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ABSTRACT

Solving physics problems for which we know the equations, boundary conditions and symmetries can
be done by deep learning. The constraints can be either imposed as terms in a loss function or used to
formulate a neural ansatz. In the present case study, we calculate the induced field inside and outside a
dielectric cube placed in a uniform electric field, wherein the dielectric mismatch at edges and corners
of the cube makes accurate calculations numerically challenging. The electric potential is expressed as
an ansatz incorporating neural networks with known leading order behaviors and symmetries and the
Laplace’s equation is then solved with boundary conditions at the dielectric interface by minimizing
a loss function. The loss function ensures that both Laplace’s equation and boundary conditions are
satisfied everywhere inside a large solution domain. We study how the electric potential inside and
outside a quasi-cubic particle evolves through a sequence of shapes from a sphere to a cube. The
neural network being differentiable, it is straightforward to calculate the electric field over the whole
domain, the induced surface charge distribution and the polarizability. The neural network being
retentive, one can efficiently follow how the field changes upon particle’s shape or dielectric constant
by iterating from any previously converged solution. The present work’s objective is two-fold, first
to show how an a priori knowledge can be incorporated into neural networks to achieve efficient
learning and second to apply the method and study how the induced field and polarizability change
when a dielectric particle progressively changes its shape from a sphere to a cube.

1 Introduction

Solving physics problems for which we know the equations, boundary conditions and symmetries by deep learning
follows from the universal approximation theorem [1–3], which states a sufficiently deep artificial neural network
(ANN) can approximate any well-behaved function with a finite number of parameters. In 1994, Meade and Fernandez
approximated the solution of linear [4] and nonlinear [5] ordinary differential equations using a single-layer perceptron.
This approach was soon generalized by Lagaris et. al. [6] and applied to two-dimensional Poisson equations with
various source terms in a rectangular domain. Their trial functions consisted of two terms: the first one which contained
no trainable variable satisfied the boundary conditions, whereas the second one involved neural networks, whose
parameters, e.g. weights and biases, were adjusted to minimize a loss function. A neural network solution of Poisson’s
equation in a 3D domain with irregular boundaries was achieved by including the boundary conditions into the loss
function [7]. Alternatively, McFall and Mahan constructed a proper trial function so that the boundary conditions
were automatically satisfied [8]. Massive growth of available scientific data has introduced a new flavor into the ANN
approach to differential equations. By incorporating data and governing equations into the loss functions, the physics-
informed neural networks enable inferring hidden physics from measured data [9–11] with successful applications on the

ar
X

iv
:2

10
5.

09
86

6v
1 

 [
ph

ys
ic

s.
cl

as
s-

ph
] 

 1
1 

M
ay

 2
02

1



A PREPRINT - MAY 21, 2021

visualization of turbulent flows [12–14], where multiple scales interact, and the design of metamaterials in nano-optics
[15], where the finite size effect dominates. However, as pointed out by Wong et al. [16], high-dimensional, non-convex
loss functions require significant optimization efforts, calling for sophisticated hyper-parameter optimization [17–19]
and transfer neuroevolution [16] algorithms.

In this work, we combine physics knowledge with recent advances in deep learning to calculate the induced electric
field of semiconductor colloidal nanocrystals in an external photon field. Semiconductor colloidal nanocrystals show
numerous advantages for powerful opto-electronic materials, as their optical properties change with shape and size due
to quantum effects [20, 21]. In order to characterize correctly their absorption/emission properties, one needs to know
the electric field induced by the external photon field [22, 23]. As the particle’s size is much smaller than the photon
wavelength, the inner field results from a homogeneous applied electric field of amplitude given by the laser intensity.
Whereas there are analytical solutions of Laplace’s equation for dielectric particles with shapes that allow to define a
system of curvilinear coordinates such as sphere, ellipsoids, torus, etc. [20, 24–26], numerical solvers are required for
other shapes. The case of a cube is challenging because the edges and corners lead to sharp variations of the induced
fields. To our knowledge there is only one published calculation based on finite element methods applied to a cube with
relative dielectric constant ranging from to 2 to 10 [22]. The authors claimed a 1% accuracy at the far field of their finite
element simulation domain. At low values of the relative dielectric constant considered, they found that the electric
field at the center of the particle is lower for a cube than for a sphere. This would imply a lower polarizability for a cube
than for a sphere, at variance with accurate calculations [27–33]. Note that these herein cited accurate calculations all
focused on solving a surface integral equation to estimate the dielectric polarizability and consequently did not provide
the induced electric field inside and outside the cube.

In this paper, we introduce an alternative method to calculate the electric field inside and outside a dielectric nanoparticle
embedded in another dielectric medium. From the field inside, the polarizability is extracted. More specifically, we
approximate the solution of Laplace’s equation by a function combining a known analytical term and an ANN. Then,
instead of solving numerically Laplace’s equation with boundary conditions, we express the problem as an optimization
problem and construct a loss function which can be minimized by machine learning algorithms to yield the full electric
potential inside and outside the particle. One clear advantage of the ANN approach over finite element methods is
that it provides the solution of Laplace’s equation as a differentiable function that can be used as such. Additionally,
the retentive nature of neural networks allows for a systematic tracking of the evolution of induced fields as dielectric
particles deviate from canonical spherical and cubic shapes. Note that physical nanoparticles usually have rounded
edges and corners, see e.g. Fig. 2s in [34] and in [35] for perovskite nanocrystals.

Most previous works considered partial differential equations in a homogeneous domain with explicit boundary
conditions. The electrostatic problem of a colloidal particle requires to treat accurately the discontinuity of the
displacement field at the interface. To the best of our knowledge, the present work is the first ANN-based attempt
to address this problem, namely solving Laplace’s equation in a three-dimensional piece-wise homogeneous domain
with implicit boundary conditions on an irregular interface. In addition to formulating the best loss functions, one can
substantially reduce the optimization effort by incorporating known symmetries and specific features, e.g. leading order
behaviors, into the ANN ansatz.

The rest of the paper is organized as follows: in Sec. 2, we present the physics model. Starting from a general solution
in the form of a linear combination of spherical harmonics, we replace the higher order terms by a function containing
neural networks and construct a loss function that includes all constraints. The architecture of the neural network is then
discussed. In Sec. 3.1 , we benchmark the proposed ANN method by studying dielectric spheroids for which analytical
solutions are known [24]. In Sec. 3.2, we study the evolution of polarizabilities and induced fields inside and outside a
dielectric particle through a sequence of shapes from a sphere to a cube. Finally, conclusions are drawn in Sec. 4, with
a highlight on future works.

2 Neural Network solution of Laplace’s equation

2.1 Governing equations

Consider a neutral homogeneous dielectric 3D particle, with surface S and permittivity ε1, embedded in a homogeneous
medium with permittivity ε0. In a spherical coordinates (r, θ, ϕ) system whose origin coincides with the center of the
particle, we take the direction of an uniform electric field Eext to be the axis from which the polar angle θ is measured.
In the absence of external charges, the electric potential obeys Laplace’s equation inside and outside the particle,

∇2φ = 0. (1)
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The continuity of the tangential components of the electric field (E = −∇φ) and the normal component of the
displacement field (D = εE) at the interface S leads to the following boundary conditions for the potential:

φ0 = φ1, (2a)
∇φ0 · n̂ = εr∇φ1 · n̂. (2b)

Here, n̂ = ∇S/|∇S|, is the unit normal vector to S, εr = ε1/ε0 is the relative dielectric constant, and subscripts 0 and
1 denote quantities outside and inside the particle, respectively. Furthermore, the electric field tends asymptotically to
the applied field and the potential is zero at the origin, yielding

φ0 = −Eextr cos(θ), as r →∞, (3a)
φ1 = 0, at r = 0, (3b)

where Eext = |Eext|.
Within the perspective of approaching a real cube and benchmarking the present numerical method with analytical
solutions, we consider a super-ellipsoidal inclusion whose surface is described by the equation

S(x, y, z) ≡
∣∣∣x
a

∣∣∣2N +
∣∣∣y
b

∣∣∣2N +
∣∣∣z
c

∣∣∣2N = R2N , (4)

in the Cartesian coordinates. Here, a, b, c, R ∈ R+ and the exponent N ≥ 1. For a = b = c and N = 1, Eq. (4) defines
a sphere with radius R. A continuous deformation of a sphere with radius R to a cube of edge length 2R as N increases
towards N ∈ ∞, is shown in Fig. 1. For cases where a, b, c are not equal to each other, one obtains an ellipsoid for
N = 1 and a rectangular parallelopiped as N →∞. Note by passing that “real” nanoparticles have rounded corners,
resembling quasi-cubes with N ∈ [1, 8] in Fig. 1. For instance, by fitting 2D images of 100 perovskite nanocrystals to
a superellipse, cf. Eq. (4) with z = 0, Tang et al. [35] found that N ≈ 2.65 for freshly synthesized and N ≈ 1.8 for
aged samples, respectively.

A general solution to Eq. (1) can be expressed as a linear combination of spherical harmonics Y ml (θ, ϕ) weighted by
appropriate scaling factors rl inside and r−(l+1) outside of the dielectric particle

φ =

∞∑
l=0

l∑
m=−l

[
Aml r

−(l+1) +Bml r
l
]
Y ml (θ, ϕ), (5)

where coefficients Aml and Bml are determined by the boundary conditions. The homogeneity and the direction of
the external electric field Eext along the z-axis impose an anti-symmetry on the electric potential with respect to the
mid-plane θ = π/2, which is orthogonal to Eext and crosses the center of the particle. Thus,

φ(r, θ, ϕ) = −φ(r, π − θ, ϕ), (6)

Figure 1: (a) Sequences of shapes from a sphere to a quasi-cube with increasing values of N , cf. Eq. (4) with
a = b = c. (b) Plot of normalized volume and surface area of quasi-cubes by the same of the sphere as a function of N .
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Figure 2: (a) Sketch for a dielectric particle immersed in a uniform electric field along the z-axis, Eext. (b) A
superposition of collocation points sampled from a uniform distribution and a Gaussian distribution with mean centered
at the dielectric interface rS . (c) Proposed ANN ansatz for electric potentials, see Sec. 2.2. (d) Loss function which
measures the deviation from the Laplace equation (1) and the boundary conditions (2) on the dielectric interface, see
Sec. 2.3. (e) Visualization of radial, polar, and azimuthal components of ∇2φ and its deviation from Eq. (1). (f)
Recovery of electric fields E and charge density σ from φ. Here and thereafter, results are plotted in a circular domain
of radius 3, wherein the blue curve indicates the interface.

such that only odd terms remain in the spherical harmonics expansions (5). For sake of simplicity, we select one of the
principal axis of the dielectric particle to be aligned with Eext. As such, there is a further mirror symmetry,

φ(r, θ, ϕ) = φ(r, θ,−ϕ), (7a)
φ(r, θ, ϕ) = φ(r, θ, π + ϕ), (7b)
φ(r, θ, ϕ) = φ(r, θ, π − ϕ). (7c)

For N = 1, only the dipole moment contributes to φ1, leading to a constant electric field inside the particle [24].
Deviating from a sphere, N ≥ 2, however, brings in contributions from higher-order moments with no clear optimal
order of truncation, rendering an analytical solution unfeasible.
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2.2 ANN ansatz

Our ansatz for solving Laplace’s equation with the boundary conditions given by Eqs. (2,3) is to explicitly retain the
dipole contributions and group the infinite series of higher order terms into two ANN functions:

φ0 = −
[
Eextr − d0r−2

]
cos(θ) +

r −Rmax

rS −Rmax
H0, (8a)

φ1 = d1r cos(θ) +
r −Rmin

rS −Rmin
H1, (8b)

where the dipole coefficients d0 and d1 are unknown. Here, rS = rS(θ, ϕ) is an implicit solution to Eq. (4) measuring
the distance from the origin to points on the interface, Rmin and Rmax are the inner and outer boundaries of the solution
domain and finally, H0 and H1 denote ANN based functions modeling a deviation from the leading order dipolar
behavior of the induced electric field. A breakdown of the proposed ansatz (8) is detailed below.

To get around the singularity at the origin of the Laplacian operator in spherical coordinates [36], we assume a practical
origin of the radial coordinate: Rmin � 1. Similarly, to enable a numerical calculation, the infinity r →∞ is replaced
by a practical infinity: Rmax � 1. To mitigate the effect of such a truncation, we modify the boundary conditions (3) by
including the dipole contributions at the practical infinity and practical origin, leading to the first terms on the right
hand side of the ANN ansatz (8). Then, the approximate solution domain is a spherical shell with inner and outer radii
Rmin and Rmax, wherein the modified boundary conditions are satisfied by construction. In the limit, Rmin = 0 and
Rmax →∞, boundary conditions (3) are recovered.

To inform ANN ansatz (8) with the leading octupolar radial trends, namely r+3 inside and r−4 outside the particle, as
well as the symmetry constraints of Eqs. (6,7), we select

H0 = cos(θ)r−4atanh [ηNN0(r
∗, θ∗, ϕ∗; ξ0)] , (9a)

H1 = cos(θ)r+3atanh [ηNN1(r
∗, θ∗, ϕ∗; ξ1)] , (9b)

so that the parameters ξi of neural networks NNi, with i = 0, 1, are adapted to learn deviations from octupolar radial
trends. The symmetry constraints are imposed on NNi through a reparameterization of spatial variables (r∗, θ∗, ϕ∗) and
the inclusion of cos(θ). The neural network architectures, the constant η, and the reparameterized coordinate variables
(r∗, θ∗, ϕ∗), are discussed below.

We describe both NNi as multilayer perceptrons [37] each consisting of four densely connected hidden layers with 16
neurons per layer

x[k] = tanh(W [k] · x[k−1] + b[k]), (10)

where k is the index of the current layer, and the weight W [k] and bias b[k] operate a linear transformation of the
input vector x[k−1]. As the bias of both input and output layer are selected to be zero vectors, the neural network
eventually consists of 880 trainable variables. Instead of the canonical rectified linear unit (ReLU) which vanishes upon
second-order differentiation, we assign the activation function to be the hyperbolic tangent function. Since the output
of NNi measures a deviation from the octupolar trend, it must remain bounded, with an amplitude that depends on
the strength of the external field, the geometry of the dielectric inclusion and the mismatch at the dielectric interface.
Therefore, an additional operation atanh(η·) is included in Eqs. (9) to transform the output of NNi, ranging from [−1, 1],
into an interval [−atanh(η), atanh(η)]. A comparison of the proposed activation function with the canonical linear and
tanh activation is discussed in Appendix A. In this work, with Eext = 1, we select η = 0.99. The model parameters
ξi = [W i, bi], as well as di defined in Eqs. (8a, 8b), are determined by minimizing the loss function discussed in §2.3.

Noting that the Laplacian operator is of second order, we consider the following continuous and differentiable
transformation of angular variables

θ∗ = − cos(2θ) and ϕ∗ = − cos(2ϕ), (11)
which simultaneously maps θ ∈ [0, π] and ϕ ∈ [−π, π] to the first quadrant and rescales them to the range [−1, 1].
Similarly, the radial variable r ∈ [Rmin, Rmax] is normalized to the range [−1, 1] using the min-max normalization

r∗ =


−1 + 2

r −min(rS)
Rmax −min(rS)

, for r > rS ,

−1 + 2
r −Rmin

max(rS)−Rmin
, for r < rS .

(12)

With (r∗, θ∗, ϕ∗), the outputs of neural networks are symmetric with respect to the mid-plane θ = 0, and the anti-
symmetry is enforced by the multipliers cos(θ) in Eqs. (9). A flowchart for the proposed ANN ansatz is sketched in
Fig. 2(c)
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2.3 Loss function

Given governing equation (1) and boundary conditions (2), we write the loss function as:

L = Lge + Lbc, (13)

where Lge and Lbc measure the mean squared deviations of the ansatz functions (8a, 8b) from the exact solutions
of the governing equation (1) and the dielectric interface boundary conditions (2), respectively. Although an exact
minimization of the loss function (13) ensures the uniqueness of the solution to the boundary value problem, an
approximation of that solution by neural networks yields a small nonzero loss. The first term writes as:

Lge =
wg0

N0 +Nb

N0+Nb∑
j=1

[
r̃β0

j sin2(θj)∇2φ0(rj)
]2

+
wg1

N1 +Nb

N1+Nb∑
j=1

[
r̃β1

j sin2(θj)∇2φ1(rj)
]2
, (14)

where the rj = (rj , θj , ϕj) denote the j-th collocation points sampled from a superposition of a uniform distribution
and a Gaussian distribution centered at rS as shown in Fig. 2(b); N0, N1 and Nb denote the number of collocation
points outside, inside, and on the interface of the dielectric particle, respectively. The multiplier sin2(θj) is included to
compensate the singularity of the Laplacian operator at θ = 0, π. The Laplacian has vanishing magnitude at large r
values, whereas it is diverging near Rmin. Therefore, the solutions φi are not equally optimized throughout the solution
domain. Inspired by van der Meer et al. [38], we introduce the scaling factors r̃βi

j , with r̃j = rj/rS(θj , ϕj) defined
at each collocation point. We select the exponents β0 = 4 and β1 = 1, in order to ensure that the radial, polar, and
azimuthal components of Lge are of the same order throughout. A breakdown of the Laplacian ∇2φ componentwise
and its visualization are presented in Fig. 2 (d) and (e). With increasing N , larger and larger derivatives associated
with sharper and sharper edges and corners cause a strong mismatch among components of ∇2φi near the interface.
Consequently, large oscillations of the loss function emerge during the training process, leading to a slow convergence.
In order to balance such a mismatch, weights wg0 and wg1 are introduced in Eq. (14) in addition to a normalization by
rS(θi, ϕi).

The dielectric interface boundary conditions (2) lead to the following loss function:

Lbc =
1

Nb

Nb∑
j=1

{
wbt [φ0(rj)− φ1(rj)]

2
+

wbn
|∇S|2

[
εr
−1∇φ0(rj) · ∇S −∇φ1(rj) · ∇S

]2}
. (15)

The weights wbt and wbn help balance the losses of tangential and normal boundary conditions during the training.
Convergence and accuracy are significantly improved when the normalization factor |∇S(r, θ, ϕ)| is included.

3 Computational results

Throughout the experiments, the loss function (13) was evaluated over a sampling of 2n collocation points, with n = 13
on the boundary, n = 14 inside, and n = 15 outside of the particle, respectively. The numbers of collocation points
were selected to accommodate the GPU memory. The gradients of the loss function with respect to model parameters
(di and ξi) were computed using automatic differentiation [39]; they were subsequently applied to update the model
parameters by using the ADAM optimizer [40] with a starting learning rate of 10−3. At each 2, 000 iterations, the
learning rates were adjusted to be the twice and half of the current loss magnitude for di and NNi, respectively. The
collocation points were re-sampled after each 10, 000 iterations, suggesting an unsupervised multi-task learning using
mini-batch gradient descent with an infinite set of collocation points. Our numerical models were implemented using
Python language and TensorFlow backend [41]. During the training, we keep wg1 = wbn = wbt = 1 constant, but with
the value of wg0 ∈ (0, 1] varies for different cases. The selection of wg0 is detailed in Appendix B. As a reference, on a
workstation equipped with two Nvdia GeForce GTX 1080 Ti graphics cards, each iteration takes around 0.1 second.

The present model allows us to calculate the induced potential over the whole domain. By differentiation, we obtain the
total electric field, E, the polarization field P = εr−1

4π E inside the particle, and the source of it, which is the induced
surface charge, σ = −P · n̂, as illustrated in Fig. 2(f). The polarizability, α = p/Eext, where p is the induced moment
given by

p =
εr − 1

4π

∫
V

EdV. (16)

Considering our problem symmetry, all terms but the dipole one cancel upon integration over volume, leading to:

px = py = 0 and pz =
εr − 1

4π
Ez|r=0V, (17)

6
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Figure 3: Dielectric (a) oblate (a = 2/3, b = c = 1) and (b) prolate (a = 3/2, b = c = 1) particles with εr = 6
placed in a homogeneous field Eext = ẑ. From top to bottom: the electric potential φ, the electric fields Ex/Eext and
Ez/Eext, and a distribution of Ez/Eext along principal axes on xz-plane spanned by r and θ. As a reminder, the exact
electric potential outside a dielectric spheroid (a, b = c = 1) is: φ0 = −E0z

[
1 + (εr − 1)nξz

]
/ [1 + (εr − 1)n∞z ],

where naz = (a/2)
∫ a
0
ds/

[
(s+ 1)2

√
s+ a2

]
and ξ = z2 − 1 along z-axis, cf. [26].

7
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Table 1: Calculated normalized polarizabilities of dielectric spheroidal particles compared with the corresponding exact
values and relative errors.

εr = 2 εr = 6 εr = 10

This work Exact Error(%) This work Exact Error(%) This work Exact Error(%)

L
≤

10
−
4 Oblate 0.7845 0.78306 0.185 2.1028 2.09623 0.313 2.5888 2.57627 0.486

Sphere 0.7492 0.75000 0.107 1.8711 1.87500 0.208 2.2521 2.25000 0.093

Prolate 0.7245 0.72280 0.235 1.7179 1.71377 0.241 2.0391 2.02175 0.858

L
≤

10
−
5 Oblate 0.78355 0.78306 0.063 2.09661 2.09623 0.017 2.57710 2.57627 0.032

Sphere 0.75001 0.75000 0.001 1.87507 1.87500 0.004 2.25008 2.25000 0.004

Prolate 0.72314 0.72280 0.047 1.71379 1.71377 0.001 2.02157 2.02175 0.009

where Ez|r=0 is the amplitude of the electric field at the center of the particle. In order to compare with previous works,
we introduce the volume normalized polarizability defined by Sihvola et al. [30] as: αj = 4παj/V , with j = x, y, z.
Thus,

αz ≈ (εr − 1)
Ez|r=Rmin

Eext
, (18)

because r = 0 is excluded from the solution domain.

In the following, we fix the parameters Eext = R = b = c = 1, and let Rmin = 0.01. In order to keep the dipole
contributions on the boundaries of the solution domain of the same order, we take Rmax = 10. The remaining three
parameters: N , a, and εr, enable one to assess the emergence of edges and corners, the stretching/squeeze of the
geometry, and the dielectric mismatch at the interface.

Let us first assess the present method with dielectric spheroids for which there are analytical solutions and then apply it
to quasi-cubes with increasing values of N .

3.1 Spheroid

For N = 1, Eq. (4) defines a unit sphere for a = 1, and it deforms into a spheroid as a deviates from a = 1. In both
cases, the induced electric field inside the dielectric particle is uniform and given by an analytical expression [20,24–26],
thereby providing a benchmark for the accuracy of the proposed ANN approach. Here, we consider a sphere (a = 1),
an oblate shape with a = 2/3 and a prolate one with a = 3/2.

The training process is stopped when the loss function (13) drops below 10−5. From the electric potential φ(r, θ, ϕ), we
calculate the Cartesian components of the electric field Ex, Ey and Ez by means of the chain rule. Their distributions
inside and outside an oblate spheroid with a = 2/3 and a prolate spheroid with a = 3/2 with relative dielectric constant
εr = 6 are plotted in Fig. 3. Indeed, the calculated induced electric field is quite uniform inside the dielectric particle
and decays towards Eext outside, with values in good agreement with theory [20, 24, 26].

In Fig. 4 we show the distribution of charges on the dielectric interface for spheroidal particles. The accumulation
of positive charges on the north pole and negative charges on the south pole leads to an induced electric field which
counteracts Eext. Our calculated surface charge distribution agrees nicely with the exact solution except for a small
deviation at the tips of the oblate spheroid in Fig. 4(d), where the high curvature in the xz-plane leads to large variation
of Lge components of φ0, degrading the numerical accuracy.

To obtain the polarizability, we compute the integral in Eq. (16) using a Monte Carlo method [42]. The comparison is
made for two values reached by the loss function L during optimization. As a reminder, the normalized polarizability
(columns “Exact") of a spheroid with axis (a, b = c = 1) is: αz = (εr − 1)/ [1 + (εr − 1)n∞z ], with n∞z defined in
caption of Fig. 3, cf. [24]. Calculated normalized polarizabilities are within less than 1% their exact values depending
upon the loss function accuracy, see Table. 1. More precisely, a 99% accuracy is found for L ≤ 10−4 and it reaches
99.9% when the loss function is minimized below L ≤ 10−5. A further minimization to L ≤ 10−6 would require a
significant increase in computation time for a marginal increase in accuracy. Therefore, we shall limit ourselves to a
loss level L ≤ 10−5 for applications to quasi-cubic inclusions in the next section.

8
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Figure 4: Visualization of surface charge distribution for: (a) an oblate (a = 2/3, b = c = 1), b a spherical
(a = 1, b = c = 1), and (c) a prolate (a = 3/2, b = c = 1) dielectric particles with εr = 6. Comparison of the obtained
surface charge distributions with their exact solutions on a cross section with (d) xz-plane (ϕ = 0) and (e) yz-plane
(ϕ = π/2).

Figure 5: Contours for the normalized electric field Ez/Eext associated with dielectric quasi-cubes (N = 6) with (a)
εr = 2 and (b) εr = 8 on the xz-plane. The insets reveal a saddle-shaped field inside particles. Distribution of Ez/Eext
along (c) x- and (d) z-axes for dielectric particles with various values of εr = 2, 4, 6, 8.

9
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Figure 6: Shape dependent polarizability for quasi-cubic particles with εr = 2, 4, 6, 8 where, as shown in the
inset, points indicate values computed using Eq. (19) and curves are fitted polynomial functions with an asymptote
α̃z|N→∞ = 1. The shaded regions indicate deviation of the computed data points to the fitted curve.

3.2 Quasi-cube

For quasi-cubic particles with N > 1, the emergence of edges and corners strongly modifies the electric potential and
its derivatives. Fig. 5 shows the normalized induced electric field Ez/Eext in a quasi-cubic particle with N = 6 for
values of εr = 2, 4, 6, 8. The strong rise of the electric field along the z-axis as one approaches the particle from outside,
its discontinuous drop at the interface, and the continuous decrease of Ez along the x-axis from infinity to the origin, all
together lead to a saddle-shaped field inside the particle, as shown in Fig. 5(a, b). With varying values of εr, despite an
apparent difference of amplitude, the electric field remains qualitatively unchanged.

In Fig. 5(c, d), it is observed that the induced electric field Ez/Eext at the center of the particle is higher for quasi-cubes
than for a sphere, which implies a higher value of the normalized polarizability for quasi-cubes than that for a sphere, cf.
Eq. (18). To quantify the relation between the polarizability and the shape of the particle, we plot

α̃z(N) =
αz(N)− α1

z

α∞z − α1
z

, (19)

as a function of N in Fig. 6. In most cases, αz obtained using the integral (16) is systematically smaller than a direct
evaluation using Eq. (18) by 0.2%. This small deviation can arise from multiple origins, e.g. numerical accuracy, finite
size effect, nonzero dipolar component in neural networks, complicating the task of sourcing out the prime contribution.
In Eq. (19), the polarizability of quasi-cubic particles is re-scaled by that of a sphere α1

z and that of a cube α∞z to enable
a comparison with different values of εr; hence, α̃z = 0 for a sphere and α̃z = 1 for a cube, independent of εr. For the
dependence of α∞z upon εr we use the approximation formula given in Ref. [30]. Then, the obtained polarizabilities are
fitted to a polynomial function of N which displays an asymptotic behavior α̃z(N)→ 1 as N →∞. It is observed that
α̃z(N) exhibits a rapid transition to almost 80% and 90% of the asymptotic value for N ≤ 10 and N ≤ 20, respectively.
This numerical result is in accordance with the fact that the geometry of Eq. (4) converges virtually to a cube for N > 8,
as seen in Fig. 1. Note that the transition of α̃z(N) to its asymptotic value is slower as εr increases.

In order to investigate the behavior of induced surface charges with the emergence of ever sharper edges and corners,
we visualize σ for quasi-cubic particles with fixed εr = 6 and increasing values of N ∈ [1, 10] in Fig. 7. Compared
with the sinusoidal charge distribution on the surface of a sphere, charges accumulate towards edges and are peaked at
corners as N increases. Such a re-distribution of surface charges leads to an enhanced dipole moment, which in turns
leads to the higher value of polarizability observed in Fig. 6, thereby a higher electric field at the center of dielectric
quasi-cubic particles observed in Fig. 5.

10



A PREPRINT - MAY 21, 2021

Figure 7: (a) Visualization of surface charge on dielectric quasi-cubic particles with εr = 6 and N = 2, 4, 6, 8. (b)
Comparison of the obtained surface charge distribution on cross sections ϕ = 0 and ϕ = π/4 of quasi-cubes with
N ∈ [1, 10].

As a baseline comparison, we compare our ansatz with a vanilla ansatz. For the latter, we replaced H0 and H1, cf. Eqs.
(9), by multilayer perceptrons with the same network architecture as NNi but a linear activation at the output layer. The
input variables r, θ and ϕ were rescaled to [−1, 1] using the min-max normalization. As explicitly shown in Fig. 8 (a)
and (b), the inclusion of physical constraints in ansatz (9) comparatively reduces the optimization effort by a large
degree. It is worth noting that in order to capture the transition regime from sphere to cube, classical numerical methods,
e.g. finite element, would require a re-mesh and a re-simulation for each different values of N . Alternatively, the
proposed ANN approach is able to tackle more efficiently this progressive transition. Since each change in N will only
affect the boundary conditions and few collocation points near the dielectric interface, while Laplace’s equation remains
satisfied in the bulk of the solution domain, a minimization initiated from a previous converged solution for, e.g. N − 1,
leads to a drastic reduction in computational time as shown in Fig. 8 (c) and (d). For piece-wise homogeneous dielectric
media considered in this work, εr appears only through the normal boundary condition (2b). Thus, for simulations with
different values of εr and a fixed value of N , neural networks are committed to learn the change in mismatch, which is
induced by a continuous variation of εr, at the dielectric interface, cf. Fig. 8 (e) and (f). Once the loss function is
minimized below the target value, only the converged solutions, which consist of the model variables and the structure
of the ANN ansatz, are stored independently of collocation points. Unlike finite element methods whose solutions are
defined on meshes, our ANN approach provides a continuous mapping: (r, θ, ϕ)→ φ over the entire solution domain
r ∈ [Rmin, Rmax], resembling analytical solutions.

4 Conclusions

Recent advances in machine learning enable a revisit of longstanding physics problems from a new perspective. We
have presented a neural networks based calculation for the response of dielectric particles with shapes varying from
sphere to cube, placed in an external uniform electric field. Our ansatz intertwined boundary conditions at the borders
of the solution domain, as well as symmetry constraints resulting from the geometry of the particle and the external
field, with neural networks. Then, solving Laplace’s equation with dielectric boundary conditions was translated to a
minimization of a loss function defined in Sec. 2.3. To evaluate the accuracy, we applied the proposed ANN approach
to spheroids with various aspect ratios and relative dielectric constants. An overall 99.9% accuracy for the normalized
polarizability was achieved, with however, a slight deviation of surface charge from the exact solution at the tips of an
oblate spheroid with large curvature, as shown in Fig. 4(d).

As a sphere progressively deforms into a cube, the accumulation of surface charges towards the ever sharper edges and
corners leads to a rapid transition of polarizability to its asymptotic value at lower values of N ≤ 10. This implies that
the shape effect has a significant impact on determining the induced polarizability by dielectric nano-particles. The
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Figure 8: Decay of loss function L for the case N = 3 and εr = 4 initiated from (a) random conditions using the
proposed ansatz (8); (b) random conditions using the vanilla ansatz; (c) converged solution of N = 2 and εr = 4; (d)
converged solution of N = 4 and εr = 4; (e) converged solution of N = 3 and εr = 2; (f) converged solution of
N = 3 and εr = 6. Iteration stops at L ≤ 10−4 or after 150, 000 iterations. In (a) L decays below 10−4 within 60, 000
iterations; whereas in (b) L remains of order of 10−3 after 150, 000 iterations. In (a) and (b), the first 100 iterations are
removed for a better visualization. Due to the slow convergence in (b), the learning rate is decreased by a factor of 1.2
at every 2000 iterations until a minimal learning rate 5× 10−5 is reached.

enhanced polarizability with increasing values of N leads to an amplified dipole moment, which, in turn, results in a
higher electric field at the center of a quasi-cubic particle than that of a sphere, independent of the relative dielectric
constant of the particle.

Since neural networks are infinitely differentiable, instead of interpolating among discrete values, auto-differentiation
enables a conversion of the obtained ANN solution to higher order derivatives, which are again continuous functions.
This feature can be advantageous in a broad range of physical applications where higher-order derivatives are of
interest. By contrast to the finite element method, where the entire mesh is required for computation, the ANN methods
during training use only a fraction of collation points to compute the loss function and update the model parameters
by mini-batch stochastic gradient descent techniques. A successive re-sampling enables a complete covering of the
solution domain with sufficient number of iterations. Therefore, the mesh-free ANN approach overcomes two major
deficiencies of the finite element method stemming from the mesh dependence: (i) the finite differentiability; and (ii)
the high memory usage associated with fine mesh.

Finally, it is worth emphasizing some limitations which need to be overcome in future works. Loss functions stemming
from physics problems often consist of several components, e.g. governing equation, initial and boundary conditions,
symmetries and conservation laws. Since the loss function is not strictly zero, an imbalance in its components can
deteriorate the accuracy of the solution. In this work, we introduced weights to balance the amplitudes of each loss
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Figure 9: Comparison of (a) linear x, tanh, and proposed g(x) activation functions; and (b) their derivatives with
respect to x.

component during the training process. However, it is unclear, how does the selection of these weights affect the
numerical accuracy. Therefore, it would be beneficial to establish a relation between the accuracy and the relative
amplitudes of each components, and devise an adaptive algorithm which automatically adjusts the weights during the
training process.

Appendix

A Output activation

The linear x, tanh(x), and g(x) = atanh(η tanh(x)) activation functions and their derivatives are shown in Fig. 9. By
varying η ∈ (0, 1), we adjust the output of ANN to an arbitrary bounded interval. Alternatively, one can achieve the
same purpose by scaling the tanh output. However, as observed from Fig. 9(b) that a scaling up of tanh output leads to
a sharp variation of gradients. Therefore, we select the activation function at the output layer to be g(x).

B Weight tuning

The weight wg0 is selected to balance the components of Lge on the dielectric interface. It is observed from Fig. 10
that, due to the emergence of ever sharper corners with increasing N , the components of Lge inside and outside of the
particle differ in magnitudes substantially. To enable an optimization of φ0 and φ1 on the same footing, we take the
spherical case N = 1 as a reference and select wg0 = 0.3, 0.2, 0.15 for N = 3, 6, 9, respectively. However, since the
relative magnitudes of each loss component is not known a priori, an adaptive algorithm which adjusts wg0 during the
training can be beneficial.
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