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Based on Feature Relevance Region
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Abstract—In the era of big data, deep learning techniques provide intelligent solutions for various problems in real-life scenarios.
However, deep neural networks depend on large-scale datasets including sensitive data, which causes the potential risk of privacy
leakage. In addition, various constantly evolving attack methods are also threatening the data security in deep learning models.
Protecting data privacy effectively at a lower cost has become an urgent challenge. This paper proposes an Adaptive Feature
Relevance Region Segmentation (AFRRS) mechanism to provide differential privacy preservation. The core idea is to divide the input
features into different regions with different relevance according to the relevance between input features and the model output. Less
noise is intentionally injected into the region with stronger relevance, and more noise is injected into the regions with weaker relevance.
Furthermore, we perturb loss functions by injecting noise into the polynomial coefficients of the expansion of the objective function to
protect the privacy of data labels. Theoretical analysis and experiments have shown that the proposed AFRRS mechanism can not
only provide strong privacy preservation for the deep learning model, but also maintain the good utility of the model under a given
moderate privacy budget compared with existing methods.

Index Terms—Deep learning, differential privacy, privacy leakage, feature relevance region segmentation
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1 INTRODUCTION

R ECENT progress of deep learning techniques based on
neural networks has brought new development op-

portunities to the field of artificial intelligence. Due to its
powerful generalization ability and efficient information
processing efficiency, deep learning has gradually devel-
oped into a key technology in many domains, including
computer vision, natural language processing, image pro-
cessing, speech recognition, autonomous vehicles, and other
fields. It can fully mine the valuable information in the data
by constructing a multi-layer neural network to meet the
needs of different purposes.

However, the vigorous development of deep learning
also brings unprecedented challenges for the security and
privacy of data. Firstly, the training of the deep learn-
ing model is based on massive amounts of representative
datasets, which usually contain a large amount of private
information of individuals, such as medical information of
patients, consumption record of users, personal voiceprint
information, etc. Once they are leaked, irreversible losses
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will be caused [1]. Secondly, deep neural networks have a
large number of hidden layers, which have the ability to
encode some details of training data into model parameters
[2], [3]. Existing studies have shown that attackers can
extract individual private information in the training data
from the neural network through member inference attacks
[4], [5]. Transfer learning is regarded as the next driver to
promote the development of machine learning. It is also
widely used in deep learning. It can save the time of training
the second model from the starting and improve its final
performance. Transfer learning significantly promotes the
pre-trained models to be shared, and a large number of pre-
trained models have been publicly available, such as LeNet
and ResNet. Therefore, the adversaries can undoubtedly
surmise the confidential information of individuals in the
training datasets by using the publicly available model
parameters. In these cases, it is essential to implement
deep learning-based privacy-preserving models to protect
sensitive information from being obtained by adversaries.

How to ensure data privacy while using sensitive
data has attracted people’s attention. The commonly used
privacy-preserving methods include anonymity, Secure
Multi-Party Computing (SMPC), and Homomorphic En-
cryption (HE). However, anonymity cannot effectively pro-
tect attribute information and resist homogeneity attacks
and background knowledge attacks. The computation and
communication costs of SMPC are too high, and the imple-
mentation of Homomorphic Encryption is complex. Differ-
ential Privacy (DP) is applied to deep learning to realize
privacy protection because of its advantages of simple im-
plementation and quantifiable privacy protection level. It
can be achieved simply by injecting noise into model pa-
rameters. The amount of noise injected is controlled by the
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privacy budget ε. In addition, privacy budget can also reflect
the level of privacy protection. However, the introduction of
noise unavoidably decreases the accuracy of models. Thus,
how to balance privacy and model utility becomes the key
to differential privacy applications.

To maintain excellent model utility while preserving pri-
vacy, we propose an adaptive feature relevance region seg-
mentation (AFRRS) mechanism for obtaining deep learning
model with differential privacy. Firstly, input features are
divided into regions with different levels of relevance based
on relevance analysis. Less noise is injected into regions
with stronger relevant features, and vice versa. Secondly, the
loss function is transformed into a polynomial and different
noise is injected into its coefficients.

Our contributions in the study are listed as follows:
(1) A novel differential privacy deep learning method

called AFRRS mechanism is proposed. It implements noise
injection according to the characteristics of the input fea-
tures, which reduces the noise influence on the model’s
accuracy. Furthermore, we perturb the loss function to en-
hance the privacy protection effect.

(2) The process of injecting noise can be used as a pre-
processing process, which is independent of model training.
Therefore, the privacy budget is not accumulated in the
model training phase. The AFRRS balances the privacy with
practicability of the model.

(3) Strict mathematical analysis and the experimental
results prove the effectiveness of our proposed method.

The rest of this study is structured as follows. A concise
overview of privacy preservation in deep learning is given
in Section 2. Section 3 introduces the theoretical basics about
differential privacy. Section 4 gives our work in detail.
Experimental results are analyzed and discussed in Section
5. Some conclusions are given in Section 6.

2 RELATED WORK

The disclosure of private data and sensitive information
might cause huge economic losses to individuals and en-
terprises, and even threaten national cybersecurity. Privacy
preservation technology can protect data privacy without
affecting the normal use of data. It mainly includes secure
multi-party computing, homomorphic encryption, feder-
ated learning, differential privacy, etc. During the training
process, deep leaning algorithms can be threaten by mem-
ber inference attacks, and individual private information is
extracted. Therefore, we focus only on differential privacy
in deep learning.

Differential privacy has a set of precise mathematical
theory. DP guarantees that it is almost impossible for ad-
versaries to distinguish two adjacent datasets. Recently, DP
has been successively used in deep learning to preserve data
privacy. The differential privacy SGD algorithm is a general
method. It injects the same amount of Gaussian noise into
original gradient information in the training processing [6].
Still, the injection of the same amount of noise seriously
affects the model’s performance. Therefore, it is necessary
to design the noise scheme carefully to reduce the influence
of noise on the accuracy of the model. An improvement
method is to gradually reduce the noise scale according to
the iterations of the model. Yu et al. [7] propose a set of

methods for privacy budget allocation, which change the
noise scale in terms of the convergence of the model and ef-
fectively improve the model accuracy. Du et al. [8] introduce
a sensitivity decay method to lessen the variance of noise
injected into gradients in each iteration. Different from the
method of reduction noise scale, Gong et al. [9] adaptively
added noise to the gradient of neurons based on relevance
analysis. In addition, gradient clipping is a necessary step
to implement differential privacy. However, unreasonable
clipping threshold reduces model accuracy. Therefore, some
scholars try to replace the gradient clipping step with
other schemes. Papernot et al. [10] replace ReLU activations
with tempered sigmoids. Tempered sigmoids activations
(TSA) control the gradient norm to avoid introducing too
much noise. Stevens et al. [11] propose the backpropagation
clipping (BC) algorithm to replace the gradient clipping
operation, which limits the sensitivity of the gradient by
clipping the gradient clips each trainable layer’s inputs and
its upstream gradients. To alleviate clipping bias, Liu et al.
[12] propose a differentially private learning with grouped
gradient clipping (DPL-GGC) method. The gradients are
divided into different groups and each group is clipped
separately. Xia et al. [13] propose Differentially Private Per-
Sample Adaptive Clipping (DP-PSAC) algorithm. It coupled
the clipping threshold with the learning rate to avoid tuning
the clipping threshold. The sample gradients of different
magnitudes remain in the same order as the original gra-
dient size after being clipped. Bu et al. [14] propose the au-
tomatic clipping (AUTO clipping) strategy, which replaces
the traditional gradient clipping with normalization. Wu et
al. [15] propose an Adaptive Differentially Private Stochas-
tic Gradient Descent (ADPSGD) algorithm, which adjusts
the random noise added to the gradient by adaptive step
size. Combining private learning with architectural search,
Cheng et al. [16] propose the DPNASNet model, which
achieves a state-of-the-art privacy/utility trade-off.

The researches mentioned earlier focus on gradient per-
turbation to preserve privacy. These algorithms consume
the total privacy budge with each iteration. To reduce un-
necessary privacy budget loss, they need precise privacy
budget metrics method, such as Moment Accountant (MA),
Rényi DP (RDP) [17], Guassian DP (GDP) [18]. Therefore,
some studies implement input perturbation or loss function
perturbation, which avoids the accumulation of privacy loss
in the training iterations. For example, the dPA method
perturbs the loss function to enforce differential privacy,
and minimizes the perturbed loss function to optimize the
model [19]. The PrivR framework distinguishes strongly
relevant features from weakly relevant features by a pre-
set threshold. It then allocates more privacy budget to the
coefficients of the objective function [20]. Furthermore, the
AdLM algorithm adds Laplace noise for perturbing the
input features and loss function [21]. The noise injection pro-
cess of the algorithm is independent of the model training
and can be considered as the pre-training step completed
before model training.

Different from existing differential privacy methods, the
proposed AFRRS allocates different noises according to the
different relevance of the input features. Furthermore, noise
is injected into the coefficients of the loss function. The
key advantage of the AFRRS is a relatively smaller privacy
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bucket (PB) resulting in a better model accuracy.

3 PRELIMINARIES

We firstly provide the definition of differential privacy (DP),
then introduce its some important properties, and finally
review the basic process of relevance decomposition.

3.1 Differential Privacy

Definition 1. ((ε, δ) - DP [22]). Let ε, δ ≥ 0 and a randomized
algorithm M is (ε, δ) - DP if for any two adjacent databases D
and D

′
differing at most one element, and all S ⊆ Range(M),

it holds that

Pr (M (D) = S) ≤ eεPr
(
M
(
D

′
)

= S
)
. (1)

Property 1. (Post-Processing [23]). A randomized algorithm
M : D → R is (ε, δ) - DP. Let A : R → R

′
be an arbitrary

randomized mapping. Then A ◦M : D → R
′

satisfies (ε, δ) -
DP.

Property 2. (Composition Theorem [23]). For i ∈ [k], the
algorithm Mi : D → Ri is (εi, δi) - DP. Then if M[k] : D →
Πk
i=1Ri is defined to beM[k](x) = (M1(x),M2(x), ...,Mk(x)),

then M[k] is
(
Σki=1εi,Σ

k
i=1δi

)
- DP.

Definition 2. (Sensitivity [23]). For two adjacent datasetsD and
D

′
, the L1 sensitivity of a query function f : D → Rd is defined

as

∆f = max
D,D′

∥∥∥f(D)− f
(
D

′
)∥∥∥

1
. (2)

The Laplace mechanism is a fundament of preserving ε -
DP of any function f by adding Laplace noise to the output.
It is defined as follows.

Definition 3. (Laplace Mechanism [18]). Given any function
f : D → Rd, the Laplace mechanism is defined as:

M(D) = f(D) + Y, (3)

where Y ∼ Lap(∆f/ε).

3.2 Relevance Decomposition

Layer-wise Relevance Propagation (LRP) is usually adopted
to understand or interpret the relevance of a single-pixel
to the classification decision in image classifications [24]. It
computes the contribution of each input feature by layer-
wise pixel decomposition from model output to input fea-
ture. In the backward propagation of the relevance, the
model output Fxi

(ω) is first decomposed as the total rel-
evance. In this paper, we calculate the relevance of input
features using a pre-trained model. The process mainly
consists of two steps:

Step 1. Relevance decomposition. The relevance of
upper-layer neurons is decomposed based on the following
formula:

R(l−1,l)
q←p (xi) =

{
zqp
zp+βR

(l)
p (xi) , zq ≥ 0,

zqp
zp−βR

(l)
p (xi) , zq < 0.

(4)

The predefined parameter β ≥ 0 is aimed to avoid
boundlessness of the relevance R(l−1,l)

q←p (xi) when zp is close
to 0. The affine transformation zp of the neuron p is

zqp = aqωqp, (5)

zp =
∑
q

zqp + bp. (6)

Step 2. Relevance propagation. During the backward
propagation, the relevance of a lower layer neuron is de-
noted as the sum of the relevance of upper layer neurons
connected to it:

R(l−1)
q (xi) =

∑
p∈hl

R(l−1,l)
q←p (xi) . (7)

Finally, the relevance between every hidden neuron and
input feature is obtained. Therefore, Eq. (8) holds:

Fxi
(ω) =

∑
p∈hl

R(l)
p (xi) = ... =

∑
xij∈si

Rxij
. (8)

4 METHOD DESCRIPTION

The section presents the details of our approach. We pro-
pose an adaptive noise injection mechanism based on fea-
ture relevance region segmentation. The proposed AFRRS
mechanism injects Laplace noise into the model from three
position: input-output feature relevance, input features and
the objective function. It is shown in Fig. 1.

Fig. 1. Diagram of adding noise to the model.

4.1 Input-Output Feature Relevance Computation
Before adding noise, we first analyze the relevance of input
features based on LRP algorithm. We can understand the
role of each input feature in model decision-making by
relevance analysis. Relevance analysis provides a basis for
the subsequent feature relevance region segmentation.

Given an model output Fxi
(ω), the relevance of each

input feature to the model output is calculated by LRP
algorithm. It is worth noting that this step is completed in a
pre-training model on the dataset D. Then, we can compute
the average relevance of all the input features, which is
shown as follows:

Rj(D) =
1

|D|
∑
xi∈D

Rxij (xi) , (9)
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where Rxij
(xi) is the relevance of the input feature xij to

the model output Fxi
(ω). To ensure Rj(D) ∈ [0, 1], every

Rj(D) is standardized as Rj(D)−ξ
τ−ξ , where τ and ξ are the

maximum and minimum of R1(D), R2(D), ..., Rd(D).
For ∀j ∈ [1, d], we preserve differential privacy when

computing the relevance Rj(D) by injecting Laplace noise
into it. R∗j (D) is defined as Equation (10):

R∗j (D) = Rj(D) + Lap (∆R/ε1) , (10)

where ε1 is the total budget injected into the relevance of all
the input feature. The differential private relevance is ε1 -
differential privacy, whose correctness is based on Lemma 1
and Theorem 1, which are proven in Appendix A.1.

Lemma 1. Given any two neighbouring databases D and D
′
,

the relevance of all input features on D and D
′

can be represented
respectively as:

R (D) = {Rj (D)}j∈[1,d],
s.t. Rj (D) = 1

|D|
∑
xi∈D Rxij (xi) ,

R
(
D

′
)

=
{
Rj

(
D

′
)}

j∈[1,d]
,

s.t. Rj

(
D

′
)

= 1
|D′ |

∑
x
′
i∈D′ Rx′

ij

(
x

′

i

)
.

Then, Equation (11) holds:

∆R =
1

|D|

d∑
j=1

∥∥∥∥∥∥
∑
xi∈D

Rxij
(xi)−

∑
x
′
i∈D

′

Rx′
ij

(
x

′

i

)∥∥∥∥∥∥
1

≤ 2d

|D|
.

(11)

Theorem 1. The computation of R∗(D) satisfies ε1 - differential
privacy.

4.2 Feature Relevance Region Segmentation

Through relevance analysis, we find that the input features
are characterized by regional aggregation. That is, the rel-
evance of adjacent input features is similar. The closer to
the image center is, the stronger the input-output feature
relevance is, and vice versa. Hence, we propose a region
segmentation (RS) algorithm, which segments the input
features into different relevance regions. In our method,
we apply the Agglomerative Hierarchical Clustering (AHC)
algorithm to segment the input features into regions with
different relevance levels. Its detail process is shown in
Algorithm 1.

In the RS algorithm, we need to construct an initial
distance matrix. Each element in the matrix represents the
distance between two clustering points, which is the abso-
lute value of the relevance difference of two input features,
that is

R [i, j] = |Ri −Rj | , (12)

where R [i, j] is the distance between input feature i and j.
Since the distance between the features i and j is the

same with the distance between j and i, the distance matrix
is symmetric, that is,

R [i, j] = R [j, i] . (13)

Algorithm 1 Region Segmentation Algorithm
Input: Training dataset D = {x1, ..., xn}, minimum
distance threshold γ, category distance calculation function
dis avg(Ci, Cj), the number of input features d.
Output: The number of divided regions s,
the features contained in each region C =
{C1, C2, ..., Cs}.

1: Calculate the differentially private relevance by LRP
algorithm and Laplace mechanism, ∀j ∈ [1, d]:
R∗j (D) = (1/|D|)

∑
xi∈D Rij (xi) + Lap (∆R/ε1);

2: for j ∈ [1, d] do
3: Intitial every input feature as a category: Ci = {xi};
4: end for
5: for i ∈ [1, d] do
6: for j ∈ [1, d] do
7: Calculate the distance between two input features:

R [i, j] = |Ri −Rj |;
8: Construct a symmetric distance matrix:

R [i, j] = R [j, i];
9: end for

10: end for
11: Set the current region number to s = d;
12: while minR < γ do
13: Merge the two regions Ci and Cj with the smallest

distance Ci ← Ci ∪ Cj ;
14: Decrease the number of current regions by one s ←

s− 1;
15: Delete the row and column in the distance matrix;
16: for k ∈ [1, s] do
17: Calculate the distance between the two categories

R [i, j]← dis avg(Ci, Cj);
18: R [j, i]← R [i, j].
19: end for
20: end while

After the feature relevance region segmentation is com-
pleted, the input features with similar contributions are
adaptively aggregated into the same region, and the region
relevance can be calculated by averaging the relevance of all
input features in a region.

4.3 Perturbation the input features
The relevance between each input feature and the model
output is different. Therefore, adding the same amount of
noise to all input features will affect the performance of the
model. To address this problem, we propose an adaptive
feature relevance region segmentation (AFRRS) mechanism,
a dynamic privacy allocation method based on region seg-
mentation. Its process is summarized in Algorithm 2. Ac-
cording to Algorithm 1, the input features are segmented
into regions with different relevance. Then, we dynamically
allocate privacy budgets for each region. The regional ratio
is introduced as the basis for allocating privacy budgets for
input features in each region, which is shown as follows:

αk =

∣∣Rk∣∣∑s
k=1 µk

∣∣Rk∣∣ , (14)

where Rk is the differentially private relevance of the kth
feature relevance region Ck, and

∣∣Rk∣∣ is the absolute value
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of Rk. The proportion of the features contained in the
kth feature relevance region Ck in all input features is
defined as µk = |Ck|/d, where |Ck| represents the number
of input features in the kth feature relevance region, and∑s
k=1 |Ck| = d.
Based on the region relevance ratio, the privacy budget

εk allocated to the input features in the kth feature relevance
region is:

εk = αk × ε2. (15)

The privacy budget εk is the overall privacy budget
allocated to all input features. According to Eq (15), the
stronger relevant the region is, the more the privacy budget
is allocated, and the less noise is added. This result is signifi-
cant. The features in the region with stronger relevance play
a more critical role in the final decision. Therefore, less noise
is added to reduce the impact on the final model output.

For ∀xi ∈ L, the Laplace noise is adaptively added to
the input feature belonging to a certain region according to
the allocated privacy budget:

xij = xij + (1/|L|) Lap

(
∆f

εk

)
, xij ∈ Ck. (16)

The variance of the noise injected into the input feature
is
(

∆f

εk

)
. More privacy budgets mean smaller noise scales,

and vice versa. Thus, adaptive perturbation is injected into
the input features according to the region relevance ratio.
That is, less noise is injected into the input features with
more vital relevance.

The first affine transformation layer h0 of a model needs
to access the original dataset D. To achieve the differentially
private preservation of the original data information, we
construct a DP layer h0, which is computed by adding
Laplace noise to its affine transformation.

Given a training batch L, each neuron p ∈ h0 is pre-
sented as:

f
(1)
pL (ω(1)) =

∑
xi∈L

(xiω + b) . (17)

The perturbation to the bias b is as follows:

b = b+
1

|L|
Lap

(
∆f

ε2

)
, (18)

where |L| is batch size.
Given a training batch L, each input feature xij to the

neuron p ∈ h0 is perturbed based on the AFRRS mechanism.
Therefore, the differentially private affine transformation
layer h0 is presented as:

h0L(ω(1)) = {f (1)

pL(ω)}p∈h0
,

s.t. f
(1)

pL(ω) =
∑
xi∈L

(
xiω

T + b
)
.

The differentially private affine transformation layer
satisfies ε2 - differential privacy. Its correctness is based
on Lemma 2 and Theorem 2, which are proven in Ap-
pendix A.1.

A neural network contains multiple hidden layers. we
construct other hidden layers h1, h2, ..., hl on top of h0.
Since the hidden layers h1, h2, ..., hl are computed based
on the DP layer h0, they do not access the original data

information, thus achieving differential privacy protection
for the original data.

Algorithm 2 AFRRS Mechanism
Input: Training dataset D = {x1, ..., xn}, privacy budget
ε1, ε2, ε3, learning rate η, the number of batches T , loss
function F (ω), minimum distance threshold γ, category
distance calculation function dis avg(Ci, Cj), the batch size
|L|, the number of input features d.
Output: Optimal parameter ωT .

Segment input features by AHC algorithm:
C = {C1, C2, ..., Cs};

2: for k ∈ [1, s] do
Calculate the average relevance of the kth feature
region Ck:
Rk = (1/|Ck|)

∑
j∈Ck

R∗j ;
4: Calculate the proportion of the features contained in

the kth feature relevance region Ck to the overall
features:
αk = |Rk|/

∑s
k=1 µk|Rk|;

Calculate the privacy budget allocated for the kth
feature relevance region Ck : εk = αk × ε2;

6: end for
for xi ∈ D, j ∈ [1, d] do

8: xij = xij + (1/|L|) Lap (∆f/εk),
b = b+ (1/|L|) Lap (∆f/ε2);

end for
10: Construct hidden layers: {h1, h2, ..., hl};

Calculate the perturbed loss function: FL(ωt);
12: for each k ∈ [T ] do

Take a stochastic batch L;
14: Calculate the perturbed loss function with the privacy

budget ε3: FL(ωk);
Calculate the gradients: gk (xi)← ∇FL (ωk);

16: Update gradients: ωk+1 = ωk − ηt(1/|L|)gk (xi).
end for

Lemma 2. Let D and D
′

denote two neighbouring datasets,
and the model is trained in divided batches. Suppose L and L

′

are any two adjacent batches. Given the weight of the first affine
transformation of the model ω(1), let h0L(ω(1)) and h0L′ (ω(1))
represent the output of the first affine transformation of the model
on L and L

′
, respectively, expressed as:

h0L(ω(1)) = {f (1)
pL (ω)}p∈h0

,

s.t. f
(1)
pL (ω) =

∑
xi∈L

(
xiω

T + b
)
,

h0L′ (ω(1)) = {f (1)

pL′ (ω)}p∈h0
,

s.t. f
(1)

pL′ (ω) =
∑
x
′
i∈L

′

(
x

′

iω
T + b

)
.

Then, the following inequality holds:

∆f =
∑
p∈h0

s∑
k=1

∑
xij ,x

′
ij∈Ck

∥∥∥∥∥∥
∑
xi∈L

xij −
∑
x
′
i∈L

′

x
′

ij

∥∥∥∥∥∥
1

≤ 2
∑
p∈h0

d.

Theorem 2. The differentially private affine transformation of
the model is ε2 - differential privacy.
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4.4 Perturbation to The Loss Function

In the training process, we can obtain a deep learning
model by minimizing the loss function. In previous steps,
we realize adequate protection of sensitive information in
the training dataset by adaptively injecting Laplacian noise
into the input features. Furthermore, since the calculation
of the loss function requires access to the data labels, it is
essential to protect the given labels, which can be achieved
by perturbing the loss function. Among loss functions, the
cross-entropy error is widely used, which can be shown as

FL(ω) =−
m∑
c=1

∑
xi∈L

(
yic log y

′

ic + (1− yic) log
(

1− y
′

ic

))
= −

m∑
c=1

∑
xi∈L

(
yic log

(
1 + e−hlc(xi)(Wlc)T

))
−

m∑
c=1

∑
xi∈L

(
(1− yic) log

(
1− ehlc(xi)(Wlc)T

))
.

(19)
Based on the literature [19], the loss function is trans-

formed into a polynomial form

F
′

L(ω) =

m∑
c=1

∑
xi∈L

2∑
R=0

f
(R)
c (0)

R!

(
hlc (xi) (Wlc)

T
)R

, (20)

where m denotes the number of the categories.
For ∀c ∈ [1,m], we have fc(z) = yic log (1 + e−z) +

(1− yic) log (1 + ez). It is worth noting that when calcu-
lating the cross-entropy loss, the output range of the last
hidden layer of the model is [0, 1].

The loss function is expanded into a polynomial by ap-
plying the function mechanism [25]. The ε3 - DP is realized
by adding Laplace noise to the polynomial coefficients. Let
λ

(R)
c (xi) stand for f (R)

c (0)/R!, where R ∈ [0, 2]; then we
have {λ(0)

c (xi) = log 2, λ
(1)
c (xi) = 1/2 − yic, λ

(2)
c (xi) =

1/8}. φc (xi) = {φ(0)
c (xi) , φ

(1)
c (xi) , φ

(2)
c (xi)} stands for the

coefficients, which are composed of combinations between
λ

(R)
c (xi) and the Rth power of hlc (xi). The perturbed

coefficients are as follows:

φ̄(R)
c (xi) = φ(R)

c (xi) +
1

|L|
Lap (∆F /ε3) . (21)

The perturbed loss function satisfies ε3 - differential
privacy. Its correctness is based on Lemma 3 and Theorem
3, which are proven in Appendix A.1.

Lemma 3. Let L and L
′

represent the neighbouring batches.
F

′

L(ω) and F
′

L′ (ω) are the polynomial approximation of FL(ω)

corresponding to L and L
′
, then we have

∆F =

m∑
c=1

2∑
R=0

∥∥∥∥∥∥
∑
xi∈L

φ(R)
c (xi)−

∑
x
′
i∈L

′

φ(R)
c

(
x

′

i

)∥∥∥∥∥∥
1

≤ m
(
|hl|+

1

4
|hl|2

)
.

(22)

Theorem 3. The perturbed loss function FL(ω) is ε3 - DP.

Based on the previously mentioned Lemmas and Theo-
rems, we can obtain Theorem 4.

Theorem 4. Algorithm 2 satisfies ε1 + ε2 + ε3 - DP.

Proof. First of all, it can be known from Theorem 1 that the
differentially private relevance of the input features satisfies
ε1 - DP. From Theorem 2, it can be seen that the differen-
tially private affine transformation layer of the model is ε2
- DP. Because DP is not affected by post-processing, the
computation of h1, h2, ..., hl is ε2 - DP. According to The-
orem 3, the loss function satisfies ε3 - DP. In the processing
of gradient calculation, access to the original data is not
required, and gradient descent still satisfies ε3 - DP based
on Property 1. Furthermore, the procedures mentioned
aforementioned access to the same training dataset at each
training epoch. Therefore, based on Property 2, Algorithm 1
satisfies ε1 + ε2 + ε3 - DP.

5 EXPERIMENTS

5.1 Experimental Setting

1) Dataset. We chose two datasets to validate the proposed
AFRRS in this paper.
• MNIST [26]. It contains 70,000 handwritten digital

images of 10 categories, including 0, 1, 2, 3, 4, 5, 6, 7, 8,
9. There are 60000 images for training, 10000 images for
testing. The size of each image is 28× 28.
• CIFAR10 [27]. It contains 60000 color images of 10

categories, including airplanes, cars, birds, cats, etc. There
are 50000 images for training, 10000 images for testing.
Every image has 32× 32 pixels and three channels (RGB).

2) Experimental settings. Experiments are performed with
PyTorch framework with NVIDIA GeForce RTX 2080 Ti.
The network architectures of MNIST dataset and CIFAR10
dataset are shown in Table 1 and Table 2 respectively. All
experiments run 100 epochs. The experimental results for
our method are averaged over 10 runs.

TABLE 1
The model architecture for MNIST.

Layers Parameters
Convolution 16 filters of 8× 8, strides 2
Max-Pooling 2× 2
Convolution 32 filters of 4× 4, strides 2
Max-Pooling 2× 2

Fully connected 32 units
Softmax 10 units

TABLE 2
The model architecture for MNIST.

Layers Parameters
Convolution 32 filters of 3× 3, strides 1
Avg-Pooling 2× 2, strides 1
Convolution 64 filters of 3× 3, strides 1
Avg-Pooling 2× 2, strides 1
Convolution 128 filters of 4× 4, strides 1
Avg-Pooling 2× 2, strides 1
Convolution 256 filters of 4× 4, strides 1

Fully connected 32 units
Softmax 10 units
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5.2 Results of Feature Relevance Region Segmenta-
tion
The differentially private relevance of each input feature is
computed based on the LPR algorithm and Laplace mech-
anism. On the basis of the differentially private relevance,
the RS algorithm is applied to segment the input features.
The heatmaps of MNIST and CIFAR10 after segmentation
are shown in Fig. 2 and Fig. 3 respectively.

The coordinates of the heat map indicate the image size.
For the mnist dataset, the pre-training model is LeNet-5
when calculating the relevance. Therefore, the image size
is adjusted to 32×32. For simplicity, we only use the central
28 × 28 part of the correlation matrix when subsequently
adding noise to the input features.

Relevance analysis requires access to the raw data in-
formation. To prevent data privacy leakage, we compute
the differential privacy relevance and then perform region
segmentation of the input features based on it, as well as add
noise. Fig. 2 and Fig. 3 show the region segmentation results.
They are drawn based on the differential privacy relevance
of input features. The results illustrate that the relevance of
features has the characteristic of regional aggregation. The
input features of weak contribution to the model output
are mainly concentrated at the margin of an image, and
the input features of strong contribution to the model are
primarily concentrated in the center of an image. This is
because the main content of an image is focused on the
central region, and the edge part is mainly the background
of the image, which plays a relatively minor role in the
final decision.Input features with the same color belong
to the same feature relevance region. The relevance of the
region with the darker color is stronger, which has a more
significant influence on the final decision of the model.
Therefore, in the subsequent noise addition operation, less
noise to the feature regions is injected into the regions with
stronger relevance to reduce the influence of noise on the
final decision. More noise is injected into the regions with
weaker relevance to provide a privacy guarantee.

Fig. 2. The heatmap of differentially private relevance of the input fea-
tures on MNIST.

5.3 Effectiveness Evaluation of Different Algorithms
To verify the effectiveness of the AFRRS mechanism, the
experiments were designed to compare TSA [10], BC

Fig. 3. The heatmap of differentially private relevance of the input fea-
tures on CIFAR10.

[11], DPL-GGC [12], DP-PSAC [13], AUTO clipping [14],
ADPSGD [15], DPNASNet [16], and the deep learning
model without differential privacy protection (No DP). The
results are shown in Table 3 and Table 4. The experiments
show that the algorithm proposed in this paper can improve
the model accuracy with smaller privacy budget. In addi-
tion, the compared algorithms add noise to the gradient,
which cause the noise to gradually accumulates during the
model iteration. Model accuracy is affected by the privacy
budget metric method. If the privacy budget used in each
iteration is not calculated accurately, unnecessary privacy
budget will be consumed. However, as a pre-processing
step, the noise addition step of the AFRRS mechanism can
be completed before the model is trained. It can achieve an
accurate measure of the consumed privacy budget, and the
noise is not accumulated during the iterations. Therefore,
higher model accuracy can be obtained by running more
epochs. The AFRRS mechanism smooths the gap with the
non-privacy models in the privacy-preserving deep learning
model.

TABLE 3
Comparison result between the AFRRS mechanism and other

algorithm on MNIST.

Algorithm Accuracy (%) PB (ε)
No DP 99.00 -

TSA [10] 98.10 2.93
DPL-GGC [12] 98.23 2.85
DP-PSAC [13] 98.24 3.00

AUTO clipping [14] 98.15 3.00
DPNASNet [16] 98.57 3.00

AFRRS 98.80 0.60

We evaluated the model accuracy of the AFRRS mecha-
nism at different privacy levels. The experimental results are
shown in Fig. 4 and Fig. 5. The results show that for these
two datasets, the model accuracy of the AFRRS mechanism
improves as the privacy budget increases. The cause lies in
the fact the more privacy budget means the weaker privacy
guarantee, and less noise is injected into the model.



IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 14, NO. 8, AUGUST 2015 8

TABLE 4
Comparison result between the AFRRS mechanism and other

algorithm on CIFAR10.

Algorithm Accuracy (%) PB (ε)
No DP 76.90 -

TSA [10] 66.20 7.53
BC [11] 74.00 3.64

DPL-GGC [12] 67.11 3.19
ADPSGD [15] 69.63 6.40

DPNASNet [16] 68.33 3.00
AFRRS 76.00 2.00

Fig. 4. The accuracy of the AFRRS mechanism for different privacy
levels for MNIST.

6 CONCLUSIONS

In this paper, an adaptive noise addition mechanism based
on feature relevance region segmentation is proposed. The
method first obtains the differential privacy relevance.
Based on the relevance analysis, the input features are
segmented into regions with different relevance levels. Less
noise is injected into the input features in the regions with
stronger relevance, and vice versa. It retains the local charac-
teristics of the input features and reduces the impact on the
important feature region. Furthermore, the loss function is
transformed into the form of a polynomial, and then the loss
function is perturbed by injecting noise into its coefficients.
In our method, the process of injecting noise is used as a
preprocessing process, which can be completed before the
model training, and the noise does not accumulate with the
training of the model. The privacy loss can also be precisely
calculated. The effectiveness of our proposed algorithm is
proved theoretically. Experimental results demonstrate that
the proposed method heightens the model’s accuracy under
a reasonable privacy budget. And our method can provide
a privacy guarantee for different neural networks.

The limitation of this study is that the performance
of AFRRS mechanism in various attack scenarios has not
been evaluated. In the future, we will explore the defense
performance of AFRRS mechanism in real attack scenarios
such as member inference and attribute inference.

APPENDIX A
A.1 Proof of Lemma 1
Proof. Assume that the D and D

′
are the neighbouring

databases differing only on the last element. Let xn and

Fig. 5. The accuracy of the AFRRS mechanism for different privacy
levels for CIFAR10.

x
′

n denote the final element in D and D
′
, respectively. We

derive

∆R =
1

|D|

d∑
j=1

∥∥∥∥∥∥∥
∑
xi∈D

Rxij (xi)−
∑
x
′
i∈D

′

R
x
′
ij

(
x

′
i

)∥∥∥∥∥∥∥
1

=
1

|D|

d∑
j=1

∥∥∥Rxnj (xn)−R
x
′
nj

(
x

′
n

)∥∥∥
1

≤ 2

|D|maxxi∈D
d∑
j=1

∥∥Rxij (xi)
∥∥

1
.

Since ∀xi ∈ D, j ∈ [1, d], Rxij
∈ [0, 1], the following

inequality holds ∆R ≤ 2d
|D| .

A.2 Proof of Theorem 1
Proof. Let R∗j (xi) be perturbed relevance, that is

R∗j (xi) = Rj(D) + Lap (∆R/ε1) .

We have that

Pr(R∗(D))

Pr(R∗(D′))
=

Πd
j=1 exp

(
ε1

∆R

∥∥Rj(D)−R∗j )
∥∥

1

)
Πd
j=1 exp

(
ε1

∆R

∥∥Rj(D′)−R∗j )
∥∥

1

)
≤Πd

j=1 exp

(
ε1

∆R

∥∥∥Rj(D)−Rj(D
′
))
∥∥∥

1

)
≤Πd

j=1 exp

(
ε1

|D|∆R

∥∥∥Rj(xn)−Rj(x
′
n)
∥∥∥

1

)
≤Πd

j=1 exp

(
ε1

|D|∆R
2 maxxn∈D ‖Rj(xn)‖1

)
≤ exp

(
2ε1
|D|∆R

d∑
j=1

maxxn∈D ‖Rj(xn)‖1

)
= exp(ε1).

Therefore, the computation of R∗(D) is ε1 - differential
privacy. This completes the proof.

A.3 Proof of Lemma 2
Proof. Suppose that L and L

′
are the adjacent batches dif-

fering only on the last element. xn and x
′

n denote the final
element in L and L

′
, respectively, we obtain



IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 14, NO. 8, AUGUST 2015 9

∆f =
∑
p∈h0

s∑
k=1

∑
xij ,x

′
ij∈Ck

∥∥∥∥∥∥∥
∑
xi∈L

xij −
∑
x
′
i∈L

′

x
′
ij

∥∥∥∥∥∥∥
1

=
∑
p∈h0

s∑
k=1

∑
xnj ,x

′
nj∈Ck

∥∥∥xnj − x′
nj

∥∥∥
1

≤
∑
p∈h0

s∑
k=1

∑
xnj ,x

′
nj∈Ck

(
‖xnj‖1 +

∥∥∥x′
nj

∥∥∥
1

)

≤2
∑
p∈h0

s∑
k=1

∑
xnj∈Ck

(
maxxn∈L ‖xnj‖1

)
.

Without loss of generality, we suppose
√∑d

j=1 x
2
ij is

supposed less than or equal to 1, where xij ≥ 0. It
can be achieved by normalization techniques. Since for
∀xij : xij ∈ [0, 1], we have

∆f ≤ 2
∑
p∈h0

s∑
k=1

|Ck| ≤ 2
∑
p∈h0

d.

This completes the proof.

A.4 Proof of Theorem 2

Proof. ∀p ∈ h0, the perturbed affine transformation is ex-
pressed as:

f
(1)

L (ω) =

s∑
k=1

∑
xij∈Ck

∑
xi∈L

(
xij +

1

|L| Lap

(
∆f

εk

))
ωT


+
∑
xi∈L

(
b+

1

|L| Lap

(
∆f

ε2

))
.

Let all b be the input features in the 0th feature relevance
region and ωb be the weight parameter of b. The weight
parameter of all input features is ω = ωb ∪ ω. We have

f
(1)

L (ω) =

s∑
k=0

∑
xij∈Ck

∑
xi∈L

(
xij +

1

|L| Lap

(
∆f

εk

))
ωT


=

s∑
k=0

∑
xij∈Ck

ϕjω
T ,

where

ϕj =
∑
xi∈L

(
xij +

1

|L| Lap

(
∆f

εk

))
.

Since all neurons of the first affine transformation layer
have the perturbation as mentioned above, the following
formula holds:

Pr(h0Lω
(1))

Pr(h
0L

′ω(1))

=
Πp∈h0Πs

k=0Πxij∈Ck exp
(
εk
∆f

∥∥∥∑xi∈L xij − ϕj
∥∥∥

1

)
Πp∈h0Πs

k=0Π
x
′
ij∈Ck

exp
(
εk
∆f

∥∥∥∑x
′
i∈L

x
′
ij − ϕj

∥∥∥
1

)
≤Πp∈h0Πs

k=0Π
xij ,x

′
ij∈Ck

exp

(
εk
∆f

∥∥∥xnj − x′
nj

∥∥∥
1

)
≤Πp∈h0Πs

k=0Π
xij ,x

′
ij∈Ck

exp

(
εk
∆f

2 maxxn∈L ‖xnj‖1

)
≤Πp∈h0Πs

k=0 exp

(
2εk|Ck|

∆f

)
≤Πp∈h0Πs

k=0 exp

(
2d

∆f

µk
∣∣Rk∣∣∑s

k=1 µk
∣∣Rk∣∣ ε2

)

=Πp∈h0 exp

(
2d

∆f
ε2

)
= exp

(
2
∑
p∈h0

d

∆f
ε2

)
= exp (ε2) .

A.5 Proof of Lemma 3
Proof. Suppose that L and L

′
differ in only on the last

element. The two elements are represented as xn and x
′

n,
respectively. We obtain

∆F =

m∑
c=1

2∑
R=0

∥∥∥∥∥∥∥
∑
xi∈L

φ(R)
c (xi)−

∑
x
′
i∈L

′

φ(R)
c (x

′
i)

∥∥∥∥∥∥∥
1

=

m∑
c=1

2∑
R=0

∥∥∥φ(R)
c (xn)− φ(R)

c (x
′
n)
∥∥∥

1
.

We know φ
(0)
c (xn) = λ

(0)
c (xn) = log 2, and φ

(0)
c (x

′

n) =

λ
(0)
c (x

′

n) = log 2, thus φ(0)
c (xn) = φ

(0)
c (x

′

n). Therefore,

∆F ≤
m∑
c=1

2∑
R=1

(∥∥∥φ(R)
c (xn)

∥∥∥
1

+
∥∥∥φ(R)

c (x
′
n)
∥∥∥

1

)
≤2 max

m∑
c=1

2∑
R=1

∥∥∥φ(R)
c (xn)

∥∥∥
1

≤2 max
m∑
c=1

(1

2
− ync

)∑
p∈hl

hpl (xn)


+2 max

m∑
c=1

1

8

∑
p,q∈hl

hpl (xn)hql (xn)


≤2

m∑
c=1

max

(1

2
− ync

)∑
p∈hl

hpl (xn)


+2

m∑
c=1

max

1

8

∑
p,q∈hl

hpl (xn)hql (xn)


≤2

m∑
c=1

(
1

2
|hl|+

1

8
|hl|2

)
=m

(
|hl|+

1

4
|hl|2

)
,

where hpl (xi) is the input of pth neuron in hl.
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A.6 Proof of Theorem 3
Proof. Suppose that L and L

′
differ in only on the last

element. The two elements are represented as xn and x
′

n,
respectively. During back propagation, the perturbed loss
function FL(ωt) needs to be minimized, and the perturba-
tion to the coefficient φ

(R)

c denotes as

φ
(R)

c =
∑
xi∈L

(
φ(R)
c (xi) +

1

|L| Lap

(
∆F

ε3

))
.

We have that
Pr(FL(ωt))
Pr(F

L
′ (ωt))

=
Πm
c=1Π2

R=0 exp
(
ε3

∆F

∥∥∥∑xi∈L φ
(R)
c (xi)− φ

(R)

c

∥∥∥
1

)
Πm
c=1Π2

R=0 exp
(
ε3

∆F

∥∥∥∑x
′
i∈L

′ φ
(R)
c (xi)− φ

(R)

c

∥∥∥
1

)
≤Πm

c=1Π2
R=0 exp

 ε3
∆F

∥∥∥∥∥∥
∑
xi∈L

φ(R)
c (xi)−

∑
xi

′∈L′

φ(R)
c (x

′
i)

∥∥∥∥∥∥
1


≤Πm

c=1Π2
R=1 exp

(
ε3

∆F
2 maxxn∈L

∥∥∥φc(R)(xn)
∥∥∥

1

)
≤ exp

(
ε3

∆F
2 maxxn∈L

m∑
c=1

2∑
R=1

∥∥∥φc(R)(xn)
∥∥∥

1

)

≤ exp

(
ε3
m
(
|hl|+ 1

4
|hl|2

)
∆F

)
= exp(ε3).

Consequently, the perturbed loss function FL(ω) pre-
serves ε3 - differential privacy.
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