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Quantifying Mobility and Mixing Propensity in the
Spatiotemporal Context of a Pandemic Spread

Satyaki Roy , Preetom Biswas , and Preetam Ghosh

Abstract—COVID-19 is the most acute global public health crisis
of this century. Current trends in the global infected and death
numbers suggest that human mobility leading to high social mixing
are key players in infection spread, making it imperative to incorpo-
rate the spatiotemporal and mobility contexts to future prediction
models. In this work, we present a generalized spatiotemporal
model that quantifies the role of human social mixing propensity
and mobility in pandemic spread through a composite latent factor.
The proposed model calculates the exposed population count by
utilizing a nonlinear least-squares optimization that exploits the
intrinsic linearity in SEIR (Susceptible, Exposed, Infectious, or
Recovered). We also present inverse coefficient of variation of the
daily exposed curve as a measure for infection duration and spread.
We carry out experiments on the mobility and COVID-19 infected
and death curves of New York City to show that boroughs with
high inter-zone mobility indeed exhibit synchronicity in peaks of
the daily exposed curve as well as similar social mixing patterns.
Furthermore, we demonstrate that several nations with high in-
verse coefficient of variations in daily exposed numbers are amongst
the worst COVID-19 affected places. Our insights on the effects
of lockdown on human mobility motivate future research in the
identification of hotspots, design of intelligent mobility strategies
and quarantine procedures to curb infection spread.

Index Terms—Human mobility policies, lockdown, optimization,
social mixing, spatiotemporal model.

I. INTRODUCTION

THE scourge of epidemics and pandemics has been a part
of human history since time immemorial. Considering the

past millennium alone, right from as early as 1317, innumerable
outbreaks such as plague, flu and Ebola have globally claimed
millions of lives [1]. The latest addition to the list of outbreaks
is COVID-19, which, since its inception in China in December
2019, has brought the world to a veritable standstill. COVID-19
has followed a similar course like the plague, flu and Ebola and
claimed over 2 million lives globally as of January 2021, while
its severity continues to burgeon in the US, U.K., Brazil and
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parts of Asia [2] with a sizable number still projected to die in
the subsequent waves of this pandemic.

Most countries reacted poorly to the looming dangers of
COVID-19. In the absence of credible vaccination treatment [3],
social distancing and ensuing lockdown are threatening to bring
the global economy to a halt. There has been a drop in industrial
productivity, stock exchange percentage and increase in the price
of goods [4] as well as a potential contraction in US GDP [5].
The world is on the brink of a COVID-19-induced recession
(with as many as 709 000 seeking unemployment aid in the US
alone [6]). Nations are now willing to relax the lockdown to
mitigate economic losses [7]. Research on clinical, epidemio-
logical or socioeconomic implications of COVID-19 is stymied
by the absence of prior knowledge [3], [8]. The reliability of the
data is challenged by high variability in testing and surveillance
or contact tracing-based detection of the prospective infected
population. Finally, logistical factors such as dearth of or the ac-
curacy in testing, reluctance in reporting death and recovery [9]
and dubious information in print and social media [10] further
misguide precautionary and mitigation measures. It is known
that human mobility across neighboring geographic regions
(such as imports of international travellers [11]) leading to high
social contact is the primary mode for spread, yet there exists
no model that quantifies the joint effect of human mobility
and social mixing in the spatiotemporal dynamics of pandemic
spread.

Epidemiological models such as SEIR, SIR, SEIRD, SEIRS
(susceptible, exposed, infected (or infectious), recovered, or
death), etc. and their variants have been employed to study
the spread of infection [12], [13]. As per the susceptible ex-
posed infected recovered (SEIR) model, the susceptible (S) class
comprises individuals who are not exposed to the infection.
Once exposed to an infected individual, the susceptible may
transfer to the exposed (E) category. The E class represents
asymptomatic or untested individuals, who transition to the
(tested) infected (I). Individuals in I transition to the recov-
ered (R) categories [14]. There is also the non-epidemiological
modeling analysis proposed by the Institute for Health Metrics
and Evaluation (IHME) [15] squarely on the basis of mortality
rates. Both of these techniques have their shortcomings. With
regard to stochastic epidemiological models, combinations of
state transition parameters can show a good fit with the training
data but yield disparate model predictions – a problem defined
as parameter identifiability [16]. On the other hand, increasing
efforts to trace the passage of infection from mobility statis-
tics [17] militates against the efficacy of the IHME model that
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assumes that the mortality rate follows a normal distribution,
while not factoring in effects of transmission dynamics nor
contact patterns on spread.

Given the lack of prior knowledge on dealing with a public
health crisis of this scale, the policymakers are ill-equipped to
design mitigation strategies. To bridge the gap, the research com-
munity of epidemiologists, clinicians and computer scientists are
applying their expertise to seek out factors and their effects on
infection spread as well as the impending economic crash [3].
First, machine learning (ML) is helping build prediction models
on epidemiological and clinical data. Given existing clinical
data, prediction models [18] and therapeutic approaches can
help identify vulnerable groups [19], [20]. Epidemiologists are
trying to identify spread dynamics of COVID-19. Inga Holmdahl
et al. [21] analyze the pros and cons of forecasting models that
make predictions through curve fitting or mechanistic models,
while supervised and unsupervised ML is helping trace the
trends in infection dynamics [22]. Khan et al. performed regres-
sion analysis, cluster analysis and principal component analysis
on Worldometer infection count data to gauge the variability and
effect of testing in prediction of confirmed cases [4]. Roy et al.
used regression analysis to pinpoint pre-lockdown factors that
affect post-lockdown pandemic numbers [23].

Modeling COVID-19 using SEIR: There have been efforts to
employ SEIR to study the effects of demography, immunity and
social distancing on infection spread. He et al. employed the
particle swarm optimization on the COVID-19 data of Hubei
province of China to calculate the parameters of the SEIR model.
They discuss how these parameters can vary with demogra-
phy [24]. Pandey et al. utilized the SEIR model with regression
on the COVID-19 data of India collected by Johns Hopkins
University in the interval of 30th January to 30th March, 2020
to show the reproduction number to be approximately 2 [25].
Yang et al. applied artificial intelligence on the COVID-19 data
of Hubei, China into the SEIR model to estimate the date when
the infection peaks. They also predicted how the quarantine will
affect the dynamics of contagion [12]. Annas et al. calculated
the parameters of SEIR model by incorporating the factors
of vaccination and isolation. They applied the model on the
COVID-19 data of Indonesia to study the long-term effects of
vaccine and isolation on curbing spread [26]. Radulaescu et al.
adapted SEIR to study spread dynamics in an age-heterogeneous
scenario. As a case study, they simulate a small community in
New York and assess the effects of control measures such as
restricted mobility, social distancing and lockdown [27]. Iwata
performed simulation using the SEIR model to predict the effect
of secondary outbreak in a community outside China. They
demonstrate that the timing of hospital visits may affect the
outbreak [28]. Mwalili et al. applied the modified SEIR model
to study the effect of pathogens and intervention measures on
disease spread. They discuss the ill-effects of flouting social
distancing and basic hygiene measures on COVID-19 [29]. Tang
et al. adapted the SEIR model to incorporate the assumption that
the infected person may act as a vector of infection during the in-
cubation period. They use the model to make recommendations
and prediction of the disease spread [30]. Lopez et al. utilize the
SEIR epidemic model to study the consequence of quarantine on

Fig. 1. Contributions of this work. First, we present an optimization that
employs the daily infected (I) to infer the daily exposed (E) numbers of a region.
Second, we utilize E, in combination with the mobility pattern (obtained from
real human mobility traces), to calculate the latent factors for infection spread
that quantifies mobility and social mixing.

the population of Spain and Italy. They show that isolation can
help achieve a 10 times decline in disease spread. This has been
corroborated by studying contagion in the pre- and post-COVID
intervention in Italy [31].

Contributions: In this paper, we make three major contribu-
tions. First, we introduce a generalized spatiotemporal frame-
work, the first of its kind, that quantifies the components af-
fecting infection spread through a latent factor. Specifically,
this latent factor is a metric quantifying the joint influence
of human mobility and social mixing on the exposure to an
infection (see Fig. 1). We demonstrate its efficacy by employing
this spatiotemporal model on New York City mobility traces
and COVID-19 data trends. Second, we argue that the extent
and spread of infection can be gauged in terms of the projected
exposed (i.e., asymptomatic individuals) numbers, instead of the
infected and mortality count (that has been deemed a reliable
measure for the extent of infection spread for a geographical
region [15]). Third, we adapt a well-studied measure for dis-
persion in statistical distribution, called coefficient of variation,
as a measure to quantify the potential for infection spread and
duration, and demonstrate that nations with a high inverse of the
coefficient of variation in daily exposed numbers are amongst the
most COVID-19 affected. Finally, we discuss how the proposed
spatiotemporal model can identify pandemic hotspots as well
as the ideal time and extent of lockdowns to minimize contact
during a pandemic. The exposed population of a region is an
input to the spatiotemporal model that estimates latent factors.
The proposed approach employs a nonlinear least-squares opti-
mization to infer the daily exposed numbers. It incorporates an
exposed to infection transition step of the complete SEIR (i.e.,
S → E → I → R). It is important to mention here that the stated
optimization is just one approach to gauge the exposed numbers
and that the spatiotemporal model will work seamlessly for the
exposed estimates using other approaches as well.

This paper is organized as follows. Section II introduces
the major contributions of this work, namely, the optimization
to estimate exposed, spatiotemporal model and inverse coeffi-
cient of variation to quantify spread. Section III presents the
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Fig. 2. State transitions in the SEIR model are shown in black arrows. The
optimization to calculate the daily exposed from infected, by calculating the
fraction and duration of transition from E to I (φ, κ, respectively) is highlighted
in red.

experimental results on traffic and COVID-19 data from New
York City and the world. Finally, Section IV draws the
conclusions.

II. APPROACH

Susceptible Exposed Infected Recovered Death model: In the
SEIR model [14], the susceptible (S) class comprises individuals
who are not exposed to infection. Once exposed to infected
individuals, they may transfer to the exposed (E) category. E
class are asymptomatic or untested individuals, who transition
to the (tested) infected (I). The individuals in I transition to either
recovered (R) (or dead) (Fig. 2).

Estimation of daily exposed: We discuss the optimization that
utilizes the daily infected numbers to estimate the daily exposed
numbers (see Fig. 2). This is based on the SEIR model that states
that a fraction of susceptible individuals transition to exposed
on contact with infected state, while a fraction (say, φ) over time
(say,κdays) transfer to infected. We estimateE by assuming that
a mean fraction (φ) of et ∈ E transition to the infected category
in mean duration κ time. We minimize average squared error
between the fraction of the predicted daily exposed at time t
(i.e., φ× et) and infected population it at time t+ κ (i.e., it+κ).

min
E,s,κ,φ

1

T − κ

T−κ∑
t=1

(φ× et − it+κ)
2 (1)

s.t. 0 < φ ≤ 1.0, LB ≤ κ ≤ UB (2)

0 < s ≤ 1.0, et ≤ s× P (x) (3)

Ex. 1 ensures that the daily exposed curve scaled by a factorφ and
shifted by κ days on the time axis is nearly identical (i.e., having
low mean squared error) to the daily infected curve. Constraint
2 causes the incubation period κ and infection rate φ to be in
range [LB,UB] and (0, 1], respectively. Finally, constraint 3
ensures that, given a placexwith populationP (x), the optimizer
considers the upper bound for daily exposed et to be a fraction,
say s, of P (x). We illustrate an example in Fig. 3, where κ = 14
days and φ = 0.6. Given a daily infected curve (shown in blue)
that peaks on day 50, the optimizer should infer a daily exposed
curve (shown in green) that shows a higher curve peaking at day
50− κ = 36.

A. Inverse Coefficient of Variation

Coefficient of variation (CV) is a statistical measure of the
variability of a distribution with respect to its mean. It was
conceived to compare data varying in units, say the height of

Fig. 3. Daily exposed curve (colored green) and daily infected curve (colored
blue) for κ = 14 days and φ = 0.6.

a child and an adult [32]. We posit that the inverse of CV (i.e.,
ICV) can be an effective measure for the potential threat posed by
a pandemic in a geographical region. It is measured as μ

σ , where
μ and σ are the mean and standard deviation of an exposed
curve, respectively. ICV was termed the reward-to-variability
ratio by American economist and Nobel laureate William Sharpe
and used to gauge the performance of mutual funds as a ratio
between return on investment and market variability [33]. In the
context of pandemic, ICV of the daily exposed curve quantifies
the ratio between the potential for infection spread over time
to its variability, suggesting that it can be an effective measure
for the potential extent and duration of pandemic spread in any
geographical region.

B. Spatiotemporal Modeling

We present a spatiotemporal model that helps to quantify the
daily exposed numbers in terms of a latent factor combining
social mixing and human mobility (refer Fig. 1). We discuss the
preliminaries on matrix normalization as well as frequency and
transition matrix before formalizing the model.

1) Column Normalization of a Matrix: Given any two-
dimensional matrix Z ∈ Mm×n(R), we define a left stochastic
matrix (i.e., matrix with column summing to 1), as follows:

Ẑ =

{
vij∑m

k=1 vkj
: vij ∈ Z

}
(4)

2) Frequency and Transition Matrix: Given a geographical
region with a set of geographical sub-regions (or zones) B, the
frequency matrix F ∈ M|B|×|B|(R) is created from the human
mobility traces, where fi,j ∈ F denotes the number of trips
made from zone bj ∈ B to bi ∈ B. We generate a transition
matrixA ∈ M|B|×|B| performing column normalization ofF (as
defined in Section II-B1). Each element of this matrix ai,j ∈ A
is the probability of making a trip from bj to bi. The frequency
or transition matrix captures the overall mobility trends within
and across zones of any given geographical region.

a) Quantifying trip count: In keeping with Markov chain, we
calculate the c-th power of A that represents the probability
of transitioning from one zone to another in exactly c trips [34].
Given thatAc

i,j =
∑|B|

k=1 a
c−1
i,k ak,j , the (i, j)-th entry inA raised



324 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, VOL. 5, NO. 3, JUNE 2021

to power 2 can be written as:

a2i,j = ai,1.a1,j + ai,2.a2,j + ai,3.a3,j + · · · (5)

If i = 1, j = 2 and z = 2 in (5), we obtain the likelihood for
a trip from b2 to b1 in 2 hops (with bk (1 ≤ k ≤ |B|) as an
intermediate stop). In (5), the term a1,1.a1,2 is the probability of
traveling from b2 to b1 in the order b2 → b1 → b1; analogously,
a1,2.a2,2 is the probability of commute in the following order
b2 → b2 → b1, and so on.

Let us assume that an individual makes 1, 2 · · · , r trips. We
calculate the stochastic matrix corresponding to the inter- and
intra-zone transition for less than or equal to r trips (Â≤r), where
A≤r is defined as:

A≤r =

r∑
i=1

Ai (6)

We assume that each trip length is independent of another. In
other words, an individual can independently choose to make i,
i+ 1 or more trips across different zones in a region.

3) Formal Definition: Let γbt ∈ Γ be the number of daily
exposed individuals at zone b ∈ B at time t and Â (i.e., Â≤r for
some r ∈ Z) defined in Section II-B2) be the transition matrix.
We define the relationship Â.X = Γ, written as:⎡
⎢⎢⎢⎢⎣
a1,1 a1,2 · · · a1,|B|
a21 · · ·

...

a|B|,1

⎤
⎥⎥⎥⎥⎦×

⎡
⎢⎢⎢⎢⎣
x1,1 x1,2 · · · x1,t

x21 · · ·
...

x|B|,1

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣
γ1,1 γ1,2 · · · γ1,t

γ21 · · ·
...

γ|B|,1

⎤
⎥⎥⎥⎥⎦

Explanation: Recall from the discussion on the SEIR model in
Section I, the susceptible (S) population contract the infection
via contact with the infected (I) individuals. X is the composite
combination of mobility and mixing among the S and I popula-
tion over time, and Â controls the extent of contact among S and
I due to intra- and inter-zone mobility, resulting in the generation
of the final matrix of exposed individuals over time Γ. The other
features are summarized below.
� Latent factor X is a unified metric for mobility and social

mixing and an element γi,k ∈ Γ can be calculated as:

γi,k = ai,1.x1,k + ai,2.x2,k + · · · =
|B|∑
j=1

ai,j .xj,k (7)

� Recall that the frequency of trips from bi to bj may be in-
ferred from element fj,i in frequency matrix F (defined in
Section II-B2). For each bi, we calculate the trip frequency
factor (ρi) as the total number of trips made from bi to all
boroughs including itself (i.e., ρi =

∑|B|
j=1 fj,i).

� We posit that an element of the latent factor xi,t ∈ X is
a combination of the three factors of a borough bi: (a)

frequency of trips made by bi (αi), (b) fraction of infected
individuals in bi (ιi,t), and (c) intra- and inter-borough
mixing of bi. Thus, xi,t can be written as:

xi,t = αi × ιi,t × πi,t =

(
ρi∑|B|
j=1 ρj

× w

)

× Ii,t
Pi −DC

i,t −RC
i,t

× πi,t (8)

Here, w is the long-term mean trip count made within and
across boroughs and Pi is the population of bi. The first
term αi,t is a measure of expected number of trips starting
at bi at time t; the second term ιi is the ratio between the
number of infected people at time t, Ii,t, and the number
of people in borough i (barring cumulative recovered RC

i,t

and dead DC
i,t). The third term πi,t is the mixing factors

that account for several region-specific parameters, such
as susceptible count, testing frequency, strain of infection,
immunity acquired against infection, etc.

4) Modeling Lockdown: Lockdown is modeled as restricted
mobility achieved by scaling down the frequency of trips made
by borough i (αi). Given a lockdown rate be η, we achieve trip
minimization, by simply scaling each element of latent factor
matrix X by η, as shown in the equation below.

X ′
i,t = Xi,t ∗ η (9)

⇒ X ′
i,t = (αi × ιi,t × πi,t)× η (10)

⇒ X ′
i,t = (αi × η)× ιi,t × πi,t (11)

⇒ X ′
i,t = α′

i × ιi,t × πi,t (12)

In the above equation, α′
i is the scaled down frequency of

trips. Note that the drop in exposed numbers is commensu-
rate with the decrease in η, since γ′

i,k in (7) can be writ-

ten as ai,1.η.x1,k + ai,2.η.x2,k + · · · =∑|B|
j=1 ai,j .η.xj,k =

η ×∑|B|
j=1 ai,j .xj,k = γi,k × η. However, the knowledge of the

transition matrix Â and latent factor X can allow us to devise
more intelligent lockdown strategies. In the experimental results
(Section III-C3) we consider a scenario where, instead of a
uniform lockdown rate η, lockdown levels can vary over time
(i.e.,ηt). Since the magnitude of elements in Â andX vary across
boroughs and time and lockdown entails economic losses, it is
possible to utilize the latent factor matrix to balance joint goals
of minimizing exposure and economic losses.

5) Determination of Latent Factors: Given transition and
exposed matrices Â and Γ, we solve for the latent factor matrix
X , while constraining xit ∈ X to be positive real numbers.

min
X

Â.X − Γ (13)

s.t. xi,t > 0 ∀xi,t ∈ X (14)

C. Mean-Centered Cosine Similarity

We estimate the similarity between two vectors v1 and v2

using the cosine index of mean-centered vectors v′
i = vi − μvi

that measures the cosine of angle between vectors v1 and
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TABLE I
LIST OF PARAMETERS AND THEIR VALUES

v2 as cos(θ) =
v′
1.v

′
2

||v′
1||.||v′

2|| . Mean-centering is a standard prac-
tice in statistical models and data-driven recommendation sys-
tems [35], [36] that allows comparison of data with varying
orders of magnitude.

III. EXPERIMENTAL RESULTS

The results are classified into four subsections: (A) parameter
identification and quantification of pandemic spread, (B) mobil-
ity patterns within and across zones in a region, (C) influence of
mobility and spatiotemporal mixing on pandemic spread and (D)
exploratory analysis. Simulation parameters are summarized in
Table I. We consider the incubation period κ ∈ [2, 30]. Although
symptoms show up in about 5 days after contact, symptoms have
also been reported to appear as early 2 days after exposure [37].
For 10% of the population, the incubation period was longer than
2 weeks and, in a few cases, more than 20 days [38]. This period
can potentially be extended due to delays and inaccuracies in
testing.

Data collection: We discuss the NYC map and mobility traces
and the (NYC and global) infected and death numbers.

1) Map Generation and Location Identification: The list of
NYC boroughs and districts is extracted from Wikipedia [39],
and the latitude and longitude of the 5 boroughs and 59 districts
are taken from the Python library for geocoding services, called
GeoPy [40]. The distance between any pair of points (i.e.,
boroughs or districts) on the NYC map is calculated using the
geodesic distance function of GeoPy.

2) NYC Mobility Data: We source the mobility data of NYC
traffic from NYCOpenData [41] – a data repository for fields
ranging from city government, education, environment, health
to public safety, recreation, social services and transportation.
The stated data (spanning a period from 2014 to 2019), collected
by the Department of Transportation of New York Metropolitan
Transportation Council (NYMTC), has following fields: ID,
road name, source and destination intersecting street name,
compass direction, date and time. We use this data to calcu-
late the transition matrix (see Section II-B) that captures the
probability of travelling within and across boroughs.

3) Cumulative Daily Infected and Death for NYC: We collect
COVID-19 daily infected numbers from the website of the NYC
Department of Health and Mental Hygiene repository [42] that
contains the data on Coronavirus Disease 2019 (COVID-19)

Fig. 4. Predicted exposed for varying κ and φ values.

in New York City (NYC). The data spans a period starting
March, 2020 (which happens to be the date of first documented
laboratory-confirmed cases) to November 2020.

4) Global Cumulative Daily Infected and Death: The time-
series data of the world daily infected and death numbers is
sourced from the World Health Organization, over a period
spanning January 03, 2020 - October 23, 2020 [43].

A. Parameter Identification and Spread Quantification

We estimate the zone-specific parameters of infection spread
(i.e., κ and φ) for countries and quantify the duration and spread
of infection using the inverse coefficient of variation.

1) Effect of κ and φ: For a fixed infected curve (black curve),
we study the variation in exposed curve with varying rate param-
eters φ controlling the fraction of population transitioning from
exposed to infected and delay parameter (in days) κ (Fig. 4).
For φ = 0.15 and φ = 0.6, the smallest and largest fraction
of exposed individuals (shown in green) transition to infected,
whileκ = 4 andκ = 16 (red curve) cause the lowest and highest
delay in exposed to infected transition respectively.

2) Spatial Context in Global Infection Spread: We utilize
the global COVID-19 infected and death numbers (discussed in
Section III-4) to estimate κ,φ values as well as the daily exposed
and recovered numbers (as per the optimization discussed in
Section II). Parameters for the select 20 countries are enlisted in
Table II. Fig. 5 depicts each country in a different color and the
day in the observed 300-day period when its projected daily
exposed numbers peak. There are considerable variations in
daily infected (and consequently exposed) numbers, as illus-
trated by the exposed curves of China and USA in Fig. 6(a). It
is worth noting that several countries in close proximity, such as
(Group 1) Iran, Iraq UAE and India (shown in red dotted circle)
and (Group 2) Italy, Belgium, Germany, Austria and Romania
(shown in blue dotted circle) peak nearly at the same time (see
Fig. 5), alluding to the fact that mobility across neighboring
zones oftentimes plays a role in a pandemic spread and affect
the timing of exposed (and infected) peaks.

3) Quantification of Infection Spread: In addition to high
population density, variations in κ and φ affect the extent and
rate of transition from exposed to infected states. We attempt to
quantify this dynamic of spread using the inverse coefficient of
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Fig. 5. Days for the exposed curve to peak for 20 countries, where each country is shown in a different color and annotated by the day in the observed 300-day
period when its projected daily exposed numbers peak. There are two groups of countries (marked in red and blue dotted circles, respectively) in close proximity
where the exposed numbers peak at the same time.

TABLE II
OPTIMIZATION PARAMETERS κ AND φ CORRESPONDING TO THE DIFFERENT

COUNTRIES, ALONG WITH GOODNESS OF FIT R2 SCORE

variation (ICV) (defined in Section II-A) of the exposed curve.
This is because, high ICV of the daily exposed curve for any
given region implies a high μ (i.e., high exposed numbers) or
low σ (i.e., steady exposed numbers), or both. For instance, in
Fig. 6(a), the high mean exposed counts of USA contribute to its
high ICV; while Iran, despite having 25% of the population of
USA, has a steady (i.e., low standard deviation in the) daily
exposed curve. In Table II, we summarize κ and φ of the

Fig. 6. Quantifying infection. (a) daily exposed of the two countries with the
highest ICV (USA and Iran) and lowest ICV (China and New Zealand) smoothed
using Savitzky-Golay filter, (b) inverse coefficient of variation for 20 countries.

20 countries, along with the goodness of fit R2 for the least
squared optimization (see Expression 1). It is noteworthy that
inverse coefficient of variation (ICV) is useful particularly when
the available time-series data covers a considerable duration,
allowing for the curve to reach its first major peak within the
data collection period. If the exposed curve peaks towards the
end, we see near-exponential growth, resulting in high σ and
low ICV. In Fig. 6(b), we plot the ICV for the 20 nations, where
China, New Zealand and USA, Iran have the least ICV and
highest ICV, respectively. Reports corroborate these numbers,
suggesting that ICV is indeed a reliable measure of infection
duration. Though the earliest cases of COVID-19 was reported
in China, the nation prides itself on curbing spread by enforc-
ing the strictest lockdown measures [44]. New Zealand has a
similar story of becoming the “emblematic champion of proper
prevention” due to smart and early intervention measures [45].
On the other hand, USA continues to register record new cases
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Fig. 7. Mobility pattern: (a) borough map of NYC, and (b) directed graph
representation of the boroughs and mobility pattern of NYC; large circles
are boroughs marked by the respective colors. The size of a borough node is
proportional to the frequency of intra-borough trips, and the opaqueness of the
directed edge (u, v) is proportional to the propensity of trips made from borough
u to borough v.

Fig. 8. Spatial context in mobility of NYC. (a) Heatmap showing the transition
matrix A, where ai,j ∈ A is the probability of moving from borough j to i
(written in blue), (b) histogram of bin-size 5 showing the relationship between
frequency of trips made and corresponding distances in miles.

which are projected to grow in the months to come [46]. Iran
too has reported unprecedented growth in new cases in October
2020 [47].

B. Spatial Context to Human Mobility Patterns

We carry out a case study on the mobility pattern of NYC and
its implications on any pandemic spread. Fig. 7(a) shows the 5
boroughs of NYC. We process the human mobility data of NYC
(discussed in Section III-2) to generate the frequency matrix
(F ) and represent the mobility within and across boroughs in a
directed graph in Fig. 7(b). Each borough and district is placed
according to its latitude-longitude coordinates and the size of the
borough nodes and the opaqueness of a directed edge (u, v) are
proportional to the fraction of total trips originating at borough
u that have a destination borough v.

Fig. 7(b) shows that Staten Island to Brooklyn, followed by
Brooklyn to Queens exhibit the highest inter-borough mobility.
Fig. 8(a) is the transition matrix (A) from column borough to row
borough labeled by the corresponding transition probabilities
(discussed in Section II-B2) in the form of a heatmap, showing
that intra-borough trips outnumber inter-borough trips for all
boroughs. Fig. 8(b) is frequency plot of NYC trips against the
distance (in miles) between the source and destination zones,
where short trips are preferred over long trips.

Fig. 9. Comparison of predicted daily exposed E × φ and I for Manhattan,
Bronx, Brooklyn, Queens and Staten Island.

a) Factors affecting human mobility: Human mobility is a
combination of several deterministic and non-deterministic fac-
tors such as intent, convenience, environmental constraints, and
so on. There are pedestrian based mobility models, such as Least
Action Trip Planning [48], that suggest that a person chooses
a destination (called waypoint) close to its current position,
while another mobility framework called ORBIT [49] suggests
that individuals cyclically move from one predetermined hub
to another (as illustrated in Figs. 7(b), 8(a) and 8(b)). Social
network-based mobility models, such as Social Network The-
oretical (SNT) [50], suggest that people preferentially select
next stops based on social affinity, such as work, social ties or
friendships. Note that there are factors besides distance, such
as intent (this can be a function of occupation, social affinity,
etc.) that determine inter and intra-zone trips. Thus, despite high
distance, there are a high number of trips made from Staten
Island to Brooklyn and from Brooklyn to Queens. However,
mobility (based on intent or proximity) across neighboring zones
affect social mixing.

C. Spatiotemporal Model for Pandemic Spread

Based on the infected data (see Section III-3), we solve
the optimization problem (Expression 1) to estimate the daily
exposed population count. We use the Python SciPy differential
evolution solver [51] that stochastically finds the minima by
searching large areas of the candidate space. Fig. 9 shows the
comparison of predicted daily exposed (dotted) E scaled down
by the infection rate φ against that of daily infected (solid) I
curve, while the lags in the corresponding peaks of the E and I
curves capture the incubation period κ for a borough.

Observe that Brooklyn and Queens, the boroughs with a high
intra- and inter-zone mobility, record the highest exposed count.
Since there are few trips with Staten Island as destination, it has
a low exposed count. As per the COVID-19 Tracking Project
and the Center for Systems Science and Engineering at Johns
Hopkins University, Queens and Brooklyn are truly the worst
affected, as of November 2020 [52].
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Fig. 10. Daily exposed curve for each borough and the starting and ending
dates for lockdown is shown as a blue vertical line.

Fig. 11. Effect of Latent factor on infection spread and its variation during
lockdown: (a) latent factor for each borough, (b) cosine similarity of mixing
factors of NYC boroughs.

1) Peaking of the Exposed Curve and the Effect of Lockdown:
We plot the variation in daily exposed numbers in each borough
(Fig. 10). Lockdown was formally initiated in the state of New
York on March 20, 2020 [53], which is shown in solid blue line.
Note that the exposed numbers briefly continued to rise for a
week after the imposition of lockdown. However, the exposed
curve is showing new peaks since October 2020. Finally, the
exposed curves corresponding to Brooklyn and Queens peak at
nearly the same time due to the high mobility between the two
boroughs as depicted in Fig. 7(b).

2) Latent Factor (X) Analysis: We discuss in Section I that
infection spread is not merely a function of human mobility, but
a joint effect of mobility and social mixing, e.g., Bronx, despite
its low inter-zone mobility has relatively high daily exposed
numbers. We quantify the combination of mobility and mixing as
a latent factor (X) (Section II-B). When we rank the boroughs in
the non-increasing order of ICV of exposed, we see the following
order: Manhattan (0.84), Brooklyn (0.80), Queens (0.70), Bronx
(0.69) and Staten Island (0.63). In Fig. 11(a), we plot latent factor
Xit for each borough. Observe that Queens and Brooklyn once
again exhibit the highest x values. We already know that the
latent factor is a combination of trip frequency, infected fraction
and social mixing (see II-B3), we calculate the mixing factor
(ι) from sampled X (using II-B3) for each borough. We apply
mean-centered cosine similarity (Section II-C) to show (with

Fig. 12. The exposed numbers corresponding to four lockdown scenarios.

heatmap in Fig. 11(b)) that regions with high inter-zone mobility
also show similar mixing, reinforcing infection spread.

3) Lockdown Policymaking: In Section II-B3, we discuss
that the latent factor X can be scaled down by a fractional
lockdown rate η, where η = 1 and 0 corresponds to no lock-
down and complete lockdowns respectively. Using the new
latent factor matrix X ′ = η ×X , we obtain a resultant exposed
count Γ′ = A.X ′, where γ′

i,t = γi,t × η (∀γi,t ∈ Γ). It is worth
mentioning that the knowledge of the latent factor for each
borough i at time t xi,t allows us to determine the ideal time
and extent for η in order to minimize contagion. To prove our
point, we introduce a vector of time varying eta at each timepoint
t, η = {ηt|t = 1, 2 · · · , T} and calculate X ′ by scaling the t-th
column of X (denoted by X∗,t) by ηt.

Given X , let τmax and τmin (each of length 0 < k ≤ T ) be
two sets of timepoints with the highest and lowest sum of X∗,t,
respectively. We consider the following scenarios: ηt =
� Case 0: [1, 1, . . . , T times]
� Case 0.5: [0.5, 0.5, . . . , T times]
� Case 0.5+: Same as Case 0.5, except overwrite ηt with 0.75

and 0.25 if t ∈ τmax and t ∈ τmin, respectively.
� Case 0.5-: Same as Case 0.5, except overwrite ηt with 0.25

and 0.75 if t ∈ τmax and t ∈ τmin, respectively.
We plot the total exposed in NYC in the pre-lockdown period

for the four scenarios. Fig. 12 shows that we get the highest
exposed for no lockdown (i.e., Case 0) and exactly half the
exposed for 50% lockdown (Case 0.5). In Case 0.5+, we assign
lesser lockdown (ηt = 0.75) to a timepoint with higher latent
factor sum, and vice versa, and end up with a higher exposed sum
than Case 0.5. Finally, in Case 0.5-, we achieve a considerably
lower exposed by enforcing a higher lockdown (ηt = 0.75) at
timepoints with higher latent factor sum. This suggests that the
latent factors can help identify the ideal timepoints of imposing
lockdowns to curb spread.

We apply principal component analysis (PCA) to visualize
the reflection of the ensuing lockdown on the latent factor.
The latent factor is a two-dimensional vector X comprising
data-points {(x1t, x2t, . . . , )|t = 1, 2, · · ·T}. Each point on the
PCA plot (Fig. 13(a)) corresponds to a timepoint. We identify
four clusters of timepoints, namely pre-lockdown (March 3 -
11), early-lockdown (March 22 - April 6), later-lockdown (April
21 - July 20) and post-lockdown (July 21 - October 15). In
Fig. 13(b), we compare the daily infected numbers for these
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Fig. 13. Effect of lockdown. (a) principal component analysis (with two
components) of the latent factor showing four clusters of time intervals, (b)
comparison of the projected infected numbers for the four lockdown timelines.

timelines to show how the infection peaked from pre-lockdown
to early lockdown phases and subsided thereafter.

D. Exploratory Analysis

The results presented so far show that the proposed spa-
tiotemporal model is a generalized approach that can make
informed spread predictions. It is worth highlighting how this
model differs from existing efforts to study the evolution of
contagion and the effects of public health intervention measures.
Sun et al. adapt the susceptible, exposed, infected, confirmed and
removed (comprising recovered and death) to model COVID-
19 transmission at Wuhan, China. This model uses additional
parameters to quantify infection coefficients under lockdown
as well as emigration and immigration rates [54]. Similarly,
Tian et al. performed curve-fitting on the time series of cases
reported in Hubei province to learn the SEIR model parameters
for COVID-19 and reported the immediate effect of lockdown on
curbing the rate of contagion [55]. These models are instances of
top-down approaches relying on applying curve-fitting to learn
the SEIR model parameters. The proposed approach, however,
is inherently different as it uses a simplified version of the SEIR
model based on the daily infection counts alone, and in doing so,
identifies a zone-specific measure of spread. Its benefit lies in the
fact that it (1) reduces the number of parameters to be used in the
SEIR model for fitting, (2) incorporates the variations in spread
dynamics due to the exact inter- and intra-zone mobility patterns,
and (3) lends itself to a more generalized time-varying analysis
that a traditional fitting-based approach may fail to capture.

Let us discuss how this model inspires several research direc-
tions to design mobility policies to combat future outbreaks.
First, this model can infer the effect of trip lengths on the
exposed numbers. As discussed in Section II-B, we decom-
pose the latent factor X into trip frequency, infected ratio and
mixing factor. For instance, the exposed population count as
a result of trips of length r + 1 or more can be expressed as
E≥r = Â≥r ×X; here A>r =

∑r
i=r+1 A

i (refer (6)) are the
stochastic matrices estimating probability of trips of length
r + 1 or more. One may approximate A>r to

∑ζ
i=r+1 A

i,

where |∑ζ+1
i=r+1 A

i −∑ζ
i=r+1 A

i| is less than some threshold
th. Given that the average inter- and intra- borough distance in
NYC is 14.4 miles, for r = 12, we observe that E>12 accounts
for a little over 1% of the total exposed numbers. It is worth

noting that since the length of 65% of trips in NYC are less
than 2 miles, the pandemic spread can be contained effectively
by restricting shorter trips, as longer trips have little bearing on
the exposed numbers. Second, the exposed numbers often lends
great insights into the time it would take to flatten the curve.
Nonlinear curve-fitting on the daily exposed numbers for NYC
boroughs explain why (in the current state of lockdown) the new
exposed numbers started dropping by the end of May and daily
infected curve (that lagged by roughly a week) started stabilizing
by early June.

IV. CONCLUSION

COVID-19 has insidiously affected every facet of human ex-
istence over the last 11 months. Global infected and death num-
bers for COVID-19 suggest that geography, time, and mobility
patterns are key factors affecting spread, making it imperative to
factor in the spatiotemporal and mobility context in future pre-
diction models. In this work, we present a spatiotemporal model
for pandemic spread that unifies mobility and social mixing into
a latent factor. We apply the model on the NYC data to show
that boroughs of high inter-zone mobility (namely, Brooklyn,
and Queens exhibit similar trends in exposed numbers as well as
mixing. We carry out principal component analysis to depict the
temporal variation of the latent factor in pre- and post-lockdown
epochs. Next, we argue that the inverse coefficient of variation
(ICV) of daily exposed curve can explain the duration as well as
the spread of infection in a zone. We show that the ICV of nations
(such as USA, Iran, China, New Zealand, etc.) correlate with the
true extent and period of COVID-19 spread. We show the validity
of the proposed method by estimating the exposed numbers for
different countries. Furthermore, we report that the peaks in daily
exposed of neighboring nations are reached at nearly the same
time, underpinning the role of proximity in spread.

The discussion on lockdown policies (Section III-C3) and
exploratory analysis (Section III-D) shows that the proposed
spatiotemporal model motivates new research directions for
studying the mixing propensity of individuals at both inter- and
intra-borough levels. The drop in the latent factor (X) post-
lockdown was achieved by a reduced number of trips (although
we will consider real post-lockdown mobility traces in our future
experiments); however, lockdown or social distancing measures
are expected to impact the mixing propensity of individuals
in different contexts, such as mixing at grocery stores, restau-
rants, work-places or at home. Ideally, the mixing factor can
be considered as a vector of latent items each of which may be
impacted differently by constraints on individual mobility. These
observations can feed into future SEIR models and quarantine
procedures to limit the infection spread. Since regions with high
inter-zone mobility patterns exhibit similar trends in exposed
numbers, it is advisable to consider clusters of such zones in
future infection models. A SEIR model executing on a single
zone needs to otherwise consider the high inflow/outflow rates
of susceptible/infected individuals into and out of the zones
which again increases model complexity and can make the
parameters non-identifiable and hence hard to justify [16]. A
clustered view of zones with high mobility and mixing keeps the
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models simpler to the general SEIR format and helps generate
more realistic predictions. Similarly, quarantine procedures on
such entire clusters can help better contain the infection spread
while additionally alleviating the economic loss that results from
limiting the two-hop trips.
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