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Abstract—Unsupervised structured prediction is of fundamen-
tal importance for the clustering and classification of unannotated
structured data. To date, its most common approach still relies
on the use of structural probabilistic models and the expectation-
maximization (EM) algorithm. Conversely, structural maximum-
margin approaches, despite their extensive success in supervised
and semi-supervised classification, have not raised equivalent
attention in the unsupervised case. For this reason, in this paper
we propose a novel approach that extends the maximum-margin
Markov networks (M3N) to an unsupervised training framework.
The main contributions of our extension are new formulations
for the feature map and loss function of M3N that decouple the
labels from the measurements and support multiple ground-truth
training. Experiments on two challenging segmentation datasets
have achieved competitive accuracy and generalization compared
to other unsupervised algorithms such as k-means, EM and
unsupervised structural SVM, and comparable performance to
a contemporary deep learning-based approach.

Index Terms—Structured prediction, unsupervised training,
convex relaxation, maximum-margin Markov networks, Well-
SVM.

I. INTRODUCTION

Unsupervised structured prediction refers to the use of
classifiers that can explicitly model the inherent “structure”
in the data and be trained without supervision. It is an
increasingly useful framework that can be applied to tasks
as diverse as the clustering of activities and trajectories, the
segmentation of time series, the modelling of topics in text,
the analysis of graphs in social networks and many more.
With such structured data growing rapidly both in volume and
spread, unsupervised structured prediction is becoming more
urgent and in focus.

Conversely, unsupervised prediction of “ordinary” data (in-
dependent and identically distributed, or i.i.d.) has been cov-
ered by an extensive literature. Baseline approaches include
k-means and mixture models learned in probabilistic frame-
works [1], [2]. In recent years, maximum-margin approaches
have also been used for unsupervised learning. An early
example is unsupervised SVM that extends the conventional,
supervised support vector machine to unsupervised predic-
tion [3]. The challenge with this task is that the number of
possible labelings is exponential in the number of samples
and the problem is notoriously NP-hard. Therefore, solutions
must rely on either local optima or relaxations of the original
problem. The basic local approach consists of alternating
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optimizations where a step of SVM learning gives turns to
a step of inference of the latent variables [3]; we refer to
this approach as alternate-steps unsupervised SVM in the
following. While local solutions are computationally efficient,
they tend to show early convergence and have been reported
as highly sensitive to the initialization [4]. A different support
vector approach was proposed in [5], [6] in terms of minimum-
enclosing hyperspheres. Determining the minimum-enclosing
hypersphere of a set of points requires solving a quadratic
objective with quadratic constraints and is a well-known
convex problem. However, assigning the points to clusters
remains a combinatorial problem and the overall solution is
still only locally optimal. Another solution using conventional
separating hyperplanes was proposed in [7], [8], [9], leveraging
a Laplacian regression loss in place of the usual hinge loss.
The use of the Laplacian loss helps mollify the issues of
premature convergence. More recently, [10] has proposed a
global solution of polynomial complexity; however, its soft-
margin formulation differs from the conventional soft-margin
SVM based on the hinge loss. Various heuristics based on
incremental feature selection [11], recurrent local search [12],
and classifier ensembles [13] have also been proposed. Given
that combinatorial approaches are intrinsically local, exploring
convex relaxations offers an appealing alternative. Xu et al.
in [14] have proposed a convex relaxation of unsupervised
SVM based on semidefinite programming (SDP), and have
later extended it to the multi-class and structured cases [15],
[16]. However, the computational complexity of SDP is much
higher than that of quadratic programming and seems pro-
hibitive even for datasets of limited size. More recently,
Li et al. in [17], [18] have proposed a different relaxation
based on the minimax theorem. This relaxation, called Weakly
Labeled SVM or Well-SVM for short, has been proven to be
tighter than the SDP relaxation of [14]. In addition, it can be
implemented in terms of multi-kernel SVM and is efficient
and scalable. Over the last few years, also a number of deep
learning-based clustering approaches have been proposed [19].
All these approaches leverage deep autoencoders to generate
a new, nonlinear feature space that can benefit the clustering
step [20], [21], [22]. Other recently-proposed deep learning
approaches have more restricted application since they either
require knowledge of the output statistics [23] or are limited
to categorical variables (i.e., words) as inputs [24].

In the case of structured data, the most established ap-
proach for unsupervised training is certainly expectation-
maximization (EM) [25]. Paralleling the i.i.d. case, maximum-
margin approaches have also been used to train struc-
tured predictors. For instance, structural SVM (SSVM) [26]
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and maximum-margin Markov networks (M3N) [27] solve
maximum-margin objectives for supervised structured predic-
tion. These approaches, too, can be easily extended to the
unsupervised case using the alternate-steps approach. The
main problems, again, rest with its premature convergence
and sensitivity to initialization. For this reason, in this paper
we propose a novel unsupervised training algorithm that
extends the convex relaxation of [18] from the i.i.d. case
to the case of structured prediction. The main contribution
of the proposed extension is an original formulation of the
feature map and loss function of M3N that it is suitable for
integration in the SVM relaxation. Experiments carried out on
two challenging time-segmentation datasets show competitive
performance compared to other unsupervised algorithms such
as k-means, EM and alternate-steps unsupervised structural
SVM, and comparable performance to a deep learning-based
approach.

The rest of this paper is organized as follows: Section II
summarizes Well-SVM and M3N to set the ground for the
proposed method. Its formulation - named Well-M3N for anal-
ogy - is presented in Section III, while the experimental results
are described in Section IV. The Conclusion summarizes the
main findings.

II. BACKGROUND

In this section, we introduce the main background materials,
namely 1) Well-SVM, a convex relaxation for unsupervised
SVM (Section II-A), and 2) the maximum-margin framework
for structured prediction (Section II-B).

A. Well-SVM

Let us note the constrained objective of a conventional, soft-
margin SVM as SVM(w, y), with w the parameter vector and
y the labeling for the sample set. The problem entailed by
unsupervised SVM is:

min
y

min
w

SVM(w, y) (1)

that is, finding the labeling returning the minimum of all SVM
primal problems, minw SVM(w, y). This equates to finding
the two clusters with maximum soft-margin between them.
However, this formulation may degenerate in assigning all
the samples to only one cluster with a hypothetically infinite
margin. It is then necessary to limit the search over y to a
set of feasible, “balanced” labelings which we will note as β
hereafter, i.e., y ∈ β. An equivalent solution to (1) can be
obtained by replacing the internal minimization with its dual:

min
y

max
λ

G(λ, y) (2)

where λ is the vector of the dual variables. The idea behind
the Well-SVM relaxation presented in [17], [18] is to exchange
the order of maxλ and miny to instead solve:

max
λ

min
y
G(λ, y) (3)

Li et al. in [17] have proved that this relaxation is tighter
than the earlier relaxation based on semidefinite programming
proposed by Xu et al. [14]. For this reason, Well-SVM can
be regarded as the tightest known relaxation of unsupervised
SVM. The inner combinatorial minimization in (3) can be
posed in terms of a continuous, constrained maximization:

max
θ

θ

s.t. θ ≤ G(λ,l y) ∀ ly ∈ β
(4)

with corresponding Lagrangian:

θ +
∑
l:ly∈β

µl
(
G(λ,l y)− θ

)
(5)

where µl ≥ 0 is the dual variable associated with the l-th
constraint in (4) and ly is the l-th labeling. We have chosen
to use a prescript apex for the labelings since their right apex
and index will be used for other indexings. Differentiating (5)
in θ, equating to zero and replacing the result in (3) leads to:

max
λ

min
µ

∑
l:ly∈β

µlG(λ,l y) (6)

subject to constraints
∑
l µ

l = 1, µl ≥ 0 ∀l. Since (6) meets
the KKT conditions, the max-min order can be swapped to
obtain:

min
µ

max
λ

∑
l:ly∈β

µlG(λ,l y) (7)

Li et al. in [18] have shown that (7) can be solved as
an instance of multi-kernel learning (MKL) and by using
conventional SVM solvers. The solution is described in detail
in Section III.

B. Maximum-Margin Structured Prediction
Structured prediction aims to predict multiple, dependent

classes from an available measurement vector. Given a mea-
surement, x, a prediction or labeling consists of a graph of
class labels, y. The family of structured prediction we address
is the generalized linear model where the score for an {x, y}
pair is given by w>ψ(x, y), with w a parameter vector and
ψ(x, y) a feature function of x and y that embeds the structure
in the data. With this model, prediction is formally expressed
as:

ȳ = argmax
y

w>ψ(x, y) (8)

Model w can be learned, among others, by leveraging a
maximum-margin approach. Given a training set, {xi, yi} , i =
1 . . . N , this learning objective can be written as:

min
w,ξ

1

2
‖w‖2 + C

N∑
i=1

ξi

s.t. w>δψi(y) ≥ ∆(yi, y)− ξi,
i = 1 . . . N, ∀y ∈ Y

(9)
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where the minimization is over the usual SVM trade-off
between a regularization term, ‖w‖2, and the hinge loss
over the training set,

∑N
i=1 ξi. In the constraints, function

δψi(y) = ψ(xi, yi) − ψ(xi, y) computes the difference of
the feature functions for the ground-truth labeling, yi, and
another labeling, y. The learning objective is to ensure that
this difference is bigger than an appropriate margin, being
chosen as the loss ∆(yi, y) for predicting y when the ground
truth is yi.

The immediate impediment in approaching (9) directly is
that the number of constraints, |Y|, grows exponentially with
the number of nodes in the graphs. This makes direct solutions
infeasible even for graphs of a relatively small size. Two main
relaxations have been proposed in the literature to mollify
this problem, namely structural SVM [26] and maximum-
margin Markov networks (M3N) [27]. Structural SVM ([26])
seeks an approximate solution that only satisfies a polynomial-
size subset of the “most-violated” constraints. The solution is
provenly ε-close to the full solution, with ε a constant that
can be made arbitrarily small by an appropriate number of
constraints. Conversely, M3N restricts the feature and loss
functions to be pairwise decomposable over the graph. In this
way, the number of constraints drops to quadratic and the
resulting minimization can be solved with the full set. For
the integration proposed in this paper, we have carried out a
preliminary set of experiments with both methods and noticed
that M3N had proven generally more accurate. For this reason,
the remainder of this paper focuses on M3N.

Through standard manipulation, the primal problem of (9)
can be converted into its corresponding dual form:

max
α

∑
i,y

αiy∆(yi, y)− 1

2

∑
i,y

∑
j,v

αiyαjvδψi(y)>δψj(v)

s.t.
∑
y

αiy = C,∀i; αiy ≥ 0

i = 1 . . . N, ∀y ∈ Y
(10)

where αiy indicates the Lagrange multiplier for sample i and
labeling y. The two conditions for the M3N factorization of
the dual (10) are: (i) the loss must be decomposable over the
individual nodes of the labeling, i.e, ∆(yi, y) =

∑
a I(yai 6=

ya) =
∑
a ∆ti(y

a), where a is the index of an individual
node; and (ii) the feature function for a labeling, y, must be
pairwise-decomposable over the graph’s edges i.e. δψi(y) =∑
a,b δψi(y

a, yb). With such conditions, Taskar et al. in [27]
have rewritten the dual problem using a set of dual variables
over the nodes and edges defined as:

λi(y
a) =

∑
y∼[ya]

αiy ∀a,∀ya, ∀i;

λi(y
a, yb) =

∑
y∼[ya,yb]

αiy ∀a, b,∀ya, yb ∀i;
(11)

where y ∼ [ya] denotes a labeling with a fixed assignment
of its ath node, i.e., [. . . , ya, . . .]. Similarly, y ∼ [ya, yb]
is a labeling with a fixed assignment of its node pair

(a, b), i.e., [. . . , ya, . . . , yb, . . .]. From (11), it follows that
λi(y

a) =
∑
yb λi(y

a, yb). By using (11) to rewrite the linear
and quadratic terms in (10), the dual becomes:

max
λ

G(λ, y) =

max
λ

∑
i

∑
a,ya

λi(y
a)∆ti(y

a)

− 1

2

∑
i,j

∑
a,b

ya,yb

∑
c,d

vc,vd

λi(y
a, yb)λj(v

c, vd)δψi(y
a, yb)>δψj(v

c, vd)

s.t.
∑
ya

λi(y
a, yb) = λi(y

b);
∑
ya

λi(y
a) = C; λi(y

a, yb) ≥ 0.

(12)

where, for consistency with (2-7), argument y in G(λ, y) refers
to the ground-truth labelings, not the predictions. By rewriting
the dual in terms of the λ variables, the number of constraints
becomes quadratic in the number of nodes in the graph, and
thus manageable.

III. THE PROPOSED APPROACH: WELL-M3N

In this section, we present the proposed integration of M3N
with Well-SVM. The integration is obtained by replacing the
M3N dual (12) in (7):

min
µ

max
λ

∑
l:yl∈β

µlG(λ,l y) (13)

It is easy to show that, for any given set of labelings,
(13) is an instance of weighted multi-kernel learning, with
one kernel for each of the labelings, ly ∈ β, weighed by
weight µl. This is a convex problem in (µ, λ) that can be
solved by algorithms such as SimpleMKL that alternate a
step of solving for λ with fixed µ, with a step of solving
for µ with fixed λ [28]. However, the solution also requires
the generation of the labelings subject to the constraints of (4).
Such a generation is not trivial and cannot be operated with
the existing Well-SVM approach since G(λ,l y) only depends
on ly implicitly. One of the main contributions of this paper,
presented later in Section III-A, is an original remapping of the
M3N feature functions that makes such a dependence explicit
and allows the generation of the labelings for (13).

Formally, the solution of (13) is obtained by iterating the
following two main steps until convergence:

1) Find a labeling, ly, violating constraint (4) for the
current λ. Add ly to a working set of labelings, Cw.
For the first iteration, an arbitrary labeling 1y can be
used as the initial working set.

2) Solve multiple-kernel learning M3N using all the label-
ings in the working set as the ground truth.

At its turn, an instance of multiple-kernel learning M3N
iterates through the following two sub-steps until convergence:

1) λ step: Using the current µ, solve for λ.
2) µ step: Using the current λ, solve for µ.
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Fig. 1: Block diagram of the proposed Well-M3N.

The overall procedure is called Well-M3N and a block
diagram of its main steps is shown in Fig. 1. Likewise,
Algorithm 1 describes the algorithm using pseudo-code. We
also provide an original, formal proof of convergence in
Appendix A. In the following, we present the λ and µ steps
in detail. Section III-A presents the feature mapping and loss
function. Eventually, Section III-B presents the procedure for
finding the violating labelings.

Algorithm 1 The main steps of Well-M3N.

1: Initialization: 1y;µ1 = 1.0; γ = 0.1 ((27)) and L = 1
2: Solve Objective (12) and store λ
3: Find violating labeling (Section III-B)
4: repeat
5: L = L+ 1
6: Initialize µ1:L =

[
µ1, . . . , µL

]T
uniformly

7: Concatenate ground truths: 1:Ly =
[
1y, . . . ,L y

]
8: repeat
9: Solve Objective (14) and store λ

10: Compute w1:L ((16))
11: Update µ1:L ((17))
12: until µ1:L converges
13: Find a violating labeling (Section (III-B))
14: until not (27)
15: Compute final w ((15)) for prediction

1) λ step: solving for λ with fixed µ: In the following,
we show how to remap this step onto a conventional M3N
problem so as to solve it with any existing M3N solver. We
first introduce a fuller notation for the labelings: by lyai we
note the label of the ath node in the lth ground-truth labeling
of graph i. We then make the following positions:

• ψ̃i(y
a, yb) = [

√
µ1ψi(y

a, yb), . . . ,
√
µLψi(y

a, yb)]>

i.e., a concatenation of ψi(ya, yb) L times, weighed by
the square root of the µ coefficients;

• δψ̃i(y
a, yb) =

[√
µ1
(
ψi(

1yai ,
1ybi )− ψi(ya, yb)

)
, . . . ,√

µL
(
ψi(

lyai ,
l ybi )− ψi(ya, yb)

)]
i.e., a similar concatenation for the difference of feature
functions with the L ground-truth labelings;

• ∆̃ti(y
a) =

∑L
l=1 µ

l∆ti(
lyai , y

a)
i.e., the weighted sum of the loss of node ya against

ground-truth labeling lyai , for all labelings and all nodes.
We assume that ∆ti(

lyai , y
a) is the simple zero-one loss,

I(lyai 6= ya).

With the above positions, the inner maximization in (13)
becomes:

max
λ

∑
l:yl∈β

µlG(λ,l y) =

max
∑
i

∑
a,ya

λi(y
a)∆̃ti(y

a)

− 1

2

∑
i,j

∑
a,b

ya,yb

∑
c,d

vc,vd

λi(y
a, yb)λj(v

c, vd)δψ̃i(y
a, yb)>δψ̃j(v

c, vd)

s.t.
∑
ya

λi(y
a, yb) = λi(y

b);
∑
ya

λi(y
a) = C; λi(y

a, yb) ≥ 0.

(14)

where the scalar products δ̃ψ
T
δ̃ψ and loss ∆̃ti(y

a) incorporate
the µ factor. This problem is formally identical to (12) and
can therefore be solved with any existing M3N solver. We
have used CVX, a popular package for specifying and solving
convex programs [29], [30].

2) µ step: solving for µ with fixed λ: Based on the
representer theorem, the solution for the factorized dual (12)
can be used to compute the primal model, w, as follows:

w =
∑
i

∑
a,b

∑
ya,yb

λi(y
a, yb)δψi(y

a, yb) (15)

Therefore, with (14) the same approach can be used to
compute a primal model, wl, for each of the L ground-truth
labelings:

wl =
∑
i

∑
a,b

∑
ya,yb

λi(y
a, yb)δψli(y

a, yb) l = 1 . . . L (16)

where δψli(y
a, yb) =

√
µl
(
ψi(

lyai ,
l ybi )− ψi(ya, yb)

)
.

Using the primal models from (16), the µ coefficients can
eventually be updated in closed form ([18]) as follows:
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µl =
‖wl‖∑L
l=1 ‖wl‖

, l = 1 . . . L (17)

A. Feature Maps
The main challenge for finding violating labelings for (13) is

to be able to rewrite objective (12) with an explicit dependence
on y. To this aim, we start by encoding y by one-hot encoding,
focussing on the case of binary nodes. For the binary variable
of each node, we use encoding [01] for the negative class and
[10] for the positive class. For an edge, we use encoding [0001]
if the edge connects a negative node with another negative
node; encoding [0010] for an edge connecting a negative and
a positive node; and so forth. Such an encoding can also
potentially accommodate multi-class nodes, yet at the cost of
a significant increase in size of both the labelings and the
required data structures.

For a graph with T binary nodes and E edges, there will be
2T binary variables to encode the nodes (unary variables) and
4E binary variables for the edges (pairwise variables), for a
total of 2T+4E binary variables that we assume serialized into
y. Index t = 1 . . . T will be used to index the nodes and index
e = 1 . . . E for the edges. Without limitation of generality,
we also assume one measurement per node, xt, and that the
feature function for a node-measurement pair is of the type
xtyt.

Our first aim is to rewrite ψ(x, y) as follows:

ψ(x, y) = h>y (18)

in order to express the feature function as an explicit function
of the labeling, y. Matrix h can be regarded as a generalized
measurement that formats all the measurements in the graph
such that the feature function can be expressed as h>y. In
this way, the functional form is analogous to that of the
unstructured case, xy, allowing using the same strategy for
constraint generation. Moreover, this factorization can also be
used in kernel matrices of structured predictors to separate the
contribution of the labeling from that of the measurements,
making unsupervised kernel learning significantly more effi-
cient.

Assuming measurement xt to be D-dimensional, feature
function ψ(x, y) is a (2D + 4)-dimensional vector organized
as two D-dimensional parameter vectors, one per class, and
four pairwise parameters, one per edge type. Hence, matrix h
is (2T + 4E) × (2D + 4). Fig. 2 visualizes ψ(x, y), h and
y. In the figure, the blocks of ‘0’ and ‘1’ act as indicator
functions that count the occurrences of edges of a given type.
For instance, δ(ya = P, yb = P ) will be equal to one if both
nodes a and b are positive.

To map the M3N dual (12) with this factorization, we need
to express differences and products of feature vectors based
on (18). To this aim, let us have two graphs with labelings
yi and yj , of size (2Ti + 4Ei) and (2Tj + 4Ej), respectively.
From (18), it follows that:

ψ(xi, yi)
>ψ(xj , yj) = y>i (hih

>
j )yj = y>i Hij yj (19)

Matrix Hij is thus (2Ti + 4Ei) × (2Tj + 4Ej) (it is not
square since the two graphs are generally not equal in size).
Obviously, Hij = H>ji .

In the original M3N formulation [27], the feature functions
are decomposed as a sum of pairwise functions over the edges
of nodes a and b:

ψ(x, y) =
∑
a,b

ψ(x, ya, yb) (20)

It is worth noting that such pairwise functions can also
subsume unary terms by incorporating dummy nodes and
edges as needed, and therefore they can be responsible for
both pairwise and unary scores on the graph [27]. For this
reason, we will ignore the unary terms in the following and
decompose h over the edges of the graph. Notation hab refers
to the portion of matrix h relative to nodes a and b, and yab to
the binary variables for the edge. With this position, we have:

ψ(x, y) =
∑
a,b

hab
>
yab (21)

and, analogously:

δψi(y) = ψi(xi, yi)− ψi(xi, y)

=
∑
a,b

[
ψi(y

a
i , y

b
i )− ψi(ya, yb)

]
=
∑
a,b

hab
>

i

[
yabi − yab

] (22)

By means of these manipulations, the entire objective (14)
can be expressed as a quadratic over y, as we show in the
following subsection.

B. Finding a Violating Labeling

For ease of reference, we invert the sign of the M3N
objective (14) and decompose it into the following three terms:

−G(λ, y) = y>Hy + y>(τ + ∆) (23)

where y is the concatenation of the labelings for all samples.
The term in ∆ maps the loss function, while the other two
terms map, respectively, the quadratic and linear terms in the
kernel product. Hereafter, we describe the values of H ,τ and
∆, while their formal derivation is presented in Appendix B.

• By posing Hij = hih
>
j , H is formed as follows:

H = 1
2 [H11, H12 . . . H1N ;
. . . ;
HN1, HN2 . . . HNN ]

Please note that matrix H is positive semidefinite by
construction. Its row dimension, D, is given by the
sum of the labelings’ length for the entire training set:
D =

∑
i 2Ti + 4Ei.
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Fig. 2: Feature map h. The two binary variables for node t are noted jointly as yt; the four binary variables for edge e are
noted jointly with a double index as yab∈e; and P and N denote positive and negative nodes, respectively.

• τ =

[
−h1

(∑
j

∑
c,d

hcdj
>
κcdj

)
,−h>2

(∑
j

∑
c,d

hcdj
>
κcdj

)
, . . . ,

−h>N

(∑
j

∑
c,d

hcdj
>
κcdj

)]
where κcdj =

∑
vc,vd λj(v

c, vd)vcdj

• ∆> =

{λi(ya = 0), λi(y
a = 1)︸ ︷︷ ︸

λ coefficients for the ath node

} 0 ∈ R4E︸ ︷︷ ︸
The loss has no pairwise terms


where ∆> takes a value of λi(ya = 0) if the correspond-
ing node in the ground truth is positive, and vice versa.

Having expressed G(λ, y) as a quadratic form of y, we
now seek to solve (4) which is the “crux” of the minimax
relaxation. For the solution, we follow the approach of Li et
al. [18]: let us assume that a working set Cw of labelings
satisfying the constraints in (4) has already been determined.
We now search to see if there exists another labeling ỹ for
which function (23) takes a greater value than for every
labeling in the working set. If such a labeling exists, it violates
(4) and a re-computation of the optimum in µ and λ in (13)
is required.

First, we find the argmax of the current working set, Cw:

ȳ = argmax
y∈Cw

y>Hy + y>(τ + ∆) (24)

If Cw contains L ground-truth labelings, L evaluations of
(23) over the training set are needed. Then, we pose r =
Hȳ + τ + ∆, and we search if a labeling ỹ exists such that:

ỹ>Hỹ + ỹ>(τ + ∆) > ȳ>r (25)

Given the positive semidefiniteness of H, the above search
can be performed as a linear program:

ỹ = argmax
y∈β

y>r (26)

followed by a post-hoc verification of (25). If (25) holds,
labeling ỹ is added to objective (13) and a re-computation
triggered. Otherwise, training concludes.

To avoid adding labelings caused by numerical inaccuracies
or over-fitting, we also impose a minimum threshold, γ,
to validate a violating labeling. The violation criterion is
therefore given as:

ỹ>Hỹ + ỹ>(τ + ∆)− ȳ>r > γ (27)

The training algorithm terminates when the returned label-
ing, ỹ, does not satisfy (27).
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C. An Intuition of Well-M3N

For the sake of providing an easier intuition of the proposed
method, we depict a simplified, hypothetical scenario in Fig. 3.
The goal is to detect the active phase of a signal which extends
approximately between frames 45 and 120. The measurement
could be an audio signal, an action feature from a video,
or even a rise or fall in stock prices. By using a simple
threshold-based detector such as k-means (the threshold is the
continuous green line), the measurement is incorrectly decoded
when it temporarily drops below the threshold. The output of
the threshold-based detector is shown as the red dotted line.
With Well-M3N, this labeling only serves as the initial labeling
(1y) for the first round of M3N training. The outcome is a first
value for λ that is used to seek a violating labeling, 2y (second
inferred labeling in Fig. 3) that modifies some of the labels of
1y. The ensuing step of MKL learning assigns two weights,
µ1 and µ2, to these labelings, hopefully rewarding the labeling
that better fits the data (2y) and leading to a final, more correct
classifier.

m
e
a
s
u
re
m
e
n
t

Fig. 3: An illustration of Well-M3N.

IV. EXPERIMENTS

In this section, we report experiments comparing the pro-
posed Well-M3N with three popular unsupervised algorithms:
k-means, EM and unsupervised structural SVM (called unsu-
pervised SSVM for short in the following) [25], [31]. This
is a comprehensive comparison since k-means is a baseline
algorithm that treats the data as unstructured, EM is a gener-
ative approach where latent variables are marginalized during
training, and unsupervised SSVM is an example of local SVM
algorithm. The comparison is carried out over two tasks of
sequence segmentation, reporting the F1 score of all predictors
against the withheld ground-truth labels of the training set
(Tables I and III) and of a separate test set (Tables II and
III). For the second task, we also compare the proposed
method with DCN (Deep Clustering Network), a very recent
(2017) clustering approach based on deep learning [21]. As
hyperparameters, we have used C = 10−3 for both Well-M3N
and unsupervised SSVM, and ε = 0.1 in the SSVM relaxation.
For the EM model, we have used Gaussian emissions with full

covariance matrices. For DCN, we have used a single hidden
layer with 10 neurons1.

A. Datasets Description

The experiments have been conducted over two time-
segmentation datasets: 1) the Gesture Phase Segmentation
dataset [32] from the UCI Machine Learning repository [33]
and 2) a dataset of weather and climate data made available
by the Australian Government Bureau of Meteorology (BoM).
The Gesture Phase Segmentation dataset consists of Kinect
skeletal information for six joints (hands, wrists, head and
spine) of an actor narrating a story. As an example, Fig. 4
shows a visualization of the joints in a sub-sample of frames.
Temporal annotation is provided in terms of gesture phases
such as rest, preparation, stroke, hold and retraction. Given
that we only assign binary labels, for our experiment we have
equated ‘rest’ to the negative class and all the other active
phases to the positive. Please note that these settings are prob-
ing as there will be many borderline measurements between
the two classes. We have also scaled the measurements up by
a factor of 100 to work in an approximately unitary range.
In this dataset, a name such as ‘Gesture-A1’ refers to the
video of actor ‘A’ narrating story ‘1’. The length of the videos
varies from a minimum of 1, 073 to a maximum of 1, 747
frames. The BoM dataset consists of weather and climate time
series made publicly available by the Australian Government
Bureau of Meteorology. The time series we have used come
from two locations near Hobart, Tasmania, and consist of
daily observations of 16 features (rainfall, minimum and
maximum temperatures, evaporation, hours of sunshine, speed
of maximum wind gust; and temperature, relative humidity,
cloud amount, wind speed, and MSL pressure at both 9am
and 3pm) spanning from 1 July 2017 to 31 July 2018. For the
experiments, we have used the rainfall feature as the binary
response and the remaining features as predictors. Since the
rainfall levels vary significantly, this task is expected to be
probing.

B. Initialization

Initialization plays an important role in the performance of
all tested algorithms. Despite its algebraic convexity, M3N,
too, appears to be sensitive to the starting ground-truth label-
ing. Therefore, we have decided to conduct the experiments
by using k-means to initialize the three structured predictors.
In turn, the initial centroids of k-means have been assigned
randomly from the data for 10 iterations, and the resulting per-
formance is reported in terms of mean and standard deviation.
Overall, k-means has proved to be remarkably insensitive to
its initialization, leading to very small variations in the results.

C. Experimental results

Table I reports the F1 score (mean and standard deviation)
over the Gesture Phase Segmentation dataset for the compared
techniques from the initial labelings provided by k-means,

1All our code and data will be released publicly in the eventual acceptance
of this paper.
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Fig. 4: Example frames from sequence A1 of the Gesture Phase Segmentation dataset (frames 44, 161, 197, 224, 322, in
order). The first and last frames are examples of the rest phase while the intermediate frames are active phases. Each frame
displays the position of the hands, wrists, head and spine of a narrating actor: head-spine: red bar; left hand-left wrist: blue
bar; right hand-right wrist: green bar. This figure should be viewed in color.

showing the best results in bold face. Well-M3N has achieved
the best average F1 score and the highest for 5 sequences out
of 7, outperforming EM by 5 percentage points on average. In
addition, it outperforms k-means and unsupervised SSVM by
6 and 9 percentage points, respectively. The most interesting
result is the comparison with unsupervised SSVM: as we said
previously, the main difference between these two techniques
is that unsupervised SSVM replaces the predicted labeling at
every learning iteration, whereas Well-M3N accumulates them
over iterations. This results in an averaging capability that
makes the latter model more stable and effective.

To probe this comparison further, Fig. 5 shows a comparison
of the labelings predicted by Well-M3N and unsupervised
SSVM for 96 frames of sequence Gesture-B3. This frame
segment contains two events, one longer and one shorter,
separated by a brief rest phase. In the figure, Lgt denotes the
ground-truth labeling, L1 is the initial labeling obtained by k-
means, L2 and L3 are the intermediate labelings generated by
Well-M3N and unsupervised SSVM during learning, and Lp
is their final prediction. The L1 sequence shows that k-means
produces an uncertain segmentation, with various bursts of
false negatives. Using this sequence for initialization, Well-
M3N is able to produce an L2 labeling that is much closer
to the ground truth and an L3 labeling that is all negative.
By using all these labelings to train the final multi-kernel
model, Well-M3N is able to provide a final prediction (Lp)
that correctly detects both events, with only a one frame glitch
for the first and a slight delay for the second. Conversely,
unsupervised SSVM only produces labelings that are very
close to the initialization, with several bursts of false negatives
that clearly affect the overall F1 score for this sequence. This
example illustrates better than anything the different behavior
of the proposed Well-M3N approach compared to an alternate-
steps SVM approach.

In turn, Table II compares the generalization performance of
Well-M3N against k-means, EM and unsupervised structural
SVM. To conduct this experiment, we have trained each model
using only a single sequence, and tested it with the other six.
Table II reports the F1 score (mean ± standard deviation) over
the six test sequences for every model and training sequence
(for instance, the first row reports the average F1 score over
sequences A2-C3 for models trained with sequence A1). Well-

M3N clearly dominates the other techniques by a noticeable
margin (at least 2 percentage points in the majority of cases
and 3.5 on average). These results suggest that learning
from multiple labelings can enjoy better generalization (or
regularization) than learning from a single labeling such as
with k-means or unsupervised structural SVM. The F1 score
is also higher than that of the generative probabilistic model
that learns by marginalizing the labels (EM).

Eventually, Table III reports the F1 scores (mean and stan-
dard deviation) of all the compared algorithms over the BoM
dataset. Rows 1 and 2 show the accuracy over the undisclosed
labels of the training sequences while rows 3 and 4 show the
accuracy over the cross-validation sequences. On this dataset,
the best performance has been achieved by the proposed
Well-M3N and the deep learning-based DCN. Well-M3N has
reported the highest F1 score in two cases, DCN in one, and
one tie. Given the deep architecture of DCN, it is possible that
other combinations of numbers of layers and neurons could
achieve even higher performance. However, the comparison is
somehow biased because Well-M3N is only assessed over the
original feature space. The improvements over the best of the
other techniques range between 0.2 percentage points (row 1)
and 1.3 percentage points (row 2). In addition, the standard
deviations are very low, suggesting that the differences should
be statistically significant in all cases.

D. Comparison of the computational complexity of Well-M3N
and unsupervised SSVM

For an insight on the computational complexity of Well-
M3N, it can be useful to compare it with its closest method,
unsupervised SSVM. A single run of both the baseline M3N
and SSVM solvers has quadratic complexity, O(N2), in the
number of samples, N (see [27], [34] for details). Unsuper-
vised SSVM iterates SSVM until the inferred latent variables
stabilize: by referring to the number of iterations as IL, its
complexity can be expressed as O(IL N

2). In our experiments,
the value of IL proved typically between 2 and 3. At its
turn, Well-M3N iterates M3N over the number of violating
labelings, L, which proved typically in the order of 2 to
4. In addition, at every iteration it solves a multi-kernel
problem that is iterative at its turn. Referring to the number
of MKL iterations as IMKL, the overall complexity can then
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TABLE I: Comparison of the F1 score (mean ± standard deviation) for k-means, EM, unsupervised SSVM and Well-M3N
over the Gesture Phase Segmentation dataset.

DATASET k-MEANS EM UNSUPERVISED SSVM WELL-M3N
GESTURE-A1 (32D) 0.60±0.00 0.73±0.00 0.59±0.01 0.66±0.00
GESTURE-A2 (32D) 0.58±0.00 0.75±0.00 0.59±0.00 0.66±0.00
GESTURE-A3 (32D) 0.72±0.03 0.68±0.00 0.72±0.04 0.76±0.01
GESTURE-B1 (32D) 0.88±0.01 0.86±0.01 0.88±0.00 0.94±0.00
GESTURE-B3 (32D) 0.88±0.01 0.75±0.02 0.81±0.00 0.91±0.00
GESTURE-C1 (32D) 0.74±0.02 0.81±0.00 0.63±0.00 0.81±0.00
GESTURE-C3 (32D) 0.78±0.03 0.70±0.02 0.78±0.00 0.85±0.00
Gesture average 0.74±0.00 0.75±0.00 0.71±0.00 0.80±0.00

1

Lgt 111111111111111111111111111111111111111111111111111111111111000000001111111111111111111110000001

L1 100000111111110110000111111111111111111111111111100011111111110001111110000001111111111101111111
L2 111111111111111111111111111111111111111111111111111111111111111111111100000000111111111111111111
L3 111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
Lp 111111111111111110111111111111111111111111111111111111111111111111111100000111111111111111111111

L1 100000111111110110000111111111111111111111111111100011111111110001111110000000111111111110111111
L2 111101111111101100001111111111111111111111111111000111111111110011100000000001111111111101111110
L3 111101111111101100000111111111111111111111111111000111111111110011110000000001111111111101111110
Lp 111101111111101100000111111111111111111111111111000111111111110011110000000001111111111101111110

Fig. 5: Comparison of intermediate and final labelings from Well-M3N (above) and unsupervised SSVM (below).

TABLE II: Comparison of the average cross-validation F1 score (mean ± standard deviation) for k-means, EM, unsupervised
SSVM and Well-M3N over the Gesture Phase Segmentation dataset.

TRAINING SEQUENCE k-MEANS EM UNSUPERVISED SSVM WELL-M3N
GESTURE-A1 (32D) 0.765±0.098 0.765±0.150 0.759±0.101 0.861±0.080
GESTURE-A2 (32D) 0.704±0.125 0.777±0.108 0.714±0.098 0.793±0.096
GESTURE-A3 (32D) 0.748±0.108 0.839±0.080 0.706±0.122 0.840±0.087
GESTURE-B1 (32D) 0.659±0.069 0.775±0.083 0.642±0.056 0.757±0.065
GESTURE-B3 (32D) 0.806±0.089 0.795±0.103 0.800±0.093 0.827±0.083
GESTURE-C1 (32D) 0.733±0.112 0.753±0.119 0.709±0.117 0.807±0.091
GESTURE-C3 (32D) 0.784±0.099 0.767±0.115 0.750±0.101 0.833±0.089
Gesture average 0.743±0.100 0.782±0.108 0.726±0.098 0.817±0.084

be expressed as O(L IMKL N
2). De facto, the training time of

Well-M3N has been approximately 5−6× that of unsupervised
SSVM in most cases. Figure 6 shows the rapid convergence of
the Well-M3N training algorithm as the number of labelings
increases.

V. CONCLUSION

In this paper, we have presented a novel approach for
performing unsupervised maximum-margin learning of struc-
tured predictors. The proposed approach, named Well-M3N
to credit its two main components (Well-SVM [18] and
M3N [27]), extends the minimax relaxation of [18] from
the i.i.d. to the structured case. The extension is provided
by leveraging maximum-margin Markov networks and re-
organizing the structured feature vectors and loss function
in a form that allows for finding violating labelings for the

relaxation. Experimental results over two time-segmentation
datasets have shown that the proposed approach has been
able to achieve competitive F1 scores, outperforming EM
and unsupervised structural SVM in the majority of cases,
both over the withheld labels and cross-validation test sets,
and achieving comparable performance to a deep learning-
based approach. In the light of this, we believe that the
proposed technique can represent an interesting alternative to
conventional unsupervised training approaches and find use for
tasks as diverse as time-series segmentation, graph labeling,
activity detection and other similarly structured tasks.

APPENDIX A
PROOF OF CONVERGENCE

In order to prove the convergence of Algorithm 1, we only
need to prove that the training objective decreases or remains
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TABLE III: Comparison of the F1 score (mean ± standard deviation) for k-means, EM, unsupervised SSVM, Well-M3N and
DCN over the BoM dataset.

TRAINING EVALUATION k-MEANS EM UNSUPERVISED SSVM WELL-M3N DCN
HOBART 1 HOBART 1 0.587 ± 0.001 0.594 ± 0.000 0.572 ± 0.009 0.596 ± 0.001 0.589 ± 0.000
HOBART 2 HOBART 2 0.560 ± 0.003 0.553 ± 0.010 0.546 ± 0.002 0.573 ± 0.002 0.573 ± 0.000
HOBART 1 HOBART 2 0.565 ± 0.002 0.551 ± 0.000 0.555 ± 0.001 0.569 ± 0.001 0.573 ± 0.000
HOBART 2 HOBART 1 0.580 ± 0.001 0.582 ± 0.004 0.583 ± 0.005 0.590 ± 0.002 0.585 ± 0.000

Average 0.573 ± 0.003 0.570 ± 0.004 0.564 ± 0.004 0.582 ± 0.001 0.580 ± 0.000

Number of labelings
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Fig. 6: Training objective of Well-M3N (13) as a function of
the number of labelings (BoM sequence Hobart 1).

equal every time a new ground-truth labeling is added, with
some boundary conditions. To this aim, let us consider the
objective as given in (7):

min
µ

max
λ

L∑
l=1

µlG(λ, yl) (28)

Let us assume that the objective has been trained thus far
using the current working set of L labelings. The resulting
model is noted as λ̄L and the weights as µ̄1:L. We then find
a new violating labeling, yL+1, such that G(λ̄L, y

L+1) <
G(λ̄L, y

l), l = 1 . . . L, and consider the following functional:

max
λ

L+1∑
l=1

µlG(λ, yl) (29)

computed at set point µ = {µ̄1:L, µL+1 = 0}. By construction,
its value is identical to that of (28). By now granting the
freedom to minimize over µ, we have that:

min
µ

max
λ

L+1∑
l=1

µlG(λ, yl) ≤ min
µ

max
λ

L∑
l=1

µlG(λ, yl) (30)

As for what the dependence on λ is concerned, G(λ, y)
is an SVM dual, a concave function over a convex domain.
Its positive combination,

∑
l µ

lG(λ, yl), with
∑
l µ

l = 1, is
therefore also concave over the same domain and its maximum

is finite. In addition, the objective is bounded from below in
y since the enumeration of labelings is (countably) finite. The
fact that G(λ̄L, y

L+1) < G(λ̄L, y
l), l = 1 . . . L, guarantees

that (30) is not trivially satisfied by the equality.

�

Let us also recall the constrained maximization in (4):

θ̄L(λ) = max
θ

θ

s.t. θ ≤ G(λ, yl) l = 1 . . . L
(31)

and prove that θ̄L+1(λ) ≤ θ̄L(λ). From the Lagrangian
function, we have that:

θ̄L(λ) = min
µ

L∑
l=1

µlG(λ, yl) (32)

Let us note as µ̄(λ)1:L the argument of the minimum and
consider the following function:

L+1∑
l=1

µlG(λ, yl) (33)

computed at set point µ = {µ̄(λ)1:L, µL+1 = 0}. Similarly to
before, its value is identical to that of (32) by construction.

Therefore:

θ̄L+1(λ) = min
µ

L+1∑
l=1

µlG(λ, yl) ≤ θ̄L(λ) (34)

�

APPENDIX B
DERIVATION OF H, τ AND ∆

In this Appendix, we derive the H, τ and ∆ terms used in
Section (III-B). Let us start from the dual function of M3N
(12):
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G(λ, y) =∑
i

∑
a,ya

λi(y
a)∆ti(y

a)︸ ︷︷ ︸
Linear in λ

−

1

2

∑
i,j

∑
a,b

ya,yb

∑
c,d

vc,vd

λi(y
a, yb)λj(v

c, vd)δψi(y
a, yb)>δψj(v

c, vd)

︸ ︷︷ ︸
Quadratic in λ

(35)

First, let us consider the linear part of G(λ, y):∑
i

∑
a,ya

λi(y
a)∆ti(y

a)

=
∑
i

∑
a

[λi(y
a = 0)∆ti(y

a = 0) + λi(y
a = 1)∆ti(y

a = 1)]

(36)
The terms inconsistent with the ground-truth labeling con-

tribute to G(λ, y). Therefore, we can rewrite them as y>∆
where, for every graph i, ∆ is formed as follows:

∆> =

{λi(ya = 0), λi(y
a = 1)︸ ︷︷ ︸

for the ath node

} 0 ∈ R4Ei︸ ︷︷ ︸
All zeros for the edges


For every graph i, the terms enclosed inside braces are

concatenated, followed by a vector of 4Ei zeros. Such con-
catenation has to be repeated for all graphs, i.e., i = 1 . . . N .

Now, let us consider the quadratic part of G(λ, y):

1

2

∑
i,j

∑
a,b

ya,yb

∑
c,d

vc,vd

λi(y
a, yb)λj(v

c, vd)δψi(y
a, yb)>δψj(v

c, vd)

=
1

2

∑
i,j

∑
a,b

ya,yb

∑
c,d

vc,vd

λi(y
a, yb)λj(v

c, vd)

[
ψi(xi, y

a
i , y

b
i )− ψi(xi, uai , ubi )

]> [
ψj(xj , y

c
j , y

d
j )− ψj(xj , vcj , vbd)

]
=

1

2

∑
i,j

∑
a,b

ya,yb

∑
c,d

vc,vd

λi(y
a, yb)λj(v

c, vd)

[
habi
>
yabi − habi

>
uabi

]> [
hcdj
>
ycdj − hcdj

>
vcdj

]
=

1

2

∑
i,j

∑
a,b

ya,yb

∑
c,d

vc,vd

λi(y
a, yb)λj(v

c, vd)

[(
habi
>
yabi

)> (
hcdj
>
ycdj

)
−

(
habi
>
yabi

)> (
hcdj
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)
−
(
habi
>
uabi

)> (
hcdj
>
ycdj

)
+(

habi
>
uabi

)> (
hcdj
>
vcdj

)]
(37)

Neglecting the last term since it is independent of y during
the maximization of G(λ, y) leads to:

=
1

2

∑
i,j

∑
a,b

ya,yb

∑
c,d

vc,vd

λi(y
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(38)

For the definition of H, let us consider the first term of (38):
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∑
a,b

ya,yb

∑
c,d

vc,vd

[
λi(y

a, yb)yabi
>
habi h

cd
j

>
ycdj λj(v

c, vd)
]

=
1

2

∑
i,j


∑

a,b

ya,yb

λi(y
a, yb)yabi

>
habi


∑

c,d

vc,vd

hcdj
>
ycdj λj(v

c, vd)




Given that
∑
ya,yb

λ(ya, yb) = C, we obtain:

=
1

2

∑
i,j

∑
a,b

Cyabi
>
habi

∑
c,d

Chcdj
>
ycdj


(39)

If we design habi as follows, where habi ∈ R6×(2D+4)

(Section (III-A)):
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habi =


Cxbi 0D 0 0 0 0
0D Cxbi 0 0 0 0
0D 0D C 0 0 0
0D 0D 0 C 0 0
0D 0D 0 0 C 0
0D 0D 0 0 0 C



then we can easily rewrite the first term of (39) as:

1

2

∑
i,j

∑
a,b

ya,yb

∑
c,d

vc,vd

[
yabi
>
habi h

cd
j

>
ycdj

]
(C has been absorbed in habi )

=
1

2

∑
i,j

y>i hih>j︸ ︷︷ ︸
Hij

yj



After the concatenation of label vector y = [y1, y2, . . . , yN ]
and the formation of H as the matrix of blocks Hij , we can
write the above summation as:

=
1

2
y>Hy (comment: 1/2 can be easily absorbed inside H)

→ y>Hy

Similarly, for the definition of τ , let us consider the second
term of (38) which is linear in y:

−
∑
i,j

∑
a,b

ya,yb

∑
c,d

vc,vd

λi(y
a, yb)λj(v

c, vd)
(
habi
>
yabi

)> (
hcdj
>
vcdj

)

=−
∑
i,j

∑
a,b

ya,yb

λi(y
a, yb)habi

>
yabi


>∑

c,d

vc,vd

λj(v
c, vd)hcdj

>
vcdj



After formulating habi as mentioned above, we have:

= −
∑
i,j

∑
a,b

habi
>
yabi

>∑
c,d

hcdj
> ∑
vc,vd

λj(v
c, vd)vcdj


Let κcdj =

∑
vc,vd

λj(v
c, vd)vcdj

= −
∑
i,j

∑
a,b

habi
>
yabi

>∑
c,d

hcdj
>
κcdj


= −

∑
i

∑
a,b

habi
>
yabi

>∑
j

∑
c,d

hcdj
>
κcdj


= −

(∑
i

hi
>yi

)>∑
j

∑
c,d

hcdj
>
κcdj


= −

(∑
i

yi
>hi

)∑
j

∑
c,d

hcdj
>
κcdj


= −

∑
i

yi
>

hi∑
j

∑
c,d

hcdj
>
κcdj


After the concatenation of label vector y = [y1, y2, . . . , yN ]

and the formation of τ as follows:

τ =

−h1
∑

j

∑
c,d

hcdj
>
κcdj

 ,−h>2

∑
j

∑
c,d

hcdj
>
κcdj

 , . . . ,

−h>N

∑
j

∑
c,d

hcdj
>
κcdj


= −

∑
i

yi
>

hi∑
j

∑
c,d

hcdj
>
κcdj


= y>τ

we have completed the rewriting of the quadratic part of (35)
as y>(Hy+ τ). Given that the linear part of (35) had already
been rewritten as y>∆, we can finally rewrite the entire (35)
as the following quadratic function of ground-truth labeling y:

−G(λ, y) = y>(Hy + τ + ∆) �
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