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Exploiting CNNs for Improving Acoustic Source

Localization in Noisy and Reverberant Conditions
Daniele Salvati, Carlo Drioli, Member, IEEE, and Gian Luca Foresti, Senior Member, IEEE

Abstract—The paper discusses the application of convolutional
neural networks (CNNs) to minimum variance distortionless re-
sponse (MVDR) localization schemes. We investigate the direction
of arrival (DOA) estimation problem in noisy and reverberant
conditions using an uniform linear array (ULA). CNNs are
used to process the multichannel data from the ULA and to
improve the data fusion scheme which is performed in the
steered response power (SRP) computation. CNNs improve the
incoherent frequency fusion of the narrowband response power
by weighting the components, reducing the deleterious effects
of those components affected by artifacts due to noise and
reverberation. The use of CNNs avoids the necessity of previously
encoding the multichannel data into selected acoustic cues with
the advantage to exploit its ability in recognizing geometrical
pattern similarity. Experiments with both simulated and real
acoustic data demonstrate the superior localization performance
of the proposed SRP beamformer with respect to other state-of-
the-art techniques.

Index Terms—Convolutional neural networks, source localiza-
tion, direction of arrival estimation, broadband steered response
power, acoustic analysis, microphone array.

I. INTRODUCTION

Multichannel audio processing techniques have been

broadly investigated in teleconferencing systems, audio

surveillance, autonomous robots, human-computer interaction,

and have a central role in a number of applications related

to the acoustic analysis and speech technology area. Within

the research on acoustic sensor arrays, spatial localization of

acoustic sources and active speakers has certainly received

large attention, and baseline techniques are now available that

offer appreciable performances in a wide number of real-world

conditions, including indoor/outdoor scenarios, reverberant

and noisy environment, near-field/far-field monitoring [1]–[8].

In general, the localization can be performed by indirect and

direct methods. The indirect (two-step) approach computes a

set of time difference of arrivals (TDOAs) using measurements

across various combinations of microphones [9], [10], and then

estimates the source position using geometric considerations

[11], [12]. Direct methods are based on the steered response

power (SRP) beamformers [1], [13], [14], on subspace algo-

rithms [15]–[17], or on maximum-likelihood estimators [18]–

[20].

Most of the aforementioned methods can be designed to

act selectively on a limited frequency range (narrowband
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beamformer), while their broadband frequency range version

can be obtained by fusing the narrowband components in an

opportune manner. In this paper, we propose a SRP scheme

which employs convolutional neural networks (CNNs) [21],

[22] to refine the frequency-domain multichannel fusion opera-

tion of the minimum variance distortionless response (MVDR)

beamformer [23] by learning how to opportunely weight

the narrowband components. It is shown that this approach

improves the localization of acoustic sources and speakers

in noisy and reverberant conditions. The novel convolutional-

based scheme also contributes to better investigate the structure

of acoustic cues from the multichannel spectral densities. In

the SRP-weighted MVDR (SRP-WMVDR) schemes proposed

previously in [24]–[26], these computations relied on a pre-

processing stage in which the multichannel acoustic input was

transformed into a set of cues serving as input to the machine

learning component. The idea of selecting or weighting the

MVDR components was proposed in [24], where a radial basis

function network (RBFN) was used as narrowband frequency

components classifier, using the marginal distribution of the

narrowband components as input. The approach in [24] was

extended in [25], [26], in which a support vector machine

(SVM) learning component was used. This scheme, which

used a different set of input features based on marginal

distributions of the acoustic data, proved to outperform the

RBFN-based one.

We extend here the hybrid beamforming-plus-machine

learning approach to the use of CNNs, whose principal ad-

vantage is to avoid the explicit selection and computation of

a set of acoustic cues since these are effectively computed

by the convolutional layers of the network. With respect to

previous research in the field, the paper addresses for the first

time the exploitation of convolutional features in the context of

multichannel audio processing for acoustic source localization

purposes. We study the integration of CNNs in the signal

processing chain on which the acoustic localization problem is

based and present a new algorithm, referred in the following

to as SRP-WMVDR-CNN.

The algorithm is presented in two variants, the first one

based on a classification CNN, and the second one based

on a regression CNN. In the classification-oriented scheme,

the CNN is trained to classify the narrowband SRPs into

two classes: constructively contributing SRPs vs. disruptively

contributing ones. In the information fusion step, which sums

up the contribution of each narrowband SRP, the latter are

discarded. In the regression-oriented scheme, the CNN is

trained to provide the weighting coefficients of an improved

SRP fusion function, which weights the contribution of each

narrowband SRP while adding it to the sum of contributions.
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As for the acoustic setting, we consider the far-field direction

of arrival estimation (DOA) problem of a single source in

noisy and reverberant conditions, using a uniform linear array

(ULA).

Applications of this scenario include videoconferencing

systems [27], in which the estimation of sound coordinates

can be used to automatically steer a videocamera towards

an active speaker; human-computer interaction systems [28],

in which localization and beamforming are used to enhance

the signal and improve audio recognition; or even multimedia

interactive systems for performing arts, in which acoustic

source localization can be integrated into digital musical

interfaces and used for performance control [29]. The method

can be extended in principle to a multiple-source scenario,

which would require to improve the routine devoted to peak

searching in the acoustic response power.

II. RELATED WORKS

A. Conventional methods for DOA estimation

The DOA estimation problem concerns the processing of

acoustic data collected by a microphone array with the aim of

obtaining information on the direction from which the acoustic

source signal originates. At today, the methods for DOA esti-

mation can be broadly classified in two classes: TDOA-based

indirect methods, and direct methods. The indirect methods

aim at estimating the time difference of the acoustic wavefront

arrivals between microphone pairs and then the DOA us-

ing geometric considerations [10], [30]–[33]. The generalized

cross-correlation (GCC) [9] is considered a baseline practical

method for TDOA estimation, but often improved versions are

used in practice. The multichannel cross-correlation coefficient

(MCCC) [34], for example, is based on TDOAs estimation

obtained by the GCC paired with a prediction of the spatial

error to provide a more robust estimate of the DOA. Direct

methods, on the other hand, estimate the DOA of an acoustic

source in a single step by exploiting some power density

function representing the spatially-relevant information distri-

bution, and they are considered in general more robust under

noisy and reverberation conditions if compared to the TDOA-

based methods. The SRP localization involves computing the

output power of a beamformer steered towards each DOA of

interest. The conventional SRP is performed with the delay and

sum beamformer [35], which consists in the synchronization of

the array signals to steer the array in a certain direction, and of

summing the signals to estimate the power of the spatial filter.

The SRP phase transform (SRP-PHAT) [13] is a widely used

filtered SRP beamforming. The PHAT filter [9] assigns equal

importance to each frequency by dividing the spectrum by its

magnitude. The SRP-PHAT can be efficiently computed by

the global coherent field (GCF) [36] approach, that coherently

sums the GCC-PHAT from the microphone pairs for each pos-

sible point of interest. Among conventional beamformers, the

MVDR [23] filter is a well-known data-dependent beamformer

that provides better resolution if compared to the conventional

beamformer. Both MVDR and SRP localization have been

described as maximum-likelihood problems in [18]–[20]. Yet

another class of high resolution methods is based on subspace

analysis and decomposition. The multiple signal classification

(MUSIC) method [15] exploits the subspace orthogonality

property to build the spatial spectrum and to localize the DOA

sources. The estimation of signal parameters via rotational

invariance techniques (ESPRIT) is also based on subspace

decomposition exploiting the rotational invariance [16], [37].

B. Machine learning methods for multichannel processing

Since many decades, machine learning and neural network

methods have been successfully employed in a wide range of

speech and audio processing applications, such as automatic

speech recognition (ASR) [38]–[41], audio forensic [42], mu-

sic information retrieval [43], [44], sound classification [45].

However, their use for the improvement or the new design

of multichannel processing localization schemes has been

explored only recently [25], [26], [46], [47]. Moreover, since

the new computational and performance advances brought by

the recent developments in the field of deep neural networks

(DNNs) research, their use is now being investigated in a

variety of acoustic and speech oriented applications involv-

ing multichannel processing, including in a few cases the

specific problem of acoustic source localization. To date, the

application of DNNs to multichannel processing problems has

focused principally on ASR [28], [48], speech enhancement

[49], acoustic source separation [50], and acoustic source

localization [51]. In [28], a DNN-based feature enhancement

method using multichannel inputs is proposed for robust ASR.

The multichannel information is used in the pre-enhanced

spectral features that are obtained by DOA-constrained inde-

pendent component analysis. In [49], multichannel speech en-

hancement is addressed, and beamforming based enhancement

is achieved by time-frequency (T-F) masking. The algorithm

combines single- and multi-microphone processing, in which

a DNN is trained to map the spectral features to a T-F

mask, which is used in turn to calculate the noise covariance

matrix and the steering vectors related to the speaker position.

The steering vectors are then used to enhance the speech

signal coming from the speaker position through an MVDR

beamformer. Based on these steps, the method iterates masking

and beamforming, and its application to ASR shows improved

performance over state-of-the-art recognition. Note that T-

F masking beamforming has been previously addressed by

supervised and unsupervised machine learning methods [46],

[47]. In [46], a mask is obtained by an unsupervised spatial

vector clustering. A speech spectral model based on a complex

Gaussian mixture model is designed to estimate the T-F masks

and the steering vectors related to the speaker position.

While in the aforementioned cases source localization is

subordinate to other signal processing tasks, such as ASR

or speech enhancement, the research in [51] especially ad-

dresses the localization problem of a single sound source.

This approach is based on a discriminative machine learning

to compute the location estimator in the frequency domain, in

which a DNN encodes the steering vectors by applying the

orthogonality principle used in the MUSIC method [15]. The

eigenvectors of power spectral density matrices are treated as

the input vector by constructing directional image activators,
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Fig. 1. System overview: signal processing and information flow.

whose relationships with the source DOAs are learned in turn

by a DNN. Unfortunately, the authors state that their DNN-

based method resulted ineffective in noisy and reverberant

conditions, and did not resulted in significant localization

performance improvements.

Recently, we have discussed a scheme which employs a

machine learning component to refine the multichannel fusion

scheme and improves the localization of acoustic sources and

speakers in near-field noisy and reverberant conditions [24],

[25] and far-field noisy condition [26]. These investigations

underline the importance of the way in which broadband

fusion of narrowband components is performed, and the use-

fulness of exploiting the knowledge on which components

contribute constructively to the localization and which do not.

These computation schemes rely, however, on a preprocessing

stage in which the multichannel acoustic input is transformed

into a set of cues serving as input to the machine learning

component (i.e., the skewness, the kurtosis, the crest factor,

and the marginal distribution of the acoustic input data were

used). We extend here the hybrid beamforming-plus-machine

learning approach to the use of CNNs, whose principal advan-

tage is to exploit its ability in recognize geometrical pattern

similarity and to avoid the explicit selection and computation

of a set of acoustic cues since these are effectively computed

in the CNN layers.

III. ACOUSTIC SOURCE LOCALIZATION BASED ON CNNS

The signal processing pipeline structure is illustrated in

Figure 1. The middle-part of the scheme describes the acous-

tics based processing steps, including the short-time Fourier

transform (STFT) of the multichannel input sm(t) (m =
1, 2, . . . ,M , where M is the number of microphones), the

frequency bin-dependent narrowband SRP, P (f, θ) (where f

is the frequency bin and θ is the DOA), and the enhanced

fusion step used to build the final broadband acoustic map,

PCNN(θ), by exploiting the weighting information provided

by the CNN output. The input to the CNNs is provided by the

narrowband SRP components. The lower part of the scheme

contains a convolutional layer and a pooling layer, followed

by an output layer, i.e. a classification or regression fully

connected NN layer. The upper processing path in Figure 1

shows the SVM based scheme proposed in [25], [26], and used

here only for comparison. Note that the upper SVM processing

path is sketched with dashed lines to emphasize the fact that

it is not part of the presently proposed algorithm, and it does

not used in conjunction with the lower CNN based processing

path.

A. Acoustic Localization Elements

Beamforming methods search for the maximum of the

SRP functions computed from the output of the sensor ar-

ray. Straightforward calculation can be achieved through a

delay-and-sum procedure in the time domain [35]. However,

for computational efficiency the broadband SRP is typically

computed in the frequency-domain by calculating the power

spectral density (PSD) matrix and the narrowband SRP on

each frequency bin, and by finally fusing these narrowband

responses. The PSD at frequency f for the looking direction
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θ1 can be written as

P (f, θ) = E[|wH
s(f)|2] = w

H(f, θ)Φ(f)w(f, θ), (1)

where w(f, θ) is the weighting and steering vector, s(f) =
[S1(f), S2(f), ..., SM (f)] is the sensor array output in the

frequency domain, H denote the conjugate transpose, and

Φ(f) = E[s(f)sH(f)] is the symmetric and positive definite

PSD matrix (E[·] denotes here the mathematical expectation).

Throughout this paper, we will make use of the specific

class of MVDR beamformers [23], whose narrowband PSD

has the following form:

P (f, θ) =
1

aH(f, θ)Φ−1(f)a(f, θ)
, (2)

where a(f, θ) is the steering vector, i.e. the set of phase delays

affecting a plane wave when it reaches each sensor in the array.

In the far-field, the array steering vector is defined for the ULA

as

a(f, θ) = [1, e
−j2πfτ(θ)

L , . . . , e
−j2πf(N−1)τ(θ)

L ]T , (3)

where L is the size of the DTFT, j is the imaginary unit, and

(n− 1)τ(θ) is time difference of arrival (TDOA) between the

nth and reference microphone. The relationship between the

TDOA τ(θ) and the DOA θ is given by

τ(θ) =
d sin(θ)

c
, (4)

where c is the speed of sound and d is the inter-microphone

distance of the ULA. The fusion of these narrowband PSDs

to obtain the SRP-MVDR beamformer is then computed as

the sum of all the frequency bin components, i.e. P (θ) =∑f=L−1
f=0 P (f, θ). Usually, however, some sort of normaliza-

tion is operated on the components before the fusion, since the

normalization has the beneficial effect of increasing the spatial

resolution of the beamformer. Example of such beamformers

are the delay-and-sum SRP phase transform (SRP-PHAT)

[13], in which the normalization is achieved discarding the

magnitude and only keeps the phase of the PSD matrix, or

the SRP normalized MVDR (SRP-NMVDR) [52], where each

PSD component is normalized by the maximum value of the

PSDs for that frequency with respect to all possible DOAs. The

normalization is known to improve the spatial resolution of the

beamformer, however it also emphasizes the noise at those

frequency components with low signal-to-noise ratio (SNR),

causing localization errors and performance degradation.

To avoid to use the disruptive information provided by

such components, especially for localization in reverberant

and noisy environments, the narrowband SRP components are

weighted in the fusion process [24]–[26]. In order to improve

the localization performance, we further extend here this

weighting concept, and define the SRP output as a weighted

sum of narrowband components:

PCNN(θ) =

fmax∑

f=fmin

γ(f)
P (f, θ)

max
θ

[P (f, θ)]
=

fmax∑

f=fmin

γ(f)P (f, θ),

(5)

1We address here the far-field localization problem, where the searched
information is the DOA of the acoustic source. The discussion can be extended
to the near-field case by substituting to the DOA θ a position r in the search
space.

where fmin and fmax denote the frequency range of the broad-

band source, P (f, θ) are the normalized narrowband SRPs,

γ(f) are weighting factors provided by the output of the

CNN component. They might assume the values 0 or 1 in

the classifier-CNN configuration, or might assume values in

the range [0, 1] in the regression-CNN configuration.

The DOA estimation of the acoustic source is computed by

a maximum search procedure on the PCNN(θ) function, i.e.

θ̂s = argmax
θ

[PCNN(θ)]. (6)

In the new scheme based on CNNs, the input features

to the classification or regression layer are computed by

the convolutional components, thus avoiding the problem of

searching for the best feature class, and providing a new class

of features especially suited for the specific task. Moreover, in

the regression-CNN configuration, the information provided

by a given frequency component is weighted in order to

prevent the use of incorrect information taking into account

the errors of machine learning component, in particularly when

the training and testing conditions considerably change.

B. CNN-based Component

The overall structure of the CNN component is made

by a convolution-pooling hidden layer, followed by a fully-

connected layer. The input to the CNN is provided by the low-

level narrowband normalized SRP P (f, θ), which is encoded

as a b/w image V as follows exploiting the ability of CNNs

to recognize geometrical similarity patterns without being

affected by their position nor by small distortions of their

shapes [21], [22]. For a given inter-microphone distance d,

the set of distinct discrete TDOA of τ(θ) values will have

cardinality T = 2
⌊
dfs
c

⌋
+1, where ⌊·⌋ denotes the floor

function that maps a real number to the largest previous integer

and fs is the sampling frequency. Therefore, we have that

the input matrix V will have dimension T × T , its element

vij , i = 1, 2 . . . , T , will be set to 255 if j = ⌊P (f, i)T ⌋,

otherwise it will be set to 0. This operation allows to transform

the mono-dimensional output power of the ULA into a two-

dimensional input, encoding an image-like representation of

the SRP function, thus emphasizing the shape-oriented nature

of the processing which occurs in the subsequent CNN layers.

Note that by using the mono-dimensional input we cannot

identify the shape of SRPs. Figure 2 shows some examples

of the input V, each one representing a narrowband SRP

at a different frequency, for an ULA with inter-microphone

distance of 0.15 m and a sample frequency of 48 kHz. The

frequencies were chosen arbitrarily among those classified

positively (upper plots) and those classified negatively (lower

plots) for that frame.

This input raw data undergoes a filtering and activation

detection step operated through the convolutional layer kernel

W, as

h = σ(W ∗V + b), (7)

where W is a trained kernel, b is a bias parameter, and σ(·)
is the activation function. We use here the rectified linear unit

(ReLU) [53] for generating the output of the convolutional
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layer. The bias guarantees that every node has a trainable

constant value. The kernels are computed through a stochastic

gradient descent method [54], which minimizes a loss function

measuring the discrepancy between the CNN prediction and

the target. The loss function for classification is cross entropy

[55] and for regression is mean squared error. Next, the

pooling layer operates a dimensionality reduction through an

averaging or maximizing operation with respect to the two

dimensions of the feature. In this work, we adopt a max-

pooling layer [56]. The output of the convolutional-pooling

layer is then used as the input of the final fully connected

layer, in which each neuron is connected to all neurons of the

previous layer.

The CNN must be trained using a supervised procedure,

based on a set of known target θt DOAs. This step is achieved

by computing the contribution of each frequency component

to the global localization error. If

θ̂(f) = argmax
θ

[P (f, θ)] (8)

is the source DOA estimate based only on the component

related to frequency f , the contribution of this frequency to

the localization error is

Ω(f, θt) = |θt − θ̂t(f)|. (9)

The localization error is then used to build the output training

values of the CNN model, as follows:

1) Classifier-based Configuration: In the classifier-based

configuration, the last fully connected layer combines convo-

lutional features to classify the input as 0 or 1. The activation

function used in fully connected classification layer is the

softmax function [57]. The classifier is trained to remove

those narrowband components which contribute negatively to

the localization. Namely, consider the i-th input Vi, the i-th

training set output γci (f) is set as

γci (f) =

{
0, if Ω(f, θt) > η,

1, otherwise,
(10)

where η is a given threshold.

2) Regression-based Configuration: In the regression-based

configuration, the output variable is continuous in the range

[0,1] and the i-th training set output γri (f) is set as

γri (f) =

{
0, if Ω(f, θt) > η,

max
[
1− Ω(f,θt)

2

η
, 0
]
, otherwise.

(11)

Hence, we have that the contribution of positively narrow-

band SRP is weighted as a quadratic function of narrowband

localization error. The activation function used for the fully

connected regression layer is the mean squared error.

The choice of the parameter η is crucial for a good training.

In general, we aim at selecting a value that allows a balanced

number of positively and negatively contributing maps on

the whole training set. A very small value has the effect of

providing a small number of positively contributing maps.

On the other hand, large values of η may have the effect of

allowing some disruptive narrowband components to take part

in the fusion [25], [26]. In [25], it has been demonstrated that

a value in the range 0.3-0.6 m is a good choice for the near-

field. In [26], it was successfully used a value of 3 degrees for

a far-field noisy condition. In this work, we have empirically

found that a value of 5 degrees provides satisfactory results

for the far-field noisy and reverberant case.

IV. EXPERIMENTS AND RESULTS

In this section, the performance of the CNN-based lo-

calization schemes (classification and regression) is assessed

by addressing a 2D source localization task in the far-field

scenario (DOA estimation). The multichannel noisy and re-

verberant acoustic data used in the first experimental setup

were obtained by numerical simulation of the room acoustics,

whereas the data used in the second experimental setup are

actual multichannel recordings of an acoustic source located

in reverberant environments. The performance of the proposed

SRP-WMVDR-CNN methods is assessed in terms of the

localization accuracy rate (AR) for a threshold error of 5

degrees and the root mean square error (RMSE), and compared

with the SRP-WMVDR-SVM [25], [26], the SRP-NMVDR

[52], and the SRP-PHAT [13]. In the SRP-WMVDR-SVM

beamformer scheme, the weighting factors of narrowband

MVDR response are estimated with an SVM supervised model

defined as

γ(f) = sgn
( Q∑

i=0

αiγiψ(ςi, ς(f)) + b
)
, (12)

where Q is the training sample size, ψ(ςi, ς(f)) is the inner-

product kernel for the i-th training sample input ςi and the

sample input ς(f) for the narrowband PSD at frequency f , γi
is the i-th target value so that it takes values {1,−1}, αi ≥ 0,

and b is a real constant. The parameters αi are found as usual

by solving a convex maximization quadratic programming

problem. The skewness of the normalized narrowband PSDs is

taken as input to the classifier. The radial basis function kernel

was adopted for the SRP-WMVDR-SVM by setting λ = 1 and

σ= 1 using a cross-validation in accordance to [25], [26]. The

sample frequency was 48 kHz and the window size L was 2048
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samples. We have set fmin and fmax to 50 Hz and 15000 Hz,

respectively. A diagonal loading regularization [58] was used

for the narrowband MVDR filter to improve the robustness of

the SRP. The PSD matrix is estimated using an averaging of 10

snapshots in all methods. The inter-microphone distance of the

ULA is 0.15 m, resulting in an angular discretization of N=41

samples. Hence, the input matrix V has dimension 41×41. In

our CNN configuration, we used 20 convolutional kernels with

a size of 5×5, since it allows a simple structure balancing the

recognition accuracy and the overfitting problem. We adopted

a max-pooling layer with size 2 × 2. Thus, the feature size

is reduced by a factor of four. The parameter η was set to

5 degrees since we have empirically found that it provides

satisfactory results for the far-field noisy and reverberant case

[25], [26]. The CNN and SVM have been implemented using

the Matlab R2017a Neural Network Toolbox and Statistics and

Machine Learning Toolbox. We used our own implementation

for the MVDR filter.

We investigate the generalization properties of the proposed

method with respect to three characteristics: 1) the source

position (training and testing positions are different in all ex-

periments); 2) the acoustic source nature (training is performed

with an USASI signal [59], whereas the testing is performed

with speech, impulsive or narrowband signals); 3) the environ-

ment characteristics (training and testing are performed in the

same room and in different rooms evaluating the localization

performance with different noise and reverberant conditions).

A. Simulations

Simulations of reverberant environments were obtained with

the image-source method (ISM) [60], implemented using the

improved algorithm reported in [61]. The simulations were

conducted with different SNR levels, obtained by adding

mutually independent white Gaussian noise to each channel.

In the first set of simulations, an ULA of 8 microphones

was used. A localization task in a room of 8 m × 4 m

× 3 m was considered. The sources and microphones were

considered omnidirectional. The room setup is shown in Figure

3, in which we can see the 24 source positions used in the

training phase. The training was performed using an USASI

signal with a RT60 of 0.6 s and a SNR of 20 dB. The same
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Fig. 4. STFT of the three signals used in simulations.

training setup was used for the classification CNN, regression

CNN, and SVM. The resulting training set has a size of 16368

input matrices V. We compare the localization performance

of three different acoustic sources, i.e. a speech signal, an im-

pulsive signal (starter pistol), and a narrowband signal (range

[100,750] Hz). The three signals are depicted in Figure 4

(excerpts of one second each). We consider 50 random source

positions (different from the training positions) with a distance

from the array in the range 2.5-7.5 m. The test positions are

shown in Figure 3. Table I shows the results in different

noisy and reverberant conditions. As we can observe, the

classification CNN provides in general the best performance,

although in some noisy condition (-20 dB) the regression CNN

outperforms it. In such situation, the binary classification error

may discard some useful information and include incorrect

ones, while the regression output allows a weighting of

narrowband components resulting a more robust localization

accuracy. Both proposed CNN methods perform better than

all of the other algorithms and provide good generalization

performances in all noisy and reverberation conditions with

respect to the source position (training and test positions

are different) and to the acoustic source nature (training is

performed with USASI noise and testing is performed with

speech, impulsive and narrowband signals). We can also note

that the SVM-based classifier become ineffective in low noise

conditions and in some narrowband source cases, confirming

the results in [25] and in [26]. Next, we can observe that the

localization performance of CNN methods in term of AR and

RMSE is better with the narrowband signal if compared to that

SRP-NMVDR, since the most of the spectrum of the signal is

affected by noise. This performance difference is reduced with

the speech and the impulsive signals. Both classification and

regression CNN-based methods demonstrate a good robustness

when reverberation is increased, as we can note in Table

I. When RT60 is increased, in general the performance gap

between CNN and NMVDR increases.

Next, to asses the generalization characteristics with respect

to room dimensions, the system trained on data from this

room geometry was tested on a set of acoustic data obtained

with room dimensions of 7 m × 11 m × 4 m, in which

the 8-microphone ULA is positioned. Table II shows the

results for the speech signal. We can see that the regression

CNN provides the best performance in this case. This result
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suggests that, when the training and testing room are different,

the classification CNN performance is affected by a larger

number of narrowband SRP classification errors, since the

room response is changed. In this case, the regression CNN

seems to be less sensitive to room geometry differences and

provides a better classification performance.

In the second set of simulations, a small configuration

ULA of 3 microphones was used. The room setup is shown

in Figure 6. We consider 20 training positions, resulting

13640 input matrices V. The training was performed using

an USASI signal with a RT60 of 0.3 s and a SNR of 20 dB.

Two localization tests were performed using the same room

configuration of the training (5 m × 4 m × 3 m) and a different

room configuration with a size of 6.37 m × 2.98 m × 3.6

m. We consider 50 random source positions (different from

the training positions) with a distance from the array in the

range 1-3 m. The results with a speech signal are reported

in Table III. As we can observe, the simulation confirms

the efficiency of CNN-based SRP methods. Specifically, the

classification output has a better performance when the room

setup is equal to that of the training. On the other hand, the

regression output provides a better localization accuracy in a

different room setup. In this case, the SVM does not provide

any improvement, and the classification CNN tends to provide

lower performance when the SNR decreases.

Next, we evaluated the localization performance using a

speech signal corrupted by two different types of noise: babble

noise (i.e., background noise originating from a large number

of simultaneously talking people, as it is typically observed in

a cocktail party) and diffuse noise field [62]. The room setup

used for this evaluation is depicted in Figure 3. The RT60 was

set to 0.3 s and the SNR was set to 20 dB. Table IV shows how

the classification and regression SRP-WMVDR-CNN methods

perform better that the other SRP-based methods.

Afterwards, we compared the CNN-based approach with the

DNN method described in [51], in which the noise eigenvec-

tors of the power spectral density matrices are used as input

to the neural network that, in turn, outputs an estimate of the

DOA. The DNN structure is composed by a directional image

activators layer, a partially integrated layer and an integrated

layer. The DNN was trained using the same setup used for

the CNN and shown in Figure 3. Table V shows the results

for two noisy and reverberant conditions, when the training

and testing data are organized as in the first experiment. As

we can observe, both CNN-based approaches outperform the

DNN-based scheme.

We are firmly convinced that the effectiveness of the pro-

posed method lies in the hybrid nature of the processing

scheme. To provide a comparison of this solution with a sim-

pler one, in which the localization is based solely on the convo-

lutional neural network component, we have implemented an

end-to-end scheme in which the phase of the STFT is encoded

directly as the input to the CNN, while the CNN output is

used to directly encode the DOA value. Thus, a regression

configuration was assumed. The system overview of the CNN-

based end-to-end configuration is shown in Figure 5. We have

performed a simulation with a speech signal and an ULA of

8 microphones in the room setup depicted in Figure 3 with

CNN-based end-to-end scheme 

Convolutional 

kernels

Pooling

features

DOA
Phase 

information
STFT

ULA

Audio channels

Regression layer

Fig. 5. System overview of the CNN-based end-to-end configuration.
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Fig. 6. The simulated room setup with the positions of the 3-microphone
ULA, the 20 training positions (black circle) and the 50 testing positions (red
plus).

RT60=0.3 s and SNR=20 dB. The localization performance

is AR=25.78 % and RMSE=11.488 degree. When training

the model using training data and conditions comparable to

the one used for the proposed schemes, the performances

of the model resulted extremely poor. Apparently in this

processing chain choice, the localization-related information

is so overwhelmed by unrelated information, that the amount

of training data and training time required to provide the same

performances as an hybrid scheme, would be both much larger.

The proposed CNN methods improve the localization per-

formance in noisy and reverberant conditions, compared to

other state-of-the-art methods. Specifically, SRP-WMVDR-

CNN methods prove to effectively generalize with respect

to the source position, the acoustic source nature and the

environment characteristics. For the latter, the classifier-based

configuration performs better that the regression-based con-

figuration when the training and the test environments are the

same. On the other hand, the regression-based configuration

proved to be more robust in our tests when the environment

characteristics used in the test procedure were different from

those used during training.

B. Analysis of the convolutional layer features

To gain further insight into the features learned by the

CNNs, we report the high-level features at the output of the

fully connected layer. Figures 7 and 8 show the feature maps

that strongly activate the two channels for the 8-microphone

and 3-microphone ULA, respectively. It can be seen that the

features are characterized by a similar pattern (i.e., energy

concentrated in the upper central region for the positively

contributing features), for both array configurations.
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TABLE I
AR (%) AND RMSE (degree) OF DOA ESTIMATION FOR SIMULATED DATA WITH A ULA OF 8 MICROPHONES IN A ROOM OF 8 m × 4 m × 3 m. THE

TRAINING AND TESTING ROOMS ARE THE SAME. THE BEST PERFORMANCE IS SHOWN IN BOLD TEXT.

speech signal

RT (s) SNR (dB) SRP-NMVDR SRP-WMVDR-CNN (class.) SRP-WMVDR-CNN (regr.) SRP-WMVDR-SVM SRP-PHAT

0.3 20 AR 95.56 99.33 97.56 97.56 93.11
RMSE 2.418 1.909 2.122 2.248 2.832

0 AR 90.55 92.44 92.22 80.33 88.12
RMSE 4.129 3.022 3.296 6.049 5.38

-20 AR 42.89 52.00 51.33 35.11 35.56
RMSE 19.252 9.237 11.757 28.324 21.509

0.6 20 AR 79.11 88.00 83.56 82.67 73.78
RMSE 4.422 3.437 3.837 4.194 4.888

0 AR 74.44 83.33 83.12 72.66 70.00
RMSE 6.793 4.896 4.965 8.158 9.391

-20 AR 31.11 42.56 42.22 20.00 27.56
RMSE 22.747 11.057 13.026 30.646 25.510

0.9 20 AR 64.89 74.22 66.44 68.67 60.89
RMSE 5.824 4.942 5.603 5.342 6.109

0 AR 56.00 63.11 60.44 48.44 52.00
RMSE 6.008 4.917 4.982 16.745 6.641

-20 AR 27.78 38.22 41.11 17.56 22.67
RMSE 25.163 12.763 12.187 31.946 26.878

impulsive signal

RT (s) SNR (dB) SRP-NMVDR SRP-WMVDR-CNN (class.) SRP-WMVDR-CNN (regr.) SRP-WMVDR-SVM SRP-PHAT

0.3 20 AR 87.33 90.44 88.67 86.89 84.67
RMSE 3.595 3.259 3.412 3.666 3.930

0 AR 81.33 87.44 85.24 75.88 79.55
RMSE 4.882 3.571 3.775 6.344 5.323

-20 AR 28.44 34.22 39.56 10.22 25.33
RMSE 21.538 12.452 13.329 36.295 23.766

0.6 20 AR 75.11 78.52 78.44 76.89 72.00
RMSE 5.532 4.375 4.872 6.429 6.560

0 AR 70.888 79.11 75.11 66.88 68.77
RMSE 5.897 4.938 5.162 11.475 7.417

-20 AR 20.44 31.11 33.33 11.33 19.56
RMSE 25.696 14.904 13.227 34.681 26.800

0.9 20 AR 65.56 72.44 67.78 66.67 63.56
RMSE 5.991 5.044 5.741 8.226 6.239

0 AR 60.88 68.88 69.88 52.66 57.55
RMSE 7.180 5.202 5.159 16.498 8.457

-20 AR 18.44 29.56 27.78 11.33 15.33
RMSE 28.866 14.916 15.688 36.608 30.188

narrowband signal

RT (s) SNR (dB) SRP-NMVDR SRP-WMVDR-CNN (class.) SRP-WMVDR-CNN (regr.) SRP-WMVDR-SVM SRP-PHAT

0.3 20 AR 61.78 69.11 68.00 66.67 43.33
RMSE 11.044 4.924 8.832 13.155 13.163

0 AR 53.55 66.00 64.22 60.44 35.77
RMSE 8.282 5.476 6.8794 13.7261 15.7299

-20 AR 29.33 50.22 45.56 25.33 24.00
RMSE 21.143 9.766 10.612 32.070 25.305

0.6 20 AR 44.22 59.56 53.78 42.89 35.11
RMSE 14.781 7.701 8.603 14.428 17.047

0 AR 42.22 53.77 49.11 42.44 29.11
RMSE 13.33 8.55 9.13 18.45 20.17

-20 AR 22.22 39.11 38.89 20.00 15.56
RMSE 23.270 10.649 11.299 32.382 28.461

0.9 20 AR 34.22 48.00 44.67 30.67 24.22
RMSE 21.363 10.777 14.749 27.004 24.810

0 AR 29.11 44.33 40.77 30.44 25.55
RMSE 18.668 11.603 13.305 25.543 22.981

-20 AR 16.89 39.11 30.44 14.00 15.11
RMSE 28.203 12.211 19.534 33.793 29.853

Then, we reported the average recognition accuracy of posi-

tively contributing maps (1-value classification) and negatively

contributing maps (0-value classification) for the classification

CNN and the SVM using skewness. The results showed

in Table VI confirm the better recognition accuracy of the

classification CNN.

To further compare the effectiveness of the convolutional

layer features and other specific features such as the skewness
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TABLE II
AR (%) AND RMSE (degree) OF DOA ESTIMATION FOR SIMULATED DATA WITH A ULA OF 8 MICROPHONES IN A ROOM OF 7 m × 11 m × 4 m

DIFFERENT. THE TRAINING AND TESTING ROOMS ARE DIFFERENT. THE BEST PERFORMANCE IS SHOWN IN BOLD TEXT.

speech signal

RT (s) SNR (dB) SRP-NMVDR SRP-WMVDR-CNN (class.) SRP-WMVDR-CNN (regr.) SRP-WMVDR-SVM SRP-PHAT

0.3 20 AR 92.86 98.32 99.16 98.16 90.34
RMSE 2.709 2.252 2.156 2.449 3.073

0 AR 87.77 82.66 95.11 82.33 84.88
RMSE 5.124 9.338 3.758 5.947 6.381

-20 AR 48.00 48.00 56.00 36.00 32.00
RMSE 18.172 8.088 6.302 21.073 18.288

TABLE III
AR (%) AND RMSE (degree) OF DOA ESTIMATION FOR SIMULATED DATA WITH A ULA OF 3 MICROPHONES WITH A SPEECH SIGNAL. THE UPPER PART

OF THE TABLE REPORT THE PERFORMANCE IN CASE OF SAME ROOM FOR TRAINING AND TESTING. THE LOWER PART OF THE TABLE REPORT THE

PERFORMANCE IN CASE OF DIFFERENT ROOMS FOR TRAINING AND TESTING. THE BEST PERFORMANCE IS SHOWN IN BOLD TEXT.

room of 5 m × 4 m × 3 m (the same of the training)

RT (s) SNR (dB) SRP-NMVDR SRP-WMVDR-CNN (class.) SRP-WMVDR-CNN (regr.) SRP-WMVDR-SVM SRP-PHAT

0.6 30 AR 80.22 89.33 88.44 81.33 77.11
RMSE 4.078 3.286 3.305 6.644 4.563

15 AR 78.67 88.67 88.00 79.56 73.78
RMSE 4.267 3.482 3.580 6.159 6.956

0 AR 67.33 70.22 68.67 57.33 52.00
RMSE 10.378 6.279 6.490 17.437 18.409

room of 6.37 m × 2.98 m × 3.6 m

RT (s) SNR (dB) SRP-NMVDR SRP-WMVDR-CNN (class.) SRP-WMVDR-CNN (regr.) SRP-WMVDR-SVM SRP-PHAT

0.6 30 AR 81.91 85.00 85.00 77.78 80.89
RMSE 4.006 3.605 3.605 5.691 4.614

15 AR 81.11 84.89 85.78 78.89 79.33
RMSE 4.052 3.895 3.618 6.883 6.052

0 AR 63.11 62.44 64.89 52.00 51.78
RMSE 9.388 8.055 6.991 18.054 16.085

TABLE IV
AR (%) AND RMSE (degree) OF DOA ESTIMATION FOR SIMULATED DATA IN DIFFERENT NOISE TYPE CONDITIONS WITH A ULA OF 8 MICROPHONES IN

A ROOM OF 8 m × 4 m × 3 m. THE RT60 WAS SET TO 0.3 S AND THE SNR WAS SET TO 20 dB. THE BEST PERFORMANCE IS SHOWN IN BOLD TEXT.

speech signal

SRP-NMVDR SRP-WMVDR-CNN (class.) SRP-WMVDR-CNN (regr.) SRP-WMVDR-SVM SRP-PHAT

babble noise AR 95.33 98.89 97.33 95.77 91.33
RMSE 2.586 1.969 2.336 2.527 3.054

diffuse noise AR 95.55 99.11 98.22 97.11 92.00
RMSE 2.428 1.920 2.023 2.244 2.914

TABLE V
COMPARISON BETWEEN CNN AND DNN: AR (%) AND RMSE (degree)

OF DOA ESTIMATION FOR SIMULATED DATA WITH A ULA OF 8
MICROPHONES IN A ROOM OF 8 m × 4 m × 3 m.

RT (s) SNR (dB) SRP-WMVDR-CNN (class.) SRP-WMVDR-CNN (regr.) DNN

0.3 30 AR 99.33 97.78 77.11
RMSE 1.897 2.142 5.765

0.5 10 AR 92.89 92.22 76.00
RMSE 2.895 2.956 6.001

mentioned in this section, we also report in Table VII the

Fisher’s discriminant ratio (FDR) average values for the two

choices, the average being referred to all positions for the

3-microphones and for the 8-microphones case. The FDR is

defined as the ratio of the between-class scatter matrix to the

within-class scatter matrix, and can be employed to quan-

tify the discriminatory power of individual features between

Fig. 7. Features computed by the convolutional layer of the 8-microphone
ULA. Left: feature mapped to a 0-valued classification label; Right: feature
mapped to a 1-valued classification label

classes [63]. A common problem in the computation of the

FDR is the high dimensionality of the features with respect
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Fig. 8. Features computed by the convolutional layer for the 3-microphone
ULA. Left: feature mapped to a 0-valued classification label; Right: feature
mapped to a 1-valued classification label

TABLE VI
THE RECOGNITION ACCURACY (%) OF NARROWBAND SRPS FOR THE

CLASSIFICATION CNN AND THE SVM USING SKEWNESS.

ULA Method 1-value class. 0-value class.

3 mic. CNN (class.) 48.87 85.18
SVM (ske.) 15.29 94.62

8 mic. CNN (class.) 39.81 93.20
SVM (ske.) 36.44 86.17

to the observation data, which leads to poorly conditioned

within-class scatter matrices. To face this issue, we perform a

preprocessing data dimensionality reduction based on principal

component analysis, which is a commonly accepted solution

[64], [65]. The numerical results reported confirm the substan-

tial increment of the discriminatory power of convolutional

features if compared to skewness.

Last, we further investigated how the CNN-based method

improves robustness to noise, by using an ad-hoc low-pass

random noise signal as source, with energy up to 1 kHz,

corrupted by white uncorrelated noise. The uncorrelated noise

energy was gradually increased so that the related SNR

spanned the range [30 db, -30 dB]. We considered a ULA

of 8 microphones in the room setup depicted in Figure 3 with

RT60=0.3 s, and a source impinges the array with θs=10.72

degree. Table VIII reports the average of the weighting factors

γ(f) with different noise levels for the two frequency intervals

[50 Hz, 1 kHz] (in which the source and the noise are both

present), and [1 kHz, 16 kHz] (in which only the uncorrelated

noise is present). As we can note, when the SNR is 30 dB

and 15 dB all the narrowband SRP components in the range

[50 Hz,1 kHz] are classified as positively contributing, and

assigned to class 1. When the SNR is lower the classification

in the range [50 Hz,1 kHz] reduces the average of the

weighting factors, meaning that some SRP components are

classified as contributing negatively. We can observe that when

SNR=-30 dB, the classification operated by the CNN becomes

ineffective. In all SNR conditions, in the range of [1 kHz, 16

kHz] the CNN correctly classified the most of the components

as contributing negatively since only uncorrelated noise and no

source signal energy is present in that frequency range. Figure

9 shows the SRP function for two specific frequencies: 500

Hz, falling in the range of the source signal spectrum, and

2500 Hz, falling in the range where only uncorrelated noise is

present. As we can see, when the SNR level is 30 dB, 0 dB

TABLE VII
FEATURE DISCRIMINABILITY POWER COMPARISON.

ULA Feature Fisher’s discriminant ratio

3 mic. Convolutional 18.138
Skewness 0.016

8 mic. Convolutional 13.339
Skewness 0.109

TABLE VIII
THE AVERAGE OF THE WEIGHTING FACTORS FOR TWO RANGES OF

FREQUENCIES USING A LOW-PASS RANDOM NOISE WITH ENERGY UP TO 1
KHZ AT VARIATION OF SNR LEVEL.

class. regr.

SNR (dB) 50 Hz-1 kHz 1 kHz-16 kHz 50 Hz-1 kHz 1 kHz -16 kHz

30 1.00 0.15 0.12 0.07
15 1.00 0.10 0.12 0.06
0 0.79 0.11 0.14 0.07

-15 0.48 0.10 0.10 0.07
-30 0.17 0.12 0.08 0.07

and -15 dB, the DOA source is correctly estimated for the 500

Hz frequency and the SRP functions are correctly classified as

1. When the SNR level is -30 dB, the SRP is classified as 0,

and, hence, the SRP is removed in the fusion process, since it

does not contribute anymore to correctly localize the source.

For the 2500 Hz case, in all noise conditions the SRP are

classified as 0, and the noise components were removed in the

classification scheme or removed/attenuated in the regression

one.

C. Real Data

The experiments based on multichannel recorded data were

performed in an office room of 6.37 m × 2.98 m × 3.6 m

with a RT60 of 0.6 s and in a conference room of 16 m × 7

m × 3 m with a RT60 of 0.9 s.

In the first experiment, an ULA of 3 microphones was

used in the office room. We performed the localization with

the training configuration used in the simulation with 3

microphones. The room setup is shown in Figure 10. Both

microphones and the source were positioned at a distance from

the floor of 0.9 m. A speech signal of 25 s duration from a male

speaker was reproduced with a loudspeaker in the positions

depicted in Figure 10. We estimated an average SNR of 15

dB at microphones. The SNR was computed by estimating

the average speech energy vs the average noise energy (the

latter is estimated from signal fragments where the speaker

is not active). The results are reported in Table IX. We can

note that only the regression CNN-based method improves the

performance if compared to SRP-NMVDR, while both binary

classification (classification CNN and SVM) fails in such case.

This fact confirms that the generalization of the classification

CNN is more difficult due to far-field reverberant conditions, in

which the reflection components have a larger impact on SRP

computation in comparison to the near-field condition [25].

This result can be compared to that reported in Table III with

the same room noise and reverberant conditions (the lower

part). We can note that the real results have a greater RMSE
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Fig. 10. The real room setup with the positions of the 3-microphone ULA
and the 7 test positions.

with a better AR, due to the limited number of positions used

in this experiment.

In the second experiment, an ULA of 8 microphones was

used in the conference room. We performed the localization

with the training configuration used in the simulation with 8

microphones. The room setup is shown in Figure 11. Both

microphones and the source were positioned at a distance

from the floor of 1.7 m. Three sessions were recorded using

short sentences uttered by two male and one female speakers,

standing up at different positions depicted in Figure 11. The

results reported in Table X confirm the good performance of

the regression CNN-based method. In this experiment also

the classification configuration has a better performance if

compared to that of the SRP-NMVDR. This fact is due to

a better robustness to noise of the 8-microphone ULA in

comparison to a small 3-microphone ULA.

V. CONCLUSIONS

A WMVDR beamformer based on a CNN deep learning

has been presented. It improves the localization accuracy in

a single source scenario without point-source interferences.

The results show that CNNs improve the incoherent frequency

fusion of the narrowband response power by weighting the

components in such a way as to reduce the deleterious effects

of those components affected by artifacts due to noise and

reverberation. The use of CNNs avoids the necessity of pre-

viously encoding the multichannel data into selected acoustic

cues. We implemented the CNNs in two versions, one with
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Fig. 11. The real room setup with the positions of the 8-microphone ULA
and the 18 test positions.

a classification output layer, and the other with a regression

output layer. Our experiments demonstrate that the CNN is

robust to noise and reverberation in comparison to the state-

of-the-art. Specifically, the classification CNN has a better

performance when the training and test condition setup are the

same (i.e, same room and array position). On the other hand,

the regression CNN provides a better localization accuracy,

due to its robustness against classification errors that may

occur when training data and test data are referred to different

acoustic conditions. The proposed method has been compared

to other two possible approaches based on a neural network

component. An end-to-end CNN scheme, and a DNN model

proposed in the literature. In both cases, the proposed method

provided superior performances. Our explanation for that is

that the method exploits the hybrid nature of the processing

scheme, in which the CNN component is integrated with

a simple but effective information fusion model rooted on

acoustic principles.

A number of issues remain to be investigated, and will be

the subject of future work. In the present study, frequency

components in the training set were selected as positive or neg-

ative by using a frequency independent, empirically selected

threshold. This approach might be improved by investigating

if different components might be more or less relevant to

the localization depending on their frequency, and if this

has any perceptual basis. Moreover, in future refinements of

this class of signal processing paths, the machine learning

components might be trained to both improve the fusion

model (as done in the present case) while also contributing

to recognize spectral/temporal characteristics of the acoustic

sources, and distinguish for example between speech, music,

or ecological sounds. In this case, they could be successfully

used for effective multisource localization, or might be trained

to distinguish between actual and image sources in reverberant

environments.
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TABLE IX
AR (%) AND RMSE (degree) OF DOA ESTIMATION FOR REAL DATA WITH A ULA OF 3 MICROPHONES IN A ROOM OF 6.37 m × 2.98 m × 3.6 m WITH A

RT60 OF 0.6 S. THE BEST PERFORMANCE IS SHOWN IN BOLD TEXT.

SRP-NMVDR SRP-WMVDR-CNN (class.) SRP-WMVDR-CNN (regr.) SRP-WMVDR-SVM SRP-PHAT

AR 91.13 86.45 94.34 74.38 85.96
RMSE 5.046 8.476 4.625 20.245 8.352

TABLE X
AR (%) AND RMSE (degree) OF DOA ESTIMATION FOR REAL DATA WITH A ULA OF 8 MICROPHONES IN A ROOM OF 16 m × 7 m × 3 m WITH A RT60

OF 0.9 S. THE BEST PERFORMANCE IS SHOWN IN BOLD TEXT.

SRP-NMVDR SRP-WMVDR-CNN (class.) SRP-WMVDR-CNN (regr.) SRP-WMVDR-SVM SRP-PHAT

AR 71.29 74.18 79.01 62.04 67.05
RMSE 12.728 11.078 6.898 27.179 18.628
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