
Construction of a spike-based memory using neural-like logic gates based on Spiking
Neural Networks on SpiNNaker

Alvaro Ayuso-Martineza, Daniel Casanueva-Moratoa, Juan P. Dominguez-Moralesa, Angel Jimenez-Fernandeza,
Gabriel Jimenez-Morenoa

aRobotics and Technology of Computers Lab, Universidad de Sevilla, Av. Reina Mercedes s/n. Escuela Tecnica Superior de Ingenieria
Informatica, Sevilla, 41012, Andalucia, Spain

Abstract

Neuromorphic engineering concentrates the efforts of a large number of researchers due to its great potential as a field of
research, in a search for the exploitation of the advantages of the biological nervous system and the brain as a whole for
the design of more efficient and real-time capable applications. For the development of applications as close to biology as
possible, Spiking Neural Networks (SNNs) are used, considered biologically-plausible and that form the third generation
of Artificial Neural Networks (ANNs). Since some SNN-based applications may need to store data in order to use it
later, something that is present both in digital circuits and, in some form, in biology, a spiking memory is needed. This
work presents a spiking implementation of a memory, which is one of the most important components in the computer
architecture, and which could be essential in the design of a fully spiking computer. In the process of designing this
spiking memory, different intermediate components were also implemented and tested. The tests were carried out on
the SpiNNaker neuromorphic platform and allow to validate the approach used for the construction of the presented
blocks. In addition, this work studies in depth how to build spiking blocks using this approach and includes a comparison
between it and those used in other similar works focused on the design of spiking components, which include both spiking
logic gates and spiking memory. All implemented blocks and developed tests are available in a public repository.
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1. Introduction

Neuromorphic engineering was presented by Carver
Mead in the late 1980s [1]. This concept proposed the de-
velopment of hardware and software applications based on
the fundamental principles of biological nervous systems,
one of the most optimal and useful natural mechanisms.
Over the years, this concept has given rise to a new and
interesting field of research which has experienced a strong
evolution in the last two decades [2].

Neuromorphic systems are analog, digital or mixed-
signal systems which rely on artificial neurons and spikes
to transmit information. In biology, these spikes are large
peaks in the membrane potential of neurons that occur
when the membrane potential reaches a specific threshold.
To mimic this behavior, artificial neurons in neuromor-
phic systems generate these spikes as asynchronous elec-
tric pulses. Thanks to this bio-inspired approach, neuro-
morphic systems can achieve low power consumption and
high real-time capability, which could greatly improve the
performance and possibilities of existing systems.

As these neuromorphic systems try to mimic biolog-
ical nervous systems, it is not only necessary to use
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bio-inspired neurons, but also bio-inspired architectures.
A specific type of biologically-plausible neural networks
called Spiking Neural Networks (SNNs) are commonly
used for this purpose. These SNNs have two basic bio-
inspired elements: neurons and synapses. They can be
seen as graphs according to mathematical graph theory,
where neurons would be nodes and synapses would be
edges, which have associated weights (as in other types
of neural networks) and delay values.

There exists two different alternatives to work with
SNNs in order to develop neuromorphic applications: soft-
ware simulators and hardware platforms.

Software simulators allow to build and test new appli-
cations without implementing a real bio-inspired architec-
ture but rather simulated. Some very popular examples
are NEST [3] and Brian [4].

On the other hand, all neuromorphic hardware plat-
forms are made, in essence, of transistors. Although most
of them are fully digital, such as SpiNNaker [5], Loihi [6]
or TrueNorth [7], there exists other platforms, including
BrainScaleS [8], that use a mixed-signal approach.

As explained in [9], processing in neurons and synapses
in the brain uses energy-efficient analog techniques that
lack the noise immunity of traditional digital systems and
are not fully deterministic, two aspects that are inherent
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to analog circuits. Since mixed-signal neuromorphic hard-
ware platforms contain analog circuits, they are closer than
its digital counterpart to this biological processing in the
brain. Using these platforms is a great option to achieve
applications that are as bio-inspired as possible and in
which great precision in the signal and pure determinism
are not needed. For those cases in which those aspects are
needed, digital neuromorphic platforms should be consid-
ered.

There is a long list of interesting neuromorphic applica-
tions that promise great advances in many other different
fields. Some of these fields are mentioned in [2], such as
image processing [10] and emotion recognition [11]. Other
related works focus on speech recognition [12, 13], sensory
fusion [14, 15], motor control [16, 17] or bio-inspired loco-
motion [18, 19]. This evidences the evolution and impor-
tance of neuromorphic engineering, whose progress make
it possible to think of new and exciting possible future
applications, which will require a better understanding of
SNNs and current applications.

As there are no rules on how to build a SNN in order
to achieve specific behaviors or functionalities, the devel-
opment of applications that require them may not be a
simple task for neuromorphic engineers. To address this,
a novel toolkit of functional blocks based on SNNs was
proposed in [20], which provides some of the operations
usually required. This new toolkit establishes the base for
further more complex implementations with similar func-
tionalities than complex digital components. The afore-
mentioned paper also proposed the idea of creating blocks,
such as decoders and multiplexers, which would be made
from spiking NOT and AND gates, and which would be
the base for some higher-level components. In this work,
we present as a starting point the design of a spiking de-
coder, which will be of great importance in the spiking
design of one of the most important components of com-
puters: memory. The main objective of this work is to
design and implement this spiking memory.

In [21], the implementation of neural-like logic gates
based on Spike-Timing-Dependent Plasticity (STDP) [22]
is proposed. Moreover, many works which provide im-
plementations of spiking logic gates and circuits based on
different paradigms can be found. Spiking Neural P (SN
P) systems are used in [23] together with an astrocytes-like
control mechanism to build different logic gates, using a
unique spiking rule. Other works using these SN P systems
are also mentioned there.

On the other hand, no works related to blocks built
from spiking logic gates have been found in the literature.
Thus, the spike-based blocks presented in this paper are
novel. In the case of memory, an implementation based on
STDP but far from the logic gate approach is presented
in [24]. It uses Hebb’s learning rule [25] to dynamically
build connections between two internal layers to achieve
the recall ability of biological memory.

In the process of developing the spiking memory, it was
previously needed to develop other spiking blocks such as

the decoder or the D Latch. Other similar blocks are also
presented. The main contributions of this work include
the development of the spiking memory and other spiking
blocks and the addition of these blocks to the available
public repository1, presented in [20], together with a set
of exhaustive experiments that have been carried out to
prove their expected behavior. The SpiNNaker hardware
platform is used for running large-scale neural network
simulations in real time.

The rest of the paper is structured as follows: Section 2
introduces memory design and provides the theoretical ba-
sis used to build the spiking memory block; in Section 3,
the software and hardware materials used, as well as some
other concepts, are detailed in depth; in Section 4, a list
of the proposed new blocks required for the development
of the memory block is presented and discussed in depth,
showing their associated designs; in Section 5, a list of
the tests that have been performed is presented with a
discussion of their associated results; in Section 6, a com-
parison is made between the related works and this work,
breaking down the most important differences between the
paradigms used. The importance of the proposed blocks
in the development of future applications or new compo-
nents is also discussed in depth; finally, in Section 7, the
conclusions of the work are presented.

2. First steps in memory architecture design

Computers need to store large amounts of information,
which is divided in instructions and data; programs are
made of instructions that use data to perform operations.
Thus, memory is a key component within their architec-
ture. In the digital domain, the basic memory unit is the
bistable circuit, which is an electric circuit with two stable
states, zero and one, that is capable of storing a bit for an
indefinite period of time.

There are two main types of bistable circuits: asyn-
chronous and synchronous circuits, which are commonly
called latches and flip-flops, respectively [26]. Moreover,
there are different types of latches and flip-flops, whose
names usually depend on their inputs and outputs. Com-
monly, flip-flops are preferred in digital circuits against
latches, mainly due to digital systems usually use syn-
chronous subsystems to achieve noise immunity and deter-
minism and, thus, being more reliable than asynchronous
systems. The synchronization of the inputs allows to avoid
race conditions, in which the time difference between the
arrival of inputs could lead to an unwanted state of the
circuit.

Registers are arrays of bistable circuits. To have the ca-
pability of addressing these registers, a decoder is needed.
A decoder is a component with n inputs and 2n outputs, in
which the inputs can be seen as the binary representation

1https://github.com/alvayus/sPyBlocks
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of a number and the outputs can be seen as a representa-
tion of that number in one-hot encoding, which means each
output channel represents a unique number. Decoders are
built from basic logic gates, usually NOT and AND gates.
Its digital circuit is shown in Figure 1.

Figure 1: Diagram of the decoder circuit based on NOT and AND
gates, extracted from [27]. This decoder has 3 inputs and 8 outputs.
Note that the AND gates in this figure have a fan-in of 2.

Figure 2 shows the usual structure of a memory based
on bistable blocks and the decoder mentioned above. Note
that this is the basic and early design of a memory archi-
tecture in which there are no read and write lines, and no
other combinational circuitry to allow these processes. In
this case, the decoder outputs are only used as enable sig-
nals for the bistable blocks in the memory, represented in
Figure 2 as small empty squares. The set of these blocks
forms a matrix in which the rows represent each register.

Figure 2: Diagram of the usual memory structure. This example
shows a memory of 8 registers, one of each has a width of a byte.

3. Materials and methods

3.1. Spiking Neural Networks

There are currently three different generations of
Artificial Neural Networks (ANNs). While the second gen-
eration is associated to Deep Learning, SNNs form the ba-
sis of the third generation [28]. All ANNs share a common
structure: they are always built from neurons (nodes) and
synapses (connections). This structure is based on the
biological nervous system, but has a different level of ab-
straction in the third generation: while the first two gener-
ations only preserve the structure (neurons and synapses
without deeply considering its biological aspects), SNNs
are characterized for the use of bio-inspired neuron and
synapse models. Thus, the first two generations are based
on highly simplified brain dynamics [29] and SNNs are the
closest current approach of neural networks to biological
functioning [30].

Another important aspect in SNNs is the way in which
the information is transmitted. In the biological nervous
system, information is transmitted across synapses in the
form of spikes, which are large peaks in the membrane po-
tential of neurons that occur when the membrane potential
reaches a certain threshold potential. Spikes are generated
in neurons and then propagated to other neurons across
synapses. In the artificial approach, which is similar to
its biological counterpart, these spikes are represented by
asynchronous electric pulses.

Although SNNs are more complex than ANNs, informa-
tion coded in spikes makes them more energically efficient
as they deal with precise timing, having a low computa-
tional cost. This precise timing is also related to sparse
coding, which means that spike-rate is usually low. This
justifies the low power consumption of SNNs [30]. Some
improvements in the hardware implementation, such as
avoiding multiplications, processing spikes using shifts and
sums, and only transmitting single bits of information in-
stead of real numbers, allow achieving real-time execution
[31].

3.2. Neuromorphic hardware platform

As mentioned in Section 1, the SpiNNaker platform has
been used to design new functional blocks and test their
correct operation. SpiNNaker is a massively-parallel multi-
core computing system which was designed to allow mod-
elling very large SNNs in real time and whose intercon-
nected architecture is inspired by the connectivity charac-
teristics of the mammalian brain [5].

Both SpiNN-3 and SpiNN-5 machines have been used in
this work. The main difference between them is the num-
ber of chips: while SpiNN-3 consists of 4 chips, SpiNN-5
has 48 chips. Each of the chips is made up of 18 ARM968E-
S cores operating at 200 MHz. More details regarding
these machines can be found in [32].

Since our designs try to use an optimal amount of re-
sources, all of them can be simulated in both platforms.
On the other hand, to perform simulations of blocks that
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require more inputs, more outputs or a greater number of
internal blocks, as for example in the case of the mem-
ory, whose capacity depends on the number of internal D
latches, a SpiNN-5 machine is used.

3.3. Software packages

PyNN [33] is a Python package for the simulator-
independent specification of neuronal network models.
Currently, PyNN supports NEURON [34], NEST [3] and
Brian [4] as neural network software simulators, and the
SpiNNaker [5] and BrainScaleS neuromorphic hardware
systems. Thanks to this Python package, the whole code
can be executed in all supported simulators and hardware
platforms. In this work, PyNN 0.9.6 is used.

Another important software package is SpyNNaker [35],
which is required to work with PyNN and the SpiNNaker
hardware platform. In this work, SpyNNaker 6.0.0 is used.

Other software packages that have been used to test
the implemented designs are Matplotlib 3.5.1, XlsxWriter
3.0.2, and Numpy 1.22.1.

3.4. Neuron parameters

All functional blocks based in SNNs presented in this
work are made to be as independent as possible from the
neuron parameters that have been used. Thus, their func-
tionality is based on the behavior of the network as a
whole, rather than on individual neurons. In this way,
static synapses with different weights and delays are used
to achieve specific behaviors, thanks to which it can be
ensured that the designed functional blocks will work as
intended in any case, disregarding the neuron parameters.
Note that, since static synapses are the basis for making
these designs, there is no learning involved.

However, although the proposed designs were made to
be as independent as possible from the parameters of the
neurons, there are two fundamental details that must be
taken into account when selecting these parameters:

Firstly, one input spike must make neurons fire once.
This is really important for the designed blocks to work.
On the other hand, since only one spike is needed to know
the result of the operation performed by the block, if the
output response of the neurons contains more than one
spike, performance would be diminished since output re-
sponses would be longer and the sets of inputs of con-
secutive operations should be separated in time to avoid
the overlap of output responses, which could lead to unex-
pected behaviors of the functional blocks. Thus, it must be
ensured that the expected set of inputs produces exactly
one output spike, which will allow avoiding the decrease
in the efficiency of the designed blocks, i.e., the decrease
in the operating frequency.

Figure 3 shows the optimal output response at the left
of the dotted line (a), in which a neuron fires one output
spike per input spike. Note that there is a latency of 1 ms
and there is no overlap between the spikes in the output
response. At the right of the dotted line (b), the output

Table 1: Set of neuron parameters used for the implementation of
the proposed functional blocks.
Neuron parameter Overview Value

cm Membrane capacitance 0.1 nF
taum Time-constant of the RC circuit 0.1 ms

taurefrac Refractory period 1.0 ms
tausyn E Excitatory input current decay time-constant 0.1 ms
tausyn I Inhibitory input current decay time-constant 0.1 ms
vrest Resting potential -65.0 mV
vreset Reset potential -65.0 mV
vthresh Threshold potential -64.91 mV

response of a neuron that fires two output spikes per input
spike is shown. Since firing every millisecond would cause
an overlap in the output spikes, input spikes have been
separated in time. In this way, these are separated as
many milliseconds as output spikes are contained in the
output response for a single operation, in this case, 2 ms.

Figure 3: Graphical comparison between shorter and longer output
responses. a) Shortest output response (1 output spike per input
spike). b) Longer output response (2 output spikes per input spike).

Second, it is necessary to ensure that, after firing, these
neurons do not receive any more input spikes until they
return to the resting potential, which is necessary to cor-
rectly perform the next operation.

In [20], the best set of neuron parameters for the SpiN-
Naker platform was explored. This set fulfills the two pre-
viously mentioned requirements and, thus, it has been used
in this work. Table 1 shows and explains these neuron
parameters, which might change for other neuromorphic
platforms or simulators as the models of the neurons or
the meaning of their parameters may vary.

4. Designs

Logic gates contained in a digital component can be re-
placed by their associated spiking building blocks in order
to achieve a higher-level spiking component that performs
the same function as the original digital circuit. This is
explained in [20], where these spiking building blocks, or
spiking logic gates, were introduced. Both spiking build-
ing blocks and higher-level spiking components are also
named functional blocks.

As explained in the previous sections, the main objective
of this work is to provide a spiking implementation of a
memory block, a process that starts with the development
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of a spiking decoder. As a counterpart to the decoder, the
encoder block, which fulfills its inverse function, is also
implemented. Moreover, the circuit of digital decoders
is very similar to the circuit of digital multiplexers and
demultiplexers. Both components have been implemented
in their spiking form due to their implementation being
practically immediate from the decoder block and all of
them are a good complement to the decoder.

In [20], spiking SR Latches were presented as the start-
ing point for storing spiking information. Since biological
nervous systems do not seem to use any kind of clock sig-
nal, the use of asynchronous circuits, such as these latches,
seems the most convenient. In this way, digital bistable
blocks in Figure 2 should be replaced by new spiking blocks
with a similar function, which would be spiking SR Latches
enhanced with the capability to store a bit value at a spe-
cific time. These new blocks are called spiking D latches.
Thus, D latches are also implemented in this work, and
therefore the list of implemented blocks is: Decoder, En-
coder, Multiplexer, Demultiplexer, D Latch and Memory.

The designs of these new blocks can be seen in Figure 4,
together with a legend of the meaning of each color and
symbol used, except for the spiking memory block, whose
design is presented in Figure 5.

The development process of the spiking implementa-
tions of decoder, encoder, multiplexer and demultiplexer is
based on the truth table of each associated digital circuit.
To calculate the total resources used in each implemented
block, the resources used by each block contained in them
together with the number of blocks of each type are taken
into account.

4.1. Decoder

As explained in Section 2, a decoder takes its inputs as
a binary representation of a number and outputs its one-
hot representation in individual channels. In Figure 1, the
circuit of a basic digital decoder built from NOT gates
and AND gates with a fan-in of 2 is shown. Replacing the
digital NOT and AND gates by spiking NOT and classic
or fast AND gates presented in [20], a spiking design of
the binary decoder can be achieved. This design is shown
in the Figure 4A.

S0 and S1 input signals shown in the design are control
signals: their activation implies the activation of one out-
put AND, also referred as output channel, which emits a
single spike for a single set of input spikes.

The pattern of connections with each of the output AND
gates is directly based on the truth table of the decoder.
Table 2 is the truth table of a decoder with 2 inputs and
4 outputs. For each row, values in the input columns (S0
and S1) represent the connections with a single AND out-
put gate. While “1s” imply connections directly from the
input, “0s” imply connections from their negated values,
i.e., from their associated NOT gates. These connections
target the AND gate whose column is “1”. Thus, e.g., the
second row (S1 and S0) connects S0 and the NOT gate
associated with S1 to AND gate 1.

Table 2: Truth table of the decoder block design shown in Figure 4A.
S1 and S0 are input columns, while AND are output columns.

S1 S0 AND 3 AND 2 AND 1 AND 0
0 0 0 0 0 1
0 1 0 0 1 0
1 0 0 1 0 0
1 1 1 0 0 0

When calculating the total number of neurons and
synapses used in the development of this spiking imple-
mentation, as there are n inputs and 2n outputs in the
decoder, there are n NOT and 2n AND gates. One way
to count connections from inputs and NOT gates to AND
gates is knowing that, since a truth table is used and there
are 2n possible combinations with the values of the inputs
that arise from alternating the binary values in said inputs,
there will be 2n−1 connections from each single input and
2n−1 connections from its associated NOT gate. Note that
2n−1 = 2n/2, and that the number of total connections by
each input to an AND gate is the number of rows of the
truth table, 2n.

• Nodes

– NOT: n ∗ 1 = n

– AND (classic): 2n ∗ 2 = 2n+1

– AND (fast): 2n ∗ 1 = 2n

• Connections

– Input to NOT: n ∗ 1 = n

– Input to AND (classic): n ∗ 2n−1 ∗ 2 = n ∗ 2n

– NOT to AND (classic): n ∗ 2n−1 ∗ 2 = n ∗ 2n

– Internal AND (classic): 2n ∗ 1 = 2n

– Input to AND (fast): n ∗ 2n−1 ∗ 1 = n ∗ 2n−1

– NOT to AND (fast): n ∗ 2n−1 ∗ 1 = n ∗ 2n−1

On the other hand, NOT and fast AND gates need a
Constant Spike Source (CSS) block with provides them
with constant spikes. Thus, some more resources are
added:

• Nodes (CSS): 2

• Connections (CSS)

– Internal CSS: 2

– CSS to NOT: 2 ∗ n
– CSS to AND (fast): 2 ∗ 2n = 2n+1

Thus, the number of total neurons depends on the type
of AND gate used, and, if the CSS resources are included,
the result of the calculation is the following:

• Total resources (Decoder with classic AND + CSS)
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Figure 4: Diagram showing the design of each implemented block. The legend on the right shows the meaning for each color and symbol.
A) Decoder. B) Encoder. C) Multiplexer. D) Demultiplexer. E) D Latch.

– Neurons: 2n+1 + n + 2

– Synapses: 2n ∗ (2n + 1) + 3n + 2

• Total resources (Decoder with fast AND + CSS)

– Neurons: 2n + n + 2

– Synapses: 2n ∗ (n + 2) + 3n + 2

Where n is the number of inputs of the decoder block.
Note that the use of fast AND gates reduces the number
of neurons and synapses required for this design.

4.2. Encoder

The encoder performs the inverse function of the de-
coder block, that is, converting from one-hot representa-
tion to binary representation. A spiking implementation of
this block requires only OR gates, as shown in Figure 4B.
Notice that, in this figure, there are 4 inputs and 2 out-
puts, which matches the number of outputs and inputs of
the decoder block, respectively.

In this case, the number of neurons needed can be calcu-
lated directly. Since spiking OR gates are a single neuron,
the number of neurons is the number of outputs. Being n
the number of inputs and 2n the number of outputs in the
decoder block, the number of inputs and outputs in the
encoder block is 2n and n, respectively. As can be seen,
the numbers are reverted.

Let n be the number of inputs in the encoder block,
the number of outputs in this block could be considered
as dlog2ne. Thus, the number of neurons in the encoder
block is dlog2ne. The ceiling function has to be used to
correctly output the binary representation of the set of
inputs, which represents a value in one-hot encoding.

Table 3, which shows the truth table of the encoder
block with 4 inputs and 2 outputs, is used to calculate
the number of synapses the encoder block contains. Note
that the last two columns in the table show “1s” when the
input is connected to the OR block specified at the top
of the column, and, thus, the number of synapses can be
calculated as the number of “1s” in these columns. This
procedure is very similar to the one already explained for
the decoder, but, in this case, there is no need to count the
zeros because there are no NOT gates. Furthermore, the
truth table of the encoder is the truth table of the decoder
but reversed, which makes sense since this block performs
the inverse function.

In a similar way to what was explained in Section 4.1,
there are 2n possible binary values represented by the out-
put columns of Table 3. However, the number of inputs
cannot be assumed to be a power of two, and thus the
number of ones is not necessarily 2n/2 in each of those
columns. The formulas to calculate the total number of
resources in this block are as follows:

• Total resources (Encoder)
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Table 3: Truth table of the encoder block design shown in Fig-
ure 4B. D3, D2, D1 and D0 are input columns, while OR are output
columns. Other unexpected cases will be the combination of those
presented here.

D3 D2 D1 D0 OR 1 OR 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 1
0 1 0 0 1 0
1 0 0 0 1 1

Table 4: Truth table of the multiplexer block design shown in Fig-
ure 4C. S1 and S0 are input columns, while OR is output column.

S1 S0 OR
0 0 D0
0 1 D1
1 0 D2
1 1 D3

– Neurons: dlog2ne
– Synapses:

∑n
i=2 ones(bin(i− 1))

Where n is the number of inputs of the block and
ones(bin(i − 1)) is the number of ones of the binary rep-
resentation of i − 1, where i represents the rows of the
table. Note that this equation ignores the first two rows
because they do not contribute anything to the output. In
Table 3, second row has one input but no outputs because
it is associated to the non-operation output channel of the
decoder block. In the encoder design shown in Figure 4B,
D0 represents this first non-operation input, and is not
connected to achieve the desired behavior.

4.3. Multiplexer

A multiplexer is a component that allows an input sig-
nal to be selected using control signals, which is why it is
commonly referred to as a data selector. It is very similar
to decoder, but has two differences: firstly, while a decoder
only has channel selection inputs, a multiplexer also has
data inputs, which are directly connected to the output
AND gates. Secondly, since multiplexers must have only
one output channel, there is an OR gate that sums all the
signals emitted by the AND gates in a single channel.

In the spiking multiplexer design, shown in Figure 4C,
both differences can be seen graphically. Table 4, which is
very similar to Table 2, represents the truth table of this
design.

Since multiplexers are very similar to decoders, calculat-
ing the number of resources required will be much easier as
there is an starting point, which is the number of neurons
and synapses required to build the spiking decoder men-
tioned above. Therefore, it is only necessary to calculate
the number of added neurons and synapses, which are the
following:

• Added neurons: 1

Table 5: Truth table of the demultiplexer block design shown in
Figure 4D. S1 and S0 are input columns, while AND are output
columns.

S1 S0 AND 3 AND 2 AND 1 AND 0
0 0 0 0 0 D
0 1 0 0 D 0
1 0 0 D 0 0
1 1 D 0 0 0

• Added synapses

– Data inputs to AND (classic): 2n ∗ 2

– Data inputs to AND (fast): 2n

– AND to OR: 2n

Thus, the total resources required are as follows:

• Total resources (Multiplexer with classic AND +
CSS)

– Neurons: 2n+1 + n + 3

– Synapses: 2n ∗ (2n + 4) + 3n + 2

• Total resources (Multiplexer with fast AND + CSS)

– Neurons: 2n + n + 3

– Synapses: 2n ∗ (n + 4) + 3n + 2

4.4. Demultiplexer

To perform the inverse function of a multiplexer, the
resulting circuit of a demultiplexer is also very similar to
that of a decoder. There is one difference: as in the case of
multiplexer, there are data inputs directly connected to the
output AND gates too, but, in this case, these inputs are
actually the same, which is supposed to be the output of a
multiplexer. Note that since there must be multiple output
channels in a demultiplexer, the OR gate introduced in
the multiplexer design is no longer needed. The spiking
demultiplexer design is shown in Figure 4D.

The truth table of this design is shown in Table 5. No-
tice that this truth table is very similar to the decoder’s
(Table 2), but the output values of the AND gates now
depend on the value of the data input.

As commented before, although the demultiplexer must
perform the inverse operation of the multiplexer, this spik-
ing design is very similar to that of the multiplexer. In this
way, both designs have the same number of input connec-
tions, despite the previously-mentioned difference.

While there are no added neurons regarding the spiking
design of the decoder, since the OR gate introduced in mul-
tiplexer is not introduced here, added synapses between
data input and AND gates must be taken into account:

• Added synapses

– Data inputs to AND (classic): 2n ∗ 2 = 2n+1

– Data inputs to AND (fast): 2n

7



The number of total resources required for building this
spiking demultiplexer are calculated from the number of
total resources of the decoder block, summing these new
synapses. Thus, the result of the calculation is as follows:

• Total resources (Demultiplexer with classic AND +
CSS)

– Neurons: 2n+1 + n + 2

– Synapses: 2n ∗ (2n + 3) + 3n + 2

• Total resources (Demultiplexer with fast AND + CSS)

– Neurons: 2n + n + 2

– Synapses: 2n ∗ (n + 3) + 3n + 2

4.5. D Latch

As explained in this section, D Latch is required for
the design of a memory block and can be built from an
SR Latch. While SR latches need a spike through their
set connections to set the latch and through their reset
connections to reset it, D latches need a spike through
their store signal connection to store the value (1 if there
is a spike, 0 if not) received through their data connection.

This new design of a latch is required to build a mem-
ory block since dealing with register addressing is needed,
which implies a control signal. That control signal will be
used to perform write operations in D latches thanks to
the store signal connection.

The spiking design of a D Latch is shown in Figure 4E.
Note that there are not only store and data connections,
but there is also a connection called data. This connection
is expected to receive the negated value of the data, using
an external NOT gate. In the lower part of this design
there is a rectangle delimiting a neuron and its associated
connections, which corresponds to the design of an SR
Latch.

The number of neurons and synapses needed are then
calculated:

• Neurons

– AND (classic): 2 ∗ 2 = 4

– AND (fast): 2 ∗ 1 = 2

– SR Latch: 1 ∗ 1 = 1

• Synapses

– Store to AND (classic): 2 ∗ 2 = 4

– Data to AND (classic): 1 ∗ 2 = 2

– Data to AND (classic): 1 ∗ 2 = 2

– Internal AND (classic): 2 ∗ 1 = 2

– Store to AND (fast): 2 ∗ 1 = 2

– Data to AND (fast): 1 ∗ 1 = 1

– Data to AND (fast): 1 ∗ 1 = 1

– AND to SR Latch (set): 1 ∗ 1 = 1

– AND to SR Latch (reset): 1 ∗ 1 = 11

– Internal SR Latch: 1 ∗ 1 = 1

Note that the previous calculation has statements in the
form number of blocks * number of neurons in the block or
number of blocks * number of connections in the block. A
CSS block should also be introduced to allow the correct
operation of fast AND gates. To facilitate the calculation
of resources used for the memory design, CSS neurons and
synapses are not included in the total resources of a single
D Latch, which are the following:

• Total resources (D Latch with classic AND)

– Neurons: 5

– Synapses: 13

• Total resources (D Latch with fast AND. CSS block
not included)

– Neurons: 3

– Synapses: 7

The amount of total resources needed to build a D Latch
is higher than an SR Latch since it adds AND gates to
achieve the desired behavior.

4.6. Memory

The memory block was introduced in Section 2. While
Figure 2 shows the basic digital circuit for a memory block,
replacing its digital components with the spiking ones pre-
sented in this section is enough to reach the associated
spiking design, which is shown in Figure 5.

This memory block is mainly made up of one decoder
and a matrix of D latches. The first output channel of
the decoder corresponds to the non-operation channel, so
it will be constantly firing spikes when no input spikes
are received. Using these output spikes would mean that
the associated register (an array of D latches, a row in
the matrix of D latches) would be constantly performing
writing operations. Because of this, this channel is not
used and there is no register associated with it.

Notice that in Figure 5 there are rectangles delimiting
both the decoder and each D Latch. Moreover, there are
additional NOT gates which have the function of negating
each data bit on the top of the design. The negate output
is used by all D latches in the same column of the matrix
of D latches.

In Section 4.1, the number of total resources required
for building a spiking decoder together with the needed
CSS block is shown. These resources are taken as the
starting point for the calculation of the total resources of
this memory block. Let r be the number of registers (rows)
and c their width, i.e., the number of bits of each register
(columns), and the total number of D latches r ∗ c. As
CSS block is already included, it is only needed to sum
the following resources:
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Figure 5: Example design of a spiking memory block with 3 words (rows) of 3 bits (columns) using classic AND gates.

• Added neurons

– NOT: c ∗ 1 = c

– D latches (classic AND): r ∗ c ∗ 5

– D latches (fast AND): r ∗ c ∗ 3

• Added synapses

– Data to NOT: c ∗ 1

– CSS to NOT: 2 ∗ c
– D latches (classic AND): r ∗ c ∗ 13

– D latches (fast AND): r ∗ c ∗ 7

– CSS to AND (fast AND): r ∗ c ∗ 2 ∗ 2

Note that the number of registers is equal to the number
of outputs of the decoder minus one, since the first output
of the decoder has no register associated with it. Thus,
r = 2n − 1. As it is more common to work with the
number of registers and their width, n can be isolated
from the formula. Then, the following expression defines
the number of inputs of the decoder: n = dlog2(r + 1)e.
The use of the ceiling function is required to address all
decoder output channels.

Replacing n in the last two formulas presented in Sec-
tion 4.1, the total amount of resources needed to build the
decoder and CSS blocks based on the number of registers,
r (not in the number of inputs), can be calculated. The
resulting formulas, simplified, are as follows:

• Total resources (Decoder with classic AND + CSS)

– Neurons: 2r + dlog2(r + 1)e+ 4

– Synapses: r + (2r + 5)dlog2(r + 1)e+ 3

• Total resources (Decoder with fast AND + CSS)

– Neurons: r + dlog2(r + 1)e+ 3

– Synapses: 2r + (r + 4)dlog2(r + 1)e+ 4

Adding the previously calculated resources to these for-
mulas, the final formulas for calculating the total resources
of the memory block can be obtained:

• Total resources (Memory with classic AND + CSS)

– Neurons: 2r + c + 5rc + dlog2(r + 1)e+ 4

– Synapses: r+3c+13rc+(2r+5)dlog2(r+1)e+3

• Total resources (Memory with fast AND + CSS)

– Neurons: r + c + 3rc + dlog2(r + 1)e+ 3

– Synapses: 2r+3c+11rc+(r+4)dlog2(r+1)e+4

The current memory implementation does not use read
signals to allow the internal values of the D latches to be
read, which is a detail that could be interesting to im-
plement in the near future to allow the memory block to
be connected with other implemented spiking functional
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blocks or design higher level spiking functional blocks. For
now, the internal value of D latches should be read imme-
diately with a direct connection from their output.

4.7. Resources comparison

Table 6 groups all the formulas to calculate the resources
of the spiking functional blocks presented in this work
based on the number of inputs (n), while Table 7 groups
the formulas to calculate the resources of said blocks de-
pending on the number of outputs (m). Both tables are
presented to facilitate the calculation of the resources used
in any possible case.

In the case of the memory block, the formula depends on
r, which is the number of registers (rows of the matrix of D
latches). m and r are defined by the following expressions:

• m = 2n for the decoder, multiplexer and demulti-
plexer

• m = log2n for the encoder

• r = 2n − 1 for the memory

Note that the number of resources of the memory block
also depends on c, which is the number of bits (columns
of the matrix of D latches).

All formulas in Table 6 have been explained in this sec-
tion, except the one associated with the memory block.
In the same way, only the formulas associated with this
memory block in Table 7 have been explained. The rest of
the formulas are obtained by substituting the variables ac-
cording to the previous formulas and are presented for the
sake of simplicity. These formulas assume that all inputs
are properly connected, as shown in the corresponding de-
signs.

Moreover, Table 8 shows the delays for each of the pre-
sented blocks, depending on the type of the AND block
used. These delay values include all delays from the in-
put connection to the output neuron. A connection with a
delay of 1 ms has been taken as the standard connection.

5. Results

In this section, the implementation and correct opera-
tion of the components whose designs were presented in
Section 4 are tested. For this, the following list of ex-
periments was proposed, which includes tests of different
complexities: combined components tests (Decoder - En-
coder and Multiplexor - Demultiplexor), simple D Latch
tests and complex memory tests. Combined component
tests prove the correct operation of all the components in-
volved. Therefore, for these cases, no individual tests are
presented in order to avoid repeating similar results.

All these tests also serve to demonstrate that the num-
ber of total resources used coincides with those calculated
theoretically using the formulas presented in Section 4.
The practical calculation of these resources, which was

done by counting one by one each of the resources added
in the simulation phase, is independent of the theoretical
calculation.

5.1. Decoder - Encoder

To test the correct operation of the spiking decoder and
encoder designs, a short test was developed in which a
decoder with continuously increasing binary values at its
input is connected to an encoder. The encoder outputs
were expected to represent the binary values used as input
to the decoder, since, as explained, the encoder performs
the inverse function of the decoder.

Figure 6 shows the results of this test. As expected, in-
creasing the binary input values allows ascending channel
selection at the decoder. Also, the encoder outputs are
almost the same as the decoder inputs, with only one dif-
ference: they are delayed in time. This effect also occurs
in the decoder, but with a different delay value. How-
ever, the delay value is the same for each of their output
channels, for both encoder and decoder. As with digital
circuits, these delays are inherent in the spiking designs,
with the total output delay being the sum of the delays of
all existing connections in the output path.

Figure 6: Graphs showing the results of the combined de-
coder/encoder test.

5.2. Multiplexer - Demultiplexer

The results of this test are shown in Figure 7. This
combined test uses different binary values as control sig-
nals that are not related but random. These values are
plotted in the upper left subplot, while the data inputs
are plotted in the upper right subplot. Of those data in-
puts, D0 corresponds to the signal that is firing spikes each
millisecond, at the bottom of the graph. Successively, D1
has half of the frequency of D0, and so on.

The lower left subplot shows the response of the mul-
tiplexer block. Using the signals shown in the graph im-
mediately above, the output signal of the multiplexer is
made up of chunks of the data signals. Note that between
t = 0 and t = 10 there are no spikes in selection inputs,
and, as consequence, the multiplexer response is a chunk
of D0. After t = 10, both control signals are active and the
multiplexer response is a chunk of D3, which is the signal
of the channel associated to value 3 (11 in binary). Other
changes in the control signals occur at t = 40, t = 60 and
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Table 6: Formulas to obtain the resources required for the design of the different blocks shown in Figure 4 as a function of the number of
inputs (n).

Block AND type Total neurons Total synapses

Decoder + CSS
Classic 2n+1 + n + 2 2n ∗ (2n + 1) + 3n + 2

Fast 2n + n + 2 2n ∗ (n + 2) + 3n + 2
Encoder - dlog2ne

∑n
i=2 ones(bin(i− 1))

Multiplexer + CSS
Classic 2n+1 + n + 3 2n ∗ (2n + 4) + 3n + 2

Fast 2n + n + 3 2n ∗ (n + 4) + 3n + 2

Demultiplexer + CSS
Classic 2n+1 + n + 2 2n ∗ (2n + 3) + 3n + 2

Fast 2n + n + 2 2n ∗ (n + 3) + 3n + 2

D Latch
Classic 5 13

Fast 3 7

Memory + CSS
Classic 2n(5c + 2) + n− 4c + 2 2n ∗ (2n + 13c + 1) + 3n− 10c + 2

Fast 2n(3c + 1) + n− 2c + 2 2n(n + 11c + 2) + 3n− 8c + 2

Table 7: Formulas to obtain the resources required for the design of the different blocks shown in Figure 4 as a function of the number of
outputs (m) or registers (r).

Block AND type Total neurons Total synapses

Decoder + CSS
Classic 2m + dlog2me+ 2 m + (2m + 3)dlog2me+ 2

Fast m + dlog2me+ 2 2m + (m + 3)dlog2me+ 2
Encoder - m -

Multiplexer + CSS
Classic 2m + dlog2me+ 3 4m + (2m + 3)dlog2me+ 2

Fast m + dlog2me+ 3 4m + (m + 3)dlog2me+ 2

Demultiplexer + CSS
Classic 2m + dlog2me+ 2 3m + (2m + 3)dlog2me+ 2

Fast m + dlog2me+ 2 3m + (m + 3)dlog2me+ 2

D Latch
Classic 5 13

Fast 3 7

Memory + CSS
Classic 2r + c + 5rc + dlog2(r + 1)e+ 4 r + 3c + 13rc + (2r + 5)dlog2(r + 1)e+ 3

Fast r + c + 3rc + dlog2(r + 1)e+ 3 2r + 3c + 11rc + (r + 4)dlog2(r + 1)e+ 4

Table 8: Delays for each of the presented blocks.

Block AND type Delay (ms)

Decoder
Classic 3

Fast 2
Encoder - 1

Multiplexer
Classic 4

Fast 3

Demultiplexer
Classic 3

Fast 2

D Latch
Classic 3

Fast 2

Memory
Classic 6

Fast 4

t = 90, which are also reflected as a change in the output
of the multiplexer. Notice that these responses are delayed
in time since the multiplexer design has an inherent delay.
There is only one output signal since the multiplexer has
only one output channel.

The lower right subplot shows how the demultiplexer is
able to separate each chunk in its original data channel.
This is possible thanks to the use of control signals, which
indicate which channel the input signal (in this case, the

Figure 7: Graphs showing the results of the combined multi-
plexer/demultiplexer test.

output signal of the multiplexer) should be sent through.
Note that these control signals are the same ones used in
the multiplexer so that the outputs of the demultiplexer
are the same as the data inputs of the multiplexer.
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While the demultiplexer has the same latency as the
decoder since its output path has the same number of for-
ward connections, the multiplexer adds the delay value of
the connection between the AND gate and the output OR
gate, being the output path longer in this case.

5.3. D Latch

This test verifies the correct operation of multiple D
Latches, which have to be set or reset independently. Fig-
ure 8 shows its results in a trace, in which the information
can be visualized better than in a graph. In each cell of
each row of the trace a “1” is displayed when a spike is
fired from the corresponding block in the millisecond indi-
cated by the top row. In this case, classic AND gates and
external NOT gates were used.

Figure 8: Trace of the D Latch test.

In this experiment, two data bit signals are used,
through which spikes are fired with no specific pattern to
prove all possible combinations of binary values. Their
associated negated values appear as NOT gate responses
in the trace, colored in red and delayed by 1 ms from the
original time. In the same way, there are spikes released at
different timesteps through the store signal. Data signal
1 is associated with the first 3 latches (0, 1 and 2), which
are set or reset simultaneously. The same happens with
data signal 2, which is associated with latches 3, 4 and 5.
Note that there is a delay between the spikes in the data
signals and the spikes in the associated latches, which is
the delay of the output path. This delay value depends
on the AND type used and includes the delay value of the
external NOT gate, which, in this case, is equal to 4 ms.
Notice that the NOT gate delay is 1 ms, thus the total
delay is as expected based on Table 8.

The first time that latches 0, 1 and 2 are set to 1 is
associated with the first spike of the store signal. This
spike at t = 1 sets latches 0, 1 and 2 at t = 5. The spike at
t = 2 resets them. In t = 3, the order to set all the latches
is given, which occurs at t = 7. In t = 4 and t = 5 there
are no spikes in the store signal, so data spikes are ignored.
The rest of the cases are very similar to these. Note that,
in t = 8, the value “0” has to be stored. Consequently, in
t = 12 all the latches are reset.

5.4. Memory

The experiment conducted to test the memory was car-
ried out on the block presented in Figure 5 but using fast

AND gates, which means that all AND gates are also con-
nected to the CSS block. This test consisted on performing
an ascending count through the “activation” or “deacti-
vation” (existence or not of spikes) of the input signals,
and its results are shown in Figure 9. The signals colored
in green and named “Signal” correspond to the decoder’s
control signals, which indicate the register in which the in-
put must be stored at the moment in which said selection
occurs.

Figure 9: Trace of the memory test.

The two rows labeled “Channel” correspond to the cal-
culation of the selected channel. In these rows, empty
cells correspond to the value 0, which has been ignored to
show only the channels of interest. Channel (Expected)
shows the selected channel based on the control signal val-
ues, while Channel (Decoder) empirically shows the de-
coder channel that has been activated. Note that there
is a delay between the expected channel and the channel
actually selected, which is the decoder delay. Thus, the de-
lay between the empirical activation of the decoder output
channel and the writing of the register is the latch delay.

In Figure 9, each red rectangle on a vertical set of data
bits encompasses the binary representation of the count
number and is associated with a red rectangle in the reg-
ister part, at the bottom of the trace, with a delay of 4
ms, which is the delay of this block using fast AND gates.
Notice that rectangles in the register part expresses the
count number in hexadecimal format. It is necessary to
remember that each register has 3 bits, coinciding with
the number of input data bits.

At t = 1, t = 2 and t = 3, the values to be written
into the register associated with the output channels 1, 2
and 3 of the decoder are 0x01, 0x02 and 0x03 respectively,
which are stored at t = 5, t = 6 and t = 7 because of the
decoder’s delay. At t = 4 no control signals are provided,
and then, at t = 8, no store operation is performed. This
is because the output channel 0 of the decoder has been
selected, which does not have any associated register in the
memory. In this experiment, the ascending count received
at the input data bits reaches it maximum value at t = 7,
and is reset to 0 in the next timestep. Thus, the trace
is repeated in a loop until the end of the simulation is
reached.

6. Discussion

In Section 1, some works are cited in which spiking
logic gates were implemented using different approaches.
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In [21], it is proposed the use of STDP. This paradigm
needs to use training techniques to define the weights of
the neural network synapses, something that does not hap-
pen with the static synapses used in this work and in [20],
as they have fixed weights. Moreover, although STDP
could decrease the total number of resources used in the
designs presented in [20], it would increase the computa-
tional cost and, probably, decrease the performance of the
designed blocks.

On the other hand, [23] presents SN P systems with an
astrocyte-like control mechanism to build neural-like logic
gates. This approach is more complex than the SNNs used
in [20], since the resulting systems are larger and it addi-
tionally introduces a new type of cell: astrocytes. This
is easy to see when comparing OR implementations using
both approaches, since OR blocks used in this work (pre-
sented in [20]) consists of only a single neuron. Moreover,
the behavior of the OR implementation in [23] needs sev-
eral timesteps to perform the OR operation, which means
it has a lower frequency of operation.

SN P systems use spiking and forgetting rules to define
the behavior of neurons in the system. In this way, such be-
havior deviates from the biological models of neurons used
in SNNs, implying that SN P systems are a bio-inspired
approach not as bio-plausible as SNNs, although they can
be a very useful alternative.

In addition to everything mentioned above, [23] pro-
poses implementations in a theoretical way. In [20], spiking
logic gates are not only implemented practically, but are
also implemented in hardware, which means going beyond
software simulators.

In [24] an associative memory based on SNNs is pro-
posed. This type of memory is characterized by the high
correlation between the sources of information, being able
to recover all the information only by having a part of it.
This is very interesting since it could reduce the compu-
tational cost of some certain powerful and complex appli-
cations, especially in tasks where it is necessary to find
where the information is contained in memory. However,
as it dynamically generates new connections by training
to define the behavior of the network and uses the STDP
paradigm to modify their weights, its computational cost
should be higher, as explained before. Its performance,
but also the number of resources required, should also be
lower than the memory block presented in this work.

Other implementations of associative memories based
on SNNs are also proposed in [36], whose strong and weak
points are similar to those mentioned above. In addi-
tion, these implementations present some limitations in
the storage operations which makes them not totally vi-
able for the development of practical applications.

This work focuses on designing new functional blocks
based on the building blocks presented in [20]. These new
higher-level blocks provide more complex functionalities as
said building blocks and can also be used to build higher-
level blocks, gradually achieving more specific functional-
ities.

In this work, the implementation of spiking D latches
was proposed, which allow absolute control over memory
operations thanks to the fact that they allow to asyn-
chronously indicate the moment in which the store op-
eration must be carried out. This is very useful in the
design of Finite State Machines (FSMs), which are made
up of combinational logic for transitioning between states
and these latches to store their current state. FSMs can be
used to design any sequence of actions, which means that
it can be used to build any hardware system with specific
functionality. It should be noted that once FSMs were
available, practically any circuit could be implemented.
In this way, the possibilities of blocks that can be imple-
mented would be infinite, as in the case of digital circuits.

The implementation of FSMs is especially useful in the
field of embedded systems, where applications such as IoT,
elevators, ATMs, traffic lights, household appliances, etc.
are often discussed. Thus, bringing the advantages of
SNNs to these sectors that relevant and present in the
society would be another important advance.

Some possible improvements could be made over the
proposed components. One of them would be the intro-
duction of additional AND gates and signals to perform
read operations in the memory. Currently, as explained in
Section 4.6, the memory block design only allows write op-
erations. Output spikes are held in its D latches, which are
not currently expected to be connected to other neurons.
In a practical application, it will be necessary to connect
these latches to make proper use of the output spikes.

Furthermore, it could be interesting to reduce the
amount of resources required to build some of the blocks
presented in this work. Other improvement would be the
elimination of the non-operation cases in the decoder, the
encoder, the multiplexer and the demultiplexer. Note that
non-operation cases mean that, while there are no input
spikes, output spikes are generated or vice versa. The
truth tables of these four components contemplate non-
operation cases, which could be eliminated in order to re-
move their associated neurons and connections.

In [20], the Constant Spike Source block is presented
along with the energy efficiency problem. This problem
could be an important subject of study, although it has
been shown that there is evidence of a similar mechanism
in biology [37].

One detail that has been taken into account when car-
rying out the implementation of the proposed blocks is
that, since SpiNNaker only allows working with integer
timesteps and ideal synapses, there should not be any
unexpected deviation in the arrival time of input spikes.
Thus, the problem of matching input spikes to perform
certain operations, which is one of the weak points of asyn-
chronous circuits, is inherently solved. This problem could
be especially relevant for spiking AND gates, in which the
precise timing of the spikes is necessary to produce the
correct output.

Notice that outside the SpiNNaker platform, this spike
synchronization problem should be studied in depth, since
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it is intended for the designs to be as close as possible
to the behavior of spikes and neurons in the nervous sys-
tem. Said synchronization could be achieved in two dif-
ferent ways: the use of spike trains, which would surely
imply changes in the presented designs, or the adjustment
of the parameters used for the neurons to diminish the
effect of small temporary variations in the arrival times
of the spikes. This second option seems to be the most
reasonable since it would involve few changes and could
help to focus the synchronization problem in a low-level
approach.

Finally, the spiking memory implementation presented
in this work could have a large number of direct appli-
cations as its digital counterpart is essential in any com-
puter, as explained in Section 2. In fact, it allows to start
thinking about the implementation of a spiking computer,
which would be a great advance since it would be one of the
highest-level spiking blocks implemented so far and would
have the advantages of spiking blocks, which mainly are
low power consumption and real-time capability.

7. Conclusions

In this work, the spiking implementation of different dig-
ital components including decoder, encoder, multiplexer,
demultiplexer, D Latch and memory is performed. The
behavior of these blocks is proved by performing differ-
ent tests, the results of which are shown to validate their
performance.

In addition, the resources required to build each block
presented in this paper are studied, showing different
mathematical formulas that allow to quickly and easily
obtain the number of neurons and synapses used in the
implementation process and that can be very useful for
neuromorphic engineers.

A deep comparison between the SNN-based functional
blocks proposed here and other alternatives in the state of
the art have also been carried out, highlighting the main
advantages and disadvantages and proving that it is a valid
approach to design spiking functional blocks.

The blocks presented in this work are available in
sPyBlocks, which is a public repository that could be very
useful for neuromorphic engineers when completing neuro-
morphic applications, which may require certain complex
functionalities and for which there was no SNN-based so-
lution.

On the other hand, some important points that are still
open and the future work to be done using the tools pro-
vided are also studied.

The spiking memory implementation presented in this
work paves the way in the development of spiking FSMs
and a fully spiking computer.
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