
1

Blockchain-based Federated Learning with SMPC
Model Verification Against Poisoning Attack for

Healthcare Systems
Aditya Pribadi Kalapaaking, Ibrahim Khalil, Xun Yi

Abstract—Due to the rising awareness of privacy and security
in machine learning applications, federated learning (FL) has
received widespread attention and applied to several areas, e.g.,
intelligence healthcare systems, IoT-based industries, and smart
cities. FL enables clients to train a global model collaboratively
without accessing their local training data. However, the current
FL schemes are vulnerable to adversarial attacks. Its architecture
makes detecting and defending against malicious model updates
difficult. In addition, most recent studies to detect FL from
malicious updates while maintaining the model’s privacy have
not been sufficiently explored. This paper proposed blockchain-
based federated learning with SMPC model verification against
poisoning attacks for healthcare systems. First, we check the
machine learning model from the FL participants through an
encrypted inference process and remove the compromised model.
Once the participants’ local models have been verified, the models
are sent to the blockchain node to be securely aggregated. We
conducted several experiments with different medical datasets to
evaluate our proposed framework.

Index Terms—Federated Learning, Secure Multi-Party Com-
putation, Blockchain, Poisoning Attack, Encrypted Inference,
Healthcare Systems

I. INTRODUCTION

The Internet of Things (IoT) has been applied in various
services, including the healthcare domain. The integration of
IoT in the healthcare system is also known as the Internet
of Medical Things (IoMT). With the development of IoMT,
many healthcare devices are interconnected, allowing devices
to exchange information among medical experts and Artificial
Intelligence (AI) based services. This interconnectivity helps
healthcare industries like hospitals to improve the efficiency
and quality of their services. In the medical diagnosis field,
medical imaging devices facilitate the process of early diag-
nosis and treatment for medical staff.

Due to this interconnectivity, medical image retrieval is
made easy, resulting in extensive data with wide variations.
Consequently, medical image analysis has become a challeng-
ing task for medical experts and is prone to human error. In
recent years, the success of Deep Learning (DL) in computer
vision tasks has provided a significant breakthrough in medical
image classification tasks. Several studies of DL in medical
imaging fields have shown promising results by providing
accurate and efficient diagnoses [1].

As shown in Figure 1, cloud computing is one paradigm
that emerged to solve the availability of computing and storage
resources. Therefore, the cloud is usually used to deploy the
DL model for training and data inference. However, sending
the raw data from the IoMT cluster to the cloud will be very

expensive. This is where edge computing, like edge servers,
will be advantageous to process the data before sending it to
the cloud.

Fig. 1: Traditional federated learning application

It is known that a high-performing Deep Learning (DL)
model requires a large and diverse dataset for its training. This
large-scale dataset is often obtained from multi-institutional or
multi-national data accumulation and voluntary data sharing
in the healthcare industry. While massive data collection
is essential for the deep learning process, sharing patients’
data raises privacy concerns and relative regulations such as
the General Data Protection Regulation (GDPR) and Health
Insurance Portability and Accountability Act (HIPAA). Due to
the rising concerns, healthcare institutions may be prevented
from sharing their medical datasets. In some cases where
sharing is possible, some restrictions are applied, resulting in
inadequate data sharing.

In recent studies, [2] proposed a federated learning model
that allows parties to collaboratively train a model by sharing
local model updates with a parameter server. Intuitively, this
method is safer than centralized training because machine
learning models learn from healthcare IoMT data without
relying on a third-party cloud to hold their data [3]. However,
federated learning also presents some challenges that may
limit its applications in real-world case scenarios. For example,
federated learning remains vulnerable to various attacks that
may result in leakage of private data [4] or poisoned learning
model [5]. Also, the participants in the current FL setup cannot
verify the authenticity of the machine learning model. To
protect FL participants’ privacy, the existing defense method

ar
X

iv
:2

30
4.

13
36

0v
1 

 [
cs

.C
R

] 
 2

6 
A

pr
 2

02
3



2

mainly focuses on ensuring the confidentiality of the machine
learning gradients. Differential Privacy (DP) [6], [7] is one of
the commonly used methods to preserve the privacy of the
learning model. Adding DP to a federated learning scenario
can improve the privacy of the participants models. However,
adding noise into machine learning gradients will reduce the
learning model accuracy [7]. DP is also ineffective in mitigat-
ing poisoning attacks while maintaining model performance
resulting in a faulty global model. To tackle the poisoning
attack, existing research on anomaly detection [8],[9] has been
explored. However, the existing methods cannot eliminate all
the poisoned models and cause the accuracy of the global
model to be reduced. Also, they perform the anomaly detection
method in a plaintext model. This will lead to another issue
where the attacker can perform a parameter stealing attack
[10] and a membership inference attack [11]. Thus, a verifiable
and secure anomaly detection method for federated learning
scenarios is needed.

This paper proposes a privacy-preserving verification
method to eliminate poisoned local models in a federated
learning scenario. The proposed method eliminates the com-
promised local model while guaranteeing the privacy of the
local model’s parameters using an SMPC-based encrypted
inference process. Once the local model is verified, the ver-
ified share of the local model is sent to the blockchain for
the aggregation process. SMPC-based aggregation is used
to perform the secure aggregation between the blockchain
and the hospital. After the aggregation process, the global
model is stored in tampered-proof storage. Later, each hospital
receives the global model from the blockchain and verifies the
authenticity of the global model. The contributions of our work
are summarized as follows:

• Propose a new blockchain-based federated learning ar-
chitecture for healthcare systems to ensure the security
of the global model used for classifying disease.

• Design a privacy-preserving method for local model
anomaly detection in a Federated learning scenario with
SMPC as the underlying technology. Our encrypted
model verification method eliminates the poisoned model
while protecting the local model privacy from member-
ship inference attacks and parameter stealing.

• Propose an SMPC-based secure aggregation in the
blockchain as a platform to decentralize the aggregation
process.

• We present a verifiable machine learning model for
federated learning participants using blockchain in the
IoMT scenario.

The rest of this paper is organized as follows. Section II
defines the problem and design goals. Section III discusses
the related work. Then, we present the system architecture
and introduce the proposed frameworks in Section IV. Next,
we describe the experimental setup and evaluation results of
the proposed work in Section V. Finally, a conclusion is drawn
in Section VII.

II. PROBLEM SCENARIO AND DESIGN GOALS

A. Problem Scenario

To discuss and highlight the current issues with current
federated learning, we use an IoMT-enabled hospital scenario
(see Fig. 2). Assume that several smart hospitals are placed
in different regions with varying patient demographics and
diseases. Each smart hospital is equipped with a cluster of
IoMT devices. The IoMT devices will be used to scan the
patient to detect a severe disease. In The current IoMT
scenario, IoMT devices will act as data sources since the
IoMT devices are resource-constrained and cannot perform
any machine learning algorithm. Hence, each hospital has an
edge server with computing resources to execute the machine
learning tasks using the local datasets. Nevertheless, due
to dataset limitations, the machine learning model accuracy
generated from the local datasets is relatively low. Therefore
the edge server from each hospital participates in the federated
learning platform. In the federated learning platform, locally
trained models from the hospital’s edge server are collected
and aggregated to produce a highly accurate machine learning
model without sending private datasets to the cloud provider.
Later, the aggregated or global model is sent back to the edge
server for another round of federated learning processes. Once
the global model reaches the desired accuracy, it will be used
to recognize the disease more accurately.

Although the aforementioned federated learning scenario
improves the overall machine learning accuracy, it suffers from
the following security risks:

• Risks of local model security: In the current setup of fed-
erated learning, every party that sends their local model
is sent to the cloud for the aggregation process without
checking the model’s validity. This traditional FL method
introduces the risk of a local model being poisoned. For
example, an attacker can perform a poisoning attack and
train the model using poisoned data, leading to a faulty
local model. Since healthcare data are critical, sending
plaintext local models to the cloud can pose privacy
risks. Therefore, validating and securing the local model
is required to prevent it from various security aspects.

• Risks of generating a biased aggregated model: The
model aggregation process of the local model is per-
formed on the cloud services that can be tampered with
and produce a biased global model. For example, an
attacker can include a poisoned local model during the
aggregation process that may lead the global model to
have a false classification. Hence, a secure aggregation
method is required to encounter the current security
problem.

• Risk of receiving faulty global model: In the existing
federated learning method, the global model generated
from the cloud will be sent back to each edge server
in the hospitals. However, the hospital can not verify the
global model they received. The attacker can intercept and
alter the global model. As a result, the hospital received
a faulty global model. From this problem, a global model
verification method is required to ensure the integrity of
the global model.



3

Hospital N

Poisoned
Local Model

Edge 
Server

Store
Data

Training

Poisoning Attack

Poisoned 
Local Data

IoMT Devices

Hospital 1

Local 
Data

Local
Model

Edge 
Server

Store
Data Training

IoMT Devices

Internal
Attacker

Model 
Aggregation

Poisoned
Global Model

Cloud

Shared
Blockchain

Store Poisoned
Global Model

Upload 
Poisoned

Local Model

Upload 
Local Model

Fig. 2: Possible threat in existing federated learning healthcare scenario

B. Design Goals
With the risks and threats mentioned above, our goals for

preserving privacy in Federated Learning can be decomposed
into three aspects as follows:

• Robustness: The proposed work should have the abil-
ity to prevent the adversary from poisoning federated
learning. This allows the federated learning participant
to learn from a benign global model to improve their
model accuracy. Also, a robust aggregation method needs
to be developed to secure the aggregation process from
an attacker.

• Privacy: The prior work [12] has shown that an attacker
can perform a poisoning attack to decrease the global
model accuracy by miss-classifying the machine learning
model. To protect the federated learning participants,
checking the participant’s local learning model while
maintaining the local model privacy itself is essential.

• Verifiability: The designed method should have the abil-
ity to verify the machine learning model, specifically the
global model. Since the adversary may alter or poison the
global model. In the current federated learning scenario,
the participant received the global model from the cloud
without knowing the model’s authenticity.

III. RELATED WORK

Below, we discuss several existing privacy-preservation
methods for FL. Then, existing blockchain-based FL will also
be presented.

A. Privacy-preserving Federated Learning and Existing Attack
In FL, data privacy is achieved by sending the model to the

client and performing local training. Later, the locally trained
model will be collected by the central server and aggregated
into a global model. With this method, the participants only
shared the local model and did not send any datasets. However,
FL itself is not sufficient to provide a privacy guarantee.

Some research has been performed to secure the FL archi-
tecture. The author in [6] and [7] enhance the data privacy

in FL with differential privacy (DP) by adding noise in the
local datasets. In [7], also anonymize the end-user by adding
a proxy server. However, the experiment result show there is a
significant accuracy reduction. This privacy-preserving method
is unsuitable for FL in healthcare systems since accuracy is
essential for the inference process.

Zhang et al. [13] use fully homomorphic encryption (FHE)
to perform aggregation and training processes by performing
a batch encryption method. However, all the homomorphic
encryption methods are unusable for healthcare scenarios since
the training process takes significant time.

Authors in [14], [15], and [16] have successfully performed
an adversarial attack on FL architecture. The authors have
demonstrated a poisoning attack on the local client’s datasets.
The poisoned model will be generated and impact the global
model. Based on the existing attack, DP and FHE method is
insufficient against the poisoning attack.

In [17], the author proposed a privacy-enhanced FL against
poisoning adversaries. To secure the machine learning model,
they encrypt the model using linear homomorphic encryption.
Since they encrypt the model from the first round of FL, the
training process will take longer than regular machine learning.
After the participants finish the encrypted training process, The
local model will send to the server for encrypted aggregation.
Based on the results of their experiments, their aggregation
method reduces the accuracy of the machine learning model.

Our proposed method performs anomaly detection using an
encrypted inference process to eliminate the poisoned local
model. Later, we leverage the SMPC-based secure aggregation
method. Our secure aggregation method will not affect the ac-
curacy of machine learning. Also, we leverage blockchain for
the aggregation process as part of the consensus mechanism
to mitigate a single point of failure.

B. Blockchain-based Federated Learning
Blockchain is known for its immutability and is used for

tampered-proof storage. The use of blockchain can track the
local or global model for audibility purposes. Combining
blockchain with FL can ensure the machine learning model’s
integrity.

Author in [18] proposed verifiable aggregation for FL. Their
method follows the concept of blockchain, where they use
the hash to compute the digest for verification. Nonetheless,
the aggregation and hashing process is performed on a single
server. The correct utilization of blockchain technology can
overcome the problem.

In tackling the issue, [19] proposed decentralized privacy
using blockchain-enabled FL. They use blockchain to store
and verify the model using cross-validation, but the participant
is connected to the same blockchain. In their framework, the
participant can use other’s local models, which leads to privacy
issues.

The work on [20] uses a smart contract to verify the global
model. The use of smart contracts can audit the authenticity of
the global model. However, they did not perform any checks
on the local or global model. Also, the local model is not
sent to the blockchain, and not possible to perform any audit
process. From the proposed work, they can not handle any
poisoning attack.



4

TABLE I: Notations

ML Local Model
MG Global Model
Mr+1

Li Updated Local Model
V (MLn) Verified Local Model
HLn Local Image Dataset
Cn IoT Cluster
Sn Edge Server
Bn Blockchain Node

The author in [21] closely relates to our work. They pro-
posed a blockchain-based FL for COVID-19 detection using
CT imaging. In their proposed work, the local model is sent
from the blockchain. For efficiency, they aggregate the model
on a single server, leading to a single point of failure and tam-
pering attack. There are no verification processes on the local
model before the aggregation. Since it’s a shared blockchain,
every hospital can access other private local models.

In our proposed framework, we will first check on the local
model sent from the hospital through an encrypted inference
process. Once it’s verified, the local model will be sent to the
blockchain. Every blockchain node will receive the verified
local models and perform the aggregation process. The global
model is sent from the blockchain to the hospital when the
consensus is done. With this method, the hospital can verify
the authenticity and the model’s integrity.

IV. PROPOSED FRAMEWORK

This section presents our proposed blockchain-based feder-
ated learning with secure model verification. First, we present
an overview of the system architecture. Next, we discuss in
detail the various components of our proposed framework. The
summary of notations used in the methodology can be seen
on Table I.

A. System Architecture
We propose a verifiable Federated Learning (FL) scenario

that leverages SMPC to perform an encrypted local model
verification process and secure aggregation on the blockchain
node. We assume an n number of hospital H , and each hospital
has an edge server Sn. To maintain the privacy and security
of healthcare data, we assume each hospital has its own on-
premise server that has enough computing resources to process
or train the healthcare data that they have. Every hospital is
also equipped with several IoMT devices Zn for data sources.
Because IoMT sensors do not have sufficient computing power
to perform a machine learning (ML) algorithm, Sn will be
used to execute and run the ML model. As a result, IoMT
devices and edge servers in the hospital will form a cluster
Cn(1 ≤ n ≤ H). In the original machine learning, an edge
server trains the ML model based on the local dataset and
generates a Local Model ML. Due to limited datasets from
the hospital, the accuracy of the ML might not be high.
Exchanging datasets from another hospital to improve the
machine learning accuracy might lead to a privacy issue. To
tackle this problem, edge servers from every Cn from each
hospital join the cross-silo federated learning environment
that involves multiple hospitals with diverse datasets that can

produce various ML. Where each hospital (silo) contributes
its own datasets to the training process. This can be useful for
the hospital that wants to share data for training a model but
unable or unwilling to share the raw data itself. In the cross-
silo federated learning scenario, every hospital that participates
in the FL needs to download the initial Global Model denoted
as MG and use it as the based model for the ML training.
Later each hospital sends the trained ML to an aggregator
to aggregate the model. However, a typical FL approaches
perform an aggregation process without checking that the ML

is free from any adversarial attack. In the healthcare scenario,
securing the ML from an attacker is essential since the MG

depends on the collected ML. We proposed an encrypted
inference process using SMPC to check every ML before the
aggregation. To enhance the privacy of FL, the aggregation
process is encrypted and performed in the blockchain node.
Later the encrypted global model is stored in tampered-proof
storage. Fig. 3 gives an overview of the proposed framework.

IoMT 
Devices

Hospital N

Local
Datasets

Local
Model

Edge 
Server

Store
Data

Training

IoMT 
Devices

Hospital 1

Local
Datasets

Local
Model

Edge 
Server

Store
Data

Training

Cloud

Upload Share of 
Encrypted Local 

Model

SMPC-based 
Model 

Aggregation

Private Blockchain Network

Global 
Model

Blockchain 
Node

Tampered-proof
Storage

Consensus MechanismConsensus

Send Global Model

Send Verified Share of 
The Local Model

Public 
Dataset

Secure Model 
Verifier

Fig. 3: Overview of the proposed framework

B. Label Flipping Attack
The adversarial attack we perform in this paper is a label-

flipping attack. With this attack, the adversary’s goal is to
manipulate the learned parameters of M such that the error
is increased for particular source classes. Because this attack
is targeted at the error of specific classes, it has increased
stealthiness compared to an untargeted attack. The attack is
considered successful if the global model incorporates the
adversary’s malicious updates such that the error for the source
classes is increased.

In our threat model, the participants have complete control
over training their local model and can alter the training
hyperparameters and process. Malicious participants can use
this to their advantage to overcome being in the minority
of participants. For example, a malicious participant Pi can
scale up their trained model’s parameters by a scaling factor



5

before communicating it to the server for aggregation. This
can help with poisoning but has to be finely tuned to avoid
causing the server to fail to train entirely or prevent the
malicious participants poisoning efforts from being detected.
This scaling factor can also be adjusted over time to optimize
the poisoning rate and evaluation accuracy. The overview of
the label-flipping attack is shown in Fig. 4.

Label ‘1’ :

Label ‘7’ :

Label ‘0’ :

…

…
…

…
Poisoned 

Dataset
Poisoned 

Local Model

Training
Update 

Global Model

Poisoned 
Global Model

Local Training and Update Phase Inference Phase

‘7’
‘1’ 
‘0’ 

Poisoned 
Global Model

Input Prediction

Input

Input

Prediction

Prediction

Fig. 4: Label Flipping Attack

C. Local Model Generation
In this local model generation step, every hospital performs

a local model training process using the dataset collected from
Cn. Fig. 5 gives an overview of the local model generation
process. In the overview of the proposed framework, the
edge server in each hospital receives the training model from
the tampered-proof storage. The local model that is being
used is a Convolutional Neural Network (CNN)-based image
classification. In our scenario, ResNet-18 [22] is used for deep
learning in medical image classification.

In general, CNN-based image classification takes an input
image and classifies it into certain categories of y objects.
An edge server Sn has a local dataset HLn produced from
cluster Cn. The edge server Sn process the input image as an
array of pixels based on the image resolution. For example,
the medical image dataset has a set of attribute that needs to be
considered during the training process. Based on the medical
image dataset, the CNN will see the image’s height h, width
w, and dimension d. Later, the CNN will read the array of
input as follows h x w x d. The dimension d is perceived as a
three-color channel or RGB in the medical image datasets. A
machine learning model that uses CNN works with different
layers to train and test the local model. The specific layers that
are used in ResNet-18 [22] consist of convolutional layers,
pooling layers, and fully connected layers. At last, the CNN
applies softmax layers to classify the object with probabilistic
between 0 and 1. After Sn performs the local training and
testing process with the CNN algorithm, the local model MLn

is generated. The local model will be evaluated for every round
in the federated learning setup to achieve a certain accuracy
for the global model. In this scenario, an edge server Sn

updates the MLn model using the local datasets HLn in every
federated learning round r as follows:

Mr+1
Ln =Mr

G − η∇F (Mr
G, HLn) (1)

Where Mr+1
Ln denotes the updated local model of client

i, Mr
G is the current global model, η is the local learning

rate, ∇ is used to refer to the derivative with respect to every
parameter, and F is the loss function. Later, we verify the
trained local model through an encrypted inference process to
prevent it from a membership inference attack. We leverage

SMPC protocol to perform the encrypted inference process.
In SMPC protocol, a Trusted Third Party (TTP) provides the
necessary variables to keep all the computation in the inference
process private. Afterward, the SMPC protocol will encrypt
and split the local model into several shares. The encryption
and local model splitting will be discussed in the section. IV-D.

Hospital 1

Generate
Datasets

Edge 
Server

Training
Image

DatasetsCNN Algorithm

Trained Local 
Model

IoMT 
Device

Fix Precision 
Encoding

Additive 
Secret Share

SMPC 
Protocol

Data
Processing

S1

S2

Sn

Send Encrypted
ShareHospital N

Generate
Datasets

Edge 
Server

Training
Image

Datasets
IoMT 

Device

Fix Precision 
Encoding

Additive 
Secret Share

SMPC 
Protocol

Data
Processing

S1

S2

Sn

Encrypted
Share Model

Trained Local 
Model

CNN Algorithm

SMPC-based 
Encrypted Inference

Encrypted
Share Model

Cloud

Fig. 5: Local Model Generation

D. Secure Model Verification
The secure Model Verification (SMV) phase is performed

in the Cloud Service Provider (CSP). SMV leverages se-
cure multi-party computation (SMPC) to perform encrypted
inference. In SMPC, we consider Function Secret Sharing
(FSS) protocol to allow hospital and CSP to keep their input
and model confidential. To achieve this, let F be a function
f : 0, 1n → G, where G is an Abelian group. A function
share ([[f ]]0, [[f ]]1) is generated by T from F such that
F(x) = [[f ]]0(x) + [[f ]]1(x) mod 2n, where n is the number
of bits which all values within the computation are encoded
into, and x is public input. These function shares are then
sent to the hospital Hn and CSP. Suppose a CSP has a private
input y from the verified testing datasets to be inferred. To
generate a public input x, input shares [y]0 and [y]1 are first
generated and shared with the hospital Hn. Each party first
mask these values using a random mask [α]. This is done by
computing [y]0+[α]0 and [y]1+[α]1. Finally, we obtain x by
computing x = y+α. By applying x to function shares [[f ]]0
and [[f ]]1, we get output shares from each party, which can
be used to reconstruct the output. Later, the testing output will
be compared with the CSP threshold to determine whether the
local is being compromised or not. The overview of the SMV
can be seen in Fig. 6.

In our scenario, during the encrypted inference, the SMPC
needs to encrypt and create several shares from the local model
MLn. Suppose a set of input images Y = {y1, y2, ..., yn}
represents a testing image from the verified testing datasets
in CSP. The verified Y will be used to test the local model
MLn by performing an encrypted inference process. All basic
operations to infer an input Y on a MLn follow additive secret
sharing workflow. The steps can be seen in Algorithm 1. First,
input yn ∈ Y needs to be converted to integer values. This is
done by using fix precision() function. Then, Y is encrypted



6

Generate
Datasets

Edge 
Server

Training

Image
Datasets

Hospital N

Trained 
Local Model

IoMT 
Device

Local Model

S1S2Sn

Encrypted 
Share Model

SMPC 
Protocol

Model
Sharing

Encrypted 
Prediction

Encrypted Share of Local
Model

Cloud Service Provider

Verified Testing 
Datasets

Input

SMPC-based Encrypted Inference 
Phase

Local Model 
Verification Phase

Verifying Encrypted 
Prediction

Blockchain Network

Tampered Proof Storage

Blockchain Nodes

Send Encrypted
Share of Local 

Model

Send Verified 
Share of

Local Model

Encrypted 
Inference
Process

Fig. 6: Secure Model Verification

by generating two shares, [y]0 and [y]1. Each share is sent to
the hospital Hn and CSP. The address of the share is then
saved in Enc data. Each party then masks their share using
random mask αi, i ∈ 0, 1, where i is the CSP and hospital
id. This α is provided by the T . The masked value is then
added together to generate public value x. Next, MLn is
encrypted using the FSS protocol. This FSS protocol produces
function shares [[f ]]0 and [[f ]]1 for each machine learning
operation and is distributed to the CSP and hospital. The
function shares address is stored in Enc model. yn ∈ Y is
then fed to the Enc model to produce shared output. Finally,
the shared output is reconstructed to produce a set of final
output O = O1,O2, ...,On. Later, a set of O will be compared
with the threshold that CSP has to determine whether the local
model is faulty or not. Once the local model MLn passes the
threshold requirement, the CSP will send the shared of the
verified share of the local model V Sn(MLn) to the blockchain
network for the aggregation process.

Algorithm 1: Secure Model Verification

Input:
MLn - Local Model
Y = {y1, y2, ..., yn} - Set of Verified Testing Images

Output:
O = {O1,O2, ...,On} - Set of Inference Output

1 foreach yn ∈ Y do
2 Y = Y.fix precision()
3 Enc data = Y.encrypt()
4 Enc model =MLn.encrypt()
5 Encprediction = Enc model(Enc data)
6 O = Encprediction.decrypt()
7 end
8 return O = {O1,O2, ...,On}
9 end

E. Blockchain-based Secure Aggregation
After the CSP performs a secure model verification on the

local model MLn and is verified, CSP sends the V Sn(MLn)
to the blockchain node Bn for secure aggregation. At this
stage, only the blockchain node Bn and the hospital hold the

encrypted share of the local model. Later, Bn and Sn from
the respective hospitals will perform the secure aggregation
process to generate the global model MG. For the secure
aggregation process, we leverage an additive secret-sharing
scheme. Additive secret sharing [23] allows a trusted party
T to share a secret s among n parties P1, P2, ...Pn, such that
to reveal s, n node must share their secret. This process starts
with a high number of prime number Q generation. Then, s
is split into n number of shares s1, s2, ..., sn. In this scheme,
the shares of s must satisfy that

s =

(
n∑

i=1

si

)
mod Q

.
This can be done by choosing s1, s2, ..., sn−1 ∈ [0, Q− 1],

and sn =
(
s−

(∑n−1
i=1 si

))
mod Q. The reconstruction of

s can be done by calculating s = (
∑n

i=1 si) mod Q. For
the aggregation process, each blockchain node Bn are able
to receive multiple set of verified share model V Sn(MLn) =
{V S1(ML1), V S2(ML2), . . . , V Si(MLi)} from different hos-
pital. By having a share of the local model, Bn can not
reconstruct or achieve any private information from the model.

In additive secret sharing, properties such as addition,
subtraction, and multiplication are supported. Suppose that B1

has a secret s and S1 has a secret u. Additionally, there exists
a T . In a particular case, B1 and S2 want to know the sum of
their secrets without revealing the true value of their secrets.
To calculate the sum, the protocol simply shares the secrets
of the two parties into n number of shares. Particularly, s is
divided into three shares (s1, s2, s3) and u into another shares
(u1, u2, u3). Each party will hold one share of each secret. For
example, B1 holds (s1, u1), S2 holds (s2, u2), and T holds (s3,
u3). Then, to calculate the sum of the two secrets, each party
adds up the shares they hold using mn = (un + sn) mod Q,
where mn is the sum of shares that party n holds. Finally, the
sum of shares is computed as follows:

u+ s =

(
n∑

i=1

mi

)
mod Q

For Secure federated averaging aggregation proposed in
[24], an addition operation is employed to obtain the model
parameters average. In our scenario, we assume there are
n number of blockchain nodes Bn and a trusted party T .
Suppose that we have a verified local model V Sn(MLn) from
Bn. The aggregation process is defined in Algorithm 2.

To begin, a trusted third party T computes Q, which is
visible to Bn and Sn. Then, it initializes a model MG to store
the aggregated model parameters. Each Sn creates n shares
of their parameters (param). Suppose the model parameters
have a length of J and j ∈ [0, J ]. For each parameter
of participants models param[j], Sn create n shares of the
local model and send it to blockchain node Bn. However,
since additive secret sharing takes a finite abelian group,
any parameter with a floating number must be converted
to an integer. Hence, using the fixed precision() function,
floating points are truncated to the fourth decimal. A particular
share of parameter param[j] from each party that joins the



7

computation Pi is denoted as share i j. To calculate a model
parameter average, each Pi computes the sum of shares on
param[j] as follows:

Pi s =

(
n∑

i=1

share i j

)
mod Q

where i is the participant id, n is the total number of
participants, and j is the parameter index. The sum of shares
from all Pi are then added up together and averaged as follows:

MG.param[j] =
(
∑n

i=1 Pi s) mod Q

n
The above equation results in an aggregated result of a

parameter from all hospitals’ trained local models. The result
is then used to replace param[j] in MG. Finally, an aggregated
model MG is produced after the processes are iterated through
all of the model parameters.

Algorithm 2: Blockchain-based Secure Aggregation

Input:
n - Number of parties
M p len - Model’s parameters length

Output:
MG - Aggregated model

1 Initialization:
2 T initialize a high prime number, Q
3 initialize aggregated model, MG

4 begin
5 for j ∈ range(0,M p len) do
6 for each Pi ∈ Pi−1 do
7 Mi = Pi.model()
8 p =Mi.param[j]
9 p.fixed precision()

10 shares = 0
11 while n 6= 0 do
12 if n = 1 then
13 share i j = (p− shares) mod Q
14 send(share i j, Pi, idx)
15 else
16 share i j = random(0, Q− 1)
17 send(share i j, Pi, idx)
18 shares = shares+ share i j
19 end
20 n−−
21 endWhile
22 endForEach
23 MG.param[j] = 0
24 for each Pn ∈ Pi do
25 Pi s = (

∑n
i=1 share i j) mod Q

26 endForEach
27 MG.param[j] =

∑n
i=1 Pi s mod Q

n
28 endfor
29 return MG

30 end

After the global model MG is generated, the blockchain
node Bn runs a consensus mechanism. The consensus mech-

anism verifies the global model produced by the Bn. If the
majority of hashes of corresponding models are the same, the
Bn in the blockchain network adds the global model MG as a
block in the blockchain or the tampered-proof storage. Later
the global model is sent to all edge servers Sn as the update
of the federated learning rounds.

V. RESULTS AND DISCUSSION

In this section, we show several experiments conducted
to evaluate the performance of our proposed framework.
Experimental setup, dataset, and CNN model are discussed
in Section V-A and V-B, respectively. Section V-C, discuss
the experimental results.

A. Experimental Set-up
In our experiments, we run the aggregation node and the

hospital server with the AWS EC2 cloud. Since the training
process requires considerable computing power, we use P3
machine. Instance ml.p3.8xlarge, has 4 NVIDIA Tesla V100
with 64 GB memory that has Peer to Peer connection between
the GPU. This machine has 32 vCPUs and 244 GB of RAM.

For cost and performance efficiency, AWS EC2 provides
G4DN series. The G4DN instance from AWS runs the appli-
cation on a virtual CPU and is optimized for machine learning
inference and small-scale training. We use g4dn.12xlarge
series with 48 virtual CPUs, 192 GB Memory, and 4 NVIDIA
T4 GPUs.

For the blockchain implementation, we develop our private
blockchain with Python programming language [25] and lever-
age proof of work as the consensus mechanism. We deploy
our customized private blockchain in AWS EC2 t2.2xlarge
instance. Inside the VM, our python code generated several
virtual blockchain nodes that connect with a peer-to-peer
connection. The customization in the private blockchain is
required to support the secure aggregation that leverages in this
paper. The federated learning application is developed using
PyTorch [26].

B. Dataset and Model
We use a dataset from Medical MNIST (MedMNIST) [27]

for the experiments. These datasets are commonly used for
benchmarking in the machine learning framework. Therefore,
we have used them to evaluate the performance of our pro-
posed approach. The proposed FL-based approach uses the
dataset to train and test the local model on the client side.
For all our experiments, we split the training and testing sets.
We evenly distributed the training and test sets among the
participants based on the number of participants.

MedMNIST is a collection of standardized biomedical im-
ages consisting of 12 datasets. The MedMNIST dataset is
designed to perform classification on lightweight images with
various data scales and diverse tasks (e.g., multi-class and
multi-label). All images are pre-processed into 28 x 28 with
the corresponding classification labels.

From MedMNIST, we choose two specific datasets: Tis-
sueMNIST and OCTMNIST. We choose these two specific
datasets because they have more than 100.000 samples.

TissueMNIST contains 236,386 human kidney cortex cell
samples, segmented from 3 reference tissue specimens and



8

organized into eight categories. The TissueMNIST samples
are split with a ratio of 7 : 1 : 2 into training, validation, and
test set.

OCTMNIST contains 109,309 valid optical coherence to-
mography (OCT) images for retinal diseases. The OCTMNIST
dataset comprises four diagnosis categories, leading to a multi-
class classification task. OCTMNIST samples are split with a
ratio of 9 : 1 into training and validation sets and use its source
validation set as the test set.

Both source images are gray-scale, and their sizes are 28 x
28. The exact number of the sample distribution can be seen in
Table. II. Since we are working on the healthcare FL scenario,
the dataset is in Table. II will be divided evenly among the
client. In our experiments, we have ten different hospitals as
a client.

We use ResNet 18 [22] for the machine learning model.
ResNet 18 is a convolutional neural network (CNN) model
that has 18 layers deep and about 11M parameters; it can also
load a pre-trained version of the trained model. Since ResNet
18 has three input channels, we convert gray-scale images into
RGB images. For the training process, we set the batch size to
64. We utilize an Adam optimizer [28] with an initial learning
rate of 0.001 and train the model for 60 epochs.

Dataset Total Samples Training Validation Testing
TissueMNIST [27] 236,386 165,466 23,640 47,280
OCTMNIST [27] 109,309 97,477 10,832 1,000

TABLE II: Samples distribution

C. Result Analysis
We perform an FL training with ResNet 18 as a local model

for the first result analysis. In comparison, we evaluate our FL
architecture with OCTMNIST and TissueMNIST. The dataset
is already spread evenly amongst ten clients. From the training
accuracy, OCTMNIST reaches 92% and TissueMNIST has
80% accuracy. The training accuracy can still be increased
if we run more epochs because TissueMNIST has more than
200.000 sample data. For a fair comparison and to avoid over-
fitting problems with another dataset, we run the experiments
with two epochs in local clients within 25 rounds. Based on
the result, the model accuracy for both datasets converges after
35 epochs.

5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

Training Epoch

A
cc

ur
ac

y

FL Global Model
Central ML Model
Average FL Clients

(a) OCTMNIST

5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

Training Epoch

A
cc

ur
ac

y

FL Global Model
Central ML Model
Average FL Clients

(b) TissueMNIST

Fig. 7: Evaluation comparison between FL architecture and single deep
learning model using OCTMNIST and TissueMNIST

In Fig. 7, we compare our FL architecture with the single
deep learning model. In this experiment, we replicate the

experiment from [27] and perform the training process using
60 epochs. In Fig. 7(a) and Fig. 7(b), we show the evaluation
accuracy of the global model, single ML model, and the
average of the FL participants. In OCTMNIST (Fig.7(a)),
the average client’s accuracy and the centralized training can
reach 50% accuracy. However, the global model evaluation
has 72% accuracy in the same epoch. In this case, the FL
architecture can increase 22% evaluation accuracy under the
same setup. In TissueMNIST (Fig. 7(b)), the global model
evaluation accuracy can increase the overall model up to 10%
compared to the single ML model. From Fig. 7, we can see that
FL architecture can significantly improve the model evaluation
accuracy.

10 15 20 25 30 35 40 45 50
0

20

40

60

80

Training Epoch
A

cc
ur

ac
y

(a) OCTMNIST - 10% malicious Clients

10 15 20 25 30 35 40 45 50
0

20

40

60

80

Training Epoch

A
cc

ur
ac

y

(b) TissueMNIST - 10% malicious Clients

Fig. 8: Poisoning attack on FL architecture with 10% malicious clients on
OCTMNIST and TissueMNIST. The plot show the accuracies of benign 1

, benign 2 , benign 3 , benign 4 , benign 5 , benign
6 , benign 7 , benign 8 , benign 9 , malicious 10 ,
and, global evaluation .

10 15 20 25 30 35 40 45 50
0

20

40

60

80

Training Epoch

A
cc

ur
ac

y

(a) OCTMNIST - 50% malicious Clients

10 15 20 25 30 35 40 45 50
0

20

40

60

80

Training Epoch

A
cc

ur
ac

y

(b) TissueMNIST - 50% malicious Clients

Fig. 9: Poisoning attack on FL architecture with 50% malicious clients
on OCTMNIST and TissueMNIST. The plot show the accuracies of benign
1 , benign 2 , benign 3 , benign 4 , benign 5 ,
malicious 6 , malicious 7 , malicious 8 , malicious 9 ,
malicious 10 , and, global evaluation .

We then perform several experiments to show the effec-
tiveness of the poisoning attack on a different percentage of
malicious clients. To simulate a real-world scenario adversarial
attack, we randomly selected a random client identified as
malicious at the start of each experiment, and the other
participants were identified as honest participants. In the
experiment, we have set from 10% to 50% of the participants
compromised to see the effect of the poisoned local model
on the global model accuracy. We perform the label-flipping
attack by choosing a specific class to poison by inverting its
own label to another faulty label.

In Fig. 8, we perform a poisoning attack on our FL
architecture that affected 10% of the total clients. We apply
the poisoning attack to both OCTMNIST and TissueMNIST.



9

Under the same set-up, Fig. 9 shows 50% of the clients
are malicious. From Fig. 8(a) and Fig. 9(a), the average
poisoned clients’ accuracy is dropped to an average of 30%.
In OCTMNIST datasets, the poisoning attack can be reduced
by up to 25% on the client’s accuracy. In the 10% malicious
client set-up, the global evaluation accuracy is dropped by 7%.
A 50% malicious set-up can reduce the global model accuracy
up to 22%.

In Fig. 8(b) and 9(b) show the average of adversarial clients
accuracy is 32%. For TissueMNIST, global model accuracy
can reduce up to 9% and 26% for 10% and 50% malicious
clients, respectively. However, the global model accuracy
dropped significantly from 65% to as low as 30%. From Fig. 8,
and Fig. 9, the poisoning attack we set up effectively decreases
the client’s accuracy and affects the global model.

10 15 20 25 30 35 40 45 50
0

20

40

60

80

A
cc

ur
ac

y

Benign 1 Benign 2
Benign 3 Benign 4
Benign 5 Benign 6
Benign 7 Benign 8
Benign 9 Global Evaluation

(a) OCTMNIST - Filtered 10% malicious Clients

10 15 20 25 30 35 40 45 50
0

20

40

60

80

A
cc

ur
ac

y

Benign 1 Benign 2
Benign 3 Benign 4
Benign 5 Global Evaluation

(b) OCTMNIST - Filtered 50% malicious Clients

10 15 20 25 30 35 40 45 50
0

20

40

60

80

A
cc

ur
ac

y

Benign 1 Benign 2
Benign 3 Benign 4
Benign 5 Benign 6
Benign 7 Benign 8
Benign 9 Global Evaluation

(c) TissueMNIST - Filtered 10% malicious Clients

10 15 20 25 30 35 40 45 50
0

20

40

60

80

A
cc

ur
ac

y

Benign 1 Benign 2
Benign 3 Benign 4
Benign 5 Global Evaluation

(d) TissueMNIST - Filtered 50% malicious Clients

Fig. 10: Secure model verifier effectiveness on OCTMNIST and TissueM-
NIST for filtering various percentage of malicious clients

In Fig. 10, we show the effectiveness of our proposed
defense method. In this experiment, we perform a secure
model verifier to remove the poisoning attack from various
amounts of malicious clients before the aggregation process.
At first, we removed the 10% malicious clients from both
datasets. Based on Fig 10(a) and Fig 10(c), the global model
can have the same accuracy as shown in Fig 7. In the 50%
of malicious client set-up, OCTMNIST and TissueMNIST
can recover up to 25% accuracy for the global model. From
this experiment, our secure model verifier can detect from a
low percentage to half of the malicious clients and exclude
them from the aggregation process. The result of our filtration
process can improve the global model evaluation accuracy
back to the normal state.

Our secure model verifier method uses the encrypted in-
ference method to provide local model privacy. In Fig. 11,
we compare the time cost for the inference process be-
tween unencrypt and encrypted images. The result shows that
OCTMNIST and TissueMNIST’s inference process has ap-
proximately similar time costs. From our analysis, it’s because
we are using the same model, and the model holds the same
number of parameters. In Fig. 11(a) and Fig. 11(b), the time

5 10 15 20 30
0

500

1,000

1,500

2,000

Number of Images

Ti
m

e(
s)

Unencrypted
Encrypted

(a) OCTMNIST

5 10 15 20 30
0

500

1,000

1,500

2,000

Number of Images

Ti
m

e(
s)

Unencrypted
Encrypted

(b) TissueMNIST

Fig. 11: Time cost comparison for normal inference and encrypted inference
process with a)OCTMNIST; b)TissueMNIST;

cost is increasing linearly, and the average time difference is
200 seconds for both unencrypt and encrypted images. From
the given result, our method can preserve the privacy of the
local model without affecting any significant impact on the
performance.

5 10 15 20
0

100

200

300

Number of Nodes

Pr
oc

es
si

ng
Ti

m
e

(M
s) Deploy

Verify

(a) OCTMNIST

5 10 15 20
0

100

200

300

Number of Nodes

Pr
oc

es
si

ng
Ti

m
e

(M
s) Deploy

Verify

(b) TissueMNIST

Fig. 12: Processing time for adding the global model to the blockchain with
different number of blockchain nodes.

In this experiment, the blockchain node aggregates the
models from the secure verifier to generate the global model.
Then the verified model is deployed to the blockchain network.
Fig. 12 shows the time required to execute both the verification
and deployment of the global model to the blockchain. Our
experiment tested the performance using several blockchain
nodes ranging from 5 to 20 nodes. From the given result, the
deployment phase is more comprehensive, requiring approxi-
mately 140ms to 270 ms across the 20 nodes. The verification
phase is faster, starting from 100ms to 220 ms, and both
processes show a marginal increase in the time taken as more
nodes are added to the blockchain network.

D. Discussion
In this section, we summarize the performance of our

proposed method. As discussed in Section V-C, we conducted
a series of experiments to evaluate the efficacy of our pro-
posed method. Based on the empirical results, the following
conclusions can be drawn.

• Privacy of Local Dataset: The federated learning sce-
nario allows each participant to collaboratively train the
machine learning model locally with their local datasets.
Later the machine learning model will send to the cloud
for the model aggregation process. The federated learn-
ing method is unlike the centralized machine learning
approach, where the participants’ local data needs to be
sent to the cloud for the learning process. Therefore the



10

federated learning scenario can ensure the privacy of the
participant’s sensitive datasets.

• Robustness of Local and Global Model: In our scenario,
we consider an adversary that performs poisoning attacks
on the participant’s datasets. The poisoning attack will
lead to a faulty local model and a poisoned global model.
Early detection to eliminate any poisoned local model to
be excluded from the aggregation process is required.
From the experiment results, our proposed work can
eliminate all the poisoned participant models. From this
result, our architecture can guarantee the robustness of
the participant’s local and global models.

• Privacy of Local Model: In our framework, we perform
an inference process in the cloud to verify whether or not
the local model is compromised. However, an attacker can
perform a membership inference attack [11] on the par-
ticipant’s model and leak sensitive data from the model.
Therefore, we leverage the SMPC-based encrypted in-
ference process to protect the local model from the
attacker while verifying the local model from poisoning
attacks. As the local model is protected using SMPC-
based secret share protocol, model inversion attacks [29],
and parameter stealing [10] cannot be performed on a
local model by an attacker.

• SMPC-based Secure Aggregation: Participants’ local
models are collected and aggregated in the global model
in federated learning. The aggregation process is the core
step of federated learning to achieve a higher accuracy
learning model. However, aggregation is typically per-
formed on a regular server. Previously, [30], [6] proposed
the differential privacy (DP) method to secure the model
from membership inference attack [11]. Nevertheless, DP
will significantly drop the accuracy of the global model.
As the aggregation is performed in the blockchain node
using SMPC-based secure aggregation, the adversaries
cannot tamper with the aggregation process while main-
taining the model’s accuracy.

• Verifiablity of the Global Model: Blockchain is a well-
known decentralized technology that can maintain data
integrity. The data must be verified among the blockchain
node using a consensus mechanism to store data in the
blockchain. Once the data is verified, the blockchain will
create a new block to store the data. Since all blockchain
nodes stored have the same ledger, adversaries cannot
tamper with the integrity of the data. In our proposed
framework, we leverage blockchain to store the latest
global model after the secure aggregation process. The
decentralized process makes it impossible for adversaries
to tamper with or alter the global model since it will
change the hash value. Later, the global model stored
in the blockchain will be sent to the federated learning
participants. Moreover, the participants can verify the
integrity of the global model by checking the signatures
and hashes before they use it for the inference process.

VI. FUTURE RESEARCH DIRECTION

This paper introduces Blockchain-based federated learning
with SMPC model verification to overcome an adversarial

attack. Hence, there are several challenges requiring further
research:

Efficient consensus mechanism: The use of blockchain can
ensure the integrity of the data from the malicious attacker.
However, the consensus mechanism and the synchronization
consume substantial computational power. Therefore, develop-
ing an efficient consensus mechanism to reduce computational
and energy resources is a topic that needs to be explored.

Expensive communication: Secure multi-party computa-
tion can guarantee the privacy and security of multiple partic-
ipants. However, the SMPC needs to be performed on several
communication rounds and involves multiple parties while
performing computation. Federated learning also requires mul-
tiple rounds to achieve the best accuracy for the global model.
A communication-efficient mechanism must be developed to
make the FL and SMPC more efficient in a practical scenario.

VII. CONCLUSION

This paper proposes blockchain-based federated learning
with a secure model verification for securing healthcare sys-
tems. The main objective is to ensure the local model is
poisoned-free while maintaining privacy and providing veri-
fiability for the federated learning participants.

In this framework, we perform a privacy-preserving verifica-
tion process on the local model before the aggregation process.
To preserve privacy on the local model, the verification is
performed through an encrypted inference supported by SMPC
protocol. This method allows the verifier to check the model
with encrypted models and images. Once the local model is
verified, the verified share of the local model is sent to the
blockchain node. Blockchain and the hospital will perform
SMPC-based secure aggregation. Once the majority of nodes
have the same result, the global model is stored in the
blockchain. Later, the tamper-proof storage will distribute the
updated global model to every hospital that joins the federated
learning round.

In the experiment, we use Convolutional Neural Network
(CNN) based algorithms with several medical datasets to gen-
erate local models and aggregate them under FL settings. Our
experiment results show that the model encrypted verification
process can eliminate all the participants’ poisoned models
while maintaining the privacy of the local model. In addition,
we can recover up to 25% for the global model accuracy. It is
essential to mention that our secure inference processing time
is almost similar to the original inference process.

In the future, we plan to develop an efficient consensus
mechanism for blockchain-based aggregation. In this paper,
we assume that all hospitals use the homogeneous model and
use the same setup to generate their respective local models.
However, we plan to broaden our work in the future to support
a heterogeneous model in blockchain-based federated learning.

VIII. ACKNOWLEDGMENTS
This work is supported by the Australian Research Council

Discovery Project (DP210102761).

REFERENCES

[1] L. Sun, X. Jiang, H. Ren, and Y. Guo, “Edge-cloud computing and arti-
ficial intelligence in internet of medical things: Architecture, technology
and application,” IEEE Access, vol. 8, pp. 101 079–101 092, 2020.



11

[2] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence
of fedavg on non-iid data,” arXiv preprint arXiv:1907.02189, 2019.

[3] Z. Yu, S. U. Amin, M. Alhussein, and Z. Lv, “Research on disease
prediction based on improved deepfm and iomt,” IEEE Access, vol. 9,
pp. 39 043–39 054, 2021.

[4] W. Wei, L. Liu, M. Loper, K.-H. Chow, M. E. Gursoy, S. Truex, and
Y. Wu, “A framework for evaluating client privacy leakages in federated
learning,” in European Symposium on Research in Computer Security.
Springer, 2020, pp. 545–566.

[5] V. Mothukuri, R. M. Parizi, S. Pouriyeh, Y. Huang, A. Dehghantanha,
and G. Srivastava, “A survey on security and privacy of federated
learning,” Future Generation Computer Systems, vol. 115, pp. 619–640,
2021.

[6] Y. Zhao, J. Zhao, M. Yang, T. Wang, N. Wang, L. Lyu, D. Niyato,
and K.-Y. Lam, “Local differential privacy-based federated learning for
internet of things,” IEEE Internet of Things Journal, vol. 8, no. 11, pp.
8836–8853, 2021.

[7] B. Zhao, K. Fan, K. Yang, Z. Wang, H. Li, and Y. Yang, “Anonymous
and privacy-preserving federated learning with industrial big data,” IEEE
Transactions on Industrial Informatics, vol. 17, no. 9, pp. 6314–6323,
2021.

[8] X. Wang, S. Garg, H. Lin, J. Hu, G. Kaddoum, M. Jalil Piran, and M. S.
Hossain, “Toward accurate anomaly detection in industrial internet of
things using hierarchical federated learning,” IEEE Internet of Things
Journal, vol. 9, no. 10, pp. 7110–7119, 2022.

[9] V. Mothukuri, P. Khare, R. M. Parizi, S. Pouriyeh, A. Dehghantanha,
and G. Srivastava, “Federated-learning-based anomaly detection for iot
security attacks,” IEEE Internet of Things Journal, vol. 9, no. 4, pp.
2545–2554, 2022.

[10] B. Wang and N. Z. Gong, “Stealing Hyperparameters in Machine
Learning,” in 2018 IEEE Symposium on Security and Privacy (SP), 2018,
pp. 36–52.

[11] M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive privacy
analysis of deep learning: Passive and active white-box inference attacks
against centralized and federated learning,” in 2019 IEEE Symposium on
Security and Privacy (SP), 2019, pp. 739–753.

[12] V. Tolpegin, S. Truex, M. E. Gursoy, and L. Liu, “Data poisoning
attacks against federated learning systems,” in European Symposium on
Research in Computer Security. Springer, 2020, pp. 480–501.

[13] C. Zhang, S. Li, J. Xia, W. Wang, F. Yan, and Y. Liu, “Batchcrypt:
Efficient homomorphic encryption for cross-silo federated learning,” in
2020 {USENIX} Annual Technical Conference ({USENIX}{ATC} 20),
2020, pp. 493–506.

[14] J. Zhang, B. Chen, X. Cheng, H. T. T. Binh, and S. Yu, “Poisongan:
Generative poisoning attacks against federated learning in edge com-
puting systems,” IEEE Internet of Things Journal, vol. 8, no. 5, pp.
3310–3322, 2021.

[15] M. Fang, X. Cao, J. Jia, and N. Gong, “Local model poisoning attacks
to byzantine-robust federated learning,” in 29th {USENIX} Security
Symposium ({USENIX} Security 20), 2020, pp. 1605–1622.

[16] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How to
backdoor federated learning,” in International Conference on Artificial
Intelligence and Statistics. PMLR, 2020, pp. 2938–2948.

[17] X. Liu, H. Li, G. Xu, Z. Chen, X. Huang, and R. Lu, “Privacy-enhanced
federated learning against poisoning adversaries,” IEEE Transactions on
Information Forensics and Security, vol. 16, pp. 4574–4588, 2021.

[18] X. Guo, Z. Liu, J. Li, J. Gao, B. Hou, C. Dong, and T. Baker, “Verifl:
Communication-efficient and fast verifiable aggregation for federated
learning,” IEEE Transactions on Information Forensics and Security,
vol. 16, pp. 1736–1751, 2021.

[19] Y. Qu, L. Gao, T. H. Luan, Y. Xiang, S. Yu, B. Li, and G. Zheng,
“Decentralized privacy using blockchain-enabled federated learning in
fog computing,” IEEE Internet of Things Journal, vol. 7, no. 6, pp.
5171–5183, 2020.

[20] Z. Peng, J. Xu, X. Chu, S. Gao, Y. Yao, R. Gu, and Y. Tang, “Vfchain:
Enabling verifiable and auditable federated learning via blockchain
systems,” IEEE Transactions on Network Science and Engineering,
vol. 9, no. 1, pp. 173–186, 2022.

[21] R. Kumar, A. A. Khan, J. Kumar, Zakria, N. A. Golilarz, S. Zhang,
Y. Ting, C. Zheng, and W. Wang, “Blockchain-federated-learning and
deep learning models for covid-19 detection using ct imaging,” IEEE
Sensors Journal, vol. 21, no. 14, pp. 16 301–16 314, 2021.

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[23] M. C. Doganay, T. B. Pedersen, Y. Saygin, E. Savaş, and A. Levi,
“Distributed privacy preserving k-means clustering with additive secret

sharing,” in Proceedings of the 2008 international workshop on Privacy
and anonymity in information society, 2008, pp. 3–11.

[24] A. Ziller, A. Trask, A. Lopardo, B. Szymkow, B. Wagner, E. Bluemke, J.-
M. Nounahon, J. Passerat-Palmbach, K. Prakash, N. Rose et al., “Pysyft:
A library for easy federated learning,” in Federated Learning Systems.
Springer, 2021, pp. 111–139.

[25] G. Van Rossum et al., “Python programming language.” in USENIX
annual technical conference, vol. 41, 2007, p. 36.

[26] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances in
neural information processing systems, vol. 32, pp. 8026–8037, 2019.

[27] J. Yang, R. Shi, and B. Ni, “Medmnist classification decathlon: A
lightweight automl benchmark for medical image analysis,” in 2021
IEEE 18th International Symposium on Biomedical Imaging (ISBI),
2021, pp. 191–195.

[28] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[29] M. Fredrikson, S. Jha, and T. Ristenpart, “Model Inversion Attacks
that Exploit Confidence Information and Basic Countermeasures,” in
Proceedings of the 22nd ACM SIGSAC conference on computer and
communications security, 2015, pp. 1322–1333.

[30] K. Wei, J. Li, M. Ding, C. Ma, H. H. Yang, F. Farokhi, S. Jin,
T. Q. Quek, and H. V. Poor, “Federated Learning with Differential
Privacy: Algorithms and Performance Analysis,” IEEE Transactions on
Information Forensics and Security, vol. 15, pp. 3454–3469, 2020.


	I Introduction
	II Problem Scenario and Design Goals
	II-A Problem Scenario
	II-B Design Goals

	III Related Work
	III-A Privacy-preserving Federated Learning and Existing Attack
	III-B Blockchain-based Federated Learning

	IV Proposed Framework
	IV-A System Architecture
	IV-B Label Flipping Attack
	IV-C Local Model Generation
	IV-D Secure Model Verification
	IV-E Blockchain-based Secure Aggregation

	V Results and Discussion
	V-A Experimental Set-up
	V-B Dataset and Model
	V-C Result Analysis
	V-D Discussion

	VI Future Research direction
	VII Conclusion
	VIII ACKNOWLEDGMENTS
	References

