6 4 t i = 0 ; i < N; i ++){
2 //ac ce s s i ng l a r g e v e c t o r s with random i n d i c e s
3 data = in1 [ rand idx1 ] + in2 [ rand idx1 ] + in3 [ rand idx1

] ;
4 out . push back ( data ) ;
5 }
6 f o r ( u i n t 6 4 t i = 0 ; i < n reuse ; i ++){
7 f o r ( u i n t 6 4 t j = 0 ; j < N; j ++){
8 //reusing the output of the previous segment
9 out [ j ] = f ( out [ rand idx2 ] , i ) ;

10 }
11 }

Listing 1: Synthetic workload for data transfer.

The first step of ALP leverages compiler’s assistance to
detect if two segments are tightly-connect by calculating
their connectivity. The connectivity between the two
segments depends on the ratio of the inter-segment data
over all the data that both segments consume and produce.
Thus, the connectivity between two segments can be
modeled as follows:

connectivity = max

(
inter segment data

reg in1 + reg out1
,
inter segment data

reg in2 + reg out2

)
,

(1)
where reg in1 and reg out1 are the number of live

registers moving in and out of the first segment respectively.
reg in2 and reg out2 are the number of registers moving
in and out of the second segment. inter segment data is
the number of the overlapping registers in reg out1 and
reg in2 sets, which refers to the live registers that pass
from one segment to the other. The liveness analysis of the
compiler provides information regarding the live registers.
If connectivity exceeds an architecture-dependent thresh-
old, the mechanism marks the two segments as tightly-
connected. This threshold depends on multiple architectural
features that determine whether the overhead of inter-
segment data movement outweighs the benefits of partition-
ing the segments between NDP and host cores. These archi-
tectural features can affect the inter-segment data movement
overhead and the execution time of segments on NDP or
host cores. Such features are 1) the latency and bandwidth
of the off-chip link between main memory and host system,
2) the internal latency and bandwidth of main memory, and
3) the latency, bandwidth, and size of NDP and host caches,
and 4) NDP and host processor core features, such as their
frequency and issue width.

This threshold is determined by a one-time offline pro-
filing since, for a given system, this architecture-dependent
threshold does not change. This threshold is calibrated
by profiling a wide range of application segments with
inter-segment data on a given system. We choose this
threshold conservatively to mark the tightly-connected seg-
ments. ALP’s runtime phase further considers application-
dependent and runtime information to decide whether
two tightly-connected segments can be partitioned between
NDP and host cores.

We calculate connectivity between application segments
iteratively to find the segments of the code that have high
data movement between each other. For example, in the
control flow graph in Figure 3a, if segments A, B, and C
form a cluster of tightly-connected segments, they might
also form a larger cluster of tightly-connected segments
with D. To model the data movement, we calculate the size
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(a) Loops

This	is	a	guide	for	the	width	of		a	figure.

A

B

C

D

Hierarchical 
Clustering A, B, C

D

A

BC

D

Vi
ab

le
 

C
lu

st
er

 1

Vi
ab

le
 

C
lu

st
er

 2

(b) If-else statements

Fig. 3: Example of control flow divergence.

of the inter segment data between the aggregated cluster
(composed of segments A, B, and C) and segment D. Figure
3b shows an example of how ALP handles the control flow
divergence using an if-else statement. We analyze both sides
of the branch and mark the segments with a large amount
of inter-segment data movement in each side. In case the
connectivity between the segments in either side is high, we
mark the source and destination node of the control flow (A
and D) and all intermediate segments as tightly-connected
segments.

At the end of this stage, all the segments of the pro-
gram are clustered with their tightly-connected segments.
The data movement between the segments within a cluster
might significantly reduce performance if the segments map
to different NDP and CPU cores. Section 4 explains the
implementation details of how ALP passes this clustering
information to its subsequent phases.

3.2 Data Movement Alleviation

In this section, we explain how ALP alleviates the inter-
segment data movement overhead between the highly con-
nected segments.

3.2.1 Basic Data Transfer
To illustrate our approach behind alleviating the inter-
segment data movement overhead, we show the execution
timeline of the synthetic workload in Listing 1 in three
different cases in Figure 2. As mentioned in Section 3.1, as-
suming no inter-segment data movement overhead, loop 1
would ideally map best to the NDP cores and loop 2 would
map best to the host CPU cores. In case (a), both segments
execute on the host CPU core. By the time loop 2 starts
executing, out is present in the host caches and further
accesses to it from loop 2 hit in the cache. Despite the
efficient use of host CPU caches for accessing out, loop 1
suffers from memory bottleneck when running on the host

1. Accesses large data 
2. Generates out0

Reuses out0 
for N times

ALP: Execution with transferring and concurrent execution:
Access 1 Generate out0 Access 2 Generate out1 ...

Transfer out0

Execute on out1

Transfer out1 ...

1. Accesses large data 
2. Generates out1

Reuses out1 
for N times

Execute on out0

...
Execution on NDP

Execution on CPU

Fig. 4: Execution timeline with transferring inter-segment
data and concurrent execution of the segments.

CPU cores. In case (b), the first segment executes in the NDP
core, whereas the second segment executes in the CPU core.
In this case, loop 1’s memory bottleneck gets alleviated via
NDP execution. However, in loop 2, all accesses to out miss
in the CPU caches and incur significant data movement
overhead from main memory. In case (c), we show ALP’s
approach to reducing the inter-segment data movement
overhead which is enabled by proactively transferring the
inter-segment data to the next segment, as soon as it is
produced. Therefore, when loop 2 executes in the host CPU
cores, it finds its needed data in host caches.

Reducing the performance overhead of inter-segment
data movement using this proactive data transfer approach
can be possible if the time for transferring the data can be
mostly overlapped with other operations. This means there
should be more instructions between the instruction that
generates the inter-segment data and the instruction that
consumes the data. For example, in Figure 2, transferring
out[0] is overlapped with accessing in1[1], in[1], and in3[1].

3.2.2 Data Transfer with Concurrent Execution
In some workloads, some producer and consumer segments
access the inter-segment data with the same access pattern.
In such cases, after the proactive data transfer of each
cache-line of inter-segment data, the next segment of the
application can start execution on that data. This way, the
segment that generates the inter-segment data elements can
keep working on one core and the segment that consumes
this data can run on another core, increasing the concur-
rency. Figure 4 shows an example execution timeline for this
case. To detect this case, the compiler checks if (1) the first
segment generates (writes) the data that second segment
reads and (2) if the two segments access this data with the
same access pattern.

3.2.3 Detecting Inter-Segment Data
In this section, we explain how ALP detects the inter-
segment data that needs to be proactively transferred be-
tween the two tightly-integrated segments.

Loop 1 Loop 2

(a)  Both run on CPU:

(b)  First block runs on NDP and the second one on CPU:

(c) ALP: Execution with pro-active data transfer:

Access in1[0], 
in2[0], in3[0]

Move in1[0], in2[0], 
in3[0] to CPU

Generate 
out[0]

Access in1[1], 
in2[1], in3[1]

Move in1[1], in2[1], 
in3[1] to CPU

Generate 
out[1] ... Stage 2 hits

 in the cache

Access in1[0], 
in2[0], in3[0]

Generate 
out[0]

Access in1[1], 
in2[1], in3[1]

Generate 
out[1] ... Stage 2 misses in the cache

Access in1[0], 
in2[0], in3[0]

Generate 
out[0]

Access in1[1], 
in2[1], in3[1]

Generate 
out[1] ...

Transfer out[0] Transfer out[1]

out

Stage 2 hits
 in the cache

Execution on CPU
Execution on NDP

Fig. 2: Timeline of a workload on (a) CPU, (b) NDP, (c) with proactive data transfer (the indices are not the vector indices.
Number i inside the brackets refers to the ith cache line accessed through the execution.)



In most programs, the instructions that generate the
inter-segment data are the same across different executions
of the program for different input datasets [74]. Therefore,
we leverage Data Marshalling technique [74] to identify the
instructions that generate the inter-segment data through
profiling the application as shown in Algorithm 1. This
algorithm performs analysis on each two tightly-connected
segments identified in the first step of ALP (Section 3.1).
For every memory access in the current segment, the algo-
rithm checks if the instruction that wrote to this address
is from the previous segment. In that case, the last writer
instruction to this address from the previous segment is
marked as a generator instruction (Lines 1 to 5). For each
write in the current segment, the algorithm collects the
memory addresses, and the Programmer Counter (PC) in
the current last writer list. This way, we can check if
they are the generator instructions for the next segment
(Lines 6 to 8). After the end of each segment, we empty the
previous last writer list for the previous segment, and
set the current segment’s current last writer list to be
previous segment’s list previous last writer list (Lines 10
to 14).

Algorithm 1: Detecting generator instructions
Result: generator instruction list
Input : Address of the memory accesses, Instruction PCs,

previous last writer list
1 for Every memory access in the current segment do
2 if (accessed cache-line is first read in current segment) and (the address

is in the previous last writer list) then
3 Add the PC of the last writer instruction in

previous last writer list to generator instruction list
4 end
5 if Memory access is store then
6 Add the address and the PC to current last writer list
7 end
8 end
9 for Every new segment start do

10 Empty previous last writer list
11 Make current last writer list to be previous last writer list
12 Make an empty list for current last writer list
13 end

The compiler performs this profiling and marks the
generator instructions with a new instruction added to In-
struction Set Architecture (ISA). When the program executes
these instructions, if the two segments map to different
cores, ALP proactively transfers the data from one core’s
cache to the cache of the core executing the next segment.
Section 4.2 provides more details about the ISA and hard-
ware support for this step.

ALP can work on any compiler because it relies on basic
compiler features, like liveness analysis available in off-
the-shelf compilers. The data movement analysis is done
before the register allocation, in the IR stage, with the code
in the static single assignment form. The baseline context-
sensitive interprocedural analysis is required to model the
data movements across the program. We analyze the whole
graph of the application. ALP can adopt other techniques for
optimizing interprocedural analysis. We do not expect our
proposed mechanisms to significantly increase the compile
time because they build on top of the already existing
steps of compilation, like liveness analysis. Any additional
increase in the compilation time will also be amortized over
many runs for compiled languages.

3.3 Incorporating Runtime Information

The goal of this step is to 1) collect the architecture-
dependent and runtime information and 2) together with
the compile-time information (collected in the first two steps
of ALP), assess and incorporate the impact of inter-segment
data movement overhead during partitioning.

3.3.1 Offloading Metric
In this section, we explain the metrics that guide ALP to
map segments to the host CPU or NDP cores. ALP can adopt
other offloading metrics that can better suit different NDP
architectures.

When an offload unit (i.e., a segment or a cluster of
segments that need to run together on the same core) starts
execution on a host CPU core, we measure these metrics
over a small epoch of execution. If the ratio of the L1 cache
misses to the ratio of the LLC misses is close to one, we
offload the execution to an NDP core. The reason is in these
scenarios, the large LLC does not efficiently serve more
memory requests compared to the small L1 cache. Since the
NDP cores also have a small L1 cache, but higher bandwidth
connection to main memory, these segments will potentially
take more advantage of NDP execution. After the NDP
offload happens, the NDP core also measures the IPC over
an epoch of execution. In case the IPC of NDP execution is
lower than what was measured in the host CPU core before
offloading, the execution migrates back to the CPU core.
Section 4.3 describes the implementation details of Runtime
Table that keeps track of the runtime information of different
runtime units over different epochs of their execution.

3.3.2 Offloading Segments with Potential for Data Move-
ment Alleviation
This phase of ALP incorporates the information about the
input data and the architecture features for the cluster of
segments with the potential for data movement alleviation.
As discussed in Section 3.2.1, the data movement alleviation
technique through proactive data transfer is effective if the
time for transferring the inter-segment data can be mostly
overlapped with other operations. This means there should
be more instructions between the instruction that generates
the inter-segment data and the instruction that consumes
the data. We refer to the segments with these features as
segments with potential for data movement alleviation.

Based on the size of the inter-segment data and the
NDP and host cache sizes, and the characteristics of each
segment, ALP maps the segments to the host CPU or NDP
cores in two scenarios. First, if the size of the inter-segment
data is too large to fit in the destination cache, the basic
data transfer scheme (Section 3.2.2) will not improve the
performance. The reason is that after some point, the new
arriving parts of the inter-segment data will evict older
parts. However, in case we can transfer data with concurrent
execution (Section 3.2.2), the next segment uses the data
when it arrives. Second, if the size of the inter-segment
data is small (compared to the destination’s cache size), we
assume its cost of data movement will not affect the total
execution time unless the segments happen more than once.
Therefore, ALP can profile the tightly-connected segments
over a few iterations and map them to the host CPU or



NDP cores based on the offloading metrics defined in Sec-
tion 3.3.1.

Algorithm 2 shows how the runtime phase of ALP
considers these different scenarios and maps these segments
to NDP or CPU cores. Lines 1 to 21 in this algorithm handle
the case where the inter-segment data in each iteration is
smaller than the size of the CPU cache. Lines 22 to 30 handle
segments with large inter-segment data.

Algorithm 2: Offloading Segments with the Poten-
tial for Data Movement Alleviation

Result: The mapping of each segment within the cluster to NDP or
CPU

Input : Begin and end PC address of the cluster
The size of the inter-segment data

1 if size of inter-segment data < CPU cache size then
2 profile the segments within the cluster on initial iterations;
3 if The producer segment shows high memory intensity then
4 if The consumer segment shows low memory intensity then
5 MAP(producer,NDP);
6 MAP(consumer, CPU);
7 Transfer the inter-segment data;
8 else
9 MAP(producer, NDP);

10 MAP(consumer,NDP);
11 end
12 else
13 if The consumer segment shows low memory intensity then
14 MAP(producer, CPU);
15 MAP(consumer, CPU);
16 else
17 MAP(producer,CPU);
18 MAP(consumer,NDP);
19 Transfer the inter-segment data;
20 end
21 end
22 else
23 Profile the producer segment in CPU;
24 if The producer segment shows high memory intensity and transfer with

concurrent execution mode then
25 MAP(producer, NDP);
26 proactively transfer the inter-segment data to CPU;
27 else
28 MAP(producer, CPU);
29 end
30 end

3.3.3 Offloading Segments without the Potential for Data
Movement Alleviation
This section explains how ALP maps the segments within
the same cluster of tightly-connected segments to the NDP
or CPU cores in case the segments do not take advantage
of the proactive data transfer technique (as described in
Section 3.2.1).

Based on the size of the inter-segment data and the NDP
and host cache sizes, and the characteristics of each segment,
ALP maps the segments to the host CPU or NDP cores in
two scenarios. First, if the data moved from one segment
to another is very large, the cache of the NDP or host
CPU cores cannot capture the re-use of this data between
the segments. Therefore, executing the tightly-connected
segments of the cluster on the same core does not lead to
higher performance. Second, if the data movement can be
captured in the host caches, ALP makes offloading decision
for them as a single unit. We call these segments inseparable
segments.

Mapping inseparable segments is challenging because
their optimal mapping depends on their own characteristics
and the characteristics of their connected segments. We
make the key observation that the important inseparable

segments occur jointly and repeatedly. The reason is that if
these segments do not occur frequently, they either (1) take
small amount of execution time, therefore they do not
contribute to the overall performance, or (2) they take large
amount of time and pass large amount of data to each
other which cannot be captured in caches for further re-
use. Therefore, by leveraging the repeated nature of the
inseparable segments, ALP’s runtime mechanism profiles
the aggregated behavior of them over an epoch to make
offloading decision for both segments in their following
iterations.

4 IMPLEMENTATION

In this section, we provide details on ALP’s implementation.
Figure 5 shows how ALP’s hardware units interface with the
host CPU pipeline. We add an Offload Management Unit that
resides on the host chip, and is responsible for handling the
offload to the NDP cores. The Monitor Units in the NDP and
CPU cores collect the necessary runtime information and
populate the Offload Table. The Offload Table also holds
the information that the compiler has gained about the
segments of the code. Based on our analysis in Section 6.5,
this table can be accessed within one clock cycle. The static
and dynamic information in the Offload Table is the basis for
decision making of the Offload Management Unit for map-
ping the offload units (segments or a cluster of segments)
to different cores. The hardware components of ALP (i.e.,
Offload Management Unit and Monitor Units) are not in the
critical path of any of the pipeline stages in the processor
and reside next to the cores, and in each epoch, receive
information about the execution of the application segment
on the host CPU cores and the NDP cores. Therefore, ALP
does not change the processor cores pipeline’s depth and
its frequency. This section explains the functionality of these
units in detail.
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Fig. 5: Overview of ALP’s hardware units.

4.1 Identifying Clusters

In this section, we describe how the first step of ALP com-
municates the compile-time information about the segments
(Section 3.1) for the use of the next step of ALP.
Code Annotation and ISA Support. The compiler passes
the information about the segments to the runtime mech-
anism by two new instructions that we introduce to
the Instruction Set Architecture (ISA): CLSTR.BEGIN and
CLSTR.END. These instructions identify respectively the
beginning and the end of the cluster of the tightly-connected
segments and include an identifier to each cluster. These



instructions enable detecting when the candidate offload
units start and ends, without any programmer involvement.
Interface to the processor. The compile-time information
collected in the first step populates the Offload Table located
in the Offload Management Unit (Figure 5) at the begin-
ning of the program’s execution, which is then accessed
during runtime (during Phase 3). This table holds informa-
tion about the segments, such as their ID, type (producer,
consumer, or inseparable segments), and the relative inter-
segment data ratios (i.e., the ratio of inter-segment live
registers over the total live registers in the tightly-connected
segments). During the execution, after decoding the instruc-
tion for CLSTR.BEGIN, ALP searches the table with the
Cluster ID to retrieve the data about the clusters.

4.2 Data Movement Overhead Alleviation
This section explains how ALP performs the proactive data
transfer between different segments of the application as
described in Section 3.2.
Code Annotation and ISA Support. After specifying the
last writer of the inter-segment data, the compiler marks
those instructions by adding a prefix called TRANSFER to
them. This prefix indicates that the instruction’s resulting
data (inter-segment data) needs to be transferred to the
next segment as soon as it is generated. Therefore, when
this instruction executes, the Offload Management Unit
realizes that it has to transfer the inter-segment data to the
next segment in case the segments within the cluster of
tightly-integrated segments are mapped to different cores.
Using these instructions, ALP detects and transfers the inter-
segment data in a timely manner, regardless of the access
pattern of the inter-segment data across different input
sets and executions. The information collected during this
step in the compile time also populates the Offload Table’s
entry, to indicate the segments types (producer of the inter-
segment data or its consumer).
Hardware Support. If the segments with a cluster of tightly-
integrated segments are mapped to different cores, the
runtime phase of ALP handles the data transfer through a
modified MESI cache coherency protocol. If the data needs
to transfer from the host CPU cores to the NDP cores,
the runtime system issues this transfer request, and makes
the inter-segment cache-lines invalid in the host caches,
transfers the data to the NDP cache, and change its status
as modified. If the data transfers from the NDP cores to the
host CPU cores, the cache-line gets invalidated in the NDP
cache and transfers to the host CPU caches with modified
state.

4.3 Runtime System
This section explains how the third phase of ALP makes
the offloading decisions based on the static and dynamic
information collected through its different steps. Figure 5
shows the Offload Table, which holds the information about
different offload units, and the table’s interface to CPU and
NDP cores. First, the compiler-generated data populates
the table with clusters information. The table also holds
information about the cluster type to detect whether they
have the potential for data transfer, and in case they do, it
separates the producer and consumer segments in separate

rows to profile them separately 1 . During the execution of
the program, the Monitor Unit stores the information about
the IPC and L1 and LLC cache miss rates of each offload
unit in the Offload Table 2 . It also detects the absolute
size of the inter-segment data based the actual data sizes
and the ratio of the inter-segment data determined during
compile-time. After an epoch of execution, if the memory-
intensity of an offload unit is high, the Monitor Unit records
the Instruction per Cycle (IPC) of its execution so far in
the Offload Table 3 , and sends the offloading unit to the
NDP cores. It also includes the required input live registers
of the offload and its starting PC in the Offload Package
4 . The Offload Management Unit informs the host CPU

cores to stall 5 until it receives an acknowledgment that
the NDP execution has finished 6 . Meanwhile, in case the
producer and consumer blocks map to different cores, the
Offload Management Unit issues the transfer signal to the
respective coherency mechanism to move the inter-segment
data from the producer to the consumer proactively 7 .
After each epoch of execution, the NDP cores communicate
the status of NDP execution by sending the IPC of the
offload unit to the Offload Table. In case the IPC of the
offload unit decreases from what has been measured in
during its execution in the CPU, the offload unit transfers
back to the host CPU for its remaining iterations 8 .

4.4 Design Considerations

4.4.1 Cache Coherence

In this work, we model a fine-grained coherency protocol
between the NDP and host CPU cores. The host LLC is only
inclusive of the host-side caches. Therefore back invalida-
tion from LLC only affects the CPU caches. When a cache-
line is evicted from LLC, in case it is also present in an NDP
cache, its status will change to Exclusive in the NDP cache.
If there is any coherency-related data movement between
NDP and CPU caches, we model its cost by adding the cost
of memory stack’s off-chip link to the baseline coherency
overhead modeled by our simulator.

Further optimization over the fine-grain coherency is
possible by adopting more advanced coherency mecha-
nisms such as [20]. The problem we address in this work
is rather about the inter-segment data sharing between
the segments, which exists even in the context of a single
thread and is different from the coherency issue. Advanced
coherency mechanisms do improve the performance of NDP
execution, and their performance impact can be considered
during ALP’s runtime.

4.4.2 Virtual Memory

Translating virtual addresses to physical addresses when
executing an application on the NDP side is challenging.
If the NDP cores rely on the existing host-side translation
mechanism, for every memory access, the NDP cores need
to send a translation request to the host via low-bandwidth
off-chip buses. This overhead can further increase if the
translation requires page table walks that incur further data
movement overhead between host and main memory. If the
NDP cores naively duplicate TLB and page table walker,
they can incur significant overhead due to 1) maintaining



coherency with the host-side translation mechanism, and 2)
additional area overhead.

Similar to previous works [82], in this work, we assume
Direct Segments [83] as our virtual memory model and
interface the memory as a primary region. Each direct
segment maps a large range of contiguous virtual memory
addresses to contiguous physical addresses using base, limit
and offset information. If a virtual address is between the
base and limit, its corresponding physical address is simply
translated as that virtual address plus the offset. To support
direct segment translation, the NDP cores require a small
direct segment hardware (including registers to store base,
limit, and offset values, and an adder) and need to receive
base, limit, and offset values from the host at the beginning
of NDP execution of each offloaded application segment.
ALP can orthogonally adopt more advanced NDP-specific
translation techniques [84], [85] for further performance
benefits, which are beyond the scope of this work.

4.5 Multiple NDP Stacks
ALP extends to a system with multiple NDP stacks assum-
ing a baseline mapping between the stacks. ALP addresses
the problem of data sharing between segments in the NDP and
host CPU cores. After offloading a segment to NDP cores,
ALP’s runtime structure (Section 4.3) monitors its execution
on NDP cores. If the NDP stacks have high data movement
between each other and that leads to lower performance
than host execution, ALP can identify that and rollback the
execution to CPU in case that leads to higher performance.

5 EVALUATION METHODOLOGY

5.1 Experimental Setup
We develop a system level simulator that accurately
models the host CPU and NDP cores with the data
movement between them. Our simulator uses ZSim [86]
(https://github.com/s5z/zsim) to model the host and
NDP cores and Ramulator [87] (https://github.com/CMU-
SAFARI/ramulator) to model the 3D-stacked DRAM [19],
[70]. We modify ZSim and Ramulator so that the host
CPU cores have lower bandwidth connections to DRAM,
while the NDP cores have higher bandwidth connections to
DRAM. We use Pin [88] to obtain information about the
registers of the segments for phase 1 of ALP. To model
the operation of phase 2, we develop a profiling tool based
on algorithm 1. We model the hardware structures and the
runtime analysis of phase 3 in ZSim. We model a crossbar in
our memory model in Ramulator to model the communica-
tion of data between different NDP cores in different vaults
on the logic layer of the 3D-stacked system. Our proposals
can also be adopted to other host + NDP architectures with
asymmetric memory hierarchy properties.

Table 1 describes the system configuration we use to
evaluate our proposal. Our system consists of x86 Out-of-
Order (OoO) cores for both host and NDP sides.3 The host
and NDP cores have private L1 caches, but the host cores
also leverage L2 and LLC which are only inclusive for the

3. When using different processors or Instruction Set Architectures
(ISA), the compiler can also generate appropriate code based on our
techniques.

host. The NDP and host CPU cores run at the same 2.4 GHz
frequency, with the goal of decoupling the effects of data
movement and the memory hierarchy from the processing
capabilities. We demonstrate our analysis on a single core
CPU and single core NDP to isolate other effects (e.g.,
the interactions between the threads and sharing resources)
from the inter-segment data movement overhead. We also
show the advantages of ALP with more cores (configuration
with 8 NDP cores and 8 host CPU cores, and configuration
with 32 NDP cores and 8 host CPU cores).

TABLE 1: Baseline, HMC and NDP configurations.

OoO Execution Cores @ 2.4 GHz, 32 nm; 4-wide out-of-order;
128-entry ROB; 32-entry LQ and 32-entry SQ;
Branch predictor: Two-level GAs. 4,096 entry BTB; 1 branch per fetch;

L1 Data + Inst. Cache 32 KB, 8-way, 4-cycle; 64 B line; LRU policy;
5/33 pJ per hit/miss [89]

L2 Cache (only CPU) Private 256 KB, 8-way, 7-cycle; 64 B line; LRU policy;
Prefetcher: Stream prefetcher with 16 entries;
6/93 pJ per hit/miss [89]

LLC Cache (only CPU) Shared 8 MB, 16-way, 27-cycle;
64 B line; LRU policy; Inclusive for CPU; MESI protocol;
945/1904 pJ per hit/miss [89]

3D-stacked DRAM 4 GB, 32 vaults, 8 DRAM banks/vault;
DRAM: CAS, RP, RCD, RAS and CWD latency (9-9-9-24-7 cycles);
2 pJ/bit SerDes links [90]; 2 pJ/bit internal, 8 pJ/bit logic layer [71];

5.2 Evaluated Applications
Table 2 shows the list of the workloads we use in this work
and their respective input sizes. We select a broad range
of applications from popular benchmark suites and various
domains. To demonstrate different partitioning scenarios,
the selected applications include a wide range of memory-
intensive and compute-intensive workloads. The common
feature of these workloads is that they have some segments
that ideally would take advantage of execution on the NDP
cores and some other segments that would take advantage
of execution on the host CPU cores. Therefore, for each of
these applications, the potential performance benefit from
partitioning the application between the NDP and host CPU
cores is high.

TABLE 2: Evaluated workloads and input sets.

Application Benchmark Suite Domain Input Parameters

KCore-Decomposition Ligra [91] Graph Processing rMat 1M [92]
Radii Ligra [91] Graph Processing rGnutella [93]

RayTrace Parsec [94] Graphics simlarge
Backpropagation Rodinia [95] Machine Learning 524288 elements

Breadth-First Search Rodinia [95] Graph Processing graph1MW
Breadth-First Search Ligra [91] Graph Processing rMat 1M [92]
Needleman-Wunsch Rodinia [95] Bioinformatics dimension 4096 penalty 10

Particle Filter Rodinia [95] Statistics x 128 y 128 z 10 np 400000
Ocean (contiguous) Splash-2 [96] High-Performance Computing 514×514 grid

Ocean (non-contiguous) Splash-2 [96] High-Performance Computing 514×514 grid

To further analyze the workloads, we profile the ap-
plications to analyze their memory-bound behavior using
Intel VTune [97] on an Intel Xeon E3-1240 processor with
4 cores. Table 3 shows the most memory bound function
of each workload and the amount of time it takes in the
whole application. Memory-bound measure refers to the
ratio of cycles spent waiting for memory accesses over the total
execution time. We observe that all our selected workloads
have functions that take a notable amount of execution time



which are memory-bound. We conclude that these applica-
tions would ideally benefit from partitioning between the
host and NDP cores.

TABLE 3: Workload Characteristics.

Workload Function Time (%) Mem-bound (%) Mem. accesses

Kcore-decomposition edgeMapDense 52.7 53.82 2.6 GB
Radii edgeMapDense 80.78 52.41 136 MB

RayTrace [VTune format] 62.35 6.52 70.13 MB
Backpropagation bpnn adjust weights 61.82 86.50 3.9 GB

Breadth-First Search (Rodinia) BFSGraph 5.45 22.54 1.39 GB
Breadth-First Search (Ligra) edgeMapDense 30.86 34.08 2.5 GB

Needleman-Wunsch nw optimized 42.54 39.66 81 MB
Particle Filter [Vtune format] 3.99 2.70 3.09 MB

Ocean (contiguous) slave2 24.41 22.98 2.62 GB
Ocean (non-contiguous) slave2 16.00 21.96 1.23 GB

6 EVALUATION

In this section, we show the performance and energy bene-
fits of ALP for various workloads. Throughout this section,
No DM refers to partitioning the application based on
the architectural suitability of each segment with zero data
movement cost, and DM Included refers to partitioning
the application based on the architectural suitability of each
segment with the cost of data movement included.

6.1 Performance

In this section, we analyze the performance benefit of ALP,
compared to only host CPU, only NDP, DM Included and
No DM execution for the workloads with the potential for
data movement alleviation. As described in Section 3.2.1,
reducing the performance overhead of inter-segment data
movement using the proactive data transfer approach can
be possible if the time for transferring the data can be mostly
overlapped and hidden with other operations. This means
there should be more instructions between the instruction
that generates the inter-segment data and the instruction that
consumes the data. We show the performance benefits of
ALP for workloads without the potential for proactive data
transfer in Section 6.4. Synth WL is the synthetic workload
in Listing 1 to demonstrate the proactive data transfer
technique.

Figure 6 shows the performance benefit of ALP with 8
NDP cores and 8 host CPU cores. We observe that ALP
performs 54.3% better than host-only and 45.4% better
than NDP-only execution. The memory-bound applications
segments with high memory bandwidth requirements are
able to issue more concurrent memory accesses in the
NDP configuration with larger number of cores and larger
available main memory bandwidth. The effectiveness of
NDP execution improves in systems with larger number of
cores because they take better advantage of the high main
memory bandwidth available to the NDP cores. However,
the application segments that take better advantage of larger
caches take advantage of execution on the host cores. We
conclude that ALP enables efficient partitioning of appli-
cation segments between the host and NDP cores through
efficient inter-segment data movement alleviation.

Figure 7 shows the performance benefits of ALP for
single-core scenario to gain deeper understanding of how
ALP alleviates inter-segment data movement overhead, by
isolating other effects such as thread communication. Based
on this figure, we make two observations. First, On average,
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Fig. 6: Performance benefits of ALP with total 16 cores.

ALP achieves almost all of the potential performance ben-
efits of partitioning, achieving on average 18.9% speedup
over execution only on a host CPU core, and 19.7% better
than execution only an NDP core. For most these workloads,
ALP achieves all of the potential benefits of partitioning be-
cause it can move the inter-segment data in a timely manner.
For some other workloads (ocean cp and ocean ncp), ALP
outperforms the No_DM configuration because the consumer
segments can start the execution concurrently as soon as
their required inter-segment data arrives (as described in
Section 3.2.2). For some other workloads (Backprop, KC-
dec), this technique enhances performance, but it does not
reach the maximum possible performance because allevi-
ating the data movement cost is only possible for some
clusters. Second, ALP outperforms the performance of the
DM Included case for all the workloads, even though in
the DM Included case, each segment maps to the core on
which it individually performs best. The reason is that when
partitioning, ALP considers the effect of the inter-segment
data movement between the segments and alleviates its
performance overhead. We conclude that using both the
compiler and runtime information, ALP efficiently maps
code segments to either host or NDP cores considering 1)
the architectural suitability of each segment, 2) the inter-
segment data movement overhead of each segment, and 3)
whether this inter-segment data movement overhead can be
alleviated proactively and in a timely manner.
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Fig. 7: Performance benefits of ALP with data transfers.

6.2 The Effect of Core Counts and Types
To study the effect of having different number and types of
cores in host and NDP configurations, we study an NDP
configuration with 32 in-order cores and a host configura-
tion with 8 OoO cores. Figure 8 shows ALP’s performance
benefits in such a system. We see that NDP benefits from the
higher core count in this case. The runtime system of ALP
(as described is Section 3.3), using steps 1, 2, and 7, collects
the IPC of the segments on both CPU and NDP cores.
This way, it will detect the higher performance benefits of
NDP and make the right decision for offloading segments
accordingly. In this case, ALP performs 2.24 × faster than
execution only on the host CPU cores, and even 22% faster



than NDP-only execution. The reason is that although the
NDP configuration has much larger number of cores in this
case, there are still some application segments that take
advantage of the larger cache hierarchy in the host. We
conclude that ALP adapts to different system configurations
with various numbers and types of cores by incorporating
the architecture, input, and runtime information during the
third phase.
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Fig. 8: Performance benefits of ALP with 8 CPU cores and
32 in-order NDP cores.

6.3 Energy
In this section, we show energy benefits of ALP. The energy
consumption of executing a segment of application on an
NDP core is the sum of the energy spent on the cores,
L1 NDP caches, and DRAM. The energy consumption of
executing a segment of application on a host CPU core is
the sum of the energy spent on the cores, L1, L2, and LLC
CPU caches, off-chip links, and DRAM. ALP’s energy is
the sum of the energy spent on the cores, L1, L2, and LLC
CPU caches (for segments that access these caches), L1 NDP
caches (for segments that access this cache), off-chip links
(for data movement between NDP and CPU cores and for
CPU memory accesses), and DRAM. The value of energy
per access for each of these elements are listed in Table 1.

Figure 9 shows the energy consumption of only-NDP ex-
ecution, only-host CPU execution, and ALP. We observe that
ALP provides significant energy improvement over both
NDP and CPU executions (4.5× and 2.12×). The reason is
that segments that map to a host CPU core take advantage of
the large LLC and reduce the number of accesses that go to
memory. They also capture the re-use between the segments
that have high data movement between each other, avoiding
extra off-chip data communication. Segments that map to an
NDP core are those with random memory accesses which
would have lead to high LLC miss rates. By executing these
on NDP cores, they do not pay the extra cost of accessing
the LLC and then subsequently bringing data from DRAM
to the LLC via the off-chip links.

6.4 Segments without Data Movement Alleviation
In this section, we present ALP’s performance benefit for
the inseparable segments as described in Section 3.3.3. These
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Fig. 9: Energy consumption of ALP.

are the segments without TRANSFER instructions because
the data transfer between them could not be overlapped
with other instructions. Figure 10, we show the performance
benefit of ALP for inseparable segments. We make two
key observations. First, ALP performs on average 32.8%
better than mapping segments based on their individual
characteristics (DM Included). ALP avoids mapping these
segments to different cores by considering the effect of
inter-segment data movement. ALP profiles the aggregated
behavior of the segments over the epochs of execution and
maps the inseparable segments to the core that they collec-
tively find to be the most profitable candidate. This way,
ALP avoids the performance loss that would have resulted
from neglecting the inter-segment data movement overhead
between these segments. Second, although Particle Finder is
heavily compute-bound, we observe that it takes advantage
of NDP execution. The reason is that the working set of this
application is very small such that it can even fit in the small
NDP caches. Therefore, ALP’s runtime system (Section 3.3)
detects that the host-side LLC is not more efficient than L1,
and offloads the application segments to the NDP cores
accordingly. In this case, the workload performs better on
the NDP cores because it does not spend extra time on the
unnecessary L2 and LLC accesses in the host.
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Fig. 10: Performance benefit of ALP for inseparable seg-
ments.

6.5 Area Overhead

In this section, we determine the area overhead of ALP
by calculating the size of the Offload Table (Table size) as
follows:

Table Size = Row Count× (Ratio+ ID +Block Type

+ L1LLC Ratio, IPC × 2 +Decision)

(2)

where the number of table rows (Row Count) is de-
termined by the number of distinct offload units. In this
work, we use 50 rows which is significantly more than the
maximum number of offload units ALP extracts for the ap-
plications we studied. With 4 bits for representing the ratio
of the inter-segment data (Ratio), 6 bits for block ID (ID),
2 bits for block types producer, consumer, or inseparable
segments (Block Type), and 4 bits for ratio of cache misses
(L1LLC Ratio) and 4 bits for considering IPC in in 16-
level granularity (IPC), and one decision bit (Decision),
the table size becomes 1.25 KB, which is significantly less
than L1 cache size. Based on our CACTI [98] simulations, a
table of this size can be accessed within one clock cycle. In
case other applications have large number of offload units,
the rows of the Offload Table can be filled with an LRU
policy.



7 RELATED WORK

To our knowledge, ALP is the first programmer-transparent
mechanism to alleviate the inter-segment data movement
overhead between the host and NDP cores by proactively
transferring data between application segments. In this sec-
tion, we discuss prior works that are related to different
aspects of our work.

7.1 Offloading Applications to NDP Computation Units

Prior works take two approaches to inter-segment data
movement when partitioning applications between the host
and NDP computation units. The first class of works maps
segments to host or NDP based on the characteristics of
each segment by considering the memory access behavior of
each segment individually [20], [70], [71]. Such works offload
the memory-bound application segments to the NDP com-
putation units, and keep the more cache-friendly segments
in the host CPU cores. For example, CoNDA [20] assumes
a programmer-annotated partitioning between NDP and
CPU, and its goal is to enable efficient coherency between
the partitions. DAMOV [70] identifies new insights about
the different data movement bottlenecks and uses these
insights to determine whether NDP or other data movement
mitigation techniques are suitable for different applications.
The key focus of these works does not target the problem of
finding an efficient approach for partitioning the application
to alleviate the overall data movement overhead. Since
these approaches consider the memory bottlenecks of each
segment individually and isolated from the other segments,
they suffer from inter-segment data movement overhead
between the host cores and NDP execution units.

The second class of works maps application segments
to the host or NDP computation units based on the overall
memory bandwidth saving of each segment, which depends
on the memory bandwidth saving within each segment and
the inter-segment data movement overhead between other
segments [21], [72], [73], [99]–[101]. If partitioning segments
leads to high inter-segment data movement overhead, these
works do not partition such segments to different cores that
would be most beneficial for each segments. Therefore, as
shown in Section 2.2, these works suffer from missing some
of the potential benefits of partitioning. On the other hand,
ALP proposes techniques for alleviating inter-segment data
movement overhead to enable efficient application parti-
tioning between NDP and host cores. ALP can be tuned to
be adopted in different NDP proposals assuming different
execution units in the logic layer.

7.2 Co-Locating Computation and Data

Prior work has studied placing data close to computation in
different contexts. Hardware prefetchers [102], [103] do not
properly detect the inter-segment data with irregular access
patterns. Complex prefetchers [104], [105] need long time to
train over a large set of data, however, this cannot be timely
for small inter-segment data or when the execution moves
fast between CPU and NDP cores. Software prefetchers [80],
[81] execute next to the code in the next segment, therefore,
do not transfer the data proactively. Works on thread mi-
gration acceleration [106] and caching techniques [107] are

orthogonal to this work and can further improve ALP’s per-
formance. Prior works on co-locating computation and data
do not study inter-segment data movement in the context
of systems with the host and NDP computation units and
do not consider the asymmetry in the memory hierarchy.
These factors leave significant challenges to address in the
context of NDP. First, performance and energy overhead
of communication between NDP and host computation
units are very high due to off-chip communication. Since
NDP’s goal is reducing the overhead of data movement, this
extra communication due to data sharing with the host can
reduce the potential benefits of NDP. This work addresses
these challenges in the context of NDP using compiler and
hardware support.

Data Marshalling [74] mitigates inter-core data misses
in Staged-Execution models using proactive data transfers
(marshalling). While ALP also uses proactive data transfers
as part of its second step, it is not known statically where
each segment maps. This factor, along with the expensive
off-chip communication in NDP scenario, impose more
challenges for efficient data transfer in the context of NDP
and host systems. Data Marshalling also does not address
the problem of efficiently partitioning applications, and
assumes the stages of the applications are already known.

Livia [108] proposes a new system architecture and
programming model that co-locates tasks and data through-
out the memory hierarchy with the goal of reducing the
data movement. In ALP, we solve a different problem. We
show that if two segments would ideally map to different
NDP/CPU cores, the cost of data movement between them
could amortize the benefits of partitioning. Therefore, by
alleviating the data movement between them, we enable
them to map to their ideal core. ALP can be integrated
in Livia’s system to further improve its performance by
alleviating inter-segment data movement between different
parts of the application mapped in different computation
units throughout the memory hierarchy. Tang et al. in [109]
propose a compiler algorithm that maps the computations
to different NDP cores to reduce the distance-to-data on the
on-chip network. ALP’s approach can further improve the
performance for this proposal by applying proactive data
transfer.

8 CONCLUSION

We identify and characterize an important aspect of NDP:
the inter-segment data movement overhead between NDP
and CPU cores when code is partitioned between them. We
demonstrate that the inter-segment data movement over-
head can significantly diminish the potential performance
benefits from NDP. To fully leverage NDP, we introduce
a programmer-transparent hardware-software cooperative
mechanism, ALP, that (1) considers and alleviates the per-
formance impact of data movement and (2) efficiently par-
titions applications between NDP and CPU, factoring in
both architectural suitability and estimated data movement
overhead. Our analyses on a wide range of workloads show
that ALP can achieve almost all the benefits of partitioning
in workloads with the potential for proactive data transfer.
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Almeida, and L. Carro. Operand Size Reconfiguration for Big
Data Processing in Memory. In DATE, 2017.

[13] Geraldo F Oliveira, Paulo C Santos, Marco AZ Alves, and Luigi
Carro. NIM: An HMC-Based Machine for Neuron Computation.
In ARC, 2017.

[14] Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi.
PIM-enabled Instructions: A Low-overhead, Locality-aware
Processing-in-memory Architecture. In ISCA, 2015.

[15] Mingyu Gao, Jing Pu, Xuan Yang, Mark Horowitz, and Chris-
tos Kozyrakis. TETRIS: Scalable and Efficient Neural Network
Acceleration with 3D Memory. In ASPLOS, 2017.

[16] Duckhwan Kim, Jaeha Kung, Sek Chai, Sudhakar Yalamanchili,
and Saibal Mukhopadhyay. Neurocube: A Programmable Digital
Neuromorphic Architecture with High-Density 3D Memory. In
ISCA, 2016.

[17] Peng Gu, Shuangchen Li, Dylan Stow, Russell Barnes, Liu Liu,
Yuan Xie, and Eren Kursun. Leveraging 3D Technologies for
Hardware Security: Opportunities and Challenges. In GLSVLSI,
2016.

[18] Dong Uk Lee, Kyung Whan Kim, Kwan Weon Kim, Hongjung
Kim, Ju Young Kim, Young Jun Park, Jae Hwan Kim, Dae Suk
Kim, Heat Bit Park, Jin Wook Shin, et al. A 1.2V 8Gb 8-Channel
128GB/s High-Bandwidth Memory (HBM) Stacked DRAM with
Effective Microbump I/O Test Methods Using 29nm Process and
TSV. In ISSCC, 2014.

[19] Hybrid Memory Cube Consortium. Hybrid Memory Cube Spec-
ification Rev. 2.0, 2013. http://www.hybridmemorycube.org/.

[20] Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan Has-
san, Brandon Lucia, Rachata Ausavarungnirun, Kevin Hsieh,
Nastaran Hajinazar, Krishna T Malladi, Hongzhong Zheng, and
Onur Mutlu. CoNDA: Efficient Cache Coherence Support for
Near-Data Accelerators. In ISCA, 2019.

[21] Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chat-
terjee, Mike O’Connor, Nandita Vijaykumar, Onur Mutlu, and
Stephen W Keckler. Transparent Offloading and Mapping (TOM):
Enabling Programmer-Transparent Near-Data Processing in GPU
Systems. In ISCA, 2016.

[22] Damla Senol Cali, Gurpreet S Kalsi, Zülal Bingöl, Can Firtina, La-
vanya Subramanian, Jeremie S Kim, Rachata Ausavarungnirun,
Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand, et al.
GenASM: A High-Performance, Low-Power Approximate String
Matching Acceleration Framework for Genome Sequence Analy-
sis. In MICRO, 2020.

[23] Q. Zhu, T. Graf, H. E. Sumbul, L. Pileggi, and F. Franchetti. Ac-
celerating Sparse Matrix-Matrix Multiplication with 3D-Stacked
Logic-in-Memory Hardware. In HPEC, 2013.

[24] S. H. Pugsley, J. Jestes, H. Zhang, R. Balasubramonian, et al. NDC:
Analyzing the Impact of 3D-Stacked Memory+Logic Devices on
MapReduce Workloads. In ISPASS, 2014.

[25] Amin Farmahini-Farahani, Jung Ho Ahn, Katherine Morrow, and
Nam Sung Kim. NDA: Near-DRAM Acceleration Architecture
Leveraging Commodity DRAM Devices and Standard Memory
Modules. In HPCA, 2015.

[26] Gabriel H Loh, Nuwan Jayasena, M Oskin, Mark Nutter, David
Roberts, Mitesh Meswani, Dong Ping Zhang, and Mike Igna-
towski. A Processing in Memory Taxonomy and a Case for
Studying Fixed-Function PIM. In WoNDP, 2013.

[27] Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayi-
ran, Asit K Mishra, Mahmut T Kandemir, Onur Mutlu, and
Chita R Das. Scheduling Techniques for GPU Architectures With
Processing-in-memory Capabilities. In PACT, 2016.

[28] Berkin Akin, Franz Franchetti, and James C Hoe. Data Reorgani-
zation in Memory Using 3D-Stacked DRAM. In ISCA, 2015.

[29] Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K Chang,
Amirali Boroumand, Saugata Ghose, and Onur Mutlu. Ac-
celerating Pointer chasing in 3D-stacked Memory: Challenges,
Mechanisms, Evaluation. In ICCD, 2016.

[30] Oreoluwatomiwa O Babarinsa and Stratos Idreos. JAFAR: Near-
Data Processing for Databases. In SIGMOD, 2015.

[31] Joo Hwan Lee, Jaewoong Sim, and Hyesoon Kim. BSSync:
Processing Near Memory for Machine Learning Workloads with
Bounded Staleness Consistency Models. In PACT, 2015.

[32] Fabrice Devaux. The True Processing In Memory Accelerator. In
Hot Chips, 2019.

[33] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao,
Yongpan Liu, Yu Wang, and Yuan Xie. PRIME: A Novel
Processing-in-Memory Architecture for Neural Network Compu-
tation in ReRAM-Based Main Memory. In ISCA, 2016.

[34] Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Bala-
subramonian, John Paul Strachan, Miao Hu, R. Stanley Williams,
and Vivek Srikumar. ISAAC: A Convolutional Neural Network
Accelerator with In-Situ Analog Arithmetic in Crossbars. In
ISCA, 2016.

[35] Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan,
Amirali Boroumand, Jeremie Kim, Michael A Kozuch, Onur
Mutlu, Phillip B Gibbons, and Todd C Mowry. Ambit: In-
Memory Accelerator for Bulk Bitwise Operations Using Com-
modity DRAM Technology. In MICRO, 2017.

[36] Vivek Seshadri and Onur Mutlu. In-DRAM Bulk Bitwise Execu-
tion Engine. arXiv:1905.09822 [cs.AR], 2019.

[37] Shuangchen Li, Dimin Niu, Krishna T Malladi, Hongzhong
Zheng, Bob Brennan, and Yuan Xie. Drisa: A DRAM-Based
Reconfigurable In-Situ Accelerator. In MICRO, 2017.

[38] Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee,
Rachata Ausavarungnirun, Gennady Pekhimenko, Yixin Luo,
Onur Mutlu, Phillip B Gibbons, Michael A Kozuch, et al. Row-
Clone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and
Initialization. In MICRO, 2013.

[39] Vivek Seshadri and Onur Mutlu. The Processing Using Memory
Paradigm: In-DRAM Bulk Copy, Initialization, Bitwise AND and
OR. arXiv:1610.09603 [cs.AR], 2016.

[40] Quan Deng, Lei Jiang, Youtao Zhang, Minxuan Zhang, and Jun
Yang. DrAcc: A DRAM Based Accelerator for Accurate CNN
Inference. In DAC, 2018.

[41] Xin Xin, Youtao Zhang, and Jun Yang. ELP2IM: Efficient and Low
Power Bitwise Operation Processing in DRAM. In HPCA, 2020.

[42] Linghao Song, Youwei Zhuo, Xuehai Qian, Hai Li, and Yiran
Chen. GraphR: Accelerating Graph Processing Using ReRAM.
In HPCA, 2018.



[43] Linghao Song, Xuehai Qian, Hai Li, and Yiran Chen. PipeLayer:
A Pipelined ReRAM-Based Accelerator for Deep Learning. In
HPCA, 2017.

[44] Fei Gao, Georgios Tziantzioulis, and David Wentzlaff. Comput-
eDRAM: In-Memory Compute Using Off-the-Shelf DRAMs. In
MICRO, 2019.

[45] Charles Eckert, Xiaowei Wang, Jingcheng Wang, Arun Subra-
maniyan, Ravi Iyer, Dennis Sylvester, David Blaauw, and Reetu-
parna Das. Neural Cache: Bit-Serial In-Cache Acceleration of
Deep Neural Networks. In ISCA, 2018.

[46] Shaizeen Aga, Supreet Jeloka, Arun Subramaniyan, Satish
Narayanasamy, David Blaauw, and Reetuparna Das. Compute
Caches. In HPCA, 2017.

[47] Daichi Fujiki, Scott Mahlke, and Reetuparna Das. Duality Cache
for Data Parallel Acceleration. In ISCA, 2019.

[48] Ivan Fernandez, Ricardo Quislant, Eladio Gutiérrez, Oscar Plata,
Christina Giannoula, Mohammed Alser, Juan Gómez-Luna, and
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