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Abstract—Many real-world optimization problems have more
than three objectives, which has triggered increasing research
interest in developing efficient and effective evolutionary algo-
rithms for solving many-objective optimization problems. How-
ever, most many-objective evolutionary algorithms have only
been evaluated on benchmark test functions and few applied
to real-world optimization problems. To move a step forward,
this paper presents a case study of solving a many-objective
hybrid electric vehicle controller design problem using three
state-of-the-art algorithms, namely, a decomposition based evo-
lutionary algorithm (MOEA/D), a non-dominated sorting based
genetic algorithm (NSGA-III), and a reference vector guided
evolutionary algorithm (RVEA). We start with a typical setting
aiming at approximating the Pareto front without introducing
any user preferences. Based on the analyses of the approximated
Pareto front, we introduce a preference articulation method and
embed it in the three evolutionary algorithms for identifying
solutions that the decision-maker prefers. Our experimental
results demonstrate that by incorporating user preferences into
many-objective evolutionary algorithms, we are not only able to
gain deep insight into the trade-off relationships between the
objectives, but also to achieve high-quality solutions reflecting
the decision-maker’s preferences. In addition, our experimental
results indicate that each of the three algorithms examined in
this work has its unique advantages that can be exploited when
applied to the optimization of real-world problems.

Index Terms—Many-objective optimization, hybrid electric
vehicle, preference articulation, reference vector, evolutionary
algorithm

I. INTRODUCTION

MANY real-world optimization problems involve more
than one conflicting objective to be optimized, known

as multiobjective optimization problems (MOPs) [1]–[3]. Gen-
erally, a minimization MOP can be formulated as follows:

minimize f(x) = (f1(x), f2(x), ..., fM (x))

s.t. x ∈ X, f ∈ Y
(1)
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where X ⊂ Rn and Y ⊂ RM are known as the decision space
and objective space, respectively, with x = (x1, x2, ..., xD) ∈
X and f ∈ Y denoting the decision vector and objective
vector in the two spaces, D and M are the number of decision
variables and the number of objectives, respectively. Due to
the conflicts between different objectives as formulated in (1),
there does not exist one single solution that is able to optimize
all objectives simultaneously. Instead, a set of solutions, known
as the Pareto optimal solutions, can be achieved as the trade-
offs between different objectives. To be specific, the Pareto
optimal solutions are also known as the Pareto set (PS) in the
decision space, while its image in the objective space is also
known as the Pareto front (PF).

Evolutionary computation (EC) is one of three main areas of
computational intelligence and various powerful evolutionary
algorithms (EAs) for solving complex optimization problems
have been developed. EAs, which are population based meta-
heurisic search methods, are well suited for multiobjective
optimization that are able to achieve a set of solutions in
one single run. As most popular multiobjective evolutionary
algorithms (MOEAs), e.g., the elitist fast non-dominated sort-
ing genetic algorithm (NSGA-II) [4], the improved strength
Pareto evolutionary algorithm (SPEA2) [5], a region based
selection algorithm (PESA-II) [6], among many others [7],
were originally proposed for solving MOPs which involve
two or three objectives, the performance of these MOEAs
deteriorates seriously when the number of objectives becomes
more than three [8]–[11]. Nowadays, MOPs with more than
three objectives are often called many-objective optimiza-
tion problems (MaOPs) [12], which pose great challenges to
traditional MOEAs for several reasons [13], [14]. First, as
the number of objectives increases, an increasing number of
candidate solutions will become non-dominated to each other,
seriously degrading the performance of Pareto dominance
based MOEAs due to the loss of selection pressure. Second,
due to the large volume of the high-dimensional objective
space, striking a good balance between convergence and di-
versity becomes particularly important for the performance of
MOEAs. Third, in order to approximate the high-dimensional
PFs, the required number of candidate solutions increases
exponentially. Other challenges include visualization of high-
dimensional PFs and performance measurements of solution
sets. In order to enhance the performance of MOEAs on
MaOPs, various approaches have been proposed in recent
years, which can be roughly categorized into the following
three classes.
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The first class is to enhance the convergence capability
of traditional MOEAs. Among various convergence enhance-
ment approaches, dominance modification is the most intuitive
one. Examples of modified dominance definitions include L-
optimality [15], ε-dominance [16], [17], fuzzy dominance [18],
and grid based dominance [19]. Another typical idea of this
category is to introduce new convergence metrics in addition
to traditional dominance based mechanisms. For example, a
shift-based density estimation strategy is proposed to penal-
ize poorly converged solutions that cannot be distinguished
by Pareto dominance [20]; a knee point based secondary
selection is introduced on top of non-dominated sorting to
enhance convergence pressure in the recently proposed knee
point driven evolutionary algorithm (KnEA) [21]. Some other
recent work along this line includes the two-archive algorithm
for many-objective optimization (Two Arch2) [22], many-
objective evolutionary algorithm based on both objective space
reduction and diversity enhancement (MaOEA-R&D) [23],
and the recently proposed bi-criterion evolutionary algorithm
(BCE) [24].

The second class is decomposition based MOEAs where
a complex MOP is decomposed into a number of simpler
subproblems that are subsequently solved collaboratively [25],
[26]. Decomposition based MOEAs can be further categorized
into two groups [27]. The first class decomposes an MOP into
a group of single-objective problems (SOPs), such as dynamic
weighted aggregation (DWA) [28], cellular multi-objective ge-
netic algorithm (C-MOGA) [29] and multi-objective evolution-
ary algorithm based on decomposition (MOEA/D) [25]. The
second class decomposes an MOP into a group of sub-MOPs,
such as MOEA/D-M2M [26] and MOEA/DD [30], which are
variants of MOEA/D, a variant of NSGA-II, termed NSGA-
III [31], an MOEA using Gaussian process based inverse
modeling (IM-MOEA) [32], [33] and a recently proposed
reference vector guided evolutionary algorithm (RVEA) [34].
It is worth noting that NSGA-III can be also seen as a
Pareto dominance based MOEA, since the primary selection
in NSGA-III is still non-dominated sorting.

The third class is performance indicator based MOEAs.
Performance indicators are originally designed to evaluate the
quality of solution sets but later found to be useful as a
selection criterion in MOEAs. Representative algorithms of
this class include the S-metric selection based evolutionary
multi-objective algorithm (SMS-EMOA) [35], the indicator
based evolutionary algorithm (IBEA) [36] and the fast hyper-
volume based evolutionary algorithm (HypE) [37]. Although
this class of MOEAs do not suffer from dominance resistance,
unfortunately, the computational cost for indicator calculation
becomes prohibitively as the number of objectives increases
[38]–[40].

In spite of the various MOEAs in the literature, research on
evolutionary many-objective optimization is still in its infancy
and there is a big gap between academic research and demand
from industry for the following main reasons. First, most algo-
rithms have merely been assessed on benchmark test problems

for general optimization1, where the performance is mostly
evaluated using performance indicators originally proposed
for multiobjective optimization with two or three objectives.
Second, most MOEAs proposed for many-objective optimiza-
tion are meant to achieve a representative approximation to
the PF. By contrast, in real-world MaOPs, it is particularly
useful if an algorithm is able to incorporate preferences of
DMs [12], where the approximation of high-dimensional PFs
with a limited number of solutions becomes impractical. Thus,
there is a strong need to demonstrate the capability of the
MOEAs proposed for solving real-world MaOPs.

To bridge the gap between academic research and industrial
applications, this paper presents a case study where three state-
of-the-art MOEAs, namely, MOEA/D [25], NSGA-III [31],
and RVEA [34] are employed to solve a seven-objective
optimization problem in hybrid electric vehicle (HEV) control.
By proposing a generic preference articulation method, we
demonstrate that the three algorithms are not only able to
perform general optimization, but also capable of identifying
optimal solutions preferred by the decision maker (DM). The
main new contributions of this work can be summarized as
follows.

1) The paper exemplifies a successful application of
MOEAs for real-world many-objective optimization. As
previously mentioned, most MOEAs have only been as-
sessed in general optimization on benchmark test prob-
lems using performance indicators. In practice, however,
it is more useful if user preferences can be articulated in
the optimization process. In this case study, we illustrate
how existing MOEAs can meet such demands in the
optimization of a seven-objective HEV controller design
problem.

2) As an extension of our previous work [41], this pa-
per details a seven-objective HEV controller model
and demonstrates why the seven-objective optimization
model can offer additional value compared to traditional
models that consider a single objective. We empirically
show that the improvement potential of the additional
objectives is much larger than the potential for fuel con-
sumption by using the state-of-art evolutionary many-
objective optimization algorithms.

3) A preference articulation approach is proposed to enable
the three state-of-the-art MOEAs for many-objective
optimization to obtain solutions in the regions of interest
(ROIs) of the objective space specified by the DM. With
the successful application of the three MOEAs assisted
by the proposed preference articulation approach, the
DM is able to achieve high-quality solutions that signif-
icantly improve the performance of the HEV controller
design, gleaning useful knowledge in design of HEV
controllers.

The remainder of this paper is organized as follows. Sec-
tion II presents some background knowledge, including an
introduction to three MOEAs adopted in this work, namely,
MOEA/D, NSGA-III and RVEA. Section III presents the

1In this work, general optimization specifically refers to optimization tasks
aiming to obtain a general approximation to the PF.
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preference articulation approach to be embedded in the three
MOEAs. Section IV details the seven-objective HEV con-
troller model. Section V presents the optimization results
obtained, including the analyses of the results from general
optimization, as well as the results when preferences are
articulated. Finally, Section VI draws the conclusion.

II. BACKGROUND

As background knowledge, this section presents a brief
introduction to MOEA/D [25], NSGA-III [31] and RVEA
[34]. The framework of each algorithm can be found in
Supplementary Materials I, and more details of the three
algorithms can be found in the original publications.

A. MOEA/D

MOEA/D is a representative decomposition based algorithm
originally proposed for solving multiobjective optimization
problems with two or three objectives [25]. Recently, it has
been reported that the performance of MOEA/D is promising
for many-objective optimization as well [27], [30]. As shown
by Algorithm 1 in Supplementary Materials I, MOEA/D
adopts a steady-state selection strategy [42], where there is
only one offspring candidate solution created at each time in
the reproduction process. In addition, both reproduction and
selection in MOEA/D are performed locally in the predefined
neighborhoods specified by a set of weight vectors.

The most important step in Algorithm 1 is the update
process in Step 8. In this step, the algorithm updates each
neighborhood by replacing the candidate solutions in it with
the one having the best scalarization function value, where a
scalarization function is used to transform a vector of objective
values into a scalar fitness value. Two most commonly used
scalarization functions are the Weighted Tchebycheff (TCH)
scalarization function and the penalty-based boundary inter-
section (PBI) scalarization function, which can be formulated
as follows:

1) Weighted Tchebycheff:

minimize gtch(x|w, zmin) = M
max
i=1
{wi|fi(w)− zmini |}, (2)

2) PBI:

minimize gpbi(x|w, zmin) = d1 + θd2, (3)

with

d1 =
‖(F(x)− zmin)>w‖

‖w‖
, (4)

and
d2 = ‖F(x)− (zmin + d1

w

‖w‖
)‖, (5)

where w = (w1, w2, ...wM ) is a weight vector, z =
(zmin1 , zmin2 , ...zminM ) is the ideal point, and θ in PBI is a user-
specified parameter that balances the weights of d1 and d2.

In this work, we apply the PBI scalarization function in
optimization of the seven-objective HEV controller model.

B. NSGA-III

NSGA-II is a classic MOEA proposed for solving bi-/three-
objective MOPs [4]. Recently, NSGA-II has been extended
for many-objective optimization, which was termed NSGA-III
[31]. As shown by Algorithm 2 in Supplementary Materials
I, NSGA-III still applies a similar elite framework as NSGA-
II, where the selection is also two-stage: the first stage of
selection (Step 8 in Algorithm 2) is to maintain convergence
pressure to push the candidate solutions towards the PF, and
the second stage of selection (Step 10 in Algorithm 2) is
to manage population diversity for a wide spreading of the
candidate solutions on the PF.

The dominance based selection in NSGA-III is exactly the
same as the one in NSGA-II, where a fast non-dominated
sorting approach is used to sort the population Pt into a
number of non-dominated fronts as (F1, F2, ...), according to
the dominance relationships between the candidate solutions.
Afterwards, the candidate solutions in the first l fronts are
selected into St which satisfies |St| ≥ N and |St−Fl−1| < N .
In this way, the dominance based selection in NSGA-III guar-
antees that the candidate solutions with the best convergence
are selected with the highest priority.

While the secondary selection in NSGA-II is based on
crowding distances, the one in NSGA-III is based on the
niching counts which are calculated by associating the can-
didate solutions with the closest reference line specified by
each weight vector. The motivation behind such a niching
based selection is that in many-objective optimization, where
the candidate solutions are sparsely distributed, setting up
fixed references is more efficient in diversity management
than dynamically adapting the distribution of the candidate
solutions according to the Euclidean distances between them.

Apart from the dominance based selection and the niching
based selection, another important component in NSGA-III is
the normalization (Step 9 in Algorithm 2). The normalization
process in NSGA-III is designed to normalize the objective
function values into the same range such that the candidate
solutions are still uniformly distributed with respect to the
weight vector even on a non-normalized PF where the objec-
tive function values are scaled to different ranges.

C. RVEA

RVEA has been recently proposed for many-objective op-
timization [34]. The basic idea of RVEA2 is to guide the
search of an evolutionary algorithm with a set of predefined
reference vectors in the objective space, where each reference
vector specifies a direction that a candidate solution should
converge towards, and it is expected that each reference vector
is finally associated with a unique Pareto optimal solution. As
shown by Algorithm 3 in Supplementary Materials I, RVEA
shares the same framework as traditional elitism based EAs.
In the main loop of RVEA, the recombination component is
the same as those adopted in many other MOEAs [21], [25],
[31], [37], where the simulated binary crossover (SBX) [43]
and the polynomial mutation [44] are applied. In addition to

2The Matlab and Java source code of RVEA can be downloaded from:
http://www.soft-computing.de/jin-pub-year.html

http://www.soft-computing.de/jin-pub-year.html
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the recombination component, there are another two compo-
nents in the main loop: reference vector guided selection and
reference vector adaptation, which are detailed as follows.

The reference vector guided selection in RVEA is designed
to perform single-objective selections inside the subpopula-
tions generated by associating the candidate solutions with
their closest reference vectors. As the selection criterion, a
scalarization function known as the angle penalized distance
(APD) is proposed to aggregate the convergence criterion and
the diversity criterion:

dt,i,j = (1 + P (θt,i,j)) · ‖ft,i − zmint ‖, (6)

where dt,i,j denotes the APD value of solution pt,i with
respect to reference vector vt,j in the t-th generation; ‖ft,i −
zmint ‖, as the convergence criterion, is the Euclidean distance
from the candidate solution pt,i to the ideal vector zmint ; and
P (θt,i,j), as the diversity criterion, is a penalty function related
to the angle θt,i,j between candidate solution pt,i and reference
vector vt,j :

P (θt,i,j) =M · ( t

tmax
)α · θt,i,j

γvt,j

, (7)

with

γvt,j
= min
i∈{1,...,N},i6=j

〈vt,i,vt,j〉, (8)

where M is the number of objectives, tmax is the predefined
maximum number of generations, γvt,j

is the smallest angle
value between reference vector vt,j , and α is a user defined
parameter controlling the changing rate of the diversity cri-
terion with respect to the number of generations. It is worth
noting that, the design of penalty function P (θt,i,j) is out
of several important empirical observations in many-objective
optimization. Firstly, in many-objective optimization, since
there are only a limited number of candidate solutions that are
sparsely distributed in the high-dimensional objective space,
it is difficult to guarantee convergence and diversity at the
same time. Therefore, P (θt,i,j) is designed to be linked to the
generation number t. Secondly, due to the sparse distribution
of the candidate solutions, the angles between the candidate
solutions and reference vectors can vary a lot. Therefore, the
angles are normalized into [0, 1] with θt,i,j

γvt,j
. Thirdly, the more

objectives there are, the more sparsely the candidate solutions
are distributed. Therefore, P (θt,i,j) is designed to be related
with the number of objectives M .

The reference vector adaption in RVEA is designed to
adjust the distribution of the reference vectors according to
the different ranges of objectives on the PFs. As pointed out
in [34], for dominance based algorithms such as the NSGA-
III, normalization of objective functions does not change the
partial orders of dominance relations, and thus has no influence
on the selection process; while in RVEA, where the selection
criterion is related to the specific objective function values of
the candidate solutions, normalizing the objective functions
will substantially perturb the convergence of the algorithm.
Therefore, instead of normalizing the objective functions,

Cheng et al. [34] have proposed to adapt the reference vectors
in the following manner:

vt+1,i =
v0,i ◦ (zmaxt+1 − zmint+1 )

‖v0,i ◦ (zmaxt+1 − zmint+1 )‖
, (9)

where ◦ operator denotes the Hadamard product that element-
wisely multiplies two vectors (or matrices) of the same
size, i = 1, ..., N , v0,i denotes the i-th uniformly dis-
tributed reference vector, which is generated in the initial-
ization stage (on Step 1 in Algorithm 3) and vt+1,i denotes
the i-th adapted reference vector for the next generation
t + 1, zmaxt+1 = (zmaxt+1,1, z

max
t+1,2, ..., z

max
t+1,m) and zmint+1 =

(zmint+1,1, z
min
t+1,2, ..., z

min
t+1,m) denote the nadir point and the ideal

point estimated with the candidate solutions in population
Pt+1, respectively. In addition, to control the frequency of
the reference vector adaptation, a predefined parameter fr is
introduced.

It is worth noting that, in original RVEA, it may occa-
sionally happen that a subpopulation becomes empty because
there is no solution that falls into the subspace specified
by the corresponding reference vector. As demonstrated by
the empirical results in [34], this does not influence the
performance of RVEA as long as most subpopulations are non-
empty. However, when RVEA is applied to the seven-objective
HEV controller model, it turns out that most subpopulations
are empty due to the limited optimization potential for many
objectives (e.g. there is no way to reduce fuel consumption
to zero). As a consequence, this leads to a severe loss of
population diversity, thus causing failure of the algorithm.
In this work, we propose a simple and efficient strategy
to tackle the above issue: if a subpopulation is empty, the
candidate solution with the smallest APD with respect to the
corresponding reference vector is selected from the whole
population instead of the subpopulation.

D. Discussions

Although the frameworks of MOEA/D, NSGA-III and
RVEA show significant differences as in Algorithm 1, Al-
gorithm 2 and Algorithm 3, the three algorithms share a
common feature: in the initialization process (Step 1), a set of
predefined vectors are required as the input of the algorithms.
To be specific, in MOEA/D, the weight vectors are part
of the scalarization functions which are used to transform
the objective vectors into scalar fitness values; in NSGA-III,
each weight vector specifies a niching center, with respect to
which the niching based selection is performed; in RVEA,
the objective space is divided into several subspaces by a set
of reference vectors, and a subpopulation is then related to a
subspace.

Since the predefined weight/reference vectors are highly
relevant to the selection mechanism in each algorithm, the
distribution of these vectors will consequently determine the
distribution of the candidate solutions obtained by each al-
gorithm. In general optimization, it is always expected that
the candidate solutions can be evenly distributed as an ap-
proximation to the true PF. To meet such a requirement, the
reference/weight vectors in MOEA/D, NSGA-III and RVEA
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are usually uniformly sampled using the simplex-lattice design
approach [45]. However, in many-objective optimization, as
the dimensionality of the PF becomes higher, the number
of candidate solutions required for PF approximation also
exponentially increases. As a consequence, it is very unlikely
to obtain an approximation that covers the whole PF using
a limited number (e.g., hundreds) of candidate solutions.
Therefore, it is particularly useful if an algorithm is able to
incorporate preferences of DMs so that the optimization pro-
cess can focus on the regions of interest (ROIs) instead of the
whole high-dimensional objective space [12]. In the following
section, we describe how to articulate DM’s preferences with
weight/reference vectors for the three algorithms.

III. GENERATION OF WEIGHT/REFERENCE VECTORS FOR
GENERAL OPTIMIZATION AND PREFERENCE

ARTICULATION

In this section, we first briefly review some related work
of preference articulation in multi- and many-objective op-
timization. Then, we present how to generate uniformly
distributed weight/reference vectors for general optimization
as well as how to articulate user preferences by means of
weight/reference vectors using the proposed preference artic-
ulation approach.

A. Related Work

Evolutionary multiobjective optimization (EMO) has mainly
focused on achieving a representative approximation of the PF,
which is termed as general optimization in this work. In real-
world engineering optimization, however, it is particularly use-
ful if an algorithm is able to incorporate preferences of DMs,
especially in many-objective optimization, where approxima-
tion of a high-dimensional PF with a limited number of
solutions becomes impractical [12]. As suggested by Fonseca
and Fleming [46]–[48], such a process of incorporating DM’s
preferences into EMO is known as preference articulation,
where the process can be priori, posteriori or progressive.

During the last two decades, a variety of preference articu-
lation approaches have been developed in the literature [49],
such as the fuzzy preference based approaches [50], [51],
the reference based approaches [52]–[56], and the recently
proposed inverse modelling based approaches [32], [57], [58].
However, most of theses approaches, which have been orig-
inally proposed for dealing with MOPs with two or three
objectives, have rarely been assessed on MaOPs in terms of
scalability. By contrast, there is still little study focusing on
preference articulation in many-objective optimization with a
few exceptions [59]–[61].

In [59], a cross entropy based estimation of distribution
algorithm (MACE-gD) has been proposed for solving MaOPs.
The MACE-gD, designed in the framework of generalized
decomposition [62], is able to guide the search towards
specified ROIs according to DM’s preferences, where the
preference information is articulated with a set of weight
vectors obtained by solving an inverse problem. In [60], a
reference point based MOEA (R-MEAD2) has been proposed.
In R-MEAD2, a reference point is initialized together with a

set of uniformly distributed weight vectors over the whole
objective space. Then, in each generation, the weight vectors
are updated to be distributed around the best weight vector
which is associated to the solution with the shortest Euclidean
distance to the specified reference point. In R-MEAD2, a
specific method for sampling weight vectors is used to make
the algorithm scalable to MaOPs. Similar to R-MEAD2, the
preference information in the recently proposed preference
based decomposition MOEA (MOEA/D-PRE) [61] is also
specified by a predefined reference point, where a light beam
search (LBS) [63] based model is designed for articulating
DM’s preferences with weight vectors. Empirical results have
demonstrated that MOEA/D-PRE is efficient in dealing with
preferences in both MOPs and MaOPs.

In contrast to existing preference articulation approaches
in algorithms such as MACE-gD, R-MEAD2 and MOEA/D-
PRE, the proposed preference articulation approach to be
presented in Section III-B is independent of any specific
algorithms so that it can be embedded in different algorithms
such as MOEA/D, NSGA-III and RVEA, without additional
modification. This feature is desirable in practical engineering
design.

B. Generation of Uniformly Distributed Weight/Reference Vec-
tors

To achieve a subset of representative Pareto optimal so-
lutions, the weight/reference vectors used in MOEA/D and
NSGA-III can be uniformly sampled using the simplex lattice
design approach as follows [45]:

wi = (w1
i , w

2
i , ..., w

M
i ),

wji ∈ { 0
H ,

1
H , ...,

H
H },

M∑
j=1

uji = 1,
(10)

where i = 1, ..., N with N being the number of uniformly
distributed weight vectors, M is the number of objectives,
and H is a positive integer for the simplex-lattice design [45]
that samples uniformly distributed points on a unit hyperplane.
Given M and H , the number of uniformly distributed weight
vectors that can be sampled will be (M+H−1)!

H!(M−1)! .
Based on the weight vectors sampled using (10), the refer-

ence vectors used in RVEA can be generated by mapping the
points from the unit hyperplane to a unit hypersphere [32],
[33]:

vi =
wi

‖wi‖
. (11)

C. Articulation of Preferences with Weight/Reference Vectors

So far we have shown how to generate uniformly dis-
tributed weight/reference vectors for general optimization us-
ing MOEA/D, NSGA-III and RVEA. In practice, a DM may
only be interested in some specific regions instead of the
whole objective space. In the following, we will show how to
articulate DM’s preferences with the weight/reference vectors.

As suggested in [34], DM’s preferences can be articulated
with reference vectors by defining a central vector vc together
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Fig. 1. A visualized illustration of the transformation procedure to generate
weight/reference vectors inside a region specified by a central vector vc and a
radius r. In this example, 10 uniformly distributed weight/reference vectors are
generated inside a region in a bi-objective space specified by vc = (

√
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2
,
√
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2
)

and r = 0.5.

with a radius r to specify an ROI in the normalized objective
space:

v′i =
r · vi + (1− r) · vc
‖r · vi + (1− r) · vc‖

, (12)

where vi with i = 1, ..., N denotes the reference vectors
generated using (11), and v′i denotes the reference vectors
inside the ROI specified by vc and r. To define a central
vector vc, the DM can first specify a vector uc according
to his/her preference and then normalize it into a unit vector
using vc =

uc

‖uc‖ . As to the radius r, any value of r ∈ (0, 1) is
applicable, where a smaller r indicates a relatively smaller ROI
around the central vector, and a larger r will result in a wider
range of solutions around the central vector. It should be noted
that, for better robustness, it is suggested to also include the
extreme vectors (i.e. (1, 0, ..., 0), (0, 1, ..., 0), ..., (0, 0, ..., 1))
and the central vector vc into the preference based reference
vector set.

Similarly, to articulate DM’s preferences with weight vec-
tors, the only step is to map the reference vectors generated
by (12) onto a hyperplane using the following transformation:

w′i =
v′i
‖v′i‖1

, (13)

where wi
′ with i = 1, ..., N denotes the weight vectors that

articulate DM’s preferences. The above geometrical transfor-
mations to generate preference based weight/reference vectors
is illustrated in Fig. 1.

It is worth noting that, if the DM has multiple (e.g., a
number of K) ROIs, multiples preference based reference
vector sets can also be obtained accordingly as follows:

v′k,i =
rk · vk,i + (1− rk) · vk,c
‖rk · vk,i + (1− rk) · vk,c‖

, (14)

and

w′k,i =
v′k,i
‖v′k,i‖1

, (15)

where k = 1, ...,K. Therefore, given a number of K pref-
erence central vectors, the size of a full preference based
reference vector set is K(N + 1) +M , where N is the size
of the original vector set generated using (11) and M is the
number of objectives.

To better understand how the proposed preference articu-
lation approach works, we will show in the following some
empirical results obtained on selected benchmark test prob-
lems, i.e., DTLZ1 and DTLZ2 from the DTLZ test suite [64].
As shown by the results summarized in Fig. 2, a general
observation is that all three algorithms work well with the
proposed preference articulation approach. In addition, the
following observations can also be made. First, as evidenced
in Fig. 2(d) to Fig. 2(f), the proposed preference articulation
approach is capable of dealing with multiple independent
ROIs during one single run of the algorithm. Second, from
Fig. 2(a) to Fig. 2(c), we can see that when the ROIs are
overlapped, the proposed preference articulation approach also
works well. Third, by tuning the preference radius r (e.g.,
r = 0.3 in Fig. 2(a) to Fig. 2(c) and r = 0.1 in Fig. 2(d) to
Fig. 2(f)), the proposed preference articulation approach is able
to adjust the size of the ROI covered by the weight/reference
vectors. More empirical analyses of the proposed preference
articulation method can be found in Supplementary Materials
V, where comparisons are made with the recently proposed
MOEA/D-PRE [61].

It is worth noting that although MOEA/D, NSGA-III and
RVEA show very similar performance on the benchmark test
problems using the proposed preference articulation approach,
the results to be presented in Section V-C indicate that the
performance of the three algorithms varies a lot on the seven-
objective HEV controller model.

IV. SEVEN-OBJECTIVE HEV CONTROLLER MODEL

In hybrid electric vehicles (HEVs), the propulsion is pro-
vided by a combination of internal combustion engine (ICE)
and electric motor (EM). As a key element in the design
of HEVs, the energy management controller (controller for
short hereafter) plays an important role in guaranteeing peak
performance of the hybrid power unit. As illustrated in Fig. 3,
a general controller is used to determine in which condition
the ICE and EM should be used [65]. In our case, since vehicle
speed and torque are controlled by the driver or an externally
given drive cycle, there is little freedom in the operation of the
EM. Therefore, the controller basically controls the operation
of the ICE only.

To be specific, HEV controller models are often designed on
the basis of a small set of rules configured by a set of design
parameters, i.e. the decision variables to the optimization
objective(s). As listed in Supplementary Materials II, the
proposed seven-objective HEV controller model is associated
with a set of 11 design parameters that configure six basic
control rules detailed in Supplementary Materials III.
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(a) MOEA/D (DTLZ1, r = 0.3)
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(b) NSGA-III (DTLZ1, r = 0.3)
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(c) RVEA (DTLZ1, r = 0.3)
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(d) MOEA/D (DTLZ2, r = 0.1)
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(e) NSGA-III (DTLZ2, r = 0.1)

0
0.2

0.4

f
1

0.6
0.8

11
0.8

0.6

f
2

0.4
0.2

0

0.2

0

0.4

0.6

0.8

1

f 3

(f) RVEA (DTLZ2, r = 0.1)

Fig. 2. An example to assess the proposed preference articulation approach used by MOEA/D, NSGA-III and RVEA on three-objective DTLZ1 and DTLZ2.
In this example, two central vectors, namely, (0.557, 0.557, 0.557) and (0.774, 0.417, 0.477) are given simultaneously to specify multiple DM’s preferences.
Preference radius r = 0.3 and r = 0.1 are applied for DTLZ1 and DTLZ2, respectively. To generate the preference based weight/reference set, H = 5 is
adopted for the simplex-lattice design in (10) to generate a number of 21 vectors around each central vector. The red dots, which are the preferred solutions
approximated by each algorithm, are obtained with 100,000 fitness evaluations during one single run. The shape in blue in each figure denotes the true Pareto
front.

Internal Combustion 

Engine (ICE)
Fuel

Electric Motor/ 

Generator (EM)

Battery

Electricity

Grid

Wheels

v(t)

SOC(t)

On/Off

Operation Point

Driver Request 

Speed

HEV 

Controller

Re-charging

Fig. 3. The sketch of the employed HEV architecture used for the study
in this work. A conventional internal combustion engine (ICE), powered by
fuel, charges a battery that drives an electric motor (EM) to propel the car.
Before the start of the trip, the battery can also be charged from the electricity
grid. During braking, the EM can act as a generator to re-charge the battery
using kinetic energy. The amount of torque generated by the EM is defined
by the driver (or in this case the driving cycle). The controller uses current
speed, denoted as v(t), and current battery state-of-charge (SOC), denoted as
SOC(t), as inputs and determines the operation of the ICE.

One of the most important objectives of a controller is
to minimize the fuel consumption, and thus most existing
work on optimal controller design has exclusively focused
on this aspect [66]–[69]. To achieve the optimal control

TABLE I
SUMMARY OF THE SEVEN OPTIMIZATION OBJECTIVES IN THE HEV

CONTROLLER MODEL.

Denotation Objective Name
FC Fuel consumption and CO2

BS Battery stress
OPC ICE operation changes

Emission ICE emissions
Noise Perceived ICE noise
UO Urban operation

SOC Average battery state of charge level

with a focus on fuel consumption, some traditional single-
objective optimization methods such as dynamic programming
(DP) [70]–[72] have been applied using a discretization of
the decision variables in the control models and investigating
all possible actions. As pointed out in [41], however, apart
from fuel consumption, there are also other factors that may
influence the overall performance of HEVs. For example, the
driving experience, including noise, vibration, and harshness
(NVH), is an important criterion for most customers while the
battery lifetime is a major concern for manufacturers. Con-
sidering that such additional factors may also have significant
influence on the overall performance of HEVs, recently, an
optimization model has been designed to simultaneously take
seven objectives into consideration [41], where the objective
names are summarized in Table I and detail definitions of the
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objectives can be found in Supplementary Materials IV.

Fuel consumption (FC)

Battery stress (BS)

Operation changes (OPC)

Emission

Noise

Urban operation (UO)

Battery state of charge (SOC)

Optimizer

HEV 

Controller

Design 

Parameters

Optimal 

Design Parameters

Function 

Values

Seven-objective HEV Controller Model

Fig. 4. An illustration of the architecture of the seven-objective HEV
controller model and its relationship to the optimizer as well as the HEV
controller. The seven-objective HEV controller model is connected to an op-
timizer, e.g., a many-objective evolutionary algorithm. During the optimization
process, the optimizer iteratively outputs candidate solutions of optimal design
parameters to the seven-objective HEV controller model. As a feedback, the
HEV controller model outputs the objective function values to the optimizer
as fitness of the candidate solutions. Once the optimization is finished, the
final optimal design parameters will serve as an input to the HEV controller
to deploy the control rules.

To deploy the proposed controller, the seven-objective HEV
controller model is applied to a plug-in serial HEV simulator
with a battery capacity of 24.4 kWh, which is approximately
150 km of pure electric driving range. Instead of detailed ICE,
EM, and battery models, we employ efficiency maps based on
test-bench measurements in the form of look-up-tables. From
a pre-specified speed profile, also known as driving cycle, the
corresponding acceleration value to follow this speed profile
is computed, and then a basic model of the HEV is used to
determine the resulting information such as torque demand.
With the information generated by the simulator, the function
values of the seven optimization objectives can be calculated,
which can be further used in the optimization procedure as
fitness values. An illustration to the architecture of the seven-
objective HEV controller model and its relationship to the
optimizer as well as the HEV controller can be found in Fig.
4.

V. OPTIMIZATION RESULTS

This section presents the optimization results obtained by
MOEA/D, NSGA-III, and RVEA on the seven-objective HEV
controller model. We first perform general optimization using
the three algorithms as usually done in the literature and
analyze the solutions. On the basis of these analyses, we
incorporate DM’s preferences into the three algorithms to get
corresponding candidate solutions, including the preference on
minimizing objective of FC, and the preference on balancing
the trade-off between the objectives of Noise and FOC.

A. General Optimization

Most MOEAs are designed for general optimization, i.e., for
approximation of the whole Pareto fronts of MOPs as well
as MaOPs with a limited number of candidate solutions. In
this subsection, we apply MOEA/D, NSGA-III and RVEA to
the optimization of the seven-objective HEV controller model
without DM’s preferences.

To sample uniformly distributed reference vectors for such
general optimization, the method introduced in Section III-A
is adopted with settings of H = 4, thus generating a number
of 210 weight/reference vectors in total for each algorithm.
Other parameter settings of the three algorithms are all the
same as recommended in [25], [31] and [34], respectively.

To evaluate the quality of the solution sets obtained by each
of the three algorithms, the hypervolume metric is applied as
the performance indicator [38], [73]. Let P be the approximate
PF obtained by an MOEA, y∗ = (y∗1 , ..., y

∗
M ) be a reference

point in the objective space. The HV value of P (with respect
to y∗) is the volume of the region which dominates point
y∗ and is dominated by all points in P . Here, we choose
[4, 4, 4, 4, 4, 4, 4] as the reference point y∗, where 4 is the
worst possible value for all objectives that will be returned
by the fitness functions (HEV simulator).

MOEA/D NSGA-III RVEA
Algorithm

4000
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5500

6000

H
yp

er
vo
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e

Fig. 5. Statistical results for hypervolume values of the solutions obtained
by the MOEA/D, NSGA-III and RVEA over 20 runs each.

A maximum number of 10000 fitness evaluations is used as
the termination criterion for each algorithm in each run, and
the statistical results of the hypervolume values obtained by
each algorithm over 20 independent runs are summarized in
Fig. 5. From the figure, we can see RVEA has achieved the
largest mean value as well as the largest maximum value in
HV among the three algorithms. On this optimization problem,
MOEA/D performs slightly worse than NSGA-III.

While most benchmark tests of multi-/many-objective op-
timization merely make statistical comparisons in terms of
performance indicators of the solution sets, in real-world
applications such as the optimization of a HEV controller, it
is also of great interest to gain more insight into the problem
by analyzing the trade-off relationships between the objectives.
Therefore, in the following subsections, we will perform some
analyses of the solutions obtained by all three algorithms,
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based on which, the DM’s preferences will be incorporated
into the optimizers.

B. Analyses of Solutions

In order to perform analyses of the solutions obtained by
the three MOEAs, we use a configuration manually tuned by
an experienced automotive engineer as the baseline solution3

(1, 1, 1, 1, 1, 1, 1) to normalize the objective values of the
obtained solutions.

We first combine all solutions obtained by the three al-
gorithms in 20 runs and remove the dominated solutions.
As shown by the parallel coordinate plots in Fig. 6(a),
the combined non-dominated solution set is well distributed
around the baseline solution, showing highly diversified trade-
offs between different objectives. In general, the majority of
objective values are below the baseline for a large part of
solutions, with a total 1086 solutions dominating the baseline
solution, as shown in Fig. 6(b).

As shown in Fig. 7, MOEA/D has obtained 611 of the 1086
solutions that dominate the baseline solution, while NSGA-III
and RVEA have obtained 246 and 229 solutions, respectively.
This is an interesting observation as the ranking of the number
of obtained non-dominated solutions is exactly opposite to the
ranking of HV values as shown in Fig. 5. This is due to the
fact that although MOEA/D achieves a large number of well-
converged solutions, most of them are located in relatively
small regions, leading to worse HV values. Empirical results
to be presented in Section V-C confirm this observation.

Due to the conflicts between objectives such as FC, OPC,
Emission and SOC, some solutions are significantly better than
the baseline on these objectives, while others are significantly
worse. For further investigations, the parallel coordinates of
the extreme solutions that have the worst and best values
on objectives of FC, OPC, Emission and SOC are plotted in
Fig. 6(c) and Fig. 6(d), respectively. From these results, the
following observations can be made.

First, as shown in both Fig. 6(c) and Fig. 6(d), OPC and
Emission are highly consistent, as the solutions with the worst
(as well as the best) OPC and Emission strongly overlap. These
results indicate that the optima of OPC and Emission can very
likely be achieved simultaneously. This is due to the fact that
both objectives are very sensitive to the on/off changes of the
ICE, which is consistent with the experience in HEV design.

Second, Fig. 6(c) reveals that the objective of Noise is in
conflict with the objective of SOC, where the solution with
the best SOC has the worst Noise value. Such a relationship
between Noise and SOC is not obvious as there is no direct
physical connection between the two objectives. This relation-
ship is definitely very useful in HEV design as a guideline to
make trade-offs between the two objectives when tuning the
design parameters.

Finally, as shown in Fig. 6(d), the solution with the best
FC achieves around 10% improvement compared to the base-
line solution. Such an improvement is significant because in

3In order to obtain the baseline solution, an experienced automotive
engineer had spent a large amount of time tuning and testing the configurations
of the HEV simulator with the assistance of professional development tools.

practice, it is very likely that the improvement of FC is at
the cost of other objectives such as Noise or SOC, while in
the solutions obtained, most of the other objectives are also
significantly improved in addition to the 10% improvement on
the objective of FC.

TABLE II
DESIGN PARAMETERS FOR THREE DIFFERENT CONTROLLER

CONFIGURATIONS.

Parameter Baseline Min-Fuel Balanced
SOCmax (%) 70 34.494 35.314
SOCmin (%) 40 28.699 26.082
v1 (km/h) 20 27.151 20.634
v2 (km/h) 30 50.262 50.204
rev1 (/m) 2500 2941 2907
torque1 (N · m) 9.42 8.6269 8.2231
rev2 (/m) 3500 3981 3070
torque2 (N · m) 15.03 16.991 12.392
rev3 (/m) 5500 4008 4946
torque3 (N · m) 25.92 17.622 22.228
voff (km/h) 20 39.057 20.298

TABLE III
OBJECTIVE VALUES FOR THREE DIFFERENT CONTROLLER

CONFIGURATIONS. BEST RESULTS ARE HIGHLIGHTED.

Objective Baseline Min-Fuel Balanced
Fuel consumption 1.0 0.905 0.94519
Battery stress 1.0 0.99471 0.99914
OPC 1.0 0.82828 0.21212
Emission 1.0 1.0455 0.37879
Noise 1.0 0.001 0.093003
UO 1.0 0.17986 0.41935
SOC 1.0 0.8111 0.96108

(a) All valid solutions. (b) Solutions dominating the baseline.
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(c) Solutions with the worst values on
objectives of FC, OPC, Emission and
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Fig. 6. Parallel coordinate plots of solutions obtained by MOEA/D, NSGA-
III and RVEA in the final populations of 20 runs, in comparison with the
baseline solution which is manually tuned by an experienced engineer.

In addition to the observations made above, we have also
taken a more detailed look at two interesting solutions, the
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Fig. 7. Number of non-dominated solutions obtained by MOEA/D, NSGA-
III and RVEA, respectively among the combined non-dominated solution set
achieved by the three algorithm in 20 runs.

solution with the best FC and the one with the best overall
improvement (a plain sum of objective values), in comparison
with the baseline solution. As summarized in Table II and
Table III, the baseline solution is also given as a reference
normalized to 1, and the solution with the best FC and the
solution with the best overall improvement are listed in column
“Min-Fuel” and column “Balanced”, respectively. While Table
II presents the design parameters deployed by the controller
of the HEV simulator, Table III presents the objective values
output by the seven-objective HEV controller model.
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(a) Speed profile (drive cycle)
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Fig. 8. The data of (instantaneous) fuel consumption (FC) and battery state-
of-charge (SOC) with respect to the speed profile defined by the used driving
cycle. The first figure shows the speed profile of the HEV, and the other
three figures show the data generated by the HEV simulator which deploys
controllers configured by different sets of design parameters (Baseline, Min-
Fuel, Balanced), as defined in Table II.

For the solution with the best FC, it can be observed from
column “Min-Fuel” in Table III that FC has been improved by
approximately 10% in comparison with the baseline solution,

at the cost of a slight increase of Emission. For the solution
with the best overall improvement, as presented in column
“Balanced” in Table III, although FC is slightly higher than
that of the solution with the best FC, the other objectives have
substantially improved, by 43% averaged over all objectives, in
comparison with the baseline solution, especially on Emission
and Noise.

To further assess the quality of the representative solutions
listed in Table II and Table III, we run the HEV simulator
that deploys the control strategy using the design parameters
listed in Table II and record the simulated data of FC and SOC
generated during our project-specific drive cycle. As shown in
Fig. 8, the data generated by the HEV simulator also shows
observations that are consistent with our analyses above.

Based on the above analyses, the DM (HEV engineer)
is particularly interested in further exploiting the potential
improvement on one of the objectives such as FC and striking
a better balance between other objectives. In the following, the
above user preferences will be incorporated in the MOEAs to
see if better solutions can be achieved.

C. Preference Articulation
As we previously discussed, general optimization is realistic

for MOPs that have two or three objectives. For MaOPs having
more than three objectives, however, approximation of the
whole Pareto front in a very high dimensional space with
a limited number of solutions becomes hardly possible. This
challenge, however, has not been fully recognized. In the fol-
lowing, we illustrate using the HEV controller design example
why user preferences are important for solving practical many-
objective optimization problems.

In the following experiments we show how to perform
preference-driven optimization using MOEA/D, NSGA-III and
RVEA with the proposed preference articulation approach.
First, by using the solution with the best FC as a single
preference central vector, we see if it is possible to further
minimize FC. In addition, using solutions with the best SOC
and best Noise as two simultaneous preference central vectors,
we investigate the trade-off relationship between these two
objectives.

1) Preference Articulation for Minimizing FC: To articulate
preference for minimizing the objective of fuel consumption
(FC), we first specify the solution with the lowest FC value
obtained in the general optimization as a preference central
vector vc (refer to (12)), and then set the preference radius
as r = 0.1. It is worth noting that, although setting the
minimization of one single objective (i.e., FC) as DM’s
preference is conceptually different from traditional preference
articulation methods, technically, the target is still realized by
specifying an ROI using a preference central vector together
with a preference radius. Consequently, the solutions obtained
by MOEA/D, NSGA-III and RVEA are shown in Fig. 9, from
which the following remarks can be made.

First, we can see from Fig. 9(a) that solutions obtained
by MOEA/D distribute very closely to the preference central
vector and thus lack a certain degree of diversity. This small
degree of diversity in solutions might be caused by the neigh-
borhood based steady-state reproduction mechanism adopted
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(a) Solutions obtained by MOEA/D.
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(b) Solutions obtained by NSGA-III.
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(c) Solutions obtained by RVEA.

Fig. 9. Parallel coordinate plots of solutions obtained by MOEA/D, NSGA-
III, and RVEA using the solution with the best FC in general optimization as
the preference central vector.

in MOEA/D. By contrast, NSGA-III and RVEA, which adopt
a generational reproduction mechanism performed on the
whole population, show significantly better population di-
versity. Among the three algorithms, RVEA seems to have
achieved the best balance between convergence and diversity.

Second, NSGA-III is able to obtain a large number of
very different solutions, most of which are away from the
preference central vector. By contrast, RVEA and MOEA/D
have obtained a smaller number of solutions that are close to
or even better than the preferred solution on most objectives.
These results imply that NSGA-III tends to generate more
widely spread candidate solutions, but fails to stick to the
preferences.

Third, as observed from Fig. 9(c), with a slightly higher
FC, the HEV simulator is able to achieve a significantly better
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(a) Solutions obtained by MOEA/D
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(b) Solutions obtained by NSGA-III

FC BS OPC Emission Noise UO SOC
Optimization Objective

0

0.5

1

1.5

2

2.5

3

3.5

4

O
bj

ec
tiv

e 
V

al
ue

Obtained solutions
Preference: Noise
Preference: SOC

(c) Solutions obtained by RVEA

Fig. 10. Parallel coordinate plots of solutions obtained by MOEA/D, NSGA-
III, and RVEA using the solutions with the best Noise and the best SOC in
general optimization together as the preference central vectors.

performance in OPC and Emission. This is due to the fact that
turning on/off the ICE too frequently (to reduce FC) will cost
not only additional operation changes (OPC), but also extra
start-up operations of the ICE, both of which will produce
more emissions. By contrast, if the controller adopts optimal
design parameters which aim to reduce the number of OPC
operations at a slight higher cost of FC, as shown in Fig. 9(c),
the objective of Emission can be further improved.

2) Preference Articulation for Trade-off between Noise and
SOC: To articulate preference for trade-offs between Noise
and SOC, the solutions with the best SOC and the best Noise
obtained from the general optimization are used together as
two preference central vectors vc (refer to (12) with the
preference radius being set to r = 0.1. From the results
obtained by MOEA/D, NSGA-III and RVEA in Fig. 10, we
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make the following observations.
First, the solutions obtained by all three algorithms (espe-

cially MOEA/D) have a bias towards the solution with the
best (lowest) Noise. Such an observation indicates that, in
comparison with SOC, Noise is an objective that is relatively
easier to optimize. This is due to the fact that, according to
the definition of objective Noise in Supplementary Materials
IV, keeping the ICE noise lower than the rolling noise will
directly result in the minimum noise value, which can be
achieved in HEV design by keeping the ICE in lower-power
operation points. By contrast, keeping the SOC objective low
will require to define a very narrow band of permissible SOC
values, severely impairing other objectives and making it more
difficult to achieve low SOC values in the optimization.
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Fig. 11. A comparison between ICE noise and rolling noise generated from
wind/tires recorded by the simulator that deploys the controller configured by
one of the solutions that trade off between Noise and SOC as shown in Fig.
10(c). Here only a representative part of the total drive cycle is shown.

Second, reducing Noise will consequently increase SOC,
and vice versa, which indicates that the two objectives are
in natural conflict and simultaneous optimization of both
objectives are impossible. This knowledge is very helpful in
HEV controller design as engineers can select a best trade-
off solution from those obtained by the three algorithms, as
shown in Fig. 10, instead of taking the time to fine tune
design variables to simultaneously minimize both objectives.
Here, we randomly select one trade-off solution obtained by
RVEA in Fig. 10(c) to compare the ICE noise and the rolling
noise recorded by the simulator. As shown in Fig. 11, by
deploying the controller configured using the trade-off solution
we select, the HEV controller manages to completely keep
ICE noise below rolling noise, which satisfactorily meets the
requirements of a low noise level in HEV design.

D. Discussions

From the above results, it is evident that the quality of
the candidate solutions obtained using the three evolutionary
many-objective optimization algorithms are significantly better
than the baseline solution. Moreover, since there are multiple
candidate solutions obtained during one run, it provides a
better flexibility for decision making. As a result, the DM can
perform further optimizations to obtain additional candidate

solutions or to investigate the relationships between different
optimization objectives according to his/her preferences.

For MOEA/D, NSGA-III and RVEA, each of the three algo-
rithms shows unique advantages over the other two when ap-
plied to the optimization of the seven-objective HEV controller
model, together. On the one hand, MOEA/D has exhibited the
best convergence performance, although the solutions may be
densely distributed in a narrow region, leading to a smaller
degree of diversity. This implies that in practical applications,
if the DM is more interested in convergence, MOEA/D is a
good choice.

By contrast, NSGA-III shows the highest degree of diversity.
No matter how the preference central vectors are set, the
solutions obtained by NSGA-III are usually widely spread
over the objective space, although most of the solutions are
of relatively worse convergence in comparison with those
obtained by the other two algorithms. Therefore, if the problem
to be optimized has a relatively simple fitness landscape and
the DM is interested in getting more information about PF,
NSGA-III might be a good optimizer as it generates a wide
distribution of the candidate solutions.

Finally, RVEA appears to have achieved the best balance
between convergence and diversity. In general optimization,
RVEA has achieved the highest HV value among the three
algorithms. Meanwhile, in the preference based optimization,
RVEA seems the most effective in achieving solutions pre-
ferred by the DM, no matter whether a single or multiple
preferences are given. Therefore, if the problem to be opti-
mized has a relatively complicated fitness landscape and the
DM has a clear target (i.e., preference) to be achieved, RVEA
might be the best option.

VI. CONCLUSION

In this paper, we have applied three state-of-the-art MOEAs,
namely, MOEA/D, NSGA-III and RVEA to the optimiza-
tion of a seven-objective HEV controller model. We also
have proposed a preference articulate method by means of
weight/reference vectors to guide the three MOEAs to search
for the solutions preferred by the decison-maker. The proposed
preference articulation approach, which only requires a set of
preference central vector(s) and a preference radius, can be
easily used to specify ROIs in the objective space by gen-
erating uniformly distributed weight/reference vectors inside
them.

A number of experiments have been performed on the
seven-objective HEV controller model. At first, we aimed to
approximate the Pareto front using using uniformly distributed
weights/vectors across the whole objective space. The obtained
solutions were carefully analyzed to gain useful information
between the objectives, based on which preferences were
articulated in the MOEAs using the proposed preference
articulation approach to further exploit the solution space
according to DM’s preferences. Our experimental results have
shown that, by applying the three MOEAs together with the
preference articulation approach, the DM is not only able
to obtain a deeper understanding of the relationships (i.e.,
conflicts and consistencies) between different optimization
objectives, but also obtain more solutions in the ROIs.
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From the results of the compared solutions on the real-
world many-objective optimization problem, we can conclude
that the state-of-the-art MOEAs studied in this work have
shown very good performance yet slightly different search
properties. These finding are instructive for practitioners who
are interested in solving real-world many-objective problems
using evolutionary algorithms. We hope this work will trigger
more interests in the academia in addressing real-world hard
problems and attract more attention from industry on the recent
developments in evolutionary computation research.
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