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Abstract—Bulk-bitwise processing-in-memory (PIM), where large bitwise operations are performed in parallel by the memory array
itself, is an emerging form of computation with the potential to mitigate the memory wall problem. This paper examines the capabilities
of bulk-bitwise PIM by constructing PIMDB, a fully-digital system based on memristive stateful logic, utilizing and focusing on
in-memory bulk-bitwise operations, designed to accelerate a real-life workload: analytical processing of relational databases. We
introduce a host processor programming model to support bulk-bitwise PIM in virtual memory, develop techniques to efficiently perform
in-memory filtering and aggregation operations, and adapt the application data set into the memory. To understand bulk-bitwise PIM,
we compare it to an equivalent in-memory database on the same host system. We show that bulk-bitwise PIM substantially lowers the
number of required memory read operations, thus accelerating TPC-H filter operations by 1.6×–18× and full queries by 56×–608×,
while reducing the energy consumption by 1.7×–18.6× and 0.81×–12× for these benchmarks, respectively. Our extensive evaluation
uses the gem5 full-system simulation environment. The simulations also evaluate cell endurance, showing that the required endurance
is within the range of existing endurance of RRAM devices.

Index Terms—Memory technologies, Emerging technologies, Database processing.
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1 INTRODUCTION

A promising technique for accelerating memory-
bounded computation moves some computation from

the processor to the memory unit (processing-in-memory,
PIM), thus reducing the data movement latency and energy.
Due to the ever-increasing performance and energy gaps
between processing units and memory, numerous PIM ar-
chitecture types and techniques, such as near-memory [20],
analog [34], and CAM [7,17], have gained attention in recent
years. One particular PIM technique relies on using the
memory cell arrays to both store the data and perform
logical operations. This PIM technique can be implemented
with DRAM [14,33] or nonvolatile memory technologies [13,
16, 23, 24, 30, 37]. Because of the regular structure of the
memory cell array, logical operations can be performed
concurrently between many sets of cells, resulting in bulk-
bitwise operations. Hence, in addition to the reduced data
movement compared to other PIM techniques [31], bulk-
bitwise PIM can achieve significant operation throughput,
potentially being performed on all memory cell arrays in
parallel. Nevertheless, building such a system and executing
complete applications using bulk-bitwise PIM remains a
challenge.

Previous works focused on certain aspects of bulk-
bitwise PIM. These aspects include exploration of tech-
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nology [12, 23, 30, 33, 40], programming language abstrac-
tion [14, 45], memory interface [37], logic design and ab-
straction [3, 24, 36], and combining bulk-bitwise with other
PIM technologies [16,17]. A full system perspective of bulk-
bitwise PIM is, however, still missing. Insights about the
benefits and limitations of such an approach need to be
educed. Aspects such as what applications are suitable for
this type of processing and what the system requirements
have yet to be resolved. In this paper, our goal is to in-
vestigate bulk-bitwise PIM and determine how it can be
utilized. We ask the above questions and seek to understand
the performance gains, drawbacks, and bottlenecks of bulk-
bitwise PIM.

To achieve our goal of bulk-bitwise PIM investigation,
we propose PIMDB, an example of a full PIM system based
on bulk-bitwise logic. PIMDB accelerates operations from
a real-world application: analytical processing of relational
databases. We focus on a single application case study to
concisely present its adaptation for bulk-bitwise PIM (for
software and hardware) and its performance analysis. By
utilizing only bulk-bitwise PIM techniques and addressing
the requirements of a real-world application, the bene-
fits and limitations of bulk-bitwise PIM can be identified.
PIMDB is also the first to introduce a host programming
model that works in virtual memory for PIM bulk-bitwise
operations. The programming model is an essential part of
our evaluation, as it reflects the interaction of the software,
host hardware, and PIM hardware.

We target analytical processing of relational databases as
our example application for several reasons. First, it is an im-
portant real-world application, found in business decision
support processes [28, 39]. Second, relational databases are
stored in tabular structures called relations, each a collection
of small and independent items called records. Records can
be stored in a small physical memory region and operated
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on concurrently. The ability to fit each independent data
unit into a small physical memory region is crucial, as
bulk-bitwise operations require the operands from the same
data unit to be in physical proximity in the memory cell
array [14, 36]. Third, a database can reside in memory in a
dedicated structure and be repeatedly used, amortizing the
one-time cost of loading the database into the PIM mod-
ule. When executing queries, no data transfer to the PIM
module is required before execution starts. Fourth, database
analytical processing is a memory-bound application [28],
requiring the performance of simple operations (e.g., com-
parison, addition, multiplication) on large data sets (from a
few to thousands of GBs [39]). Fifth, analytical processing
queries perform aggregation (e.g., sum, average) on many
database records [28]. Performing the aggregation, or part
of the aggregation, in memory can potentially reduce data
movement by several orders of magnitude.

PIMDB uses a byte-addressable, nonvolatile memristive
memory utilizing stateful logic [5,13,16,24,30,31,37], which
stores a copy of the database. We chose memristive stateful
logic as the underlying bulk-bitwise technology as it can
operate on both bitlines and wordlines [36], enabling a
richer functionality compared to other (e.g., DRAM-based)
bulk-bitwise PIM. Nevertheless, our techniques are not lim-
ited only to memristive stateful logic; they can be applied
to other bulk-bitwise PIM technologies as well. PIMDB’s
speedup is primarily driven by the reduction of memory
accesses, where the PIM operations reduce the amount of
data read out of the memory array. In this paper, we show
that over 99% of the reads can be eliminated for some
queries when using bulk-bitwise operations. The proposed
design supports in-memory record filtering and aggregation
operations over database relations (similarly to commercial
in-storage analytical processing [43]). For queries involving
a single relation, most query execution can be performed
solely in PIMDB. For queries involving multiple relations,
PIMDB performs the filtering while the rest of the query is
executed at the host in a standard non-PIM fashion.

PIMDB is evaluated in a gem5 full-system simulation [4],
using queries from the TPC-H benchmark [39] where the
SQL queries are compiled using our in-house compiler.
The proposed design uses stateful logic with memris-
tive devices [31], specifically, RRAM-based MAGIC NOR
gates [21]. As PIMDB focuses on bulk-bitwise operations,
seeking to reveal their strengths and weaknesses, our evalu-
ation is of use for other PIM architectures beyond the context
of databases.

In summary, this paper makes the following contribu-
tions:

• We evaluate the performance of and derive insights
regarding bulk-bitwise PIM operations in general and
in stateful logic specifically.

• We define a programming model for bulk-bitwise logic-
based PIM architectures, enabling the use of bulk-
bitwise logic as part of host applications in virtual
memory space.

• We present PIMDB, a PIM-based accelerator for analyt-
ical processing of relational databases.

• We establish database querying as an empirical proof of
application for bulk-bitwise PIM where the latter accel-
erates the performance of the underlying operations.
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Fig. 1: (a) A 3× 4 memristive crossbar array with a single
device per cell (1R [41]) and a single sense amplifier. (b) Logic
operations between crossbar columns. The inputs are marked
in red, the output in green. Devices in black do not participate
in the logic operation. Specifically, row 2 is isolated and does
not participate in the operation. Row-wise operations can be

performed similarly [36].

• We demonstrate speedup improvement of 1.6×–18× on
filter operations and 56×–608× for full queries from
TPC-H, and an energy reduction of 1.7×–18.6× and
0.81×–12×, respectively.

• We provide a gem5 full-system simulation for bulk-
bitwise PIM1.

2 BACKGROUND

2.1 Bulk-Bitwise PIM and Stateful Logic
Bulk-bitwise PIM refers to a class of PIM techniques catego-
rized by the location and capabilities of the PIM processing
elements. In bulk-bitwise PIM, the computation elements
are the memory cells and their periphery circuits (e.g., sense
amplifiers, voltage drivers, decoders), thus the memory
storage medium itself can compute (i.e., PIM, referred to
also as processing using memory). Several technologies were
suggested for implementing such processing capabilities,
including DRAM [14,33] and emerging nonvolatile memory
technologies [13, 16, 30, 37], all of which execute simple
logic operations (e.g., AND, OR, NOT). These simple logical
operations use the memory cells as inputs and write the
result directly to a memory cell. Furthermore, due to the
regular structure of memory cells in a memory array, these
operations can be concurrently performed on many sets
of cells within an array, i.e., executing bitwise operations.
As different memory arrays are independent circuits, many
memory arrays can concurrently perform these bitwise op-
erations, resulting in a wide bitwise operation, i.e., a bulk-
bitwise operation. The concurrent operation on many mem-
ory arrays, each performed on many sets of cells, produces
substantial computational throughput.

Implementing bulk-bitwise PIM using emerging mem-
ory technologies is often referred to as stateful logic [5,
21] and specifically refers to memristive technology (e.g.,
ReRAM, PCM, MTJ) [44]. Memristive devices are devices
that can change their resistance when electrically stimulated.

The resistive state of memristive devices is nonvolatile,
and can, therefore, be used to construct nonvolatile memo-
ries [41], where each memory cell is a single memristive de-
vice. A memory array of memristive devices is constructed

1. https://github.com/benperach/gem5 PIM extension
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as a crossbar [41] (Fig. 1a shows an example of a 3 × 4
crossbar array), where the horizontal and vertical wires are
referred to as wordlines and bitlines, respectively. These
memories are random-access memories, as they can read
or write specifically selected cells.

Bulk-bitwise operations are performed by applying a
voltage across the bitlines and/or wordlines in a certain
manner, independently of the stored cell values. Further-
more, this logic technique can be applied in parallel on
a crossbar row or column [36], as illustrated for column-
wise operations in Fig. 1b. It is possible to exclude certain
rows or columns from a parallel operation. For example,
Fig. 1b shows how a row can be excluded in a crossbar with
a single memristive device per cell (1R crossbar [41]). The
row exclusion from a parallel operation is done by setting
the corresponding wordline to an isolation voltage, leaving
the output device undisturbed [36]. Note that the input and
output operands for stateful logic, as for other bulk-bitwise
technologies, must reside on the same wordline/bitline.
This physical proximity of operands poses a challenge for
bulk-bitwise PIM, as the data has to be arranged in an
appropriate way to enable PIM use.

An example of a stateful logic technique is MAGIC
NOR [16, 21]. Since NOR is functionally complete, any
logical function can be performed using a series of NOR op-
erations (requiring additional devices for the intermediate
values). In PIMDB, we use MAGIC NOR as the basic stateful
logic gate. Nevertheless, most of the concepts presented
for MAGIC NOR apply to any functionally complete bulk-
bitwise PIM technology [14, 23, 33] (all concepts apply as
long as row-wise and column-wise bulk-bitwise operations
are available).

Memristive random-access memory can be used as the
system’s main memory. Memristive memory has several
potential advantages over DRAM; the small device size and
the dense layout of memristive arrays result in high-capacity
memory [36]. The nonvolatility of memristive devices elim-
inates the need for memory refreshes, reducing idle power
consumption. The disadvantages of memristive memory are
its longer access time relative to DRAM and its limited cell
endurance [44]. Due to these limitations, to date, memristive
memories have not been replacing DRAM as main memory;
rather, memristive memories have been augmenting DRAM
as a new memory hierarchy tier [18].

2.2 Memory Organization

DRAM and memristive memory are constructed similarly.
The memory is divided into channels, ranks, chips, and
banks [19,41]. Each channel has a dedicated bus, and though
the ranks in a channel share the bus, they can operate
independently. Each rank comprises one or more banks and
one or more chips. Each bank is logically distributed across
several chips where all bank parts operate in lockstep. The
banks of a rank share the rank’s memory bus interface and
can operate independently.

For practical reasons, banks are not built as a single
memory array in each chip; they are split into units called
subarrays [41]. In memristive memory, a subarray comprises
several crossbars (including periphery circuits, e.g., sense
amplifiers, voltage drivers, decoders), which operate in

lockstep. When accessing a bank as part of a traditional
memory read/write operation, only the necessary subarray
is activated.

Traditionally, the host–memory interface is designed es-
pecially for DRAM (e.g., the DDRx standard), which re-
sults in lower performance for memristive technologies [37].
Furthermore, traditional memory interfaces specify a fixed
set of memory operations (e.g., read, write, refresh, etc.),
limiting the use of novel memory designs (such as PIM-
enabled memory). To address these issues, new technology-
agnostic interfaces have been proposed, e.g., OpenCAPI ,
GenZ , and CXL . These new interfaces issue technology-
independent operations, with possible vendor extensions,
and delegate the technology-dependent management to the
memory module. The general structure of these new in-
terfaces is shown in Fig. 2, where the host–side memory
controller communicates with a media controller using a
technology-agnostic interface, while the media controller
communicates with the memory chips using a technology-
specific interface (e.g. DDRx for DRAM, R-DDR [37] for
RRAM). The media controller is part of the memory module,
enabling optimization of the media controller for the specific
memory technology and design.

2.3 Relational Databases and Analytical Processing

A relational database is a data model that organizes data
into relations (tables) [28]. A relation can be thought of as a
set of records and a set of attributes. Attributes may be of
different types, and each record is assigned a value for each
attribute. In the relation, each record is represented by a
different row, and each attribute is represented by a different
column. The value of a record for a specific attribute is the
relation entry located at the intersection of the record row
and the attribute column. Fig. 5a visualizes a relation.

A query over the database is a question about the content
of the database’s relations, i.e., about attributes of a specific
record or a group of records fulfilling a certain condition.
Analytical processing refers to a class of queries requiring
the selection of records according to some criteria and their
aggregation (e.g., sum, average) [28]. These kinds of queries
appear in applications such as business decision support
processes and have dedicated benchmarks [39].

Databases can be represented and stored in various data
structures. Two main categories of such data structures are
row-store and column-store. In row-store, a relation is stored
as an array of records, each record having a field for each
attribute. In column-store, each relation attribute is stored
as a single array, and a relation is a collection of such
arrays. Due to data locality, row-store is better suited for
accessing single records, while column-store is better suited
for accessing several attributes over many records [28]. In
PIMDB, reads and writes access relations as row-stored,
while PIM operations, due to their access pattern, access
the same relations as column-stored (see Section 4).

3 PIMDB ARCHITECTURE OVERVIEW

We now present the proposed PIMDB design. This section
also presents the PIMDB programming model, which spec-
ifies the PIM interface for the software (e.g., for compiler



IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. X, NO. X, MONTH YYYY 4

Host

M
e

m
o
ry

 

C
o
n

tr
o

lle
r

Memory Module

M
e

d
ia

 

C
o
n

tr
o

lle
r

Memory 

Chip

Tech. agnostic 

interface

Tech. specific 

interface

Fig. 2: The general structure for emerging interfaces (e.g.,
OpenCAPI, GenZ, CXL). The host-memory interface is

agnostic to the memory technology; the technology-specific
operations are performed by the memory module.

or library writers; for databases, these are the database
management system writers). The programming model can
be used by a compiler from a high-level language such as
SQL, as used for our evaluation (Section 5.4).

The PIMDB system, shown in Fig. 4, comprises a
host processor, DRAM main memory, and additional byte-
addressable memory ranks based on RRAM to support
bulk-bitwise MAGIC NOR stateful logic operations [21].
These bulk-bitwise PIM ranks are termed PIM modules,
and their memory is mapped to the host memory address
space and accessed using standard reads and writes. The
PIM modules have a predefined instruction set, performing
operations, such as add, multiply, less-than, etc.

3.1 Programming Model
The programming model defines how the host software
interacts with the PIM modules, i.e., how it utilizes the
PIM module’s instructions on the relevant data. We show
here how this interaction can support virtual memory and
how the software can control the physical proximity of PIM
operands.

To operate on data in a PIM module, the host software
sends a sequence of requests, named PIM requests, to the
PIM module. PIM requests contain address and data fields,
similar to a memory write operation. In PIMDB, for exam-
ple, PIM requests are sent by a dedicated host instruction,
similar to loads and stores. Regardless of how PIM requests
are sent, each PIM request contains information for a single
PIM instruction, e.g., the instruction’s opcode and locations
of operands. The possible instructions are determined by
the PIM module’s ISA, possibly high-level operations such
as addition and multiplication (the translation to basic op-
erations supported by the PIM module’s crossbars, e.g., a
sequence of MAGIC NOR operations as in PIMDB, is done
at the PIM module).

Virtual memory: Since bulk-bitwise PIM is done in the
main memory of the host processor, and since user-level
processes use virtual memory, it is essential for bulk-bitwise
PIM to support virtual memory to be integrated into such a
system. Furthermore, supporting virtual memory is essen-
tial not only from a compatibility point of view but because
of the advantages virtual memory provides: holding mul-
tiple and independently operated-on data structures (such
as database relations) in memory and enabling dynamic
data allocation. Virtual memory support can be achieved by
allowing PIM instructions to operate within the boundaries
of a specific virtual memory page, i.e., a PIM request is
sent to an individual virtual page and can only access and
change data within that page. Such a mechanism utilizes
the existing virtual memory implementation, issuing the

PIM requests with virtual addresses that are translated in
the usual way to physical addresses, and thereafter sent to
the required memory module. When operating on a data
structure spanning multiple pages, a PIM request should be
sent to each page belonging to that data structure.

Nevertheless, there are challenges in supporting virtual
memory as suggested: (1) Bulk-bitwise PIM operation’s
operands must be located on the same memory crossbar,
possibly on the same crossbar row or column [33, 37]. The
physical memory abstraction, where the memory channels,
ranks, banks, and crossbars appear as a monolithic ad-
dress range, hides the knowledge required for such data
allocation. Moreover, the virtual memory abstraction hides
the specific physical memory address from the user-level
software. To allocate data for bulk-bitwise PIM, these two
abstraction levels, virtual and physical memory, must be
circumvented in some manner. (2) An essential property
for bulk-bitwise PIM performance is its high parallelism.
Hence, a PIM request should initiate its specified PIM
instruction on as many crossbars as possible. Restricting a
single PIM request to a single page, however, will restrict
the number of crossbars the PIM request targets, limiting
the benefit of bulk-bitwise PIM. This situation is especially
acute when dealing with standard 4KB pages, which are
smaller than a single crossbar [19, 41]. In the following
paragraphs, we address these challenges, explaining how
our programming model entails the address mapping of
physical addresses to memory cells and utilizes huge-pages.

Using huge-pages: To maximize the number of crossbars
within a page and increase the parallelism of a single bulk-
bitwise operation, we use huge-pages. Huge pages can
range in size from a few MB to a few GB (PIMDB uses 1GB
huge-pages), sufficiently large to contain multiple memory
crossbars. These huge pages are only required for the PIM
memory, which is in addition to the standard DRAM main
memory (see the start of Section 3 and Figure 4). Hence,
using huge pages for PIM does not affect the usability and
performance of the DRAM main memory.

PIM operand allocation: To address the challenge of
how to allocate PIM operands, we give the software fine-
grained control over the location of values in the memory ar-
ray. Using this fine-grained control, the software will decide
how each data structure will be located across crossbars,
crossbar rows, and crossbar columns. As the software is the
entity that knows how the data is going to be operated on,
allowing it the flexibility to set data structures according to
its specific needs will allow our programming model to suit
different applications. To enable such fine-grained control,
the virtual-to-physical address translation and the physical-
address to memory cell translation have to be controlled in
some manner by the software.

To control the virtual-to-physical address translation
we note that the address translation does not change the
page offset. This allows the software to directly control
the page offset bits of the physical address. Because our
programming model allows bulk-bitwise PIM operations to
be performed only within a single page, controlling the page
offset, which encodes the relative location within the page,
is sufficient for PIM data allocation.

To control the physical-address to memory cell transla-
tion, our programming model reveals the necessary details
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Fig. 3: Example of address mapping, revealed to the
programmer as part of the programming model. PIMDB uses

this configuration for 1GB pages with 1024× 512 cell crossbars
(see Section 5.2). The fields of this mapping are not

consecutive due to the internal structure of the memory, e.g.,
the number of accessed crossbars in a read/write and the

number of bits read/written together from a single crossbar.

of that translation to the software. The necessary details are
which bits in the physical page offset decode the crossbar
index within the page, and the row and column index within
the crossbar. An example of such mapping is shown in
Fig. 3. Hence, by controlling the crossbar, row, and column
bits in a virtual address, user-level software can target and
manage each cell in each crossbar of a single page. By using
loads, stores, or PIM requests, the value of specific cells can
be read, written, or operated on. Note that a continuous data
unit on a crossbar row (e.g., the relation record in Section 4.1)
is not necessarily continuous in the virtual address space.
Non-continuous data structures can be handled by software
abstraction (as our compiler does in Section 5.4).

PIM requests: PIM requests encode the details of the
PIM operation they transfer with their address and data.
The page number in the address specifies the page for which
the instruction is meant. PIM requests target all crossbars
within their targeted page, thus ignoring the crossbar index
field within the address. The column and/or row index
fields within the page offset indicate the location of the
instruction result within each crossbar. The PIM request’s
data specify all additional fields: opcode, location of input
operands within the crossbar, immediate operands, etc. As
this work focuses only on bulk-bitwise operations, no PIM
instructions are allowed to move data between crossbars
or operate on operands from different crossbars, whether
within the same page or among pages. To move data among
crossbars, standard reads and writes should be used.

For memory consistency purposes, the same rules that
apply to write requests apply to PIM requests, as PIM
requests are similar to writes in the sense that they change
the memory data. To enforce the desired memory ordering
of reads, writes, and PIM requests, programmers should use
the memory order rules of the host processor, treating PIM
requests as write requests, as well as using the available
ordering primitives (e.g., memory fences). Furthermore, the
processor caches ignore PIM requests and forward them
to the memory. It is the responsibility of the programmer
to ensure coherency between the host caches and the PIM
memory, using cache flushes.

The use of PIM requests abstract the PIM module details
for the host hardware. The host hardware is simply required
to transfer the PIM requests to the PIM modules – the host
is not required to know their exact meaning. Therefore, the
host is able to work with different PIM modules, utilizing
different bulk-bitwise PIM technologies and instruction sets.
The software determines the address and data of the PIM
requests, cognizant of their full meaning, and thus con-
trols the PIM modules. Hence, our proposed programming
model is general and can apply to applications other than

database analytical processing. The extent of the host hard-
ware knowledge is presented in Section 3.4.

Additional computation area: To execute PIM instruc-
tions, the PIM modules require some crossbar area for their
internal computations (for storing intermediate results). The
software is responsible for allocating this crossbar area by
configuring the PIM module. To provide the software with
the necessary knowledge, the computation area require-
ments for each PIM instruction are given as part of the
PIM module instruction set architecture. Each page has its
own computation area configuration, which applies to all
crossbars within the page. This configuration, conveyed via
a special PIM instruction to the targeted page, configures
the page but does not access the crossbars themselves. The
software can change the page configuration at any time to
suit the needs of the upcoming PIM instructions.

3.2 The PIM Module

The proposed PIM module is a single memory rank and is
constructed similarly to an RRAM memory module: several
RRAM memory chips and a single media controller chip
(as shown in Fig. 4). The media controller communicates
with the host memory controller using the OpenCAPI inter-
face [15], and with the memory chips through an interface
similar to the R-DDR interface [37]. The media controller
schedules the incoming requests using a First-Ready-First-
Come-First-Serve (FR-FCFS) policy, which considers the de-
pendencies between reads, writes, and PIM requests.

The R-DDR interface is similar to DDRx [19]. It has
an address bus, data bus, and several command signals.
The address bus and command signals are connected in
parallel to all memory chips, making the chips work in
lockstep, while the data bus is divided among the chips. The
difference between R-DDR and DDRx is in the operations
they specify; R-DDR targets RRAM technology, while DDRx
targets DRAM (see [37] for details). For the interface used
in this work, reads and writes are kept the same as in R-
DDR, while PIM operations are handled differently. A PIM
operation is specified, similar to a read or write operation,
by a certain combination of the command signals. On issu-
ing a PIM request to the RRAM chips, the media controller
sets the command signals accordingly, passes the address
of the PIM request to the address bus, and duplicates the
PIM request’s data to all the chip data buses (according to
the timing required by the interface), issuing the same PIM
request to all chips in parallel.

Each memory chip is constructed similarly to an RRAM
memory chip [41]. Reads and writes are performed as in a
standard RRAM chip. To support PIM operations, PIM con-
trollers are incorporated in the memory banks, as illustrated
in Fig. 4. Each PIM controller controls all crossbars across
multiple subarrays, all of which belong to the same memory
space of a single huge-page. A huge-page is assigned to a
single bank of a single memory rank, requiring several PIM
controllers in each chip to cover all the page’s subarrays.
When a PIM request is issued to the chip, its information
is routed to the destination bank as a read or a write,
and then intercepted by the targeted PIM controllers. Each
targeted PIM controller then issues the required MAGIC
NOR sequence of operations to all crossbars connected to it,
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according to the specific instruction. While a PIM controller
is executing its operation, since it does not require the use
of the bank’s global resources, the bank can perform reads,
writes, or PIM operations on subarrays that are not being
controlled by that PIM controller.

The media controller is responsible for orchestrating the
requests sent to the memory chips and for identifying the
bank or subarray that can operate (similar to the operation
of the memory controller in a DDRx interface).

PIM architectures occasionally need inter-crossbar data
movements. These data movements can be accomplished
indirectly via simple, yet slower, CPU load/store instruc-
tions or using faster, but more complex, direct inter-crossbar
communication [16, 40]. Direct inter-crossbar communica-
tion can be added to PIMDB at the cost of added hardware
and complexity. Here, we decided not to include direct
inter-crossbar communication, as adding such a PIM tech-
nique obscures the explicit contribution of bulk-bitwise PIM
and our evaluation (Section 6) shows that PIMDB achieves
significant speedup without it. Hence, inter-crossbar data
movements are performed via standard load/stores.

3.3 Instruction Design

PIM controllers perform each PIM instruction as a se-
quence of bulk-bitwise NOR [21] operations. This sequence
is implemented as a finite-state-machine (FSM) included
in each PIM controller. Some instructions require opera-
tions on in-memory values of various lengths (Section 4.2).
Implementing a predefined operation sequence for every
possible length, such as suggested in [3, 38], might require
numerous FSM states. Instead, we implement an n-bit
operation by iterating a single-bit operation n-times. The
operand’s length determines the number of iterations. For
instance, addition and multiplication with variable-length
operands are implemented by iterating over a full-adder
sequence. Such implementation increases the length of the
bulk-bitwise logic sequence for each instruction, since there
is no optimization across iterations, but it supports many
operand lengths with the same states in the FSM. Moreover,
such implementation reduces the number of cells required
for the internal computation, given that the iterated short
logic sequence can naturally reuse the same cells.

Additionally, we added an optimization that uses im-
mediate values (instruction constants) in the control paths.
When performing PIM operations with an immediate value,

Algorithm 1: PIM controller algorithm for equality
operation between an in-memory value and an imme-
diate value.

Input : vn−1...v0 - in-memory value bits
cn−1...c0 - immediate bits at the PIM controller

Output: in-memory bit meq

Result: meq = 1 if for all i vi = ci, else meq = 0

1 InMemory(meq ← 1)
2 foreach i ∈ [0, .., n− 1] do
3 if ci = 1 then
4 InMemory(meq ← vi AND meq)
5 else
6 InMemory(meq ← NOT (vi) AND meq)

the control sequence of the FSM depends on this value.
Thus, instead of writing the immediate value to the crossbar
(possibly duplicating it on every row) and performing the
operation between two in-memory values, the bulk-bitwise
logic sequence is determined according to the immediate
value. An example of an equality comparison between an
in-memory value and an immediate value is shown in
Algorithm 1. Note that an instruction uses the same FSM
states for all immediate values. The use of the immediate
value for control reduces the number of logic operations and
the latency, eliminates the need to store the immediate value
in each row, and improves the lifetime of the PIM module
due to fewer cell writes. To the best of our knowledge, this
work is the first to implement bulk-bitwise logic operations
in this manner.

3.4 Modifications to the Host Processor

To support PIM requests, some adjustments to the host are
needed. First, the host must be capable of issuing a software-
initiated PIM request, similar to the way the host sends a
read/write request. For memory operation ordering, a PIM
request is considered as if it were a write request. Caches
at the host, however, should not use the content of the PIM
requests’ address or data since their meaning is dependent
on the PIM specifications. In this work, caches forward PIM
requests as is and do not change their state or data when
encountering PIM requests. As explained in Section 3.1, it
is the programmer’s responsibility, e.g., using flushes, to
ensure coherence between the memory and the caches when
using PIM requests. We leave further investigation of PIM
request consistency and coherence support for future work.

Further, the host processor should have memory con-
trollers that support OpenCAPI. These controllers are as-
sumed to preserve the order of requests passed to them
since they cannot know the meaning of the PIM requests’
data and addresses.

4 MAPPING DATABASES TO PIMDB
In this section, we show how a database is mapped to
PIMDB. First, the memory layout of a database relation is
presented. Then, the PIM instructions necessary to support
database applications are described. These PIM instructions
need to be implemented as a sequence of bulk-bitwise logic
operations by the PIM controller (described in Section 3.2).

PIMDB holds a copy of subset of the database in the PIM
modules to accelerate certain operations. Other operations
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Fig. 5: (a) Visualization of a database relation. (b) The layout of
the relation in a crossbar (partly shown). The attributes of a

record are within a single crossbar row. Attributes are aligned
across rows.
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Fig. 6: Example of a column-transform operation: Transferring
a single crossbar column to several rows. In this example, a

column in an 8× 7 crossbar is transformed into two rows, each
with four cells. (a) The initial state of the crossbar with the
input column. (b) Negating each value to its targeted result

column. (c) Negating each value to its targeted result row. (d)
The final state of the crossbar with input column and result.

are performed in a non-PIM manner using the host and
DRAM main memory [28]. The database copy is constructed
offline once and then used for query execution. The query
execution does not modify the database copy, so further data
copying is not necessary prior to subsequent query execu-
tion. Note that maintaining database copies is common in
database systems [29].

4.1 Database Relation Memory Layout
Database relations are stored in PIMDB memory such that
each record is placed in a crossbar row. For each relation,
enough huge-pages are assigned to it to hold all of its
records. Records can be assigned to the rows of a cross-
bar in any order, and to any crossbar in the huge-pages
assigned to the relation (no two relations share a page). If
a relation requires more records, additional pages can be
assigned to it dynamically. Each attribute is aligned in all
the crossbar rows and is contained in consecutive crossbar
cells2 (Fig. 5 shows this mapping). Since reads and writes are
performed on crossbar rows, a relation is held in a row-store
manner in the PIM memory, making accessing and updating
records straightforward. Nevertheless, a single record is not
entirely consecutive in the host’s virtual memory due to
the mapping of the crossbar cells to memory addresses (see
Section 3.1).

If relation records are too large to fit into a single
crossbar row, the attributes can be distributed across several
crossbars, with each crossbar on a different huge-page. To

2. PIM instructions are supported on consecutive cells; see Sec-
tion 4.2.

(a)

Column-wise operation

(b) (c)

Column-wise operation

(d) (e)

Column-wise operation

(f)

Fig. 7: Example of a reduce operation: Reducing
(SUM/MIN/MAX) values stored in multiple rows to a single
value in a single row. In this example, a column of two-cell

values (green) in an 8× 8 crossbar is reduced to a single value.
Unlike the example, for some operations (e.g., SUM) the

number of bits after each reduction may change. (a) Copying
half of the values to the rows of the other half of the values. (b)

Reducing values on the same row to a single value using a
column-wise operation (SUM/MIN/MAX). (c) Copying half of

the reduced values to the rows of the other half. (d) Reducing
values again using a column-wise operation. (e) Copying half

of the reduced values to the rows of the other half. (f)
Reducing values for the last time, resulting in a single value.

operate on such a relation, the host might need to transfer
partial operation results between the pages through reads
and writes, slowing the execution. Note that for TPC-H,
the physical size of the crossbar rows is sufficient for all
relations and there is no need to split attributes of a relation
among different pages.

4.2 PIM Instructions
To support database queries, PIMDB performs filter and ag-
gregate operations within the crossbars. This section explains
which PIM instructions PIMDB implements to support the
filter and aggregate operations. These instructions consist of
traditional arithmetic instructions and three additional com-
plex instructions, Table 4 lists all implemented instructions.

Filter operations operate on every record in a database
relation and specify which records pass the filter condition.
A filter condition is defined using the attributes of the rela-
tion and can be evaluated as True or False for each record,
according to the attribute values of the record. A condition
can be a single comparison or a logical combination (e.g.,
OR, AND, NOT) of several comparisons. A comparison is
one of the following operations: =, ̸=, <,>,≤,≥, between
attributes, functions of attributes, and constants.

To support filter operations, the PIM controller sup-
ports comparison between two in-memory values or an in-
memory value and an immediate (constant), bitwise logical
operations, and simple arithmetic operations (e.g., addition,
multiplication), all of which are performed by bulk-bitwise
logic on all crossbar rows. These operations should be
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Relation In # of # of Crossbar # of PIM Memory
PIM Records Row Bits Pages Utilization

PART ✓ 2× 108 124 12 24.1%
SUPPLIER ✓ 1× 107 99 1 12%
PARTSUPP ✓ 8× 108 80 48 15.5%
CUSTOMER ✓ 1.5× 108 106 9 20.6%
ORDERS ✓ 1.5× 109 133 90 25.8%
LINEITEM ✓ 6× 109 191 358 37.3%
NATION X 25 - - -
REGION X 5 - - -
Total - - - 518 32.6%

TABLE 1: PIM layout summary for TPC-H relations with
SF = 1000

supported for an arbitrary length of consecutive crossbar
columns since a database attribute can have any length;
e.g., we may need to compare 8-bit numbers as well as
32-bit numbers. When filtering using these operations, the
Boolean result will appear as the value of a single cell
in each crossbar row (the same cell in all rows, indicated
by the PIM request address and constituting a crossbar
column). The Boolean result indicates whether or not the
record associated with that row passed the filter condition.
Thus, by performing filter operations in memory, instead
of reading all the attributes for filtering per record, only a
single bit per record is read, substantially reducing the data
transfer.

Since the reads from the crossbar are row-oriented, the
PIM controller also supports a column-transform instruction
to enable efficient retrieval of the filter result. The column-
transform operation takes a single cell column at each
crossbar, and transfers the values of the column’s cells
into several crossbar rows. The number of values in each
target row is fixed to the size of a read from the crossbar.
After transforming the filter results into a row orientation,
the results can be read with higher efficiency than with
a column orientation. The column-transform operation is
shown in Fig. 6.

Aggregate operations are a reduction of many values to
a single value, e.g., taking the sum/average/minimum of
an attribute from selected records in a relation. To support
aggregation, the PIM controller implements reduce instruc-
tions on consecutive crossbar columns across all rows, as
shown in Fig. 7. The cells in each crossbar row for the given
consecutive columns are assumed to constitute a single
value, and the values from all rows are reduced to a single
value result according to the specific arithmetic operation.
The result location is specified by the PIM request. If a
value of a specific row needs to be ignored, it should be
adjusted beforehand by PIM operations according to the
specific reduce operation. For instance, to ignore rows in
a SUM reduce, a filter should be computed and AND with
the column value to be reduced. This will zero undesirable
values and the SUM will operate on the desired values only.
After the reduce operation, the reduced values from all
crossbars are read and combined by the host processor.
Thus, when performing filtering and aggregation, instead
of reading the attributes for each record, only a single value
is read from each crossbar per aggregation (e.g., in our
evaluation, 1024 records per crossbar are reduced to a single
value, different number of records in a crossbar changes the
read reduction amount).

Filter-Only Queries

Q2 PART,SUPPLIER Q3
CUSTOMER,

ORDERS,LINEITEM

Q4 ORDERS, LINEITEM Q5
SUPPLIER,

CUSTOMER,ORDERS

Q7
SUPPLIER,

CUSTOMER,LINEITEM
Q8

PART,ORDER,
CUSTOMER

Q10 ORDERS, LINEITEM Q11 SUPPLIER
Q12 LINEITEM Q14 LINEITEM
Q15 LINEITEM Q16 PART
Q17 PART Q19 PART,LINEITEM

Q20
SUPPLIER,
LINEITEM

Q21
SUPPLIER,

ORDERS,LINEITEM
Full Queries

Q1 LINEITEM Q6 LINEITEM
Q22_sub CUSTOMER - -

TABLE 2: PIM operated relations for each query in our
evaluation. Filter-only queries may operate on more relations

in a non-PIM manner.

Since reduce operates first on values in the same cross-
bar, and then on values across crossbars, only commuta-
tive and associative operations can be supported, such as
SUM, MIN, and MAX. Non-commutative or non-associative
aggregate operations (e.g., average) can be implemented
using several supported instructions and additional host
computation. For example, to perform an average, the PIM
module performs a SUM on the requested attribute and then
another SUM on the filter result (in a column orientation,
providing the record count). Thereafter, the host performs
the division between the two SUM results.

As stated before, PIM instructions operate on cross-
bar columns, and relation attributes are set along crossbar
columns. Thus from the PIM perspective, the relation is held
in PIMDB as a column-store. Hence, reads and writes see
relations in a row-store (Section 4.1), while PIM operations
see a column-store.

5 EVALUATION METHODOLOGY

To evaluate PIMDB, the gem5 full-system simulator [4] is
used with the necessary additions and modifications. As
benchmarks, TPC-H [39] queries are used. In this section,
we elaborate on PIMDB and workload implementation de-
tails, including the database layout in the memory, query
execution, and micro-architecture details. Following this, the
evaluation results are presented and discussed.

5.1 TPC-H Benchmark
TPC-H [39] is a database benchmark for business decision
support, which specifies a database and a suite of queries.
TPC-H controls the size of the database through a scale
factor (SF). The size of some relations is linearly dependent
on the SF , and the database total size is approximately
the SF in units of GB. We evaluate the proposed design
with SF = 1000, i.e., a database approximately 1TB in size
(before compression).

Table 1 summarizes the layout of the TPC-H relations
in the PIM modules. Relations with few records are not
assigned to the PIM modules. Instead, they are column-
stored in DRAM, as directly accessing a few records in
DRAM is more efficient than PIM operations. For PIM
module relations, attributes are compressed using simple
schemes, without limiting the relevant PIM operations,
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when applicable: dictionary encoding [28] (allowing equal-
ity comparisons), or leading-zero suppression [1] (allowing
all operations). Large text attributes that are almost unused
by the TPC-H queries are not included in the PIM module
database copy; this is done to preserve space for computa-
tion. These attributes are the NAME, ADDRESS, and COMMENT
of the various relations. If a query requires the use of these
attributes, they are accessed from the DRAM. Additionally,
a valid attribute is added to each relation in the PIM
module so that unused crossbar rows can be ignored in
query execution. Decisions on which relations should reside
in the PIM module, what attributes to include, and how
to encode them, were made manually for the evaluation
presented here. Such decisions can be automated in the
same manner as other implementation decisions in database
management [8].

The memory utilization listed in Table 1 considers the
data size of the relations in the PIM module and the allo-
cated memory space in huge-pages, capturing the memory
overhead for enabling PIM. The relatively low memory uti-
lization is primarily due to the low utilization of a crossbar
row, rather than unused rows, i.e., most of the unoccupied
space can be used for intermediate results during the com-
putation and is not wasted. Furthermore, this space can
be used for extending the life of memory cells with wear
leveling (see Section 6.4).

Using the TPC-H benchmark, we evaluate the query
operations that can be performed with the PIM modules, as
the focus is on bulk-bitwise operation performance. Three
of the queries, Q1, Q6, and a sub-query of Q22 (Q22_sub),
operate on single relations only, so both filtering and aggre-
gation can be performed in the PIM modules. The rest of the
queries operate on multiple relations and can perform only
the filter part in the PIM module. These two groups are
referred to as full queries and filter-only queries, respectively.
Three of the filter-only queries, Q9, Q13, and Q18, only filter
attributes that are not included in the PIM memory (see the
start of this section), so they do not involve any bulk-bitwise
operations and are not evaluated. Table 2 presents a by-
query summary of the relations that are operated on using
the PIM modules (Table 2 only specifies relations involving
PIM operations).

5.2 PIM Module Micro-Architecture

A single PIM module is a single memory rank, comprising a
media controller chip and eight PIM-enabled memory chips.
The capacity of a single memory rank is 128GB (equivalent
to the capacity of the small Intel Optane module [18]). The
details of the PIM module are listed in Table 3 and explained
here.

5.2.1 Interfaces

The operation timing for the R-DDR interface, between the
media controller and the memory chips, is taken from [37].
The media controller communicates with the host memory
controller using the OpenCAPI protocol [15]. Our simula-
tion implementation of the OpenCAPI protocol considers
the added protocol header sizes and computes the timing
according to the OpenCAPI bandwidth of 25GB/s [15].

Single PIM Module (8 PIM Modules)
Capacity 128GB (1TB) Banks 64 (512)

Subarrays per
PIM controller 64 Crossbars per

subarray 4

Crossbar rows 1024 Crossbar
columns 512

Crossbar read 16 bit Stateful logic
cycle 30 ns [37]

Crossbar write
energy

6.9 pJ/bit
[37]

Single stateful
logic energy

81.6 fJ/bit
[36]

Crossbar read
energy

0.84 pJ/bit
[37]

Single PIM
controller power 126 uW

Evaluation System

Processor Cores 6 cores, X86,
OoO, 3.6GHz Main memory

64GB DRAM,
DDR4-2400,
2 channels

L1 cache
Private, 64KB,

64B block,
4-way

L2 cache
Shared, 8MB,

64B block,
16-way

Coherence
protocol MESI PIM modules 8

TABLE 3: Architecture and system configuration

5.2.2 Instruction Implementation
The PIM controller supports the operations listed in Table 4,
performed on all crossbars connected to the controller in
parallel. The column-transform, shown in Fig. 6, instruction is
implemented by negating the source column into each desti-
nation column (Fig. 6b), and negating each bit a second time
within its designated column to its designated row (Fig. 6c).
The reduce instructions, shown in Fig. 7, are implemented as
iterations of move and reduce steps, resulting in a binary-
tree reduction scheme. In a move step, half of the values are
moved to the rows of the other half, while in the reduce
step, the two values in each row are reduced according
to the relevant operation. Hence, each iteration reduces
the number of values by half. The process stops when a
single value is left. All other instructions are implemented
as iterations on a single-bit operation (Section 3.3).

5.2.3 Crossbar Operations
We take a conservative and practical approach regarding the
capabilities of bulk-bitwise logic operations in a crossbar,
i.e., the operations sent by a PIM controller to a crossbar.
We impose restrictions on bulk-bitwise logic operations to
minimize the area overhead of the crossbar peripherals and
communication from the PIM controllers to the crossbars.
This overhead is due to the additional voltage levels added
for each enabled stateful logic operation [21], which must
be multiplexed on bitlines and wordlines, and for adding
crossbar peripherals. In addition, allowing full flexibility to
the combination of operated crossbars rows and columns in
a bulk-bitwise logic operation, as in [3], requires controlling
each row or column independently. This requires passing a
wire for each wordline and bitline (1536 wires in our design)
from a PIM controller to its crossbars. As there are many
crossbars per PIM controller, the required wiring can reduce
the memory density and increase area.

To address this challenge, we enable only a minimal
number of operation types and a minimum allowed combi-
nation of crossbar rows and columns, while still maintaining
complete functionality. First, column-wise operations can
be NOR2, NOT, single-column-SET, or single-column-RESET
and can only be performed on all the rows in parallel.
Exclusion of rows from computing should be done through
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Instruction Cycle Count Inter. Cells
Equal imm imm0 + 3 · imm1 + 1 1

Not Equal imm imm0 + 3 · imm1 + 3 2
Less Than imm 11 · imm0 + 3 · imm1 + 4 5

Greater Than imm 11 · imm0 + 3 · imm1 + 2 6
Add imm 18n+ 3 8

Equal 11n+ 3 5
Less Than 16n+ 2 6
Set/Reset n 0

Bitwise NOT 2n 0
Bitwise AND 6n 2
Bitwise OR 4n 1
Addition 18n+ 1 6
Multiply 24nm− 19n+ 2m− 1 6

Reduce Sum 2254n+ 3006 n+ 15
Reduce Min/Max 2306n+ 200 n+ 7

Column-Transform 2050 1

TABLE 4: Instruction characteristics. n, m: operands and
immediate lengths. imm0/imm1: immediates’ number of 0/1
bits. Intermediate cells: cells required for intermediate results

in addition to input and output cells per crossbar row.
Crossbar size affects bold-marked operations’ coefficients;

values in the table reflect a crossbar size of 1024× 512.

software, e.g., using a bit-mask and including it in the com-
putation. Second, row-wise operations can be performed
only on a single column at a time and can either be a
NOT or single-row-SET [36]. These minimum capabilities
are essential for a functionally complete column-wise com-
putation, maintaining high parallelism, and enabling data
movement between rows (for column-transform and reduce
instructions). These restrictions make certain optimizations
impossible, posing an interesting topic for future research.
For example, in reduce instructions, the reduce steps are
performed on all rows, including rows not participating in a
step. The resulting instruction cycle count and intermediate
cell requirements (computed as in [36]) are listed in Table 4.

5.3 System Configuration

As the reduction of memory reads is done by the PIM mod-
ules and the evaluated workload is memory constrained, the
choice of a host (e.g., CPU, GPU, FPGA, near-memory pro-
cessing) will primarily affect the memory accessing speed.
Thus, although the choice of the host will affect perfor-
mance, it will not change the number of memory reads
that are eliminated due to the PIM execution. Hence, for
simplicity of evaluation, we chose a multicore with six out-
of-order X86 cores as the host, having private L1 caches and
a shared L2 cache. The host has a 64GB DDR4-2400 DRAM
main memory, along with eight OpenCAPI channels3, each
with a single PIM module, totaling 1TB4 of memory in the
PIM modules. Table 3 summarizes the system configuration.

The system was implemented in the gem5 simulation [4],
running in full-system mode (running a Linux kernel), and
includes the gem5’s ruby cache system. A PIM request
instruction was added to the host instruction set. Similarly
to a write, a PIM request instruction requires two registers
as input: address and data.

3. IBM’s Power9 has 16 OpenCAPI channels [35].
4. A single PIM module has a capacity of 128GB, the same capacity

as the smallest Intel Optane module [18].

5.4 Query Compilation and Execution
We built an SQL compiler to abstract PIMDB and its pro-
gramming model, allowing it to be programmed using a
high-level language. The compiler receives the configura-
tion of the database and the SQL statements as input and
generates a C++ code for the query execution, where PIM
requests are issued using an inline assembly. The C++ code
is then compiled using gcc. This compilation process is done
offline and is not measured as part of the query execution.

The compiler extracts the query operations required
for the PIM modules’ execution, i.e., filtering the relations,
aggregating if possible, and reading the results. The query
execution starts by operating on the small relations residing
in the DRAM memory, if required. For relations in the PIM
module, the operation execution is divided among four
threads, one per core. Each receives part of the huge-pages
for each relation; thus, each thread operates on separate
pages. For each relation participating in the query, each
thread performs several computations and read phases (pos-
sibly one of each). A computation phase sends the necessary
PIM requests to the thread’s pages and the read phase reads
the results from those pages. Each computation phase fits
into the available crossbar area unoccupied by data, and
following it, a read phase clears the area for reuse. To avoid
unnecessary cache flushes, the compiler assigns the results
of different computation phases to different cache blocks
by controlling the addresses of the PIM requests. Memory
ordering among PIM requests and reads is enforced using
memory fences. Phases of two relations are not interleaved
in each thread.

Before query execution is simulated, the required huge-
pages are first allocated using the operating system and
then populated according to [39]. To maintain reasonable
memory requirements for the simulation resources, the 1GB
huge-pages are emulated using 2MB pages. For the emula-
tion, the number of allocated 2MB pages is the same as the
required number of 1GB pages. To emulate the execution
time, the required number of reads from each 2MB page in
the query execution is matched to the required number of
reads on a 1GB page (we made sure each read is retrieved
from the PIM modules and not from the caches). Since
the latency of PIM operations is independent of the page
size, it does not need adjustments. For energy and power
considerations, however, the relevant operation energies
were counted as operating on 1GB pages, (e.g., number of
bulk-bitwise logic operations, number of PIM controllers,
etc.).

5.5 Baseline
To show the bulk-bitwise PIM benefits, we take as a baseline
the execution of the same query operations evaluated on
PIMDB, performed on a database contained in the host
main memory (i.e., in-memory database [28]). The baseline
is executed on the same PIMDB host system configuration,
using the gem5 full-system simulation. Comparing our sys-
tem to the same host system without PIMDB demonstrates
the memory access reduction achieved with bulk-bitwise
PIM operations. For the baseline, all database relations are
column-stored and use the same encoding and compression
techniques as in PIMDB. For each query, a C++ code was
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Fig. 8: PIMDB execution time speedup and reduction in LLC
misses compared to the baseline (left y-axis of sub-figures). An

estimated total query speedup for the filter-only queries is
shown using the right y-axis of sub-figure (a).

written to perform the same query operations as produced
by our PIMDB compiler. The relevant attributes for each
query are brought into the main memory prior to execution
(no disk access during execution). The same huge-page
emulation is used for memory allocation as in the PIMDB
evaluation. Hence, the baseline represents operations on
a column-store in-memory database [28] equivalent to the
operations executed in PIMDB. The execution of these op-
erations, however, cannot be easily broken to its different
components (host compute, PIM compute, memory reads)
as the PIMDB execution since the host executes out-of-order
and the operation of these components overlap in time.

The baseline execution structure is also similar to that
of PIMDB. The small tables (i.e., REGION and NATION)
are operated on if necessary, and then the large relations
operation is split into four threads where each thread is
responsible for a quarter of each relation’s records. The
threads serially traverse the records of the required relations,
filtering according to the required attributes (using nested
if-statements) and performing aggregation. The attribute
filtering order is chosen offline to minimize memory access
to non-required records.

6 RESULTS

6.1 Query Execution Time
To evaluate the benefits of PIMBD, we measure the query
execution time, capturing the operations that PIMDB ac-
celerates, and compare it to the query execution time of
the baseline. PIMDB execution time includes the operations
performed by the PIM modules, the operations to support
the PIM operations (such as operations on small DRAM
relations, spawning threads, etc.), and the results read from
the PIM module. Hence, for the full queries, the entire query
execution is captured. For the filter-only queries, however,
only the filter operation is measured (including reading
the results), as the rest of the query execution does not
involve the PIM modules or their database copy and is
considered out-of-scope for this work. Our evaluation does
not compare PIMDB to other bulk-bitwise PIM technologies
and architectures [12,14,17,23,33,37,40] as we are interested
in evaluating bulk-bitwise PIM, not comparing the various
technologies. We discuss this issue further in Section 7.

Fig. 8 shows the execution time and the LLC miss ratios
between PIMDB and the baseline on the accelerated oper-
ations. The filter-only and full queries achieve a speedup

Q2
Q3

Q4
Q5

Q7
Q8

Q10
Q11

Q12
Q14

Q15
Q16

Q17
Q19

Q20
Q21

0.0

0.2

0.4

0.6

0.8

1.0

Ex
ec

ut
io

n 
Ti

m
e

Read
PIM ops
Other

(a) Filter-only queries

Q1
Q6

Q22_sub
0.0

0.2

0.4

0.6

0.8

1.0

Ex
ec

ut
io

n 
Ti

m
e

(b) Full queries
(filter+aggregation)

Fig. 9: PIMDB execution time breakdown. For the filter-only
queries, the PIM ops portion is too small to be visible.

Filter Arith. Col.
trans.

Inter.
cells Filter Arith. Col.

trans.
Inter.
cells

Q2 619 0 2050 80 Q3 97 0 2050 32
Q4 216 0 2050 49 Q5 220 0 2050 33
Q7 200 0 2050 30 Q8 200 0 2050 31
Q10 220 0 2050 33 Q11 22 0 2050 30
Q12 678 0 2050 39 Q14 252 0 2050 39
Q15 228 0 2050 39 Q16 271 0 2050 48
Q17 37 0 2050 32 Q19 606 0 2050 64
Q20 220 0 2050 39 Q21 216 0 2050 30

Filter Arith. Agg.
col/row

Inter.
cells Filter Arith. Agg.

col/row
Inter.
cells

Q1 190 20498
2.2×
105/

2× 106
313 Q6 346 3390

9.9×
103/

9.4×104
189

Q22
_sub

453 106
6.2×
103/

4.9×104
122

TABLE 5: The number of PIM bulk-bitwise logic cycles by type
and intermediate results’ cells used on a single crossbar.

Filter-only queries do not use aggregation; full queries do not
use column-transform. The Agg. col/row column shows the

cycles of the aggregation column and row operations,
respectively.

of 0.82×–14.7× and 62×–787×, respectively. The speedup
difference between full and filter-only queries is due to the
data reduction advantage of reduce versus filter operations
(Section 4.2). Q11 is the only query where using PIMDB
results in a slowdown. Q11 has only a small filter operation
on a small relation, achieving little read reduction and
making the read latency of the results (from DRAM in the
baseline and from PIM memory in PIMDB) more prominent.

The reduction in memory accesses is perceived through
the LLC misses. The LLC miss and execution time ratios,
however, do not correlate entirely. The LLC misses are for
all the memory accesses (not just the database) and code
execution and memory access patterns for PIMDB and base-
line differ substantially. Given that PIMDB accelerates only
the filter operations on the filter-only queries, to provide a
full performance perspective, Fig. 8(a) shows the total query
speedup for the filter-only queries using data from [20]. As
our work aims to enable and investigate the capabilities
of bulk-bitwise PIM, we focus on the parts accelerated by
PIMDB and leave advanced algorithm implementation (e.g.,
JOIN, UPDATE, GROUPBY [28]) and mapping of filter-
heavy databases (e.g., key-value store [27]) for future work.

For calibration, we estimate how bulk-bitwise PIM com-
pares with real systems. We compared PIMDB with the
two top-ranking state-of-the-art systems for TPC-H with
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Wires 0.97%

Fig. 10: PIM module chip area breakdown was taken using
NVSim [11]. Crossbar peripherals include row decoders,

column multiplexers, sense amplifiers, and write drivers [11].

SF = 1000 [9, 10, 39]. These systems have a higher core
count than our base system. The published results, however,
are for full queries only, allowing us to compare only Q1
and Q6. On Q1, we attain a speedup of 9.3× and 8.2×,
while on Q6, we achieve a speedup of 19.6× and 11.6×,
over [9] and [10], respectively. Note that this comparison is
between simulation and real hardware, giving only a rough
estimation of the PIMDB system benefits. Also we point out
that taking either [9] or [10] as the PIMDB host system may
further improve the performance of PIMDB, as it will likely
benefit from the higher core count of these systems.

Fig. 9 shows the breakdown of the PIM-executed queries
into PIM operations, reading data from the PIM modules,
and other operations (e.g., spawning threads, operating on
DRAM relations). The breakdown shows that for the filter-
only queries, the read time from the PIM modules dom-
inates, and comprises over 99% of execution time for all
queries, with the exception of Q2, Q11, Q16, and Q17 due
to operation on smaller relations (i.e., not operating on the
LINEITEM or ORDERS relations). For the full queries Q1
and Q6, the read time is also the bottleneck, but more mod-
erately, 70% and 55% of execution time, respectively. For the
full query Q22_sub, due to the small read size resulting
from the aggregation read reduction and the operation on
the smaller CUSTOMER relation, the read time is no longer
the bottleneck. These results imply that although the data
transfer bottleneck was successfully relaxed, for most cases,
it still remains the main component of the query execution
time.

To further investigate the PIM operations, Table 5 shows
the breakdown of bulk-bitwise PIM logic cycles by type and
the number of cells used to hold intermediate results. The
dominant operations are the column-transform operations
in the filter-only queries and the aggregate operations in
the full queries. Although these operations may consume
many cycles, they are amortized over all the records in many
huge pages operating concurrently, where each such page
(1GB) contains 16M records. Both column-transform and
aggregate operations mostly comprise row-wise operations
performing serial bit-by-bit data movement between cross-
bar rows, showing that even the bulk-bitwise logic latency
is chiefly dedicated to data movements. This result is due to
the crossbar row-wise operation restriction, requiring that
only one column be active at a time. We analyze the case
where row-wise operations are allowed to operate on mul-
tiple columns in any combination (only increasing the row-
wise data movement bandwidth). Our analysis shows that
the full queries’ bulk-bitwise logic latency can be reduced by
80%–86%, and the execution time improved by 25% for Q1
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Fig. 11: PIMDB energy saving over baseline.
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Fig. 12: PIMDB energy breakdown.

and Q6 and by 39% for Q22_sub, turning the bulk-bitwise
logic latency from 29%–48% into 5.4%–15% of execution
time.

Our results show that despite using a non-optimum
loop-based n-bit operation design and restricted crossbar
operations, the bulk-bitwise PIM latency used for com-
putation, as opposed to data movement between crossbar
rows, does not have a major impact on query execution
time (less than 1% for filter-only queries and less than 6%
for full queries on large relations). These results, although
dependent on data set size, signal that bulk-bitwise PIM
computation latency can be traded-off with other system
aspects, e.g., complexity, area, and power.

6.2 Area

To estimate the area of the PIM controller, we implemented
it in Verilog, synthesized it, and evaluated its area us-
ing Cadence Innovus and Synopsys Design Compiler with
TSMC 28nm technology. For the PIM module chip area,
NVSim [11] was modified to include a single PIM controller
per 64 subarrays. Fig. 10 shows a PIM module chip area
breakdown, with the PIM controller consuming only 0.17%
of chip area.

6.3 Power and Energy

To evaluate the system’s energy and power consumption,
we evaluate and sum the energies of the DRAM main
memory, the host, and the PIM modules. The DRAM en-
ergy is evaluated by the integrated gem5 DRAM power
model [6]. The McPAT [22] tool is used to assess the host
power consumption.

The PIM modules’ energy is taken as the sum of the
PIM controller, bulk-bitwise (stateful) logic, read and write
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Fig. 13: PIM module energy breakdown.
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Fig. 14: Peak and average power demand for PIM module
chip.

operations, and chip IO energies according to the simulation
behavior. The PIM controller energy is evaluated using the
Synopsys Design Compiler as explained in Section 6.2. The
energy per stateful logic operation was taken from [36],
and the energies per read and write operations were taken
from [37]. Table 3 lists the different energy values. For chip
IO energy costs, the gem5 DRAM energy model was used.
The power of a PIM module is sampled as the average
power in a 100ns time window.

The energy ratio between the baseline (host and DRAM)
and PIMDB (host, DRAM, and PIM modules) is shown in
Fig. 11. Overall, an energy reduction of 0.88×–15.3× is
achieved for filter-only queries, and a reduction of 1.14×
and 15.8× is achieved for the full queries. Q1 has a rela-
tively small energy reduction as it performs many reduction
operations, completely offsetting the memory traffic energy
saving. The energy breakdowns of the PIMDB system and
the PIM module are shown in Figs. 12 and 13, respectively.
For the filter-only queries, most of the energy is consumed
by the DRAM module (standby energy). While in the PIM
modules, most of the energy is dedicated to bulk-bitwise
(stateful) logic operations. For the full queries, the PIM
modules dominate the energy consumption. For Q22_sub,
the PIM energy component is more moderate than in Q1 and
Q6 since Q22_sub operates on a smaller relation (CUSTOMER
vs. LINEITEM). At the PIM module, more than 99% of the
energy is spent on bulk-bitwise logic for the full queries.
This is mainly due to the substantial reduction in read
operations and longer PIM operations of full queries. Our
results indicate that the main energy-consuming component
is now the bulk-bitwise logic. In all queries, the host uses
relatively little energy since, using PIM, the host is mainly
involved in producing the memory operations (read, write,
and PIM request), which require light arithmetic. As our
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Fig. 15: Required endurance for a ten-year operation with a
100% duty cycle.

Filter Arith. Col.
trans.

Agg.
col/row Filter Arith. Col.

trans.
Agg.

row/col
Q2 91% 0 9% 0/0 Q3 60% 0 40% 0/0
Q4 77% 0 23% 0/0 Q5 77% 0 23% 0/0
Q7 76% 0 24% 0/0 Q8 76% 0 24% 0/0
Q10 77% 0 23% 0/0 Q11 26% 0 74% 0/0
Q12 91% 0 9% 0/0 Q14 80% 0 20% 0/0
Q15 78% 0 22% 0/0 Q16 81% 0 19% 0/0
Q17 37% 0 63% 0/0 Q19 90% 0 10% 0/0
Q20 77% 0 23% 0/0 Q21 77% 0 23% 0/0

Q1 1%> 8% 0 85%/
7% Q6 2% 23% 0 68%/

6%

Q22_sub 6% 1% 0 87%/
6%

TABLE 6: Breakdown of PIM operations’ contribution to
endurance requirements. The Agg. col/row column shows the

portion of the aggregation column and row operations,
respectively.

workload was chosen to be memory-bound, this behavior is
expected.

Fig. 14 shows the peak and average chip power demand
measured by simulations, as well as theoretical peak chip
power demand. The theoretical peak power demand is
computed as the power required to perform a stateful logic
operation across all accessed pages, for the PIM module
with the maximum number of pages. The theoretical peak
power demand shows that when all pages accessed by a
query are operating in parallel, the power demand can reach
up to 330W per chip, which is high but reasonable for
such an accelerator [26]. The peak and average measured
power, however, is substantially lower, up to 125W and
10W , respectively, since pages are not synchronized in their
operations and stateful logic operates only in part of the
query execution. If we look at a bulk-bitwise stateful logic
operation across all crossbars in a PIM module chip, which
no query in the evaluation performs, we see that the chip
power demand can reach 730W . These results indicate that
power-aware scheduling for the PIM operations is required.

6.4 Endurance

As device endurance is a main challenge for memristive
technologies [44] , the required endurance for the proposed
design and workloads are evaluated. For this evaluation, we
assume that through the life of the PIM module, the com-
putation at a crossbar row is uniformly distributed across
all cells of that row. This is a reasonable assumption since
the locations of all values in a crossbar row are controlled
by software and can be shifted periodically. Furthermore,
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previously proposed techniques [32] can be applied to
achieve a uniform distribution. Under this assumption, the
maximum number of operations on a cell is calculated as
follows: the maximum number of operations experienced
by a single crossbar row is extracted per query and divided
by the number of crossbar row cells. Note that not all
crossbar rows experience the same number of operations.
Different relations experience different operations and the
column-transform and reduce operations do not operate on
all crossbar rows uniformly. Fig. 15 shows the maximum
number of operations applied per cell, for each query, where
our measured execution (Section 6.1) is performed back-
to-back, i.e., with a 100% duty cycle, for ten years. Based
on previously reported RRAM endurance numbers of 1012

cycles [44] , the results show that the PIMDB lifetime can
exceed ten years, with the exception of Q22_sub due to its
operation on a relatively small relation, resulting in frequent
writes to the same memory cells.

Table 6 shows the breakdown of operations contributing
to the maximum number of operations per cell. For the filter-
only queries, the filter PIM operations are the dominant
contributors (as opposed to the PIM operation latency).
This is because the column-transform operation mainly
performs bit-by-bit movements between rows, resulting in
few operations per row. For the full queries, the reduce
operations are still the dominant factor but with the column-
wise operations rather than the row-wise operations. These
results imply that endurance, rather than latency, may be
more important for arithmetic design with stateful logic.

Overall, we see that there are two reasons for the low
number of operations applied per cell. First, most of the
PIMDB execution time is spent on read operations and not
PIM operations, as shown in Fig. 9. Second, the most time-
consuming PIM operations have a low number of opera-
tions per cell. These operations are the column-transform
and row-wise operations for aggregation, for the filter-only
and full queries, respectively.

7 RELATED WORK

Several bulk-bitwise PIM technologies and architectures
were previously proposed [12,14,23,33,37,40]. These works
showed how to perform the bulk-bitwise PIM operations,
but did not delve into full system performance. Further-
more, these works only demonstrated bulk-bitwise PIM on
micro-benchmarks (including database micro-benchmarks),
missing the implementation details and operation mix of
a standard benchmark. All these works only show bulk-
bitwise operations on either crossbar bitlines or wordlines,
enabling only the query’s filter, not aggregation, to be per-
formed with solely bulk-bitwise PIM. As such, our work has
a more comprehensive and more fundamental evaluation of
bulk-bitwise PIM than previous works in general, and on
database applications specifically. As the evaluation of the
filter-only queries shows, the read latency, and not the PIM
latency, dominates the query latency. Hence, other technolo-
gies will have similar query execution behavior as PIMDB,
with execution time differences depending on the difference
in read latency from the PIM memory. The work in [40] also
supports direct inter-crossbar communication in addition to
bulk-bitwise PIM. This communication enables aggregation

without the host, potentially increasing performance further
with additional hardware and control costs.

An RRAM-based CAM architecture for database accel-
eration was presented in [17]. The design included analog
and stateful logic techniques on the same CAM crossbars,
making it hard to distinguish the contribution of each tech-
nique separately and involving further hardware and con-
trol overheads. While PIMDB and [17] support similar basic
database primitives, they significantly differ in hardware,
operation implementations, relation layout, and host–PIM
interaction. Moreover, [17] did not include a programming
model and their evaluation consists of only a few custom
micro-benchmarks, rather than a standard benchmark.

To the best of our knowledge, none of the previous
works for bulk-bitwise operations, where the PIM module
is part of the main memory, presents a full programming
model [14,16,17,37,40]. [45] presented a high-level program-
ming language interface for bulk-bitwise PIM. [14] and [23]
presented a programming model that avoids the PIM mem-
ory management and addressing issues, delegating them
to the operating system (OS) to handle. These solutions
are complementary to our programming model as they are
on different abstraction levels. [14] also suggested a host
instruction set extension to issue PIM instructions similar to
our PIM requests. [2] and [25] proposed instruction offload-
ing schemes for near-memory architectures. Near-memory
uses distinct components for processing elements and mem-
ory, having different characteristics than bulk-bitwise PIM.
[2] proposed a host instruction set extension to indicate PIM-
enabled instructions, similar to the PIM request proposed
in our work, while [25] suggested intercepting the host
processor atomic instructions for PIM execution.

In-storage [42, 43] and near-memory [20] are other pro-
cessing techniques that are similar to bulk-bitwise PIM. Both
in-storage and near-memory processing try to reduce data
movement by bringing the computation closer to where
the data reside. Both techniques, however, use standard
CMOS technology (e.g., cores, dedicated accelerators), rather
than the data storage medium, as the processing elements.
Hence, although in-storage and near-memory processing
goals are similar to those of bulk-bitwise PIM, the control
and operation are different. Additionally, commercial in-
storage processing [43] offers to accelerate filtering and
aggregation for databases, which are the same primitives
inherently available by bulk-bitwise PIM. As mentioned, the
approach to accelerating these primitives differs from bulk-
bitwise PIM, producing different characteristics and trade-
offs. Nevertheless, in-storage and near-memory processing
are not competing with bulk-bitwise PIM, but complement-
ing it. As in-storage and near-memory use logic outside of
the memory array, they can be used as hosts for bulk-bitwise
PIM, benefiting from the data movement reduction achieved
by bulk-bitwise PIM.

8 CONCLUSION

In this paper, we investigated bulk-bitwise PIM by propos-
ing PIMDB, a bulk-bitwise PIM architecture based on mem-
ristive stateful logic for accelerating analytical processing
operations on relational databases, including a host pro-
gramming model. By focusing on bulk-bitwise PIM for
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a real-world application and introducing a programming
model, the properties of this PIM method were demon-
strated. Insights about application mapping, execution and
energy breakdowns, PIM logic latency, endurance, and PIM
module power were offered. The design reduced the data
transfer in the system by supporting filtering and aggre-
gation operations within the memory and included map-
ping and logic techniques to support these operations. The
programming model, as well as other aspects of our work,
can be applied to other bulk-bitwise PIM technologies and
architectures. PIMDB accelerates TPC-H filter operations by
1.6×–18× and full queries by 56×–608×, while achieving
a 1.7×–18.6× and 0.81×–12× energy reduction for these
benchmarks, respectively.
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