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Preserving Edge Knowledge Sharing among IoT
Services: A Blockchain-based Approach

Gaolei Li, Mianxiong Dong, Laurence T. Yang, Kaoru Ota, Jun Wu, Jianhua Li

Abstract—Edge computational intelligence, integrating artifi-
cial intelligence (AI) and edge computing into the Internet of
Things (IoT), will generate many scattered knowledge. To enable
auditable and delay-sensitive IoT services, this knowledge will be
shared among decentralized intelligent network edges (DINEs),
end users, and supervisors frequently. Blockchain has a promising
ability to provide a traceable, privacy-preserving and tamper-
resistant ledger for sharing edge knowledge. However, due to the
complicated environments of network edges, knowledge sharing
among DINEs still faces many challenges. Firstly, the resource
limitation and mobility of DINEs impede the applicability of
existing consensus tricks (e.g., Poof of Work, Proof of Stake, and
Paxos) of blockchain. Secondly, the adversaries may eavesdrop the
content of edge knowledge or entice the blockchain to forks using
some attacking models (like man-in-the-middle attack, denial of
services, etc.). In this paper, an user-centric blockchain (UCB)
framework is proposed for preserving edge knowledge sharing
in IoT. Significant superiorities of UCB benefit from the proof
of popularity (PoP) consensus mechanism, which is more energy-
efficient and fast. Security analysis and experiments based on
Raspberry Pi 3 Model B demonstrate its feasibility with low
block generating delay and complexity.

Keywords—Edge computational intelligence; Internet of things
(IoT); blockchain; knowledge sharing; proof of popularity (PoP).

I. INTRODUCTION

Edge computational intelligence (ECI), more generally in-
telligent computing at edges [1, 2, 3, 4, 5], that forms the
fundamental paradigm for the great majority of solutions
related to Internet of things (IoT) [6, 7]. Fog/edge computing
and artificial intelligence (AI) are the most important compo-
nents of ECI. To promote the deployment of ECI in IoT, the
basic functions including task replacement and computation
offloading has been given full considerations in [8, 9, 10].
By leveraging ECI to process large-scale sensing data, the
decentralized intelligent network edges (DINEs) are of ability
to contribute their localized efforts to discover and accumulate
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the valuable knowledge, which is defined as “edge knowledge”
in this article. For brief understanding, these edge knowledge
can be perceived as the output of ECI in heterogeneous IoT
networks. Edge knowledge will be shared among DINEs, end
users and supervisors frequently to enforce time-sensitive IoT
applications as well as the auditability of decision-making at
edge devices. Besides, some implicit clues can be inferred
precisely by associating the shared edge knowledge.

The existing systems such as [11] and [12] have studied the
raw data sharing in standard distributed computing systems,
where some security assumptions were pre-defined. However,
for geo-distributed IoT scenarios such as city transportation,
smart grid, and healthcare, edge knowledge sharing faces
many challenges [13, 14, 15]. Firstly, the subsystems in geo-
distributed IoT scenarios are often maintained by multiple
stakeholders. Each stakeholder occupies edge knowledge as
their own property. Secondly, edge knowledge is often at risk
of being attacked. Once it has tampered, the correct decisions
can not be made, leading to a huge loss. Blockchain is a
promising technology that allows developers to exploit the
cryptography to ensure data security in a distributed ledger. By
mining, it provides an unprecedented paradigm that encourages
each IoT device to take responsibility for its data security.
Along with the removal of AI to edges, blockchain has
great potentials to preserve edge knowledge of IoT devices.
Therefore, the motivation of this paper is to preserve the
security of edge knowledge sharing among IoT services by
using blockchain-based approach. We aim to deal with the
following security problems.

Weak copyright protection. As knowledge discovering of-
ten occupies more computational resources than data sensing,
resource-limited edges are more willing to protect the copy-
right of their knowledge. Most of the existing studies are de-
signed for standard distributed computing, where participants
are trusted, synchronous and static [16, 17, 18, 19]. Recent
notable studies focus on data trading [20, 21], the trust of edge
computing, and energy trading [22, 23]. These studies have
identified that the participants of data and resources sharing
in edge computing-based IoT are dynamic, asynchronous and
unknown. Without strong copyright protecting, DINEs can not
achieve reasonable benefits so that they have no enthusiasm to
execute the arduous learning tasks actively.

Untrusted accounting at edges. Knowledge sharing among
DINEs is originally proposed to improve the generalization
ability of deep neural networks (DNNs) by sharing some
information among several prediction tasks appropriately [24,
25, 26]. With this goal, a trusted branching procedure (BP)
is defined to select the participants and initialize the system
configuration in a centralized way. For example, C. Liu, et
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TABLE I:
TYPICAL CONSENSUS MECHANISMS FOR DATA, FEATURE, ENERGY AND KNOWLEDGE SHARING

Work Participant Scope Object Trusted center Limitations

Grouping [24] Known, static Localized, synchronous Features
√

Trustless, failure
MTFS [26] Unknown, dynamic Localized, synchronous Features

√
Scalability, delay

Cascading [25] Known, static Distributed, linear Features × Trustless, delay
Blockchain [27, 28] Known, static Multi-party, cloud Raw data × Overhead, redundancy
PriWatt [22] Anonymous, token Decentralized Energy × Virtual coin
Consensus [33] Unknown, dynamic Byzantine, self-organizing Knowledge × Location-independent
PoP (this paper) Edge, vulnerable Geo-distributed, asynchronous Knowledge × ————–

al. proposed a multi-task feature selection (MTFS) scheme
based on graph-clustered feature sharing in [26]. The MTFS
can select the most valuable features from multiple computing
tasks automatically in a dynamic scenario, where the feature
correlations between different tasks are not unknown. Notably,
knowledge is a high-level abstract and orchestration of fea-
tures, which is produced after the baptism of large-scale end
users. Under edge environments, there is no trusted BP to mon-
itor and control the knowledge sharing. Moreover, considering
the cyber-physical mobility and vulnerability, DINEs can not
provide trusted accounting for edge knowledge sharing in IoT.

Inefficient consensus. Blockchain’s superiority closely de-
pends on its consensus mechanisms. Any IoT data that can
be formulated as transactions can be shared securely using
blockchain [22, 29, 30]. However, the cost of data sharing
increases sharply along with the growth of data scale in IoT
[31]. Reference [32] advocated to enforce blockchain-based
data sharing in AI-powered networks, and further Study [33]
proposes a proof of creditability (PoC) to make big data at
edges open. TABLE I shows the comparison of latest consen-
sus mechanisms. Traditional consensus mechanisms relying on
static wealth are inefficient for DINEs in IoT.

To address these problems, we propose an user-centric
blockchain (UCB) framework, which enables secure and ef-
ficient edge knowledge sharing among IoT services. In UCB,
DINEs with different data processing models are responsi-
ble to provide intelligent edge services for end users and
cooperatively discover knowledge at edges. The DINE in
UCB is endowed with four different functions: 1) publish the
discovered edge knowledge to its known DINEs; 2) collect the
scattered edge knowledge from the whole network and write
them on a pending localized ledger as transactions; 3) calculate
the correlation matrix between the collected edge knowledge
and transfer them into proposals; 4) elect a DINE that discovers
the most valuable knowledge to generate block.

Strength of proposed UCB framework is that it provides an
efficient, scalable and decentralized ledger for edge knowledge.
Different from traditional mining, the goal of UCB’s mining
is to find the most popular knowledge rather than a random
number. UCB’s mining adopts proof of popularity (PoP) al-
gorithm, which is proposed to replace traditional consensus
mechanisms. The PoP treats the usage of edge knowledge as
DINE’s wealthy and it is of ability to make consistent decisions
to fulfill the requirements of edge knowledge sharing even if

the minority DINEs in UCB are of absence. Main contributions
of this paper are summarized as follows:

• A flexible UCB framework is proposed for IoT, which
enables peer-to-peer secure edge knowledge sharing
between untrusted DINEs. In the UCB framework, both
copyright and privacy of edge knowledge are protected.

• A proof of popularity (PoP) consensus algorithm is
proposed, which can enhance the fault-tolerance and
security of blockchain in edge environment. Different
from existing consensus mechanisms, the PoP treats
the DINEs’ knowledge usage as wealth to compete the
privilege of knowledge block generating.

• The superiority of our schemes is validated by security
analysis and experimental evaluation. The experiment is
implemented on Raspberry Pi 3 Model B.

The organization of our work is introduced as follows. In
Section II, we review the architectural evolution to ECI, and
then introduce the related decentralized consensus algorithms.
Section III provides a scenario statement including network
model, adversary model, and security requirements of edge
knowledge sharing in IoT. To help readers to understand
the application scope of our work, the Part A of Section
IV introduces the key components of UCB framework and
their functions. And then, the workflow of the PoP consensus
mechanism is described in Part B of Section IV. Security-aware
decentralized knowledge ledger between DINEs is explained
in Part C of Section IV. Security analysis and experimental
evaluation based on real datasets and Raspberry Pi 3 are
demonstrated in Section V. Finally, we conclude our work and
envision the future work in Section VI.

II. RELATED WORK

Edge entities as important infrastructures that close to end
users have great potential to produce useful knowledge pre-
cisely. As the rapid development of ECI in various industries,
knowledge sharing between DINEs should be paid more
attention. Although this paper is a further study based on
many previous approaches, it has an essential difference from
existing approaches. In this section, we will review the recent
development of ECI and blockchain in IoT to highlight the
value of our work.
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A. Edge Computational Intelligence
Recently, edge computational intelligence (also named as

edge learning or edge AI) has attracted increasing atten-
tion. The ECI consists of edge computing and machine
learning. Literature [35] envisioned that the ECI may en-
able computation-oriented multiple access for ultra-fast data
aggregation, importance-aware resource allocation for agile
intelligence acquisition, and learning-driven signal encoding
for high-speed data-feature transmission. Machine learning at
edges has been utilized to predict the number of end users,
accelerate network speed and provide personalized networking
services in 5G cellular networks [36, 37]. Especially, H. Li,
et al study that deep learning can be applied in the edge
environment by reasonably distributing the neural network
layers to different edges [38] and T. Wang, et al propose a
three-layer privacy-preserving cloud storage scheme based on
computational intelligence in fog computing [39].

This paper is the first to study how to share knowledge
among DINEs securely. Before this, features sharing is always
a hot topic in the field of AI that often needs to process mul-
tiple tasks simultaneously. A. Torralba, et al. [27] contributed
a notable achievement, in which the common features were
selected and shared among procedures in an overlapping way.
The most popular framework consists of two different kinds
of learning models: 1) Weak learning model Cn, and 2) strong
learning model C∗. By aggregating the knowledge of multiple
weak learning models, C∗ provides more robust performance:

C∗(D,Ym) =

n∑
i=1

Ci(Di, Ym) (1)

where D is the input dataset and {D1, D2, ..., Dn−1, Dn}
is a group of sub-datasets of D. C∗(D,Ym) =

log
P (y=′Y ′m,′Y ′m∈Y )

1−P (y=′Y ′m,′Y ′m∈Y ) is the log value of being in category
′Y ′m. Y denotes a set of data labels {Y1, Y2, ..., Ym, ..., YM}.

Subsequently, features sharing has always been improved
and extended to support object classification and attribute
prediction. Y. Lu, et al. [24] proposed a thin network model
for improving the adaptivity of feature sharing. Unfortunately,
these approaches still have no deployment in real industries for
the real industrial environments are not as static as laboratory
settings. In this paper, we will leverage this framework and
extend it to edge environment, which will improve its appli-
cability on real IoT systems.

B. Blockchain and Decentralized Consensus
For the future smart city, major things will be intercon-

nected by IoT. Each IoT node will be equipped with several
computational intelligence technologies. Since the emergence
of blockchain has fulfilled many security, maintenance, and
authentication requirements of IoT systems, blockchain-based
IoT systems are seen from the past few years [41, 42].

In order to apply blockchain in future IoT systems, literature
[43] studies how to offload the computation-intensive mining
tasks to the neighboring DINEs. Due to the mismatch between
resource limitations of IoT devices and the high cost of
mining tasks, any wealth depending on static resources can

not guarantee the trust of participants. For edge environment,
a novel resource-efficient decentralized consensus mechanism
named as proof of collaboration (PoC) is proposed in [34].
In PoC, the data flows are treated as transactions and the
collaboration credit is abstracted as virtual coins for trading
data between edge entities. However, as the growth of data
scale in IoT, the length of blockchain increases sharply [44].
In our work, a proof of popularity (PoP) scheme is proposed,
which will reduce the cost of mining tasks on edge devices.

Recently, the decentralized consensus has gained increasing
attention. With the swift development of blockchain in various
scenarios, research on decentralized consensus forms two key
branches. The first is the proof-based scheme. The most
famous schemes of this branch include Proof of Work (PoW)
and Distributed Proof of Stake (DPoS). Another branch is the
voting-based scheme, typical schemes include Ripple, Practical
Byzantine Fault Tolerance (PBFT) and Paxos. W. Wang, et
al. [45] compare the advantages and disadvantages of these
decentralized consensus mechanisms, which comprehensively
reviewed the studies on the recent development of blockchain’s
consensus mechanisms.

Different from existing studies, we propose a UCB frame-
work, which presents joint optimization for blockchain in IoT
by enabling secure and efficient edge knowledge sharing. In
UCB, each DINE is of ability to act as a respective well-
equipped node that can run the learning models, mining
tasks and block generating. To enhance the security of edge
knowledge sharing in IoT, we put forward proof of popularity
(PoP) consensus algorithm. The PoP algorithm is independent
of the computation-consuming miners (e.g., puzzle resolving).
The significant innovation of PoP is that the knowledge blocks
are generated according to the elections among users rather
than mining.

III. SYSTEM MODEL

In this section, the system model of blockchain-based edge
knowledge sharing in IoT is stated comprehensively. The
network model is demonstrated as shown in Fig. 1. The
adversary model is described in part B of this section. Besides,
we highlight the security requirements of edge knowledge
sharing.

A. Network Model
The network model is considered with multiple DINEs, mul-

tiple miners, and many end users. Peer-to-peer communication
is selected to acts as the basic network protocol of the proposed
UCB framework. Throughout this paper, the symbol κ, τ and
h̄ are used to denote the space of DINEs, miners, and end
users, orderly. The DINEs, miners, and end users have their
universally unique identifiers (UUIDs). We denote the DINE
i with the symbol κi, miner j with τj and end user k with
h̄k. Multiple DINEs can work on one Raspberry Pi 3 Model
B (Rasp3+) if the size of Rasp3+’s secure digital (SD) is
large. Edge knowledge of each fog domain is maintained by a
miner in the blockchain network. Each miner has two different
procedures 1) knowledge monitoring procedure and 2) PoP
consensus procedure.
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Fig. 1: Network model of proposed UCB for edge knowledge
sharing in IoT.

The edge knowledge is discovered by local DINEs, and then
published to the knowledge monitoring procedure of neighbor-
ing DINEs. Each miner can analyze the received knowledge
deeply and map them into proposals for end users. We consider
the raw sensing data can be sent to multiple DINEs and
each edge knowledge can be subscribed by multiple DINEs.
Besides, in our framework, each end user is assumed as a
“rational man”, which will accept the most suitable proposal
according to his demands. In addition, we assume that there
is a known access control matrix among the DINEs and the
social distance between DINEs is less than six hops. Such an
assumption has been formulated as a small world theory.

B. Adversary Model

The main goal of an attacker may tamper the contents
of edge knowledge that they are not permitted to. Both
unauthorized DINEs and external intruders can be treated as
adversaries. Due to the limited resources, DINEs in IoT are
vulnerable to strong attacks. There are four different attacking
methods that may be adopted by adversaries: 1) inject false
knowledge into the network edges, 2) disturb the formal
working of DINEs by launching dense of services (DoS), 3)
tamper the content of knowledge in the blockchain network.
In addition, 4) DINEs with a higher security level may leak
the confidential edge knowledge to the ordinary DINEs.

C. Requirements of Edge Knowledge Security

With respect to edge knowledge sharing in IoT, we recognize
the following unique security requirements of edge knowledge
sharing. In particular, the security risks of knowledge transac-
tions in IoT blockchain.

1) Edge Knowledge Desensitization: In many IoT scenarios,
especially for the face, fingerprint, voice recognition-based
cases, the knowledge discovered by DINEs will be sensitive
data that should be well controlled. Before sharing the knowl-
edge with the other DINEs, edge knowledge desensitization
should be completed to avoid the disclosure of both knowledge
content and the parameters of DINEs. For this purpose, we first

enforce an edge knowledge desensitization policy, by transfer-
ring edge knowledge into various topics. Notably, the edge
knowledge desensitization policy is of ability to distinguish a
unique group of subscribers that the DINE can trust because
the known access control matrix among the DINEs is used to
orchestrate the topic and blocker.

2) Pseudo-DINE Resistance: As described in adversary
model, malicious attacks may register a pseudo-DINE to
publish false edge knowledge and participate the blockchain
network to compete for the privilege of knowledge block
generating or eavesdrop the edge knowledge traffic from
DINEs with higher security levels. This requires our user-
centric blockchain (UCB) framework to be resilient to the
pseudo DINEs attacking in the sense that the UCB will not
give them additional advantages.

3) 51% Attacking Defence: For traditional blockchain in
IoT, if a participant’s wealth is equal to the sum of other
participants’ wealth, this participant will be easy to preempt
the block and modify his own transactions at any time. For
Bitcoin, this problem is formulated as 51% attacking. Actually,
the traditional consensus mechanism is not suitable to edges
of IoT because the wealth (including the computing, caching,
networking resources) of DINEs is usually further less than the
wealth of cloud. Moreover, the state of DINEs is unpredictable
so that any existing wealth of DINEs in IoT can not be
used as proof during the consensus process of the traditional
blockchain. Edge knowledge sharing with UCB will require a
novel consensus mechanism that can defend 51% attacking.

4) Dense of Services Mitigation: Dense of services (DoS)
attacking has a high success rate by utilizing the distributed and
large-scale nature of IoT devices. DoS attacking may incur two
main kinds of disasters for edge knowledge sharing: 1) ledger
overflow, 2) consensus interrupting. Each kind of disasters can
result in unpredictable results. This requires the UCB and
PoP consensus algorithm is robust when several DINEs are
suffering from the DoS attacks.

IV. WORKFLOW OF USER-CENTRIC BLOCKCHAIN

The key components of UCB framework and their functions
that involved with the ECI are described in detail in Part A.
Part B introduces the proof of popularity (PoP) consensus
algorithm. Fig. 2 show the workflow of UCB framework.

A. Components and Functions
Here, we would like to bring out the workflow of UCB

framework briefly. Comprehensively, entities of DINEs can be
specified as routers, base stations, gateways, personal devices
(e.g., smartphones, cars), even public infrastructures (e.g.,
street lights, buses, and big boards) in a city. DINEs can be
treated as transitional nodes between Internet service providers
(ISP) and local users. Due to the limitation of the resources, it
is common to see that an additional controller is deployed in
DINE to monitor and control the states of connected devices. In
UCB, we implement a stronger DINE based on this controller
to boost the accuracy of edge knowledge associating. In UCB,
each DINE can receive other DINE’s knowledge. Therefore,
each DINEs has the ability of C∗. For a clear explanation of
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Fig. 2: The workflow of UCB framework. Therein, different from the Proof of Work (PoW) solution, the PoP consensus algorithm
exploits the edge knowledge association and end users’ confirms to achieve the consistency of DINEs.

our proposal, the proposed UCB framework is divided into
three layers: 1) Edge knowledge discovering layer; 2) Self-
incentive layer; 3) Association layer.

1) Edge knowledge discovering: With the help of ECI,
edge knowledge discovering layer will process the aggregated
IoT data and discover the valuable knowledge at IoT edges.
These ECIs mainly include many pre-trained learning models
(such as the least absolute shrinkage and selection operator
(LASSO), k-nearest neighbor (KNN), naive bias (NB), sup-
port vector regression (SVR), convolutional neural networks
(CNN)). Characteristics of edge knowledge discovering layer
focus on unbalanced resources and heterogeneous networking
of DINEs. DINEs try their best efforts to recognize and
accumulate knowledge at IoT edges to serve for end users.
In order to achieve better performance and reduce the costs,
DINEs are encouraged to share their own knowledge. The
common operations in edge knowledge discovering layer are
listed as follows:

• Pre-processing operation: execute the pre-processing
functions (e.g., data cleaning, resource offloading, in-
stance selection, data normalization, and transforma-
tion). With these pre-processing operations, the aggre-
gated raw data from various local sensors can be formu-
lated as the standard data of observed objects.

• Monitoring operations: Monitor the resources (such as
computing, caching, and networking) and resource states
of DINEs in the local network and schedule these
resources for efficient and accurate edge knowledge
discovering.

• Recognizing operation: Recognizing operation impute
the output of pre-processing operations into the pre-
trained learning models for discovering knowledge at
edges.

• Provisioning operation: DINEs act as service providers
at edges to provision low-latency services for local end
users. It also can provision edge knowledge subscribing
services for the neighboring DINEs. Besides, DINEs
provide an auditability interface for the supervisors.

2) Edge knowledge sharing: The edge knowledge sharing
layer is self-incentive. It is designed to encourage each DINE
to share their knowledge. By introducing the role of end users
h̄ into the blockchain consensus process, edge knowledge
sharing becomes a self-incentive system, where DINEs are
willing to share their knowledge to attract more end users.
It can be imagined that a DINE who has more valuable
knowledge will attract more end users in IoT. DINE’s profits
will rise up because the average service costs will be reduced
with the rapid growth of end users. Self-incentive makes the
UCB be independent of virtual coins and proof of work. In
such a self-incentive system, the value of knowledge can be
modeled with its popularity. Self-incentive makes the UCB
be independent of virtual coins and proof of work. In our
proposal, the DINEs will consume the value of their edge
knowledge rather than computation. The value of one DINE’s
edge knowledge is denoted as  and defined as the following
equation:

 =

∑K
k=1

∑W
w=1 F(Dk,Ym)

K ×W ×N
(2)

where N represent the number of DINEs in the network model
and W is the maximum number of knowledge discovering
functions on one DINE. K is the knowledge number threshold
that one knowledge discovering function can discover during
the timeslot of generating two neighboring blocks. F(Dk,Ym)

is the usage number of one knowledge when C∗. According to
the definition of , the value of  will be raised up automatically
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if there are more DINEs to join the blockchain networks in the
proposed UCB framework. A network with  < 1/N will be
not valid because there is at least one end users will accept
the knowledge.

Initially, the UCB will reset  into the initial state. Thus, each
DINE begins to collect the edge knowledge from the whole
network and calculate the value of . Once a DINE’s  exceeds
the pre-defined threshold 0, this DINE gains the authority to
stamp a block and broadcasts them to others through the non-
tamper ledger.

3) Edge knowledge associating: Association layer presents
an automatic knowledge value adding model for different
DINEs. In this layer, each DINE can selectively download the
readable knowledge that the local end users can access, and
then associate them to produce better proposals for the local
end users. To evaluate the value of each knowledge, the UCB
allows DINEs to monitor if the proposal is accepted by local
end users. Once a proposal is accepted by local end users, the
value of related edge knowledge will be added. Ultimately, the
value of edge knowledge is equal to its usage number among
local end users. Notably, knowledge associating is also under
the known access control matrix.

B. Proof of popularity (PoP) Consensus
The decentralized consensus algorithm is the basis of all

different blockchains, which form the most important part of
the blockchain platform. During the process of decentralized
consensus, every participant broadcasts its transactions to the
others and simultaneously receives the others’ transactions.
Therefore, every transaction can be achieved and validated by
all participants in the whole blockchain network.

For proof of work (PoW) consensus, participants need to act
as miners to find a random number to solve the pre-defined
puzzle. The first miner that finds this random number is of
ability to write the transactions into the blocks. For proof
of stake (PoS) consensus, the generator of the next block
is elected by validating their wealth and qualifications. Due
to the limited resources and dynamics, both PoW and PoS
are not adaptive to mobile edge computing. For voting-based
consensus (e.g., Paxos and Raft), a candidate that receives
votes from a majority of the full clusters will become the
new illegal leader to maintain the transactions. Both voting-
based consensus and proof-based consensus emphasize the
consistency of participants in the whole blockchain network.

For edge knowledge sharing between multiple DINEs in
IoT, not all DINEs will participate in the public blockchain
networks. Some of DINEs may be self-organized with multiple
private blockchain networks in a geo-distributed way. Even,
there may be only one DINE in a small private blockchain
network. In this case, the value of knowledge in such a small
private blockchain network can not be maintained by DINEs
and should be supervised by the local end users. In our work,
we propose a proof of popularity (PoP) consensus mechanism,
which elects block generator by validating their knowledge
wealth rather than resources or votes.

We formulate two different kinds of ranking, 1) knowl-
edge ranking, and 2) proposal ranking. Actually, the proposal

TABLE II

Algorithm 1: User-centric proposal value ranking and electing.

Input: P ∗i (j), {κi}, Counterji = 0, i ∈ [1, N ], j ∈ [1, s]

Output: φP∗(j)
i (Rj)

1: Collecting proposals in the whole network P ∗i (j)
2: Monitoring DINEs’ confirm signals for proposal acceptance
3: for i = 1 : N
4: if ∃κ that accepts the proposal in P j

i , κ ∈ κi

5: Counterji ++;
6: else {P ∗i (j) is added to the pending list PList
7: Counterji = 0}
8: end
9: end
10: if Length of the pending list Len(PList) < s
11: for i=1:N
12: for j=1:Len(PList)
13: 1) Calculate the the popularity ranking Rj , j ∈ [1, s]

14: 2) Estimate φP∗(j)
i (Rj) according to equation (5), (6)

15: end
16: end
17: Broadcast φP∗(j)

i (Rj = 1) in the whole network
18: Electing the most popular proposal φP∗(j)

i (Rj = 1)
19: end

ranking can be easily calculated by static adding up the end
user feedback. The knowledge ranking is inferred by analyz-
ing knowledge ranking and local usage records of involved
knowledge. Therefore, the popularity of both knowledge and
proposals should be computed.

Stage 1: Popular Proposal Identification. In the traditional
blockchain network, end user’s payment is usually executed
after the transactions are generated and validated. The work of
miners is to find a participant to store large-scale transactions
in a distributed way. Therefore, the performance of traditional
consensus algorithms is independent of the end user’s payment
services so that the second-scale transaction latency can be
accepted. In the edge environment, the DINEs treat the edge
knowledge as transactions. The essential difference is that end
users do not need to pay anything for these transactions, but
they need to identify if the received edge knowledge can be
associated as proposals and if the proposals will be accepted.
Thus, after the end users receive the proposals produced by
DINEs, they can select the satisfactory proposal and return
the corresponding confirm signals to DINEs. The popularity
of one proposal among end users reflects the value of this
proposal.

Each DINE κi in proposed UCB framework is of ability
to maintain a strong leaning model C∗n to optimize the edge
services for end users. The output of a strong learning model
C∗n can be mapped into P ∗ following the equation (3) and
equation (4). By using a mobile edge computing platform,
these proposals can be accessed by all of the authorized local
end users. If there is one local end user accepts a proposal,
the value of this proposal is updated by adding “1”. To
calculate the proposal value ranking, the IoT service popularity
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TABLE III:
OPEN KNOWLEDGE TO EACH DINE

Popularity Proposal Involved knowledge Ranking

0.96 P 2
3 µ2, µ12, µ22

0.92 P 14
1 µ4, µ8, µ10, µ14

0.86 P 3
10 µ8, µ12, µ14 µ8 : 8 > µ12 : 5

0.83 P 71
2 µ3, µ8, µ12, µ31

... ...
0.68 P 12

4 µ1, µ4, µ16, µ26 > µ4 : 3 > µ14 : 2
0.42 P 21

3 µ6, µ9, µ22

0.25 P 49
3 µ7, µ8

0.14 P 80
5 µ8, µ12, µ36

... ...
0.08 P 52

3 µ4, µ8, µ19

is formulated with Zipf’s law.

Z
P∗(j)
i (Rj) =

(
∑s−1

r=1
1
rβ

)−1

Rj
(3)

where Rj is the popularity ranking of j − th proposal and
Z

P∗(j)
i (Rj) presents the proposal j’s usage number in the

local network. In different local networks, the number of end
users may have a great impact on Z

P∗(j)
i (Rj). Therefore,

we standardize the ZP∗(j)
i (Rj) with Z-score normalization as

follows:

φ
P∗(j)
i (Rj) =

Z
P∗(j)
i (Rj)− ZP∗(j)

i (Rj)

σ
(4)

where ZP∗(j)
i (Rj) is the mathematical mean of ZP∗(j)

i (Rj)

and σ is the mathematical variance of ZP∗(j)
i (Rj).

At this step, each DINE κi needs to calculate the proposal
popularity ranking among local end users and anonymously
publish the ranking to the other edge entity for popular pro-
posal identification. Ultimately, the most popular proposal will
be identified from {φP

∗(j)
1 (Rj), φ

P∗(j)
2 (Rj), ..., φ

P∗(j)
N (Rj)}.

Popular proposal identification treats users’ preference as
one kind of wealth of DINEs. This approach establishes a
bridge for jointly optimizing the user experience and consensus
performance. Furthermore, this approach can reduce the trans-
action redundancy for the related knowledge of unaccepted
proposals will be deleted before the block is stamped.

The user-centric proposal value ranking and electing algo-
rithm is shown as illustrated in Table II. Initially, DINEs κi
self-checks their proposals P ∗i (j) and set a two-dimensional
counter array to record the usage frequency of each proposal.
When a piece of new knowledge is discovered, the DINE will
associate this new knowledge with all the knowledge it has
collected to generate new proposals. Before publishing these
new proposals, it will traverse all the neighboring DINEs that
it can access to monitor if the previous proposals have been
accepted by end users. Ultimately, the DINE will calculate

TABLE IV:
HIDDEN KNOWLEDGE TO PARTIAL DINES

Popularity Proposal Involved knowledge knowledge ranking

0.94 [P 2
3 ] µ2, [µ12], µ22

0.92 P 14
1 µ4, µ8, µ10, µ14

0.88 P 3
10 µ8, µ12, µ14 µ8 : [6] > µ12 : [4]

0.84 P 71
2 µ3, µ8, µ12, µ31

... ...
0.45 P 12

4 µ1, µ4, µ16, µ26 > µ4 : 3 > µ14 : 2
0.42 [P 21

3 ] µ6, µ9, µ22

0.35 [P 49
3 ] µ7, [µ8] ...

0.24 P 80
5 [µ8], µ12, µ36

... ...
0.11 [P 52

3 ] µ4, [µ8], µ19

the popularity ranking of previous proposals according to the
two-dimensional counter array.

Particularly, the difficulty of block generating can be well
controlled by specifying which proposal is used to decentral-
ized knowledge ledger. If we choose the most popular proposal
and use it to find valuable knowledge, the average time interval
for block generating will be very short. Otherwise, the average
time interval for block generating will increase.

Stage 2: Security-aware block generating. Section V
demonstrates that the PoP is beneficial to 51% attacking
defense and Pseudo DINE resistance, which also can pro-
tect blockchain security. However, before writing into the
blockchain, the edge knowledge still has a possibility to
be exposed. Although the DINEs can be anonymous in the
blockchain network, it exists a big security risk for the edge
knowledge is open to each DINE. For the propose of secure
edge knowledge sharing between DINEs in IoT, the UCB
enables the security-aware block generating.

Different from stage 1, where the DINE needs to exchange
information with end users, stage 2 requires each DINE to
communicate with the other DINEs. As formulated by the
equation (3) and equation (4), each consensus procedure of the
DINE is responsible to map the aggregated edge knowledge
into proposals. Thus, once a proposal is accepted by end users,
we can backtrack the related edge knowledge of this proposal.

Each edge knowledge will be configured with several au-
thorities for different DINEs’ access and each DINE will be
defined with different security levels. The role-based access
control (RBAC) can be used to match DINE’s security level
with knowledge’s authorities to decide if the DINE can operate
the received knowledge. In this case, the blockchain network
of UCB seems to be divided into a lot of small blockchain
networks (SBNs). The relationship between these SBNs is
modeled with the small-world theory, which is a famous law
in human society. To abstract the real scenarios, we can give
two reasonable hypotheses:
• The geo-distribution of knowledge is observable but the

capacity of each DINE to discover one knowledge is
uneven.

• All participants (e.g., end users and DINEs) are rational
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economic men, that means each participant desires to
maximize his profits or minimize his costs.

In our UCB framework, the producer of each knowledge is
hidden for security and privacy. A DINE only can associate
partial knowledge that it can read and map them into proposals.
At time t, all readable knowledge for a DINE is denoted as
available knowledge space µ = {µ1, µ2, ..., µs}, where s is the
length of available knowledge space µ. knowledge association
in our framework is defined as the following equations:

Len(P ∗) = 2s (5)
P ∗ = H(µ) (6)

where, H(µ) is the function for mapping from available
knowledge space into proposal space. P ∗ is the proposal space,
{[Π(u, 0)], [Π(u, 1)], ..., [Π(u, s−1)], [Π(u, s)]}. Π(u, x) is the
association between x available knowledge in the available
knowledge space µ. Len(∗) is the length getting function.

Table III and Table IV give a glance to the process of
knowledge popularity prediction in different schemes. When
the knowledge is open to each DINE, all knowledge received
from the network can be beneficial to optimize the proposals.
We can trace the association process and calculate the usage
ranking of knowledge. For example, according to the listed
data in Table II, µ8 gains the top usage frequency.

In a real DINE scenario, access control and encryption is
a must to defend knowledge privacy leaking. Therefore, most
of the DINEs has no ability to read all the knowledge data.
For instance, µ8 and µ12 are produced by κ3 and it applies
a copyright protection service for its knowledge. Thus, it will
only share with the DINEs who have purchased the copyright.
Finally, P 2

3 , P 49
3 and P 52

3 can not be generated.
However, in UCB, P 2

3 , P 49
3 and P 52

3 are also considered.
This advantage benefits from the decentralization and society
relationship of HEAIs. For this purpose, we propose a security-
aware block generating algorithm. As mentioned in the previ-
ous, the small world theory is used to model the relationship
between DINEs in the networks. In order to bring out this idea,
we first define an access control matrix Ma for all DINE κ
in the network and a neighboring matrix Ms. The value of
each tuple Ma

ij in Ma can be set ’read+’ or ’read-’. ’read+’
means DINE κi can read the knowledge sent from DINE κj
and ’read-’ means DINE κj can read the knowledge sent from
DINE κi. The value of each tuple Ms

ij in the social matrix
Ms represents the communication distance between DINE κi
and DINE κj . Following the small world theory, the value of
Ms

ij is less than 6.
Consider the DINE in IoT is geo-distributed, each DINE

will maintain a local Ms
ij and Ma

ij . When κi participates the
blockchain network to compete for the block, it will check the
local knowledge and identify the readable knowledge based on
the Ms

ij . Else if the value of Ms
ij < 6 and the knowledge is

unreadable, the DINE κ should find a DINE κi′ that can make
Ma

i′i ==′ read+′ and Ma
i′j ==′ read+′. And then add the

proposal P ∗(j) into LISTi. Else if the value of Ms
ij > 6, it

will traverse the neighboring DINEs κNi of κi to find a DINE
close to DINE κj . In this case, the algorithm must go back to
Step 4.

TABLE V

Algorithm 2: Security-aware block generating.

Input: Ma
ij ,M

s
ij , φ

P∗(j)
i , LISTi = [ ], Indutor = set()

Output: κb, New block
1: Initially, load the parameters of inputs and start all DINEs
2: Randomly select a DINE to generate the genius block

and then broadcast it to all the other DINEs
3: for all DINEs in κ:
4: Thread 1:
5: if Ma

ij ==′ read+′:
6: LISTi.add(P

∗(j))
7: elif Ms

ij
∗ ≤ 6:

8: Traverse κ to find a DINE κi′ that can make
Ma

i′i ==′ read+′ && Ma
i′j ==′ read+′

9: LISTi′ .add(P
∗(j))

10: else:
11: Traverse the neighboring DINEs κN

i of κi to find
a DINE close to DINE κj

12: Go to: Step 4
13: end
14: Thread 2:
15: if Inductor==1
16: Calculate φP∗(j)

i by executing Algorithm 1
17: end
18: Thread 3:
19: Monitor φP∗(j)

−i issued by other DINEs
20: Calculate the most popular proposal φP∗(j)

i at local
21: if φP∗(j)

i > φ
P∗(j)
−i

22: Generating New block
23: end
24: end

The proposed algorithm is shown in Thread 1 of Table
V. The other two threads are also included in this algorithm.
Firstly, Indutor is defined as a flag, when the Inductor is
equal to 1, the Thread 2 will execute the algorithm 1 to
calculate φP

∗(j)
i . Secondly, as the goal of algorithm 2 is to elect

a valid node to generate a new block in a decentralized network
paradigm, the Thread 3 of each DINE needs to monitor the
other DINEs’ popular proposals and adjust if it has found the
most valuable knowledge.

V. ANALYSIS AND EVALUATION

A. Experimental Settings
Under cloud paradigm, researchers can easily develop some

experiments by following several steps: 1) buy cloud services
from providers, 2) upload image data produced by multiples
devices of users, 3) select reasonable learning models to deal
with data analysis, 4) orchestrate security policy according
to the existing security library. However, for edge comput-
ing paradigm, data processing models are also shifted from
the cloud into edge devices together with the computation
resources. This brings three big challenges for developing
experiments under edge computing paradigms. Firstly, a single
DINE can not access all the image data as free and stable
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as a cloud due to the untrusted communication conditions
between edge devices. Secondly, the profits of attacking edge
knowledge are more than DINE’s raw data so that the designed
experiments will need to defect more premeditated attacks.
Thirdly, different from the traditional consensus approaches,
the privilege of DINEs to generate blocks reply on the end
users’ voting but not other DINEs’ voting. Privacy-preserving
of users also should be considered during the phase of exper-
iment design.

Leveraging the popular architecture of computer vision-
based smart applications, the main components of our ex-
periments also contain cameras and base station, but it is
not imperative to purchase resources and services from cloud
providers. To adapt to the edge computing environment, the
base station is established with Raspberry Pi 3 Model B
(noted as Rasp3+). The configuration parameters of Rasp3+ are
1) 1.4GHz 64-bit quad-core processor, 2) dual-band wireless
LAN, 3) faster Ethernet, and 4) Power-over-Ethernet (with
separate PoE HAT). A micro SD card with NOOBS is installed
on the Rasp3+. In memory of each SD card is 1GB.

We develop a monitoring procedure and a consensus pro-
cedure for each Rasp3+. The monitoring procedure loads a
learning model and executes it for object recognition. The
consensus procedure publishes local knowledge to its known
Rasp3+ and subscribes the other Rasp3+’s knowledge, and
simultaneously interacts with users to ensure which Rasp3+
win the right of block generating. The input of the monitoring
procedure is image data and the output is recognition. The
input of the consensus procedure is knowledge, previous block,
and user’s votes, while the output of the consensus procedure
is proposals, current block, and voting results. There are two
different kinds of deploying methods for these two procedures.
The first is integrating the monitoring procedure into the
camera and the second is installing it on the Rasp3+ together
with consensus procedure.

Communication between the mentioned procedures adopts
XML remote procedure call (XML-RPC), which enables het-
erogeneous operating systems. XML-RPC uses HTTP as the
transport protocol and XML language as the coding format.
Usually. XML-RPC involves a client and a server. The XML-
RPC client sends requests to the server using HTTP messages.
The corresponding server will respond to it after request
handling. In our experiment, we modify the handling process
of the HTTP request. When the consensus procedure receives
a message sent by the monitoring procedure, it will parse the
content of this message, associate it with local knowledge,
votes for the proposals, and then calculate its popularity among
users.

Based on XML-RPC, we establish a peer-to-peer network
to transport the blockchain with complicated data structure
between multiple Rasp3+. In our experiment, two different
scenarios are considered. For the static scenario, the topology
of the peer-to-peer network is fixed and which Rasp3+ will
participate in the consensus process is known. For the dynamic
scenario, the relationship between Rasp3+ is unknown and
each Rasp3+ is free to join and quit the proposed consensus
scheme.

It is easy to understand that, in the battlefield, an outstanding
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Fig. 3: Data flow diagram of designed experiment.

scout not only needs to have great wisdom to collect the
information about enemy number, habits and fire configuration
but also needs to protect this collected information at all cost
to ensure that the collected information can be sent to their
general. Before the general precisely and timely receives the
collected information, it will face many unpredicted emer-
gencies. For example, the scout may be captured, delayed
and deceived. Moreover, the information may be destroyed,
tampered and tarried.

The edge knowledge should be protected as secure as the
observed information. In our experiment, a reasonable hypoth-
esis is that the Rasp3+ can not tamper data unless it has been
captured by attackers. The design goal of our experiment is to
validate the consensus is convinced, the privacy of participates
can be protected and the cost of consensus is low. In our
experiment, six main functions are developed. For readers’
easy understanding, a view of the data flow diagram (DFD)
is provided as shown in Fig. 3, which aims to bring out the
data processing model of the designed experiment.

Following the arrows in DFD, we can see that there are three
parameters should be imputed to Handling function: 1) knowl-
edge recognized by learning models, 2) current block generated
by Generating function, and 3) votes sent by consumers.
Correspondingly, this function provides various services such
as broadcasting, validity checking and votes calculating. The
ECI in one group can share and backup their recognitions with
each other over the XML-RPC based peer-to-peer network.
The relationship between peers is formulated as small-world
theory, that means the social distance between any two peers
is less than 6. Therefore, we set that the knowledge only can
be forwarded within 6 times.

Association function executes association analysis of valid
knowledge beyond the constraint of small-world theory. Valid
knowledge recognized by edge devices in one group is mapped
into various unconfirmed proposals. It seems a recommen-
dation system where operators choose one proposal as their
decisions. Once one new proposal is confirmed by operators,
the popularity ranking of confirmed proposals will be updated,
and ultimately the top one popular confirmed proposal will be
selected. At the last step of the POP consensus process, a
Rasp3+ will be selected by parsing the contribution of each
edge to the most popular proposal.
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B. Low RAM Usage

In our experiments, we considered two different KPIs and
obtained two kinds of simulations results: 1) RAM usage;
2) block generating delay. Before giving a further analysis
of the simulation results, we would like to explain why we
select RAM as the KPI. Predominate functions of the DINE
are to execute the AI model to process the local big data
and provide real-time services for time-sensitive end users.
An available security policy should not occupy too many
resources. RAM usage is an important resource occupation
inductor. A procedure with high RAM usage will impact the
response performance of other procedures. Moreover, if a
procedure is occupying too many RAM resources, it is easy
to be impacted especially when the DoS attacking appears.

Fig. 4: Comparison of RAM usage.

Fig. 4 shows the RAM used versus sampling slot with
three different scenario configurations. In the scenario of static
Rasp3+, Rasp3+ is not equipped with any DINEs or consensus
mechanisms. We use the RAM usage of static Rasp3+ as
the baseline compared with the other two scenarios. DINE
on Rasp3+ installs one pre-trained learning model on the
Rasp3+ to discover knowledge in the local network. During
the knowledge discovery period, we uniformly produce 32
sampling points to measure the RAM usage of the Rasp3+.
It can be found that the RAM usage volume of Rasp3+ is
about 0.93GB/1GB when the DINE is running. To measure
the RAM usage of proposed PoP, we collect the output of
DINEs as the pending consensus transactions. Therefore, each
client procedure reads the pending consensus transactions from
a pre-defined file. The experiment results show that the RAM
usage of the proposed PoP mechanism is about 0.39GB/1GB.
Compared to the DINE on Rasp3+, the RAM usage of the
proposed PoP mechanism is very low.

1) Mitigation of Unknown DoS attacking: Due the decen-
tralization nature of IoT, it is common to see unknown DoS
attacking. For both end users and DINEs can participate the
PoP consensus, the PoP consensus mechanism with low RAM
usage can mitigate this attack. Low RAM usage is brought
by introducing end users into PoP consensus algorithm. This
can bring three significant benefits. Firstly, it will mitigate the

working burdens of each DINE because the validation of edge
knowledge transactions is shifted from DINEs into the end
users’ devices. Secondly, It will mitigate the ledger overflow
when it is suffering from DoS attacks, for only the new edge
knowledge can trigger block generating procedure. Thirdly,
the consensus process won’t be interrupted even if a DINE
is attacked by DoS attacking, because the end users in this
local network can access the neighboring DINEs. Therefore,
unknown DoS attacks only can impact edge knowledge dis-
covering and publishing on some DINEs, but it has no impact
on PoP consensus.

During the DoS attacking phase, an attacked DINE can not
discover new knowledge, calculate knowledge popularity and
compete for the privilege of block generating. In our design,
each DINE should monitor both local knowledge and remote
knowledge. Once a knowledge is received, the DINEs will
add it into a temporary knowledge list. Such design provides
a backup for knowledge so that failure of one DINE has no
impact on the consistency of PoP mechanism except for the
block generating delay. Simultaneously, a normal DINE should
check the validation of previous block generators. An attacked
DINE can not compete for the privilege of block generating,
leading to several blocks missing.

C. Fast Block Generating
The block generating speed is an important performance

parameter for blockchain in IoT. Faster block generating
means that more knowledge transactions can be processed.
We consider a blockchain network with three groups of DINEs.
Each group consists of 4 DINEs and 10 end users. The DINEs
are connected without any loops or branches. For each DINE,
the average delay of submitting a knowledge is 100ms (which
is equal to the delay requirement in 5G edge network [41]. We
illustrate the delay of block generating in Fig. 5. The block
generating delay of UCB with 3 DINEs increase faster than
the block generating delay of UCB with 4 DINEs. Notably, it
also can be found that the block hight UCB with 3 DINEs is
less than UCB with 4 DINEs.

1) Desensitise edge knowledge releasing: The knowledge
is learned by different DINEs, which are usually deployed
in the local area network distributively. Spurred on by the
profiteering, the adversaries may try various means to steal
the content of knowledge or infer the identity of its owner.
Therefore, the knowledge must be desensitized before they are
released to share with other DINEs.

For the purpose of knowledge desensitization, the UCB
enables anonymous knowledge releasing. Moreover, it maps
the content of each knowledge into a hashing value when a new
block will be generated. Further, the encrypted knowledge will
be orchestrated as topics in UCB framework. Only the trusted
subscribers can gain the permissions (such as read & write)
to operate the content of knowledge. Such an orchestration
prevent a corrupt DINE with higher security level from sending
private knowledge to nodes with a lower security level.

2) Weakening the pseudo DINE: The proposed framework
will not give the pseudo DINEs additional advantages because
the PoP solution treats knowledge popularity as wealthy to
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Fig. 5: Comparison of block generating delay. When one DINE suffer from DoS attacking and fails to work, the blocks that
should be generated by it originally can not be generated but the transactions can be recorded on the next block.

compete the privilege of block generating. Firstly, in order to
release the false knowledge, a pseudo-DINE needs to spend
more costs to build a social relationship with the normal
DINEs. If there are no real DINEs that are willing to sub-
scribe the false knowledge, this false knowledge can not be
sent into the blockchain network. Secondly, it is extremely
hard for a pseudo-DINE to acknowledge what is the most
valuable knowledge in the blockchain network because normal
knowledge are usually encrypted. Without acknowledging the
most valuable knowledge, the pseudo DINE can not gain the
privilege of block generating. Thirdly, even if the pseudo-
DINE happens to release a valuable knowledge and gain
the privilege of block generating, it only can tamper the
transactions between this pseudo-DINE and its neighboring
DINEs. This will result in redundant knowledge sharing, which
can be inspected and reduced by using the existing transaction
filtering approaches easily.

3) Low successful rate of 51% attacking: As mentioned
in Section IV, the proposed PoP mechanism enables flexible
interactions between end users and DINEs. Different from the
existing consensus mechanisms which only take care of what
the blockchain nodes, the proposed PoP mechanism shifts the
focus of blockchain from what the blockchain nodes have into
what is valuable in a DINE-maintained local network.

In our framework, the 51% attacking has a low successful
rate. Firstly, any DINE is impossible to attract more than
half of end users because it only can maintain local end
users. Secondly, the interests of end users are dynamic, any
DINE is impossible to continuously gain the privilege of block
generating.

VI. CONCLUSION

In this paper, we studied the security of ECI in IoT.
When the outputs of each DINE are modelled as important
knowledge, service providers may not trust each other, directly
leading to difficulty of knowledge sharing among DINEs.
Moreover, due to the cyber-physical vulnerability and mobility

of edge computational infrastructures, the edge knowledge
sharing faces with many security threats. Different from the
existing studies that focus on sharing large-scale IoT data,
a novel user-centric blockchain (UCB) scheme is proposed
to share edge knowledge in IoT. To preserve the security
of edge knowledge sharing, end users are introduced into
the blockchain consensus mechanism, which is formulated as
proof of popularity (PoP) consensus. In UCB, the scattered
edge knowledge is stitched as proposals automatically and
broadcast to trusted partners by using Pub/sub protocol. To
evaluate the superiority of proposed schemes, we state the
security analysis to fulfill the mentioned security requirements
and then demonstrate the experiment evaluation, which is
developed based on Raspberry Pi 3 Model B. Our work
will promote the application of computational intelligence in
network edges of IoT.
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