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Abstract—As an important part of intelligent surveillance 

systems, person re-identification (PReID) has drawn wide 

attention of the public in recent years. Many recent deep learning-

based PReID methods have used attention or multi-scale feature 

learning modules to enhance the discrimination of the learned 

deep features. However, the attention mechanisms may lose some 

important feature information. Moreover, the multi-scale models 

usually embed the multi-scale feature learning module into the 

backbone network, which increases the complexity of testing 

network. To address the two issues, we propose a multi-scale deep 

supervision with attention feature learning deep model for PReID. 

Specifically, we introduce a reverse attention module to remedy 

the feature information losing issue caused by the attention 

module, and a multi-scale feature learning layer with deep 

supervision to train the network. The proposed modules are only 

used at the training phase and discarded during the test phase. 

Experiments on Market-1501, DukeMTMC-reID, CUHK03 and 

MSMT17 datasets. demonstrate that our model notably beats 

other competitive state-of-the-art models.  

 
Index Terms—Person re-identification, attention, multi-scale 

learning, deep supervision.  

 

I. INTRODUCTION 

ERSON re-identification (PReID), which purpose is to re-

identify a specific pedestrian of interest taken by multiple 

cameras or a single camera across different times in a camera 

network, has been extensively studied in recent years. Due to 

its significance in the application of intelligent video 

surveillance and security system, the task has attracted 

considerable interests in the computer vision community. 

However, the task is still difficult thanks to the large variations 

on captured pedestrians such as clothes, pose, illumination and 

uncontrolled complex background. To improve the PReID 

performance, extensive research has been reported in recent 

years. These works can be roughly divided into two types: a) 

exploiting discriminative features to represent the pedestrians’ 
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appearance, and b) learning a suitable distance metric for better 

computing the similarities between the paired person images. In 

the first category, the classical discriminative descriptors 

include the LOMO [1], ELF [2] and LBP [3]. In the second 

category, supervised learnings with the labeled images are used 

to obtain distance metrics function, such as LMNN [4], ADMM 

[5], LFDA [6] and PCCA [7]. However, these methods extract 

features and learn distance metrics separately, without 

considering their capabilities into one uniform structure.  

Recently, with the successful development of deep learning 

technology, many deep learning approaches take advantage of 

Convolutional Neural Network (CNN) to learn discriminative 

and robust deep features for PReID. These approaches usually 

include two key components, i.e., deep architecture and the 

objective functions. Early deep networks include VGGNet [8], 

ResNet [9] and DensNet [10]. Most recently, attention 

mechanism is favored by researchers in deep learning domain, 

to just a few, such as SENet [11], CBAM [12], BAM [13] and 

SKNet [14]. These models introduce the attention module into 

the state-of-the-art deep architectures to learn the spatial 

information and relationship between channels. In general, the 

softmax scores produced by the attention module are multiplied 

by the original features to output the final emphasized features. 

As a part of whole features, the un-emphasized features are also 

important to enhance the discriminative ability of descriptors, 

especially when they contain the body information. We argue 

that the un-emphasized features should be treated as 

emphasized features to help to learn the final descriptors. 

However, few of current PReID works have considered this 

issue.  

The idea of utilizing middle-level features of a deep 

framework has been investigated, and has proved to be useful 

for object detection [15] and segmentation [16]. The strategy is 

first used by [17] for PReID. They used the deep supervision 

operation to train the combined embeddings of multiple 

convolutional network layers. Experimental results show the 
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effectiveness of the strategy. Yet, they fused embeddings at the 

lower and higher layers for training and test, which reduces the 

efficiency of the framework.  

Recent works [17-19] have shown that multi-scale features 

learning can help to enhance the robust property of descriptors. 

Chen et al. [18] introduced a deep pyramidal feature learning 

framework which contains m scale-specific branches for multi-

scale deep feature learning. More specifically, each branch 

learns one scale in the pyramid. Besides, they used a scale-

fusion branch to learn the complementary of combined multi-

scale features. Qian et al. [19] explored different resolution 

levels of filters to learn pedestrian features at multiple locations 

and spatial scales. These methods have shown great benefits on 

performance in PReID. However, using multi-branches to 

obtain multi-scale deep features increases the complexity of the 

framework. 

By reviewing the current PReID works, we can find that the 

capability of a deep architecture could be improved by 

introducing the following strategies: (1) attention mechanisms; 

(2) middle-level features for deep supervision; (3) multi-scale 

features learning. Nevertheless, using attention mechanisms 

may cause the loss of important feature information. In addition, 

introducing the middle-level features to the final descriptors for 

deep supervision and adding the multi-scale features learning 

lower the efficiency of the model. In the PReID domain, these 

issues are barely considered. Therefore, in this work, we 

propose an auxiliary training based deep multi-scale 

supervision attention model to deal with the above issues. 

 As shown in Figure 1, the backbone of the proposed model 

is ResNet-50, which is used to extract different hierarchical 

deep features from the input image. The whole model is trained 

by a ranked triplet loss and four classification losses. To tackle 

the feature information losing issue caused by the attention 

module, we introduce a reverse attention block into the middle-

level features learning.  The block outputs probability scores 

that are complementary to the softmax scores produced by 

attention block. We do the dot product between the probability 

scores and the original features, thus, the un-emphasized 

features become the emphasized features. Then these features 

are passed through the pooling and concatenated to perform the 

classification task together. To deal with the efficiency problem, 

we propose a multi-scale layer to learn multi-scale information 

before the deep supervision operation. The multi-scale layer 

consists of several lightweight single scale convolution kernels, 

which learns the multi-scale information from horizontal and 

vertical directions, respectively. The deep supervision operators 

with multi-scale information learning only assist the deep 

framework to learn in the training phase, which are discarded 

these operators in the test phase. In this way, the efficiency of 

the deep framework is improved. 

The contributions of this work are summarized as followings: 

1)  We propose a reverse attention block to remedy the non-

salient feature information loss issue caused by the attention 

block. 

2)   We propose a lightweight multi-scale features learning 

block to perform deep supervision, which helps to learn more 

discriminative deep feature with multi-scale information. 

3)   The proposed operators above are only used during the 

training phase and abandoned for testing, thus improving the 

effectiveness of the inference network. 

4)   The proposed architecture outperforms other most recent 

state-of-the-art models on the four PReID datasets, including 

Market-1501, DukeMTMC-reID, CUHK03 and MSMT17. 

II. RELATED WORKS 

In this section, we review some related works in the deep 

PReID domain. Then we introduce some recent attention deep 

models related to our method. Finally, some multi-scale deep 

models for PReID are briefly described. For more information 

about deep learning-based methods for PReID, we refer the 

readers to read [20]. 

 A large number of deep learning-based methods have been 

proposed for PReID. There mainly exist three types of deep 

PReID models, i.e. identification model [21] [22] [23], 

verification model  [24-34] and distance metric learning model 

[35] [36] [37]. The identification model formulates the PReID 

task as a classification problem. A fusion feature network was 

proposed by Wu et al. [21]. Through the supervision of 

identification loss, the model uses hand-crafted features to 

constrain the deep descriptors in the backpropagation phase. 

The verification model takes a pair of images as input, which 

calculates a score to represent the similarity of the paired 

images. Li et al. [24] proposed a verification model named filter 

pairing neural network (FPNN) for PReID. The distance metric 

learning model makes the relative distance between positive 

pairs smaller than that of negative pairs. Alexander et al. [37] 

proposed a hard mining method within a mini-batch for triplet 

loss. Wang et al. [38] proposed the Ranked List Loss (RLL) for 

building a set-based similarity structure by exploiting all 

instances in the gallery of deep metric learning. In this work, 

we combine the identification and Ranked List Loss to 

supervise the carefully designed deep architecture. 

Attention is an important part of one person’s perception. 

Inspired by this, there have been several works that try to 

incorporate attention mechanisms to state-of-the-art deep 

classification models to improve the performance of them. Hu 

et al. [39] introduced a compact ‘Squeeze-and-Excitation’ 

module to exploit the relationships between inter-channels. In 

the compact module, the channel-wise attention was computed 

by the global average-pooling features. By introducing spatial 

attention, Woo et al. [12] further proposed a convolution block 

attention module to simultaneously exploit channel-wise and 

spatial attention. They first used max-pooling and average-

pooling operations to aggregate the channel information. Then 

these pooling features were concatenated and convolved to 

generate a 2-dimensional spatial attention map. The attention 

models above have been proven to be efficient for improving 

the performance of the deep network. However, introducing the 

attention mechanism may lead to the feature information loss 

problem. In our model, the attention module is also composed 

of the channel and spatial attention. Moreover, we introduce the 

reverse attention module to remedy the feature information loss 

situation. 

Some works proposed to use multi-scale leaning for PReID. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

3 

Liu et al. [40] proposed a multi-scale triplet deep architecture that learns deep features of a pedestrian at different scales.   

Specifically, the architecture integrated shadow and deep 

networks to produce low-level and high-level appearance 

features from images, respectively. Wang et al. [17] introduced 

a deeply supervised method for PReID. They used the pooling 

feature map of each stage to produce an embedding for each 

stage. Then these embeddings were fused by using a weighted 

sum. Both these methods show potential for PReID. Yet, since 

the multi-scale modules are inserted into deep architecture for 

training and inference, the whole network becomes 

computationally. Aiming at this problem, we propose a 

lightweight multi-scale feature learning module with deep 

supervision operations to help the deep model capture the 

multi-scale information. 

III. PROPOSED METHOD 

In this section, we present the carefully designed deep 

construct by first presenting the training network, and then 

describing the loss functions. Finally, the inference network is 

described. 

A. Training Network 

 The overview of the proposed deep architecture is shown in 

Fig 1. We use ResNet-50 as the backbone network, in which 

the last spatial down-sampling operation, the original global 

average pooling and fully connected layers are removed. We 

then append the average pooling layer and classification linear 

layer at the end of the backbone network. As shown in Fig 1, 

we utilize the feature maps produced by stage1, stage2, stage3 

and stage4 of the ResNet-50 to generate attention and reverse 

attention masks. Besides, for reducing the GPU memory cost 

of the training network, we select the feature maps from stage2 

and stage3 to perform multi-scale deep supervision operations. 

The detailed structure of the multi-scale layer is shown in 

Figure 2. The whole architecture is supervised by five losses, 

i.e. identity (ID) loss1, ID loss2, ID loss3, ID loss4 and triplet 

loss. Similar to the strong baseline work [41], ranked triplet 

loss and ID loss2 are used to learn global feature descriptors. 

ID loss1 is to supervise the reverse attention branch. We adopt 

the ID loss3 and ID loss4 to perform the multi-scale deep 

supervisions. 

B. Attention Block 

Enlighten by the works of  [12] and [13], the attention block 

adopted in our architecture consists of channel attention and 

spatial attention. The channel attention outputs a set of weights 

for different channels while the spatial attention concentrates 

on the informative part. 

Channel Attention: The channel attention block contains 

an average pooling layer and two linear layers. The feature 

maps M produced by the end of each stage are first passed 

through the average pooling operator as below: 

𝐌𝑪 = 𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐌)                                  (1)  

where M ∈ ℝ𝑪×𝑾×𝑯,  𝐌𝑪 ∈ ℝ𝑪×𝟏×𝟏. 

 
Fig. 1. Architecture of the proposed model: we use ResNet-50 as its backbone network. The architecture consists of five branches. Branch-1 with reverse 

attention block learns the feature information lost by attention block.  By using the triplet and classification losses, branch-2 and branch-3 learn the global 

descriptors, respectively. Deep supervision with multi-scale feature learning is performed by branch-4 and branch-5. The model is supervised by four 

classification loss functions and one triplet loss function. 
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Then the two linear layers with batch normalization are used 

for estimating attention across channels from 𝐌𝑪. The size of 

output is set to 𝑪 ∕ 𝒓, where the parameter 𝒓 represents the 

reduction ratio. To restore the channel number, the output of 

the second linear layer is set to 𝑪. After the linear layers, a 

batch normalization layer is appended to adjust the scale of the 

spatial attention output. Thus, the channel attention ATTC can 

be computed as: 

        𝑨𝑻𝑻𝑪 = 𝐵𝑁(𝑙𝑖𝑛𝑒𝑎𝑟1(𝑙𝑖𝑛𝑒𝑎𝑟2(𝐌𝑪)))                    (2) 

where linear1, linear2 and BN represent the first and second 

linear layer, and batch normalization, respectively. 

Spatial Attention: Spatial attention block is used to 

emphasize features at different spatial positions. The block 

contains two reduction layers and two convolutions layers. 

Through the first reduction layer, the dimension of feature 

maps M ∈ ℝ𝑪×𝑾×𝑯 is reduced to 𝐌𝑺 ∈ ℝ
𝑪∕𝒓×𝑾×𝑯 with 1 × 1 

kernel size. Then the 𝐌𝑺 is passed through the two convolution 

layers with 3 × 3 kernel size. Finally, the number of feature 

maps are decreased to  ℝ𝟏×𝑾×𝑯 by using the second reduction 

layer with 1 × 1 convolution operation. Similar to the channel 

attention block, we apply the batch normalization operation at 

the end of the spatial attention block. The spatial attention 

ATTS can be written as: 

   

𝑨𝑻𝑻𝑺 = 𝐵𝑁(𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛2(𝐶𝑜𝑛𝑣2(𝐶𝑜𝑛𝑣1(𝐌𝑺))))     (3) 

where the  𝐶𝑜𝑛𝑣1 and 𝐶𝑜𝑛𝑣2 represent the two convolution 

layers, 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛2 is the second reduction layer. 

Combine the two attentions: We integrate the channel 

attention and the spatial attention into: 

                        𝑨𝑻𝑻 = σ(𝑨𝑻𝑻𝑪 × 𝑨𝑻𝑻𝑺)                              (4) 

where ATT represents the whole attention block, and 𝜎 is the 

Sigmoid function. 

C. Reverse Attention 

The attention block generates one probability mask to 

jointly emphasize the channels, and features in different spatial 

locations. However, through this operation, some channels and 

features are suppressed. We argue that these suppressed 

channels and features may be informative, which helps to 

enhance the discriminative ability of the final descriptors. 

Based on this assumption, we introduce reverse attention to 

complement the attention block. The output of the reverse 

attention in our model can be expressed as: 

𝑨𝑻𝑻𝑹 = 𝟏 − 𝜎(𝑨𝑻𝑻𝑪 × 𝑨𝑻𝑻𝑺)                      (5) 

We use the feature maps generated by each stage to do dot 

product with 𝑨𝑻𝑻𝑹. In this way, these suppressed channels and 

features become emphatic. Then these emphasized feature 

maps at each stage are passed through a pooling layer and 

concatenated to perform the classification task. 

D. Deep Supervision with Multi-Scale Learning 

From Fig 1, we use the feature maps at stage 2 and stage 3 

to perform deep supervision operations, respectively. The deep 

supervision helps learn the discriminative descriptors. Note 

that we add the deep supervision operations behind the 

attention block, which is conducive to get more accurate 

attention maps. Besides, we introduce a multi-layer to acquire 

the multi-scale information for deep supervision. The structure 

of the multi-layer is shown in Figure 2, we first partition the 

channels into equal four groups. Then the four groups are 

passed through four convolution operations with kernel sizes 

of 1 × 3,3 × 1, 1 × 5 and 5 × 1 , respectively. After the 

convolution operations, the four groups are concatenated into 

one group. The reasons why we choose one-dimensional 

convolution are as follows: 

a) One dimensional convolution has less parameter and 

reduces GPU memory consumption. 

b) One dimensional convolution operation can learn the 

pedestrian features from horizontal and vertical directions, 

respectively, which adapts the human visual perception. 

E. Loss Functions 

There have five loss functions in our model, i.e. four ID 

losses and one triplet loss. We employ the ranked list loss 

(RLL) proposed by [42] for metric learning and smoothing 

cross-entropy loss proposed by [43] for classification. The 

overall loss is the sum of them. 

Ranked List Loss: We use the RLL to supervise the branch-

2. The goal of RLL is to make the distance between negative 

samples larger than a threshold α, while the distance between 

positive samples closer than a threshold α −m, where m is a 

margin. The function can be written as: 

 𝐿𝑚(𝑥𝑖 , 𝑥𝑗; 𝑓) = (1 − 𝑦𝑖𝑗)⌊α − 𝑑𝑖𝑗⌋+
+ 𝑦𝑖𝑗⌊𝑑𝑖𝑗 − (α − m)⌋+

          (6) 

where 𝑦𝑖𝑗 = 1 denotes 𝑥𝑖 and 𝑥𝑗 are the same person,  𝑦𝑖𝑗 = 0, 

otherwise.  𝑑𝑖𝑗  represents the Euclidean distance function, 

 
Fig. 2. The architecture of the proposed multi-scale layer. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

5 

which is formulated as 𝑑𝑖𝑗 = ‖𝑓(𝑥𝑖)− 𝑓(𝑥𝑗)‖, 𝑓(𝑥𝑖) is the 

embedding function. 

The nontrivial positive sample set can be displayed as: 

𝑃𝑐,𝑖
∗ = {𝑥𝑗

𝑐|𝑗 ≠ 𝑖, 𝑑𝑖𝑗 ≻ 𝛼 −𝑚}                   (7)  

The nontrivial negative sample set can be written as: 

 𝑁𝑐,𝑖
∗ = {𝑥𝑗

𝑘|𝑘 ≠ 𝑐, 𝑑𝑖𝑗 ≺ 𝛼}                             (8) 

To pull all the nontrivial positive samples closer, we should  

minimize the following objective function: 

𝐿𝑃(𝑋𝑖
𝑐; 𝑓) = ∑

𝑤𝑖𝑗

∑ 𝑤𝑖𝑗𝑋𝑖
𝑐∈|𝑃𝑐,𝑖

∗ |

𝐿𝑚(𝑋𝑖
𝑐, 𝑋𝑗

𝑐 ; 𝑓)
𝑋𝑖
𝑐∈|𝑃𝑐,𝑖

∗ |
                     (9) 

where 𝑋𝑖
𝑐 represents a query image. 𝑤𝑖𝑗 denotes the weighting 

positive pairs. It can be written as: 

𝑤𝑖𝑗 = exp(𝑇𝑛 × (𝛼 − 𝑑𝑖𝑗)) , 𝑋𝑗
𝑘 ∈ 𝑁𝑐,𝑖

∗                                (10) 

in which 𝑇𝑛 is a temperature parameter.  

In order to push the distance between nontrivial negative 

samples larger than the threshold α, the following objective 

function should be minimized:  

𝐿𝑁(𝑋𝑖
𝑐; 𝑓) = ∑

𝑤𝑖𝑗

∑ 𝑤𝑖𝑗𝑥𝑗
𝑘∈|𝑁𝑐,𝑖

∗ |
𝑥𝑗
𝑘∈|𝑁𝑐,𝑖

∗ |
𝐿𝑚(𝑋𝑖

𝑐 ,𝑋𝑗
𝑐 ; 𝑓)                (11) 

where 𝑤𝑖𝑗 is the weight of nontrivial negative samples. It can 

be represented as: 

𝑤𝑖𝑗 = exp(𝑇𝑛 × (𝛼 − 𝑑𝑖𝑗)), 𝑋𝑗
𝑘 ∈ 𝑁𝑐,𝑖

∗                               (12) 

where 𝑇𝑛is a temperature parameter. 

Then the function of RLL can be written as: 

𝐿𝑅𝐿𝐿(𝑥𝑖
𝑐; 𝑓) = 𝐿𝑃(𝑥𝑖

𝑐; 𝑓) + 𝜆𝐿𝑁(𝑥𝑖
𝑐 ; 𝑓)                        (13) 

in which the 𝜆 is the balance parameter, and we set it to 1.  

Smoothing Cross-Entropy Loss: PReID can be regarded 

as a task of one-shot learning since the IDs in the test set are 

not included in the training set. Thus, preventing the overfitting 

issue for PReID models is very important. Label smoothing is 

an efficient method to alleviate the overfitting problem in the 

classification task, and has been effectively used in PReID 

domain. In this paper, we use label smoothing with cross-

entropy loss to supervise the branch-1, branch-3, branch-4 and 

branch-5. Label smoothing function can be defined as: 

𝑞𝑖 = {
1−

(𝑁−1)𝜀

𝑁
 𝑖𝑓 𝑖 = 𝑦

      
𝜀

𝑁
          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                        (14) 

where 𝑦 is the true label,  𝑖 represents the predicted label, 𝑁 is 

the number of training samples, 𝜀 is a constant and we set it to 

0.1. Then the function of smoothing cross-entropy loss is 

formulated as:  

 𝐿𝐼𝐷 = ∑ −𝑞𝑖 log (𝑝𝑖)
𝑁
𝑖=1                           (15) 

where 𝑝𝑖 denotes as the prediction logits of class 𝑖. 
The overall loss function of the architecture can be written 

as: 

𝐿 = 𝜆1𝐿𝑅𝐿𝐿 + 𝜆2𝐿𝐼𝐷1 + 𝜆3𝐿𝐼𝐷2 +𝜆4𝐿𝐼𝐷3 + 𝜆5𝐿𝐼𝐷4        (16) 

where 𝐿 is the total loss, 𝜆1, 𝜆2, 𝜆3, 𝜆4 and 𝜆5 are the balance 

coefficients. 

F. Inference Network 

Our inference network is quite efficient and simple. As 

shown in Fig 3, in the test phase, we discard the multi-scale 

deep supervision, the reverse attention and the triplet branches, 

i.e. branch-1, branch-2, branch-4 and branch-5, and only use 

branch-3 to predict. 

IV. EXPERIMENTS 

A. Datasets  

We perform the experiments on three popular PReID 

datasets, i.e. Market-1501 [44], CUHK03 [45] and 

DukeMTMC-reID [46]. The brief introductions of the datasets 

are presented below: 

Market-1501 dataset: It contains 32643 images with 1501 

pedestrians captured by at least two cameras and at most six 

cameras from a supermarket. The training set and testing set 

contain 12936 images of 751 IDs and 19732 images of 750 IDs, 

respectively.  

CUHK03 dataset: The dataset contains 14097 images with 

1467 pedestrians. It provides two bounding boxes in detection 

settings. One manually annotated by the human and the other 

automatically annotated by a detector. We conduct the 

experiments both in the two settings. Similar to [47], we divide 

the dataset into a training set with 767 pedestrians and a test 

set with 700 pedestrians. 

DukeMTMC-reID dataset: It consists of 36411 annotated 

boxes with 1812 pedestrians captured by eight cameras. 

 
Fig. 3. The inference network. 
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Among the 1812 pedestrians, 1404 pedestrians appeared in 

more than two camera views, and the rest of pedestrians are 

treated as distractor identifications. The training set of this 

dataset consists of 16522 images of 702 pedestrians and the 

test set contains 17661 gallery images and 2228 query images. 

MSMT17 dataset：The dataset was released in 2018, 

which was captured by fifteen cameras (three indoor cameras 

and twelve outdoor cameras) at different times. It consists of 

4101 pedestrians with 126441 detected bounding boxes. The 

1041 pedestrians with 32621 bounding boxes are used for 

training and the rest of 3060 pedestrians with 93820 bounding 

boxes are used for testing. 

B. Evaluation Metrics 

Mean average precision (mAP) and cumulative match 

characteristic (CMC) are adopted as evaluation metrics to 

estimate the performance of our model. Besides, we report the 

Rank-1 and Rank-5 results. Both experiments of the datasets 

are conducted under single-query mode. Note that we don’t use 

re-ranking in this work. 

C. Implementation Details 

We use Pytorch to implement the proposed model. The 

ResNet-50 with pre-trained parameters on ImageNet is used as 

the backbone network. The hyperparameter reduction ratio 𝒓 

of the attention block is set to 16. The commonly used data 

augmentation methods in PReID are followed. We resize all 

the images into 256×128. Then the size of outputs of stage1, 

stage2, stage3 and stage4 are 64×32, 32×16, 16×8 and 16×8, 

respectively. Random erasing [48] and horizontal random 

flipping are used as data augment methods for training. The 

batch size contains 64 images with 16 identities, in which each 

identity has 4 images. We train the architecture for 120 epochs. 

The 𝜆1, 𝜆2, 𝜆3, 𝜆4 and 𝜆5 described in Eq. (14) are set to 0.4, 

0.1, 1, 0.03 and 0.03, respectively. We utilize adaptive moment 

estimation with an initial learning rate (𝑙𝑟) of 3.5× 10−5 to 

optimize the five loss functions. Following the work of [41], 

the 𝑙𝑟 is then updated as the following rules: 

𝑙𝑟(𝑡) =

{
 
 

 
 3.5× 10−5 ×

𝑡

10
     𝑖𝑓 𝑡 ≤ 10

3.5× 10−4      𝑖𝑓 10 < 𝑡 ≤ 40

3.5× 10−5      𝑖𝑓 40 < 𝑡 ≤ 70

     3.5 × 10−6       𝑖𝑓 70 < 𝑡 ≤ 120

            (17) 

The experiments are implemented on two TITAN XP GPUs.  

D. Comparison with state-of-the-art Methods 

The proposed model is compared with the following 

methods, which includes PNGAN [49], PABR [50], PCB+RPP 

[51], SGGNN  [52], MGN [53], G2G [54], SPReID [55], 

IANet  [56], CASN [57], OSNet [58], BDB+Cut[59], P2-Net 

[60], and so on. 

Evaluation on market-1501 dataset. The comparison 

results between our model and the state-of-the-arts on market-

1501 dataset are shown in Table I. From the Table, we can 

observe that the proposed method outperforms the other 

competing models. Compared to Mancs which also utilizes 

attention and deep supervision operations, our model increases 

the mAP by + 6.7% and Rank-1 by +2.4%, respectively. The 

proposed model achieves mAP= 89.0%, Rank-1 accuracy= 

95.5% and Rank-5 accuracy= 98.3% under single query mode, 

which validates the efficiency of it. 

TABLE I 

COMPARISON RESULTS ON MARKET-1501 DATASET.  

Method Publication Rank-1 Rank-5 mAP 

PNGAN [49] 2018ECCV  89.4 -- 72.6 

PABR [50] 2018ECCV  90.2 96.1 76.0 

PCB+RPP [51] 2018ECCV  93.8 97.5 81.6 

SGGNN [52] 2018ECCV  92.3 96.1 82.8 

Mancs [61] 2018ECCV  93.1 -- 82.3 

MGN [53] ACM MM18 95.7 -- 86.9 

FDGAN [62] 2018NeurIPS  90.5 -- 77.7 

DaRe [17] 2018CVPR 89.0 -- 76.0 

PSE [63] 2018CVPR  87.7 94.5 69.0 

G2G [54] 2018CVPR  92.7 96.9 82.5 

DeepCRF [64] 2018CVPR  93.5 97.7 81.6 

SPReID [55] 2018CVPR  92.5 97.2 81.3 

KPM [65] 2018CVPR  90.1 96.7 75.3 

AANet [66] 2019CVPR  93.9 -- 83.4 

CAMA [67] 2019CVPR  94.7 98.1 84.5 

IANet [56] 2019CVPR  94.4 -- 83.1 

DGNet [68] 2019CVPR  94.8 -- 86.0 

CASN [57] 2019CVPR  94.4 -- 82.8 

MMGA [69] 2019CVPRW  95.0 -- 87.2 

OSNet [58] 2019ICCV 94.8 -- 84.9 

Auto-ReID [70] 2019ICCV  94.5 -- 85.1 

BDB+Cut [59] 2019ICCV 95.3 -- 86.7 

MHN-6 [71] 2019ICCV 95.1 98.1 85.0 

P2-Net [60]  2019ICCV  95.2 98.2 85.6 

Ours —— 95.5 98.3 89.0 

Evaluation on CUHK03 dataset. For the CUHK03, we 

adopt the protocol introduced by [47], in which 767 persons 

are utilized for training and the remain of 700 pedestrians are 

used for testing. The comparison results on CUHK03_detected 

and CUHK03_labeled settings are shown in Table Ⅱ and Table 

Ⅲ, respectively. We report mAP and Rank-1 accuracy under 

single query mode. From the two Tables, we find that the 

proposed method also beats all other compared state-of-the-art 

approaches, showing the efficiency of our method. Compared 

with Mancs, our method improves the mAP and Rank-1 

accuracy by at least 13 percent, which further demonstrates the 

advantages of our model. 

TABLE Ⅱ 

 EXPERIMENT RESULTS ON CUHK03_DETECTED DATASET. 

Method Publication mAP Rank-1 

MGN [53] 2018ACMMM 66.0 66.8 

PCB+RPP [51] 2018ECCV 57.5 63.7 

Mancs [61] 2018ECCV  60.5 65.5 

DaRe [17] 2018CVPR  59.0 63.3 

CAMA [67] 2019CVPR  64.2 66.6 

CASN [57] 2019CVPR  64.4 71.5 

OSNet [58] 2019ICCV 67.8 72.3 
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Auto-ReID [70] 2019ICCV  69.3 73.3 

BDB+Cut [59] 2019ICCV 73.5 76.4 

MHN-6 [71] 2019ICCV 65.4 71.7 

P2-Net [60]  2019ICCV 68.9 74.9 

Ours —— 75.3 78.8 

 
TABLE Ⅲ 

EXPERIMENT RESULTS ON CUHK03_LABELED DATASET 

Method Publication mAP R-1 

MGN [53] 2018ACMMM 67.4 68.0 

PCB+RPP [51] 2018ECCV  -- -- 

Mancs [61] 2018ECCV  63.9 69.0 

DaRe [17] 2018CVPR  61.6 66.1 

CAMA [67] 2019CVPR  66.5 70.1 

CASN [57] 2019CVPR  68.0 73.7 

OSNet [58] 2019ICCV  -- -- 

Auto-ReID [70] 2019ICCV  73.0 77.9 

BDB+Cut [59] 2019ICCV  76.7 79.4 

MHN-6 [71] 2019ICCV  72.4 77.2 

P2-Net [60]  2019ICCV  73.6 78.3 

Ours —— 78.2 81.0 

Evaluation on the DukeMTMC-reID dataset. As shown in 

Table Ⅳ, our proposed method achieves 79.2%/89.4% in 

mAP/Rank-1 on the DukeMTMC-reID dataset. Compared 

with the recent methods, we achieve the best results in mAP 

and Rank-1, which exceeds the state-of-the-art method MHN-

6 by +2% and +0.3%, respectively.  

TABLE Ⅳ 

 COMPARISON RESULTS ON DUKEMTMC-REID DATASET. 

Method Publication mAP R-1 R-5 R-10 

G2G  [54] 2018CVPR  80.7 88.5 90.8 66.4 

DeepCRF [64] 2018CVPR  84.9 92.3 -- 69.5 

SPReID [55] 2018CVPR 84.4 91.9 93.7 71.0 

PABR [50] 2018ECCV  82.1 90.2 92.7 64.2 

PCB+RPP [51] 2018ECCV  83.3 90.5 95.0 69.2 

SGGNN [52] 2018ECCV  81.1 88.4 91.2 68.2 

Mancs [61] 2018ECCV  84.9 -- -- 71.8 

MGN [53] 2018ACMMM 88.7 -- -- 78.4 

AANet [66] 2019CVPR  87.7 --  74.3 

CAMA [67] 2019CVPR  85.8   72.9 

IANet [56] 2019CVPR  87.1 -- -- 73.4 

DGNet [68] 2019CVPR  86.6 -- -- 74.8 

CASN [57] 2019CVPR  87.7 -- -- 73.7 

OSNet [58] 2019ICCV  86.6 -- -- 74.8 

Auto-ReID [70] 2019ICCV  88.5 -- -- 75.1 

BDB+Cut [59] 2019ICCV  89.0 -- -- 76.0 

P2-Net  [60] 2019ICCV  86.5 93.1 95.0 73.1 

MHN-6 [71] 2019ICCV 89.1 94.6 96.5 77.2 

Ours —— 89.4 94.7 96.0 79.2 

TABLE Ⅴ 

 COMPARISON RESULTS ON MSMT17 

Method Publication R-1 mAP 

BAT-net [72] 2019ICCV 79.5% 56.8% 

PCB [51] 2018ECCV 68.2% 40.4% 

IANet [56] 2019CVPR 75.5% 46.8% 

DG-Net [68] 2019CVPR 77.2% 52.3% 

OSNet [58] 2019ICCV 78.7% 52.9% 

Our -- 81.6% 59.4% 

Evaluation on the MSMT17 dataset. MSMT17 is the 

largest dataset so far which is the most challenge due to its 

large-scale identities and distractors. To evaluate the 

performance of the proposed model, we further conduct the 

experiment on this dataset. As shown in Table Ⅴ, our model 

achieves mAP=59.4% and Rank-1=81.6%, which also reaches 

the highest performance among the compared methods. 

E. Ablation Studies and Discussions  

We further implement some extra experiments to evaluate 

the effectiveness of each block of our model. All the ablation 

experiments are performed on CUHK03_labeled dataset under 

single query mode. The details of the experiment results of 

ablation studies are shown as below: 

Effectiveness of the reverse attention block. In this setting, 

we discard the reverse attention and name the discarded model 

as Our/reverse. The experiment results of the model on 

CUHK03_labeled dataset are shown in Table Ⅵ. From Table 

Ⅵ, we can observe that when discarding the reverse attention 

block, the performance of the model is decreased. More 

specifically, without reverse attention, the mAP and Rank-1 

accuracy are reduced by -1.5% and -3.7%, respectively. To 

further prove the effectiveness of the reverse attention block, 

some feature maps generated by Our/reverse and Our models are 

presented in Fig 4. From Fig 4, we find that the fine details of 

feature maps are enriched when introducing the reverse 

attention block. 

TABLE Ⅵ 

THE EFFECTIVENESS OF ADVERSE ATTENTION BLOCK 

Model mAP R-1 R-5 

Our/reverse  76.7 77.3 91.3 

 
Fig. 4. Visualization of feature maps generated from the two 

setting. The column（a）represents the raw images, columns 

(b) and (c) represent the feature maps extracted without 

reverse attention and with reverse attention, respectively. 
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Our 78.2 81.0 92.0 

Effectiveness of the multi-scale deep supervision block. To 

verify the effectiveness of the multi-scale deep supervision 

block, we use the model that discards branch-4 and branch-5 

to implement the experiment. As shown in Table Ⅶ, when 

introducing the multi-scale deep supervision block, the 

performance of the discarded model Our/supervision is improved, 

increasing the mAP and Rank-1 accuracy by +1.3% and 1.9%, 

respectively. 
TABLE Ⅶ 

THE EFFECTIVENESS OF MULTI-SCALE DEEP SUPERVISION BLOCK 

Model mAP R-1 R-5 

Our/supervision  

Our 

76.9 

78.2 

79.1 

81.0 

91.6 

92.0 

 

V. CONCLUSION AND FUTURE WORK 

In this study, we introduce a multi-scale deep supervision 

with attention block deep model for person re-identification. 

We first design the reverse attention module to assist the 

attention module, then we introduce a multi-scale deep 

supervision block to learn features with multi-scale 

information as well as rectify the attention block. The 

experiment results on the three large datasets show that the 

proposed model exceeds the competitive methods. What’s 

more, in this work, we only divided the channels into four 

groups in the multi-scale layers, we believe if we divide the 

channels into finer groups, the accuracy of PReID can be 

further improved.  

Infrared-Visible PReID is a task of associating the same 

person across visible and thermal cameras. Most of the current 

studies tried to design the discriminative global features and 

ignored local and salient features for this issue. In the future, 

we would try to simultaneously use global and local features 

to address the cross-modality issue for PReID. 
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