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Abstract—We study the problem of embedding edgeless nodes such as users who newly enter the underlying network, while using
graph neural networks (GNNs) widely studied for effective representation learning of graphs. Our study is motivated by the fact that
GNNs cannot be straightforwardly adopted for our problem since message passing to such edgeless nodes having no connections is
impossible. To tackle this challenge, we propose Edgeless-GNN, a novel inductive framework that enables GNNs to generate node
embeddings even for edgeless nodes through unsupervised learning. Specifically, we start by constructing a proxy graph based on the
similarity of node attributes as the GNN’s computation graph defined by the underlying network. The known network structure is used
to train model parameters, whereas a topology-aware loss function is established in such a way that our model judiciously learns the
network structure by encoding positive, negative, and second-order relations between nodes. For the edgeless nodes, we inductively
infer embeddings by expanding the computation graph. By evaluating the performance of various downstream machine learning tasks,
we empirically demonstrate that Edgeless-GNN exhibits (a) superiority over state-of-the-art inductive network embedding methods for
edgeless nodes, (b) effectiveness of our topology-aware loss function, (c) robustness to incomplete node attributes, and (d) a linear
scaling with the graph size.

Index Terms—Computation graph; edgeless node; graph neural network (GNN); inductive network embedding; unsupervised learning.
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1 INTRODUCTION

1.1 Background and Motivation

G RAPHS are a ubiquitous way to organize a diverse set
of real-world data such as social networks, citation net-

works, molecular graph structures, and recommender sys-
tems.1 Moreover, nodes in graphs are often associated with
rich attribute information [1], which motivates researchers
to leverage both topological and attribute information to
solve various tasks. In recent years, graph neural networks
(GNNs) [2], [3], [4], [5], [6], [7], [8] have been widely studied
as a powerful means to extract useful low-dimensional
features from attributed graphs while performing various
downstream graph mining tasks such as node classifica-
tion [4], [9], [10], link prediction [11], [12], and community
detection [13], [14]. GNNs have become a successful graph
representation learning model due to their high expressive
capability via message passing [3], which exchanges latent
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1. In the following, we use the terms ”graph” and ”network” inter-
changeably.

information of nodes through edges for acquiring richer
representations.

Nevertheless, relatively little attention has been devoted
to discovering embeddings of edgeless nodes (i.e., structure-
unaware nodes) whose topological information is not avail-
able. This lack of topological information may occur in
several real-world networks extracted from various systems.
There are several sources of incompleteness for the network
structure in real-world scenarios. First, in co-authorship
networks, some papers may be contributed by single (or
isolated) authors, creating nodes without any connections
to others. For example, a statistical analysis showed that
15.48% of the published papers in the field of informa-
tion retrieval during the period of 2001–2008 were single-
authored papers [15]. Second, in other real-world networks
including social networks, some users may completely hide
their friendships due to privacy settings specified by such
users [16], [17]. As an example, a demographic analysis of
Facebook users in New York City in June 2011 demonstrated
that 52.6% of the users hid the lists of Facebook friends [16].
Despite the absence of connectivity information associated
with such hidden or new nodes, it would be still possible to
perform downstream graph mining tasks when the attribute
information of nodes (e.g., authors’ biographical features
and research interests) is available since such information
is much easier to acquire through publicly available sources
such as Google Scholar.

However, simply adopting GNN models to learn the rep-
resentations of such edgeless nodes is not straightforward
and poses two major challenges. First and foremost, edge-
less nodes literally have no edges whereas edges are essen-
tial to perform message passing. Although existing GNNs
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may technically operate on edgeless nodes by omitting
message passing from/to such nodes due to the topology
unawareness, this will cause GNNs to loose their expressive
power. Second, an appropriate loss function needs to be
designed to precisely discover representations for edgeless
nodes by training the underlying GNN model, which is not
straightforward especially for unsupervised learning set-
tings. Even if the analysis of networks harnessing node at-
tributes has emerged as another research area, little attention
has been paid to the inductive representation learning tech-
nique for more challenging yet practical situations in which
an underlying attributed graph is incomplete with edgeless
nodes. Although prior studies such as Graph2Gauss [18]
and DEAL [19] attempted to solve the aforementioned
problem in the context of inductive link prediction, they
adopted multilayer perceptron (MLP) encoders as the base
architecture and the performance of downstream tasks other
than link prediction was unexplored.

1.2 Main Contributions

In this paper, we consider a practical scenario of attributed
networks in which a portion of nodes have no available
edges, i.e., topological information. In this attributed net-
work model, we study the problem of embedding such
edgeless nodes (e.g., users who newly enter the underlying
network) through GNNs. More specifically, we are inter-
ested in inductively and unsupervisedly discovering vector
representations of edgeless nodes by effectively designing
an entirely new GNN framework along with a new loss
function for model optimization.

Motivated by the wide applications of GNNs to at-
tributed networks and their generalization abilities, a nat-
ural question arising is: ”Will existing GNN models be
indeed applicable and beneficial for solving the problem of
inductive embedding for edgeless nodes?” To answer this
question, we present Edgeless-GNN, a novel framework
that enables GNNs to generate vector representations for
edgeless nodes in attributed networks, which is used for
conducting various downstream tasks. Fig. 1 illustrates a
brief sketch of our Edgeless-GNN framework. First, we
construct a proxy graph, which is built upon the similarity
between node attributes as a means of replacing the GNN’s
original computation graph defined by the given network
structure. We note that this new proxy graph is generated
under the homophily assumption that adjacent nodes in the
underlying network tend to have similar node attributes.
Second, more importantly, we propose a topology-aware loss
function for unsupervisedly training model parameters with-
out any node labels, which makes full use of the known
network structure. In other words, instead of the attribute-
aided proxy graph, we fully exploit the underlying network
structure for model training. Our topology-aware loss func-
tion is inspired by the mechanism of contrastive learning
over graphs in a sophisticated manner. Specifically, our new
loss function exploits not only the first-order proximity of
node pairs but also second-order positive relations in learn-
ing node embeddings. This allows the model to learn the
topological structure of the given network while performing
message passing over newly created edges in the proxy
graph. Since our Edgeless-GNN framework is inductive, it is

Given dataset
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Downstream tasks (e.g., node classification, link 
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Representation space

Training with edges

Graph structure
Edgeless nodes

Attribute 
information only
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Fig. 1: A brief sketch of our Edgeless-GNN framework.

possible to directly infer representations for edgeless nodes
by expanding the computation graph connecting the nodes
with edges and the edgeless nodes using node attributes
in the same manner to facilitate the feed-forward process
of GNNs. Additionally, we analyze the computational com-
plexity of the Edgeless-GNN framework, which is shown
to scale linearly with the network size. Since our Edgeless-
GNN does not assume a specific GNN architecture, various
GNNs in the literature [4], [5], [7] can be adopted in a plug-
and-play fashion. This implies that our framework is GNN-
model-agnostic; thus, GNN models can be appropriately
chosen in our Edgeless-GNN framework according to one’s
needs and graph mining tasks. Moreover, in contrast to
the edgeless nodes, in case of structure-aware nodes, we
perform downstream tasks by appropriately choosing an
existing GNN model since message passing is possible
alongside the observable edges.

To validate the superiority and effectiveness of our
Edgeless-GNN framework, we comprehensively perform
empirical evaluations for various real-world benchmark
datasets. First, experimental results show that our frame-
work consistently outperforms state-of-the-art inductive
network embedding approaches of edgeless nodes for al-
most all cases when we carry out three downstream tasks
such as link prediction, node classification, and community
detection. Second, interestingly, it is observed that simply
adopting the existing GNN’s loss function while using a
proxy graph as the computation graph indeed fails to guar-
antee satisfactory performance and is even far inferior to
a naı̈ve baseline method employing node attributes only.
This clearly justifies the need of a new GNN framework for
edgeless nodes. This also implies that our newly established
loss function plays a very crucial role to successfully infer
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TABLE 1: Summary of notations.

Notation Description

G Given attributed network

V Set of nodes in G

V ′ Set of edgeless nodes

Vall V ∪ V ′

E Set of edges in G

X Set of attributes of nodes in V
X ′ Set of attributes of nodes in V ′

X all X ∪ X ′

Gp Proxy graph constructed from X
Gall

p Proxy graph constructed from X all

Ep Set of edges from Gp

Eall
p Set of edges from Gall

p

Z Embedding for the nodes in V
Z′ Embedding for the nodes in V ′

embeddings of the edgeless nodes by bridging the structural
and attribute information. Third, our experimental results
demonstrate the robustness of our Edgeless-GNN frame-
work to a more difficult and challenging situation where
a large portion of node attributes are missing. Fourth, we
investigate the impact of hyperparameters by confirming
that both the second-order proximity loss term and the
parameter controlling negative node pairs in our loss are
vital for the training model to infer high-quality vector rep-
resentations. Finally, we empirically validate our complexity
analysis.

The main contributions of this paper are summarized as
follows:

• We propose Edgeless-GNN, a novel GNN-agnostic
representation learning framework for networks
with edgeless nodes.

• As core components of Edgeless-GNN, we introduce
not only the inductive-learning-enabled construction
of a proxy graph but also the design of a topology-
aware loss function for unsupervised learning.

• We comprehensively validate the superiority and
effectiveness of our proposed Edgeless-GNN frame-
work through extensive experiments using five real-
world attributed networks.

• We analyze and empirically show the computational
complexity of Edgeless-GNN.

Our methodology sheds light on how to effectively discover
vector representations even when no topological structure
of some nodes is available.

2 RELATED WORK

The framework that we propose in this study is related to
two broader topics of research, namely inductive network
embedding and GNNs.

Inductive network embedding. Inductive network em-
bedding (more specifically, learning node representations)
has been widely studied before the popularity of GNNs.
Planetoid [20] proposed a model, named Planetoid-I, which
was designed for generating node embedding vectors in

the inductive setting. Graph2Gauss [18] adopted an MLP
architecture while using a rank-based loss. More recently,
DEAL [19] was modeled by constructing both attribute-
oriented and structure-oriented encoders and then aligning
two types of embeddings via two encoders. We note that,
in [18], [19], the problem of inductive link prediction was
addressed when the network structure of new nodes is
unknown.

GNNs. The early model of GNNs was first proposed
by [2] using a recurrent neural network model. More re-
cently, GCN [4] proposed an efficient way to learn con-
volutional filters on graphs. In GraphSAGE [5], various
aggregation methods such as average, max pooling, and
long short-term memory (LSTM) were proposed along with
neighborhood sampling. GAT [6] was presented by synthe-
sizing self-attention layers, where different importances are
assigned to neighboring nodes. By analyzing the expressive
capability of popular GNN models, an architecture exhibit-
ing a further representational power was designed in [7].
JK-Nets [21] was designed by using intermediate layer-
aggregation mechanisms for better representation learning.
DGL [22] utilized a mutual information maximization ap-
proach for training GNNs. Several studies were also car-
ried out to take advantage of graph construction based
on attribute information alongside GNNs. AM-GCN [23]
proposed a multi-channel GCN model by learning node
representations based on not only the network structure but
also the k-nearest-neighbor (kNN) graph generated from
node attributes. In [24], the unavailable network structure
and the parameters of the GCN model were jointly learned
by solving a bilevel programming problem. Recent attempts
include not only efficient designs of GNN models in [25],
[26] but also designs of very deep GCNs for a further
performance boost in [27], [28]. Furthermore, GLNN [29]
developed an MLP model to be trained by a teacher GNN
model to boost the performance.

Discussion. Despite these contributions, it has been
largely underexplored in the literature how to exploit the
power of GNNs in the context of representation learning
for edgeless nodes. Although GNNs are built upon message
passing mechanisms that are shown to flexibly model com-
plex interactions among nodes, they cannot be straightfor-
wardly employed to solve our problem since no information
can be passed from/to the edgeless nodes. Moreover, recent
studies on inductive link prediction in [18], [19] are limited
only to MLP architectures and thus do not take advantage
of potentials of rather powerful GNNs. Compared to our
study, applications to other downstream tasks such as node
classification and community detection were not studied
in [19]. Node classification problems were shown in [18]
only for transductive learning settings.

3 PRELIMINARIES

In this section, we describe our basic setting along with
the notations used in the paper, followed by the formal
definition of the problem. Then, we describe the architecture
of GNNs in general.
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Fig. 2: A schematic overview of our Edgeless-GNN framework.

3.1 Basic settings

Let us denote a given network as G = (V, E), where V is
set of N nodes and E is the set of edges between pairs of
nodes in V . We assume G to be an undirected unweighted
attributed network without self-loops or repeated edges. We
define xi ∈ Rf as the attribute vector of node vi ∈ V ,
and X = {x1, · · · ,xN} as the set of node attribute vectors,
where f is the number of attributes per node.

In the inductive learning setting, we would like to newly
introduce a set of M edgeless nodes, denoted as V ′, which
has not been seen yet during the training phase.2 Each of
these M nodes has an associated attribute vector x′i ∈ Rf
for i ∈ {1, · · · ,M}. We denote the set of attributes of these
M nodes as X ′ = {x′1, · · · ,x′M}. However, the network
structure of these M nodes in V ′ is unavailable, which is
a feasible scenario (e.g., a co-authorship network in which
some nodes are single-authored papers). In other words,
two types of edges, including the edges connecting two
nodes in V ′ and the edges connecting one node in V and
another node in V ′, are not given beforehand, as in [19].
In this context, these nodes in V ′ are the so-called edge-
less nodes. The inductive setting is interested in learning
representations of V ′ while the observed nodes in V are
not of interest since their representations can be learned by
straightforwardly adopting existing GNN models.

3.2 Problem definition

Definition 3.1 (Inductive embedding of edgeless nodes).
Given a network G = (V, E) and two sets of node attributes,
X and X ′, inductive embedding of edgeless nodes aims to
discover vector representations of edgeless nodes in such a
way that the embedding vectors unsupervisedly encode the
unseen structural information and the available attribute
information.

2. In our study, although the existence of edgeless nodes is known
beforehand, we treat them as newly given since existing GNN models
cannot provide a way of integrating the edgeless nodes into the
underlying network.

3.3 GNN Architecture

GNNs operate on a computation graph Gc, which deter-
mines the flow of information in the message passing mech-
anism [3], [5], [7], [21]. The typical choice of Gc is the under-
lying network itself, i.e.,Gc = G. In each layer, GNN models
update the representation of a node by aggregating latent
representations of its neighbors using two functions with
learnable parameters, namely AGGREGATE and UPDATE.
Formally, at the p-th layer of a GNN, AGGREGATE(p)

aggregates (latent) feature information from the local neigh-
borhood of node vi in the computation graph Gc as follows:

mp
i ← AGGREGATE(p)({hp−1j |vj ∈ Ni ∪ {vi}}), (1)

where hp−1j denotes the latent representation vector of node
vj at the (p − 1)-th layer, Ni indicates the set of neighbor
nodes of vi in Gc, and mp

i is the aggregated information at
the p-th layer. We note that self-loops are typically added to
the computation graphGc for self-information preservation.
In the update step, the latent representation at the next
layer is produced by using each node and its aggregated
information from AGGREGATE(p) as follows:

hpi ← UPDATE(p)(hp−1i ,mp
i ). (2)

Additionally, for each node vi, the node attributes xi ∈ X
are initially used as the representation vector (i.e., h0

i = xi),
and the representation at the final layer is the embedding
vector zi. In our paper, Z denotes the embedding matrix
whose i-th row corresponds to zi.

Remark 1. Now, let us state how the above two functions
AGGREGATE and UPDATE in (1) and (2), respectively, can be
specified by several types of GNN models. As one of the commonly
used GNN models, GCN [4] can be implemented by using

AGGREGATE(p)
i =

∑
j

1√
degree(i) + 1

√
degree(j) + 1

hp−1j

(3)

UPDATE(p)
i = σ(Wp ·mp

i ), (4)
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where degree(·) indicates the degree of each node and σ(·) is the
activation function. In addition, as one of powerful GNN models,
GraphSAGE [5] with the mean aggregator can be designed by
setting

AGGREGATE(p)
i =

1

degree(i) + 1

∑
j

hp−1j (5)

UPDATE(p)
i = σ(Wp · concat(hp−1i ,mp

i )), (6)

where concat(·, ·) is the concatenation operation of two input
vectors and Wp is a learnable weight matrix. Other popular
GNN variants such as GAT [6] and GIN [7] can also be specified
according to their designed function settings. Note that, for GCN
and GraphSAGE with L layers, the model parameters θ can be
expressed as the set of weights {Wp}p=1,··· ,L.

4 METHODOLOGY

In this section, we describe the proposed Edgeless-GNN
framework including the design of our own loss function
to solve the problem of inductive embedding for edgeless
nodes. The schematic overview of Edgeless-GNN is illus-
trated in Fig. 2.

4.1 Edgeless-GNN Framework
In this subsection, we explain our Edgeless-GNN frame-
work along with the proxy graph construction, which is a
core component of our framework.

In the feed-forward process of GNNs, the typical choice
of Gc is the underlying network itself, i.e., Gc = G.
This approach cannot be adopted as G does not have
any connections to edgeless nodes V ′. To overcome this
problem, we construct two proxy graphs Gp = (V, Ep) and
Gall
p = (Vall, Eall

p ) as an alternative to the GNN’s original
computation graphGc (refer to line 1 in Algorithm 1). Edges
of the proxy graphs, Ep and Eall

p , are created by the same
proxy graph construction process, which we can describe
as a function with two inputs fp(·, ·). The input of fp(·, ·)
includes a computation graph to be expanded (∅ if we build
one from scratch) and a set of node attributes, respectively.
Formally, we use fp(·, ·) to create Ep = fp(∅,X ) and
Eall
p = fp(Gp,X all). In our framework, the resulting proxy

graphs are used as the computation graph, i.e., Gc = Gp
during training and Gc = Gall

p during inference.
The key idea behind the proxy graph construction is

to 1) use node attributes as the main ingredient for proxy
graphs such that edgeless nodes can also be fed into the
feed-forward process of GNNs and 2) use the same function
fp(·, ·) for both Gp and Gall

p such that the GNN model will
consistently harness a computation graph and its expansion
during training and inference, respectively. Note that, de-
signing a rather sophisticated learning module to find the
set of appropriate edges to connect edgeless nodes corre-
sponds to basically solving the link prediction task, which
should be preceded by discovering vector representations
via GNNs. Thus, we instead construct a proxy graph where
the GNN model acts upon.

During the training phase, the proxy graph Gp enables
us to acquire representations for V as follows:

Z = GNNθ(Gp,X ,V), (7)

Algorithm 1 : Edgeless-GNN

Input: G, X , X ′, θ, α, num epochs
Output: Z′

1: Initialization: Gp ← fp(∅,X );
Gall
p ← fp(Gp,X ′);

θ ← random initialization
2: /* Training phase */
3: for i = 1, · · · , num epochs do
4: Z← GNNθ(Gp,X )
5: L(Z, E)← L0(Z, E) + αL2nd(Z, E)
6: Update θ by taking one step of gradient descent
7: end for
8: /* Inference phase */
9: X all ← X ∪ X ′

10: Z′ ← GNNθ(Gall
p ,X all)

11: return Z′

where the third argument of GNNθ(·, ·, ·) represents the
set of nodes of interest whose representations are to be
calculated. Here, each row of Z ∈ RN×d indicates the vector
representation of each node in V ; d is the dimension of
the representation space; and θ represents the set of model
parameters of the GNN model used in Edgeless-GNN. Now,
θ is learned by our loss function L(Z, E), which will be
specified in Section 4.2. In other words, the embedding Z
is first found by running a GNN model on the constructed
Gp from the node attributes and is then optimized by
leveraging the local network structure of each node (i.e.,
multi-hop neighbors as well as direct neighbors) in the
underlying networkG. In this fashion, the model learns how
to incorporate the topological information of G while using
computation graphs generated from fp(·, ·).

Next, we turn to the inference phase, which inductively
finds representations for the edgeless nodes in V ′. The set of
node attributes including edgeless nodes, X all = X ∪X ′, are
fed to the trained GNN model to calculate representations
Z′ ∈ RM×d for the edgeless nodes V ′ by a simple feed-
forward computation as follows:

Z′ = GNNθ(Gall
p ,X all,V ′). (8)

Representations of the nodes in V ′ can be efficiently calcu-
lated by taking into account the nodes of interest required
only for message passing [5]. Finally, we are able to perform
various downstream tasks using Z′ (i.e., the embedding
vectors of the edgeless nodes in V ′).

In our implementation, we choose a kNN graph (kNNG)
as the proxy graph construction function fp(·, ·), which is
most straightforward among graph construction strategies.
Additionally, for kNNG construction, we use the cosine
similarity to measure the similarity between two node at-
tributes.

4.2 Model Training with Topology-Aware Loss
In this subsection, as another core component of

Edgeless-GNN, we elaborate on our new loss function that
is used during the training phase of the GNN model. By
training the parameters of the GNN model using our loss
function, we expect that the model learns how to bridge the
gap between the attribute-based computation graph and the
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observed topological structure. To this end, we first generate
multiple samples of a node quadruplet (vi, vj , vn, vt), where
(vi, vj) ∈ E , (vi, vn) /∈ E , and vt is a two-hop neighbor of vi.
The sampled quadruplets are then fed into the loss function
in the training loop along with the calculated embedding
Z = GNNθ(Gp,X ) for all nodes in V (refer to lines 4–5 in
Algorithm 1).

In Edgeless-GNN, we design a topology-aware loss
function for unsupervised learning:

L(Z, E) = L0(Z, E) + αL2nd(Z, E), (9)

which is based on the energy-based learning in [30] that aims
at training a model in the sense of minimizing the energy of
node pairs. Here, α > 0 is a hyperparameter that balances
between the two loss terms in (9). Our loss function enables
us to exploit not only the first-order proximity but also
the second-order positive relations in learning node represen-
tations from the network structure. That is, the topology-
aware loss function is designed to judiciously encode posi-
tive, negative, and second-order relations between nodes.

The first term L0 in (9) is defined as

L0(Z, E) = E+
ij +DinE

−
in, (10)

where E+
ij and E−in denote generic energy functions of

positive node pairs (vi, vj) and negative node pairs (vi, vn),
respectively; and

Din = exp

(
β

dsp(vi, vn)

)
. (11)

Here, dsp(vi, vn) is the shortest distance between vi and vn,
and β > 0 is a hyperparameter controlling negative node
pairs. For long dsp(vi, vn), the term E−in corresponding to
the energy function of negative node pairs would contribute
less to L0. In our study, as in [19], we set

E+
ij = φ(sim(zi, zj)) (12)

E−in = φ(−sim(zi, zn)), (13)

where sim(·) is the cosine similarity and φ(x) = γ−1 log(1+
exp(−γx+ b)) for hyperparameters γ > 0 and b ≥ 0.

While (10) is a good representation of the pairwise
ranking-based loss [18], [19], [31] in effectively capturing the
network structure, only the first-order proximity for positive
node pairs is taken into account. Motivated by the fact
that higher-order positive relations of node pairs are also
proven to be useful to enhance the performance of network
embedding methods [31], [32], [33], [34], we introduce L2nd
to incorporate the ranking of nodes with respect to the
second-order proximity as follows:

L2nd(Z, E) = JitE
+
it , (14)

where Jit is the Jaccard similarity [35], which measures
the degree of the second-order proximity of node pairs
(vi, vt). This is because not all two-hop neighbors have
high second-order proximities, and only considering two-
hop neighbors is a good trade-off between the performance
and the computational overhead.

Remark 2. The red box in the training phase of Fig. 2 illus-
trates the effect of each term in our topology-aware loss, with
four nodes (v1, v2, v4, v5) and their corresponding representations

TABLE 2: Summary of statistics of five datasets, where NN,
NE, NA, and NC denote the number of nodes, the number
of edges, the number of node attributes, the number of
classes, respectively.

Dataset NN NE NA NC

Cora 2,485 5,069 1,433 7
Citeseer 2,120 3,679 3,703 6
Wiki 2,357 12,714 4,973 19
Pubmed 19,717 44,324 500 3
Coauthor-CS 18,333 81,894 6,805 15

(z1, z2, z4, z5). The first term forces the representations of the
positive node pair v1 and v2 (i.e., z1 and z2) to be closer with
each other and the representations of the negative node pair v1
and v5 (i.e., z1 and z5) to be further apart. That is, attractive and
repulsive forces are given to the positive and negative node pairs,
respectively, on the representation space. Additionally, the second
term acting on the representations of the second-order positive
node pair v1 and v4 (i.e., z1 and z4) also forces to be close with
each other while pulling the two nodes depending on the degree of
the second-order proximity..

After the loss L(Z, E) is calculated, the model param-
eters θ are updated using gradient descent optimization
(refer to line 6 in Algorithm 1).

4.3 Complexity Analysis

In this subsection, we analyze the computational complexity
of our proposed Edgeless-GNN framework in which the
kNNG is constructed as a proxy graph.

Theorem 4.1. The computational complexity of the Edgeless-
GNN framework is at most linear in k and |V|.

Proof. The feed-forward process of GNNs includes the com-
putation of both AGGREGATE and UPDATE functions, and
its computational complexity is given byO(2|E|+ |V|) (refer
to [8] for more details). In our Edgeless-GNN framework,
the number of edges in a computation graph depends on
fp(·, ·) when we choose kNNG as our implementation. For
the best case where all edges are created by selecting k
neighbors of each node in the sense of minimizing the graph
density, k|V|/2 edges are generated, thus yielding the com-
putational complexity of Ω((k + 1)|V|). For the worst case,
corresponding to the mutually exclusive selection of edges,
k|V| edges are generated; the complexity is thus bounded
by O((2k + 1)|V|). Hence, the computational complexity of
our Edgeless-GNN is finally given by O(k|V|), indicating a
linear complexity in k and |V|, which completes the proof of
Theorem 4.1.

5 EXPERIMENTAL EVALUATION

In this section, we first describe real-world datasets used in
the evaluation. We also present downstream tasks with their
performance metrics. After describing our experimental set-
tings, we comprehensively evaluate the performance of our
Edgeless-GNN framework and five benchmark methods
including two variants of GNN models.
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5.1 Datasets

Five real-world attributed network datasets, commonly
adopted from the literature of attributed network embed-
ding, are used to acquire the network structure G and the
set of node attributes, X all. For all experiments, we consider
the largest connected component without isolated nodes to
ensure that no edgeless nodes with no ground truth edges
occur during the inference phase. The main statistics of each
dataset are summarized in Table 2. In the following, we
describe important characteristics of the datasets.

Cora, Citeseer [36], and Pubmed [37]. The three datasets
are citation networks. Each node is a publication from
various research topics, each of which represents the class
label, and an edge exists if one publication cited another.
The attribute matrix is the bag-of-word representation com-
prising a corpus of documents for Cora and Citeseer and is
the representation weighted by term frequency-inverse doc-
ument frequency (TF-IDF) for Pubmed. We use the version
provided in [20] for our experiments.

Wiki [38]. The Wiki dataset is a network of web pages
where the nodes are web documents in Wikipedia. Edges
are constructed when two web pages have hyperlinks. The
attribute matrix is the representation weighted by TF-IDF.

Coauthor-CS [39]. The Coauthor-CS dataset is a co-
authorship network where nodes are authors and are con-
nected if they are co-authors of a paper. The attribute matrix
includes keywords in each author’s papers, and the class
labels indicate the most active research field for each author.

5.2 Downstream Tasks With Performance Metrics

To empirically validate the performance of the proposed
framework over the above benchmark methods in an in-
ductive setting, we consider three downstream ML tasks
and assess the performance via five metrics. We note that all
metrics are in a range of [0, 1], and higher values represent
better performance. The performance of each ML task is
evaluated on edgeless nodes since we focus on the induc-
tive setting along with inductive representation learning of
edgeless nodes.

Link prediction [40] aims to predict edges that are likely
to be existent. In our study, we predict edges to which edge-
less nodes are incident by obtaining a reconstructed graph
Ĝall via calculated embeddings, i.e., Ĝall = σ(ZallZall>),
where> denotes the transpose of a matrix. That is, we focus
on predicting the set of two types of edges including the
edges connecting two nodes in V ′ and the edges connecting
one node in V and another node in V ′. We adopt the average
precision (AP) and area under curve (AUC) scores for this
task.

Node classification [5], [32] aims to classify new nodes
into their ground truth classes. We train a logistic regression
classifier using a portion of node embeddings in a super-
vised manner. We adopt the macro-F1 and micro-F1 scores
for this task.

Community detection [41] aims to unsupervisedly find
the set of communities. We apply k-means clustering, one
of standard clustering techniques, to the embeddings for all
nodes in Vall and then assign a community label to each
node to predict ground-truth communities of new nodes.

We adopt the normalized mutual information (NMI) for this
task.

5.3 Benchmark Methods

In this subsection, we present two state-of-the-art methods
for inductive edgeless network embedding and one baseline
method for comparison.

DEAL [19]. This state-of-the-art approach aims to solve
the inductive link prediction problem. To this end, the
embeddings generated by two encoders, namely an MLP
encoder using node attributes and a linear encoder us-
ing one-hot node representations are aligned to learn the
connections between the node attributes and the network
structure so that the encoder generates a link prediction
score for edgeless nodes.

Graph2Gauss (G2G) [18]. As another state-of-the-art
method, the G2G model trains an MLP encoder that rep-
resents each node as a Gaussian distribution to capture the
uncertainties of embeddings. The model also investigates its
application to the problem of inductive link prediction.

Inference only with node attributes (Att-Only). As a
baseline, we include the case where the attribute matrix is
only used for inference. In other words, the attribute matrix
itself is taken into account as node embeddings.

5.4 Experimental Settings

We first describe the settings of neural networks. In our
study, we choose GraphSAGE [5], a widely used GNN
architecture, as the base model for our framework. We
train our GNN model via the Adam optimizer [42] with a
learning rate of 0.0005 and a weight decay rate of 0.0005.
The dimension of the embedding space is set to 64. All
models were implemented in Python 3.7.7, PyTorch 1.5.1,
and PyTorch Geometric 1.6 [43]. The experiments were run
on a machine with Intel Core i7-9700K 3.60 GHz CPU with
32GB RAM and one NVIDIA GeForce RTX 2080 graphics
card.

In the kNNG construction, we set k = 3 for all experi-
ments. This is because 1) our experimental findings reveal
that the performance is insensitive to the value of k (refer to
Table 5a for experimental results in terms of link prediction)
and 2) the value of k needs to be set as small as possible
since the computational complexity of Edgeless-GNN scales
linearly with k (refer to Section 4.3).

From each dataset, we randomly split the set of nodes
into training/validation/test sets with a ratio of 85/5/10%.
In order to simulate our inductive setting, validation and
test sets accounting for 15% of nodes are treated as new
edgeless nodes and assumed not known during training. We
use the validation set to tune the hyperparameters for each
downstream task and determine the number of training iter-
ations. That is, we use the values of hyperparameters (e.g.,
α and β presented in our loss function) optimally found
according to different datasets and downstream ML tasks.
During tuning, we use the following hyperparameter values
within designated ranges: α ∈ {2, 3, 4}, b ∈ {0, 1}, β ∈
{1, 2}, and γ ∈ {2, 3, 4}. For each evaluation, we run exper-
iments over 10 different splits of training/validation/test
sets to compute the average score.
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TABLE 3: Performance comparison among Edgeless-GNN and benchmark methods in terms of five performance metrics
(average ± standard deviation). Here, the best and second best performers are highlighted by bold and underline,
respectively.

Link prediction Node classification Community detection

Dataset Method AP AUC Macro-F1 Micro-F1 NMI

Cora

Edgeless-GNN 0.8930 ± 0.0140 0.8905 ± 0.0127 0.6783 ± 0.0140 0.7177 ± 0.0343 0.5109 ± 0.0212
DEAL 0.8550 ± 0.0134 0.8585 ± 0.0105 0.6410 ± 0.0332 0.6903 ± 0.0270 0.4321 ± 0.0193
G2G 0.7966 ± 0.0470 0.8113 ± 0.0205 0.5983 ± 0.0165 0.6346 ± 0.0328 0.4089 ± 0.0354

Att-Only 0.7546 ± 0.0126 0.7584 ± 0.0129 0.4923 ± 0.0347 0.5681 ± 0.0287 0.2213 ± 0.0602

Citeseer

Edgeless-GNN 0.9385 ± 0.0062 0.9313 ± 0.0072 0.5832 ± 0.0378 0.6697 ± 0.0299 0.4497 ± 0.0506
DEAL 0.9128 ± 0.0063 0.9059 ± 0.0074 0.5733 ± 0.0445 0.6701 ± 0.0350 0.3984 ± 0.0362
G2G 0.8545 ± 0.0721 0.8619 ± 0.0149 0.5424 ± 0.0110 0.6417 ± 0.0415 0.4131 ± 0.0363

Att-Only 0.8535 ± 0.0110 0.8448 ± 0.0112 0.5186 ± 0.0399 0.6293 ± 0.0402 0.2884 ± 0.0407

Wiki

Edgeless-GNN 0.7241 ± 0.0157 0.6842 ± 0.0211 0.5340 ± 0.0316 0.6596 ± 0.0273 0.6061 ± 0.0355
DEAL 0.6724 ± 0.0220 0.6622 ± 0.0217 0.2065 ± 0.0256 0.4017 ± 0.0285 0.5561 ± 0.0264
G2G 0.6026 ± 0.0265 0.6088 ± 0.0177 0.4124 ± 0.0596 0.5859 ± 0.0308 0.5213 ± 0.0488

Att-Only 0.6206 ± 0.0078 0.5725 ± 0.0095 0.2802 ± 0.0375 0.4557 ± 0.0418 0.4057 ± 0.0432

Pubmed

Edgeless-GNN 0.9413 ± 0.0033 0.9426 ± 0.0026 0.8307 ± 0.0104 0.8306 ± 0.0102 0.3051 ± 0.0242
DEAL 0.8974 ± 0.0025 0.9119 ± 0.0024 0.8247 ± 0.0048 0.8264 ± 0.0040 0.3285 ± 0.0119
G2G 0.8535 ± 0.0085 0.8756 ± 0.0062 0.8278 ± 0.0106 0.8304 ± 0.0094 0.3101 ± 0.0285

Att-Only 0.8977 ± 0.0047 0.8878 ± 0.0054 0.8164 ± 0.0077 0.8155 ± 0.0068 0.3217 ± 0.0091

Coauthor-
CS

Edgeless-GNN 0.9531 ± 0.0017 0.9503 ± 0.0017 0.8932 ± 0.0122 0.9218 ± 0.0058 0.7981 ± 0.0141
DEAL 0.9342 ± 0.0020 0.9319 ± 0.0021 0.8689 ± 0.0106 0.9124 ± 0.0065 0.6631 ± 0.0113
G2G 0.8234 ± 0.0097 0.8516 ± 0.0051 0.8120 ± 0.0140 0.8738 ± 0.0078 0.6857 ± 0.0083

Att-Only 0.9034 ± 0.0020 0.9096 ± 0.0018 0.8301 ± 0.0214 0.8924 ± 0.0111 0.5662 ± 0.0150

5.5 Experimental Results
Our empirical study is designed to answer the following six
key research questions.

• RQ1. How much does the Edgeless-GNN framework
improve the performance of various downstream
tasks over state-of-the-art methods of inductive edge-
less network embedding?

• RQ2. How much does the Edgeless-GNN framework
improve the performance of various downstream
tasks over variants of existing GNN models for edge-
less nodes?

• RQ3. How do model hyperparameters affect the per-
formance of the Edgeless-GNN framework?

• RQ4. How do underlying GNN models affect the
performance of the Edgeless-GNN framework?

• RQ5. How robust is our Edgeless-GNN framework
to the noise of node attributes?

• RQ6. How scalable is our Edgeless-GNN framework
with vital parameters including the graph size?

5.5.1 RQ1. Comparison with Benchmark Methods
Table 3 shows the performance comparison between our
Edgeless-GNN framework and three benchmark methods
for inductive network embedding, including DEAL [19],
G2G [18], and Att-Only, with respect to five performance
metrics using all five real-world datasets. From the experi-
mental results, we observe the following:

1) Our Edgeless-GNN framework consistently outper-
forms state-of-the-art methods except for only one
case each in node classification and community
detection. Note that, for the Citeseer dataset, the
micro-F1 score achieved by Edgeless-GNN is almost
the same as that of DEAL, exhibiting the perfor-
mance gap of only 0.04%; this indicates that the class

labels have strong discriminative information and
thus additional gains from kNNG construction are
relatively low.

2) The performance gap between our Edgeless-GNN
and the second best method is the largest when we
perform node classification using the Wiki dataset;
the maximum improvement rates of 29.5% and
12.5% are achieved in terms of macro-F1 and micro-
F1 scores, respectively. This coincides with the ar-
gument in [44], where GraphSAGE, the underly-
ing GNN model applied to our Edgeless-GNN, is
shown to be robust to networks even with low
homophily ratios such as Wiki.

3) The G2G method [18] tends to exhibit poor perfor-
mance, often being even inferior to Att-Only, on the
link prediction task for the Pubmed and Coauthor-
CS datasets. This is because the Kullback-Leibler
(KL) divergence, used in the loss of G2G to measure
the similarity of node pairs, is asymmetric and does
not well preserve the transitivity of proximity in
undirected graphs as discussed in [31], thus leading
to distortion in the embedding space to some extent.

4) For a given dataset, the highest gain of Edgeless-
GNN over benchmark methods tends to be achieved
in either node classification or community detection.
This comes from the fact that DEAL [19], the second
best performer, was originally designed for the link
prediction task.

5) The performance gain of Edgeless-GNN over
benchmark methods is higher mostly in the com-
munity detection task than that in the node classifi-
cation task. As Edgeless-GNN utilizes the kNNG
which already connects nodes with similar at-
tributes, it is generally advantageous to community
detection when the network community structure
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TABLE 4: Performance comparison among Edgeless-GNN and two variants of GNN models in terms of five performance
metrics (average ± standard deviation). Here, the best performers are highlighted by bold.

Link prediction Node classification Community detection

Dataset Method AP AUC Macro-F1 Micro-F1 NMI

Cora
Edgeless-GNN 0.8930 ± 0.0140 0.8905 ± 0.0127 0.6783 ± 0.0140 0.7177 ± 0.0343 0.5109 ± 0.0212
SAGE-kNNG1 0.5961 ± 0.0193 0.5713 ± 0.0203 0.1990 ± 0.0481 0.3008 ± 0.0466 0.0615 ± 0.0228
SAGE-kNNG2 0.5889 ± 0.0208 0.5672 ± 0.0186 0.2100 ± 0.0167 0.3068 ± 0.0197 0.0569 ± 0.0206

Citeseer
Edgeless-GNN 0.9385 ± 0.0062 0.9313 ± 0.0072 0.5832 ± 0.0378 0.6697 ± 0.0299 0.4497 ± 0.0506
SAGE-kNNG1 0.5816 ± 0.0216 0.5588 ± 0.0236 0.1926 ± 0.0443 0.2995 ± 0.0264 0.0585 ± 0.0178
SAGE-kNNG2 0.6024 ± 0.0250 0.6035 ± 0.0317 0.2004 ± 0.0316 0.3023 ± 0.0403 0.0458 ± 0.0116

Wiki
Edgeless-GNN 0.7241 ± 0.0157 0.6842 ± 0.0211 0.5340 ± 0.0316 0.6596 ± 0.0273 0.6061 ± 0.0355
SAGE-kNNG1 0.5730 ± 0.0066 0.5329 ± 0.0150 0.0258 ± 0.0067 0.1702 ± 0.0232 0.1589 ± 0.0216
SAGE-kNNG2 0.5648 ± 0.0134 0.5300 ± 0.0090 0.0327 ± 0.0061 0.1714 ± 0.0290 0.1469 ± 0.0270

Pubmed
Edgeless-GNN 0.9413 ± 0.0033 0.9426 ± 0.0026 0.8307 ± 0.0104 0.8306 ± 0.0102 0.3051 ± 0.0242
SAGE-kNNG1 0.6077 ± 0.0104 0.6074 ± 0.0112 0.3867 ± 0.0165 0.4560 ± 0.0121 0.0196 ± 0.0145
SAGE-kNNG2 0.6191 ± 0.0086 0.6210 ± 0.0111 0.3830 ± 0.0145 0.4498 ± 0.0212 0.0263 ± 0.0238

Coauthor-
CS

Edgeless-GNN 0.9531 ± 0.0017 0.9503 ± 0.0017 0.8932 ± 0.0122 0.9218 ± 0.0058 0.7981 ± 0.0141
SAGE-kNNG1 0.7074 ± 0.0035 0.6872 ± 0.0031 0.0356 ± 0.0034 0.2363 ± 0.0080 0.0674 ± 0.0233
SAGE-kNNG2 0.7149 ± 0.0074 0.6952 ± 0.0055 0.0704 ± 0.0074 0.2513 ± 0.0123 0.0436 ± 0.0114

follows node attributes. However, for the Pubmed
dataset, we observe that the overall scores for com-
munity detection are low but also Att-Only per-
forms quite well, which may indicate that that the
attribute information does not agree with the un-
derlying network structure. Therefore, such intrin-
sic characteristics of Pubmed are interpreted as a
factor that impairs the performance as Edgeless-
GNN attempts to capture the network structure by
the learned parameters.

5.5.2 RQ2. Comparison with Variants of GNN Models for
Edgeless Nodes

For performance comparison, we modify existing GNN
models so that they are suitable for our settings with edge-
less nodes. To this end, we present two variants built upon
GraphSAGE as follows.

SAGE-kNNG1. This modified version of Edgeless-GNN
adopts the loss function and the GNN architecture in Graph-
SAGE [5], while using the underlying network G as a
computation graph during the training phase. However,
during the inference phase, due to the absence of connectiv-
ity information on edgeless nodes, we generate additional
edges on the existing G via kNNG construction based on
the similarity of node attributes X all for each edgeless node
in order to perform message passing along with the trained
GraphSAGE model.

SAGE-kNNG2. Another variant adopts the loss function
and the GNN architecture from GraphSAGE during the
training phase. However, SAGE-kNNG2 utilizes the kNNG
generated from node attributes for both training and infer-
ence, following our approach in Edgeless-GNN.

Table 4 shows the performance comparison among
Edgeless-GNN and two variants of GNN models with re-
spect to five performance metrics using all datasets. From
Tables 3 and 4, we observe that the two kNNG-aided base-
line methods, SAGE-kNNG1 and SAGE-kNNG2, exhibit
quite unsatisfactory performance and are even far inferior
to Att-only (i.e., a naı̈ve baseline employing node attributes

only). This indicates that the proxy graph construction alone
is not sufficient to bring satisfactory performance and the
thorough design of a loss function plays an important role.
In contrast to GraphSAGE [5], our newly designed loss
function takes into account not only the shortest distance
between negative node pairs but also the second-order
positive relations of node pairs. Exploitation of the high-
order proximity of node pairs is shown to be significant in
boosting the performance of downstream tasks.

5.5.3 RQ3. Hyperparameter Sensitivity

We investigate the impact of hyperparameters α, β, and k
on the performance of Edgeless-GNN. In our framework,
α controls the strength of the second-order proximity loss
term in (9), β controls the effect of negative node pairs in
(11), and k determines the number of edges in our kNNG
implementation. For brevity, we report experimental results
using the Cora and Citeseer datasets. Note that the results
from other datasets showed a tendency similar to those
reported in Section 5.4.3.3

In Fig. 3a, we plot the performance of downstream tasks
according to different values of α while fixing the values
of β and k to 1 and 3, respectively. For the Cora dataset,
the maximum tends to be achieved at α = 3 regardless of
downstream tasks. When α exceeds this value, the effect
of the second-order proximity becomes over-amplified, thus
leading to distorted embeddings. We observe a similar
trend for the Citeseer dataset; however, the effect of over-
amplification is less prominent, even achieving maximum
performance at α = 4 with respect to the Macro-F1 score.
In Fig. 3b, we plot the performance according to different
values of β while fixing the values of both α and k to 3.
Both plots in Fig. 3b reveal that the performance tends to
deteriorate in the case where β > 1. This is because, in such
a case, the exponent in (11) will explode, thus providing
an unbalanced repulsive force between negative node pairs. In
contrast, when β = 0, the performance also gets reduced.

3. We refer to https://github.com/jordan7186/Edgeless-GNN-
external.
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TABLE 5: Performance of our Edgeless-GNN framework for the Cora and Citeseer datasets according to different values
of k.

k 2 3 4 5 6

AP 0.8852 ± 0.0096 0.8821 ± 0.0105 0.8763 ± 0.0103 0.8886 ± 0.0095 0.8830 ± 0.0127
AUC 0.8831 ± 0.0089 0.8775 ± 0.0102 0.8752 ± 0.0081 0.8851 ± 0.0086 0.8823 ± 0.0081
Macro-F1 0.6213 ± 0.0338 0.6520 ± 0.0336 0.6279 ± 0.0374 0.6197 ± 0.0352 0.6356 ± 0.0405
Micro-F1 0.6629 ± 0.0308 0.6940 ± 0.0275 0.6738 ± 0.0362 0.6737 ± 0.0290 0.6899 ± 0.0482
NMI 0.4709 ± 0.0450 0.5036 ± 0.0316 0.5086 ± 0.0383 0.4959 ± 0.0225 0.5053 ± 0.0265

(a) Effect of k on Cora.
k 2 3 4 5 6

AP 0.9376 ± 0.0077 0.9385 ± 0.0095 0.9325 ± 0.0103 0.9365 ± 0.0082 0.9385 ± 0.0063
AUC 0.9279 ± 0.0072 0.9313 ± 0.0165 0.9282 ± 0.0095 0.9284 ± 0.0081 0.9304 ± 0.0078
Macro-F1 0.5752 ± 0.0398 0.5698 ± 0.0463 0.5589 ± 0.0564 0.5508 ± 0.0494 0.5767 ± 0.0456
Micro-F1 0.6545 ± 0.0250 0.6511 ± 0.0487 0.6672 ± 0.0388 0.6620 ± 0.0377 0.6507 ± 0.0407
NMI 0.4184 ± 0.0326 0.4126 ± 0.0377 0.4336 ± 0.0351 0.4589 ± 0.0453 0.4253 ± 0.0269

(b) Effect of k on Citeseer.

AP            AUC            Macro-F1             Micro-F1            NMI
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Fig. 3: Performance of downstream ML tasks according
to different values of hyperpaprameters α and β in our
Edgeless-GNN framework validated for the Cora and Cite-
seer datasets.

Therefore, we conclude that setting β to a low value near 1
achieves satisfactory performance. Overall, we also observe
that the effect of α and β is more prominent in node
classification and community detection.

Furthermore, Tables 5a and 5b show the performance
according to different values of k while fixing the values α
and β to 3 and 1, respectively. From Table 5, our findings

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

AP AUC Macro-F1 Micro-F1 NMI

Pe
rf
or
m
an
ce

Edgeless-GCN Edgeless-SAGE Edgeless-GIN

Fig. 4: Performance of downstream ML tasks according to
different GNN models in our Edgeless-GNN framework for
the Cora dataset.

reveal that the performance is insensitive to the value of
k. Due to such robustness to k, one can choose a rather
low value of k (e.g., k = 3) to reduce the computational
complexity in the feed-forward process of GNNs.

5.5.4 RQ4. Comparative Study Among Various GNN Mod-
els

In Fig. 4, we show the performance of different downstream
tasks using various GNN models in our Edgeless-GNN
framework using the Cora dataset. Note that the results
from other datasets showed a tendency similar to those
reported in Section 5.5.4. In our experiments, we adopt
the following three widely used GNN models from the
literature [8]: GCN [4] (Edgeless-GCN), GraphSAGE [5]
(Edgeless-SAGE), and GIN [7] (Edgeless-GIN).

Edgeless-SAGE consistently outperforms other models
regardless of downstream tasks. Such a gain is possible
due to the concatenation operation of the UPDATE func-
tion, which enables the GraphSAGE model to elaborately
assign different weights to the aggregated messages from
neighbors, unlike other models with the mean/sum aggre-
gator [44]. For other two models, one does not always domi-
nate another. Edgeless-GCN performs better than Edgeless-
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The portion of missing node attributes (%)

Metric Method 20 40 60 80

A
P

Edgeless-GNN 0.8719 ± 0.0097 0.8517 ± 0.0124 0.8083 ± 0.0143 0.7875 ± 0.0157
DEAL 0.8328 ± 0.0092 0.8050 ± 0.0056 0.7755 ± 0.0122 0.7514 ± 0.0117
G2G 0.7503 ± 0.0131 0.7268 ± 0.0154 0.7047 ± 0.0154 0.6987 ± 0.0154

Att-Only 0.7252 ± 0.0079 0.6837 ± 0.0106 0.6370 ± 0.0071 0.6038 ± 0.0109
SAGE-kNNG1 0.5712 ± 0.0195 0.5380 ± 0.0196 0.5287 ± 0.0158 0.5162 ± 0.0189
SAGE-kNNG2 0.5700 ± 0.0226 0.5349 ± 0.0197 0.5023 ± 0.0159 0.5160 ± 0.0139

A
U

C
Edgeless-GNN 0.8815 ± 0.0092 0.8642 ± 0.0160 0.8565 ± 0.0154 0.8408 ± 0.0103

DEAL 0.7952 ± 0.0101 0.7918 ± 0.0081 0.7900 ± 0.0129 0.7921 ± 0.0131
G2G 0.7945 ± 0.0131 0.7652 ± 0.0113 0.7508 ± 0.0186 0.7423 ± 0.0177

Att-Only 0.7582 ± 0.0101 0.7365 ± 0.0073 0.7170 ± 0.0067 0.7001 ± 0.0100
SAGE-kNNG1 0.5589 ± 0.0203 0.5343 ± 0.0150 0.5222 ± 0.0183 0.5160 ± 0.0182
SAGE-kNNG2 0.5571 ± 0.0147 0.5378 ± 0.0194 0.5114 ± 0.0218 0.5201 ± 0.0141

M
ac

ro
-F

1

Edgeless-GNN 0.5779 ± 0.0332 0.5603 ± 0.0404 0.5002 ± 0.0253 0.4580 ± 0.0461
DEAL 0.5755 ± 0.0378 0.5157 ± 0.0262 0.4884 ± 0.0261 0.4412 ± 0.0297
G2G 0.5250 ± 0.0322 0.4808 ± 0.0326 0.4389 ± 0.0560 0.4083 ± 0.0244

Att-Only 0.4214 ± 0.0429 0.3571 ± 0.0411 0.3330 ± 0.0394 0.2863 ± 0.0402
SAGE-kNNG1 0.1881 ± 0.0284 0.1676 ± 0.0353 0.1233 ± 0.0247 0.0854 ± 0.0130
SAGE-kNNG2 0.1847 ± 0.0334 0.1499 ± 0.0328 0.1020 ± 0.0164 0.0776 ± 0.0114

M
ic

ro
-F

1

Edgeless-GNN 0.6701 ± 0.0290 0.6229 ± 0.0449 0.6161 ± 0.0444 0.6028 ± 0.0311
DEAL 0.6459 ± 0.0277 0.6447 ± 0.0261 0.6375 ± 0.0285 0.6451 ± 0.0271
G2G 0.6120 ± 0.0394 0.5903 ± 0.0280 0.5455 ± 0.0413 0.5548 ± 0.0110

Att-Only 0.5399 ± 0.0250 0.5064 ± 0.0376 0.4536 ± 0.0434 0.4262 ± 0.0217
SAGE-kNNG1 0.3052 ± 0.0208 0.2822 ± 0.0328 0.2842 ± 0.0272 0.2939 ± 0.0252
SAGE-kNNG2 0.2802 ± 0.0154 0.2967 ± 0.0106 0.2641 ± 0.0246 0.2838 ± 0.0235

N
M

I

Edgeless-GNN 0.4381 ± 0.0276 0.3922 ± 0.0357 0.3087 ± 0.0300 0.2838 ± 0.0262
DEAL 0.3638 ± 0.0360 0.3442 ± 0.0271 0.2866 ± 0.0383 0.2398 ± 0.0269
G2G 0.3397 ± 0.0355 0.2915 ± 0.0174 0.2444 ± 0.0252 0.2100 ± 0.0316

Att-Only 0.1575 ± 0.0390 0.1198 ± 0.0248 0.0845 ± 0.0275 0.0720 ± 0.0211
SAGE-kNNG1 0.0497 ± 0.0118 0.0436 ± 0.0122 0.0496 ± 0.0096 0.0398 ± 0.0103
SAGE-kNNG2 0.0525 ± 0.0140 0.0405 ± 0.0110 0.0351 ± 0.0121 0.0428 ± 0.0078

TABLE 6: Performance comparison among Edgeless-GNN and five benchmark methods in terms of five performance
metrics (average ± standard deviation) using the Cora dataset when some of node attributes are missing. Here, the best
method for each case is highlighted by bold and underline, respectively.

GIN in terms of link prediction and community detection
while an opposite trend occurs for node classification.

5.5.5 RQ5. Robustness to Incomplete Node Attributes

We now evaluate the performance in a more practical setting
where some node attributes are missing. To this end, we
create incomplete attributed networks by randomly masking
{20, 40, 60, 80}% of node attributes. We only show the
results for the Cora dataset since the results from other
datasets follow similar trends. The missing information is
masked as zero, indicating the absence of information.

The performance comparison between our Edgeless-
GNN framework and the five benchmark methods, includ-
ing two variants of GNN models, is presented in Table 6
with respect to five performance metrics using the Cora
dataset. Our findings demonstrate that, while the perfor-
mance tends to degrade with an increasing portion of
missing node attributes for all the methods, our Edgeless-
GNN mostly achieves superior performance compared to
other methods in terms of all performance metrics even
for the case where only a small portion of node attributes
are observed. This implies that our framework is robust
to the degree of observability of node attributes even if a
proxy graph is constructed using the set of incomplete node
attributes.

5.5.6 RQ6. Empirical validation of the Complexity analysis

To empirically validate our complexity analysis shown in
Theorem 4.1, we conduct experiments using the Pubmed
dataset whose number of nodes is sufficiently large in
flexibly altering the graph size, where a full-batch setting
is assumed. Specifically, we have performed two experi-
ments, which is designed to validate the dependency of
the complexity with respect to the number of nodes and
the value of k, respectively. For the first experiment, we
sample subgraphs of various sizes from Pubmed, as the
number of nodes is large enough to perform experiments
at multiple scales. Specifically, we create subgraphs having
{1,000, 3,000, 5,000, 7,000, 9,000, 11,000} nodes using the
forest fire sampling [45] so as to examine the scalability
while preserving the same structural properties. For the
second experiment, we use a subgraph of a fixed size with
2,500 nodes while varying the parameter k in kNNG from 2
to 8, which generates multiple proxy graphs with different
number of edges.

Fig. 5a and Fig. 5b show the measured runtime in
seconds with respect to different |V|’s and k’s, respectively.
Asymptotic solid lines are also shown in the figure, showing
a trend that is consistent with our experimental results.
These results validate our analytical claim, i.e., a linear
complexity scaling with respect to k and V .
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Fig. 5: The computational complexity of Edgeless-GNN with
respect to k and |V| for the Pubmed dataset, where the
analytical results with proper biases are also plotted with
red solid lines.

6 CONCLUDING REMARKS

In this paper, we explored an important and challenging
problem of how to exploit the power of GNNs in the context
of embedding of topologically unseen nodes. To tackle this
challenge, we introduced Edgeless-GNN, a novel GNN
framework that unsupervisedly and inductively discovers
vector representations of edgeless nodes. Specifically, we de-
veloped an approach to 1) constructing a new computation
graph based on the similarity of node attributes to replace
the original one used in GNNs and 2) then training our
model by establishing our own topology-aware loss func-
tion that exploits not only the first-order proximity of node
pairs but also second-order relations. Using five real-world
datasets, we demonstrated that, for almost all cases, our
Edgeless-GNN framework consistently outperforms state-
of-the-art inductive network embedding methods for edge-
less nodes, where the maximum gain of 29.5% is achieved.

Potential avenues of future research include the design
of a more robust and sophisticated Edgeless-GNN frame-
work when a portion of node attributes are noisy and/or
missing in attributed networks.
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(NeurIPS’18), Montréal, Canada, Dec. 2018, pp. 5171–5181.

[12] J. You, R. Ying, and J. Leskovec, “Position-aware graph neural
networks,” in Proc. 36th Int. Conf. Mach. Learn. (ICML’19), vol. 97,
Long Beach, CA, Jun. 2019, pp. 7134–7143.

[13] F. M. Bianchi, D. Grattarola, and C. Alippi, “Spectral clustering
with graph neural networks for graph pooling,” in Proc. 37th Int.
Conf. Mach. Learn. (ICML’20), vol. 119, Virtual Event, Jul. 2020, pp.
874–883.

[14] D. He, Y. Song, D. Jin, Z. Feng, B. Zhang, Z. Yu, and W. Zhang,
“Community-centric graph convolutional network for unsuper-
vised community detection,” in Proc. 29th Int. Joint Conf. Artif.
Intell. (IJCAI’20), Virtual Event, Jan. 2020, pp. 3515–3521.

[15] Y. Ding, “Scientific collaboration and endorsement: Network anal-
ysis of coauthorship and citation networks,” J. Informetrics, vol. 5,
no. 1, pp. 187–203, Jan. 2011.

[16] R. Dey, Z. Jelveh, and K. W. Ross, “Facebook users have become
much more private: A large-scale study,” in Proc. 10th Annual
IEEE Int. Conf. Pervasive Comput. Commun. Workshop (PerCom’12),
Lugano, Switzerland, Mar. 2012, pp. 346–352.

[17] F. Buccafurri, G. Lax, S. Nicolazzo, and A. Nocera, “Comparing
Twitter and Facebook user behavior: Privacy and other aspects,”
Comput. Hum. Behav., vol. 52, pp. 87–95, Nov. 2015.
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Canada, Dec. 2018.

[41] S. Pan, R. Hu, G. Long, J. Jiang, L. Yao, and C. Zhang, “Adversari-
ally regularized graph autoencoder for graph embedding,” in Proc.
27th Int. Joint Conf. Artif. Intell. (IJCAI’18), Stockholm, Sweden, Jul.
2018, pp. 2609–2615.

[42] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in Proc. 3rd Int. Conf. Learn. Representations (ICLR’15), San
Diego, CA, May 2015.

[43] M. Fey and J. E. Lenssen, “Fast graph representation learning
with PyTorch Geometric,” in Proc. ICLR Workshop on Representation
Learning on Graphs and Manifolds, New Orleans, LA, May 2019.

[44] J. Zhu, Y. Yan, L. Zhao, M. Heimann, L. Akoglu, and D. Koutra,
“Beyond homophily in graph neural networks: Current limitations
and effective designs,” in Proc. 34th Conf. Neural Inf. Proc. Sys.
(NeurIPS’20), Virtual Event, Dec. 2020, pp. 7793–7804.

[45] J. Leskovec and C. Faloutsos, “Sampling from large graphs,” in
Proc. 12th ACM SIGKDD Int. Conf. Knowl. Discovery & Data Mining
(KDD’06), Philadelphia, PA, Aug. 2006, pp. 631–636.


	1 Introduction
	1.1 Background and Motivation
	1.2 Main Contributions

	2 Related work
	3 Preliminaries
	3.1 Basic settings
	3.2 Problem definition
	3.3 GNN Architecture

	4 Methodology
	4.1 Edgeless-GNN Framework
	4.2 Model Training with Topology-Aware Loss
	4.3 Complexity Analysis

	5 Experimental Evaluation
	5.1 Datasets
	5.2 Downstream Tasks With Performance Metrics
	5.3 Benchmark Methods
	5.4 Experimental Settings
	5.5 Experimental Results
	5.5.1 RQ1. Comparison with Benchmark Methods
	5.5.2 RQ2. Comparison with Variants of GNN Models for Edgeless Nodes
	5.5.3 RQ3. Hyperparameter Sensitivity
	5.5.4 RQ4. Comparative Study Among Various GNN Models
	5.5.5 RQ5. Robustness to Incomplete Node Attributes
	5.5.6 RQ6. Empirical validation of the Complexity analysis


	6 Concluding Remarks
	References

