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Abstract—Examining most streaming clustering algorithms 

leads to the understanding that they are actually incremental 

classification models. They model existing and newly discovered 

structures via summary information that we call footprints. 

Incoming data is normally assigned a crisp label (into one of the 

structures) and that structure’s footprint is incrementally 

updated. There is no reason that these assignments need to be 

crisp. In this paper, we propose a new streaming classification 

algorithm that uses Neural Gas prototypes as footprints and 

produces a possibilistic label vector (of typicalities) for each 

incoming vector. These typicalities are generated by a modified 

possibilistic k-nearest neighbor algorithm. The approach is tested 

on synthetic and real image datasets. We compare our approach 

to three other streaming classifiers based on the Adaptive Random 

Forest, Very Fast Decision Rules, and the DenStream algorithm 

with excellent results. 

 
Index Terms— streaming classification, neural gas, possibilistic 

clustering 

 

I. INTRODUCTION 

onsider the following problem, An autonomous mobile 

agent has to locate particular objects over a large, and 

potentially unknown area. This agent could be a vehicle or 

flying drone equipped with a variety of Electro-Optical/Infra-

Red (EO/IR) and depth sensors, or could be an underwater 

drone, an Unmanned Underwater Vehicle (UUV) using 

Synthetic Aperture Sonar (SAS). Let’s pick the latter as an 

example, and assume we wish to detect sunken pirate booty on 

the seafloor. The objects of interest will present different 

signatures based on the surrounding seafloor environment such 

as bare sand, sea grass, sand ripples, coral, mud, rocks, etc. 

Some backgrounds will allow for simple classifiers, whereas 

others require more sophisticated algorithms. But the key is for 

the UUV to recognize the current environment to determine the 

correct tailored object classifier. More realistically, the current 

SAS image can easily be a blend of multiple seafloor textures, 

including as yet unseen environments, and so a blend of 

classifiers will provide the best chance at detecting the treasure. 

This example, derived from an actual ongoing project, 

illustrates the need for streaming classification that can handle 

diverse and changing class definitions (e.g., seafloor textures) 

while being able to identify new, but unknown environments. 

The streaming classifier needs to be able to provide soft (fuzzy, 

probabilistic, or possibilistic) labels that can be used for object 

classifier fusion. The focus of this paper is that initial 

component: streaming soft classification to create a possibilistic 

label vector to be fed to a secondary object detection system. 

Data stream processing techniques have gained much 

attention in recent years. Streaming data, such as social network 

clique information or daily sensor firing information, are 

generated every day. Conventional clustering and classification 

models use static (batch) data and hence, are not directly 

applicable to data streams. Therefore, alternate strategies are 

required to incrementally update models as new feature vectors 

become available. In [1], the authors argue that in fact, all 

streaming data analysis should be thought of as classification. 

There has been some research on classification in data streams 

[2], such as adapting CluStream as an on-line classifier [3], 

Very Fast Decision Trees [4], [5], rule based classifiers [6], and 

a nearest neighbor technique [7]. However, for the most part, 

these approaches are collectively referred to as streaming 

clustering, and there are a number of ways to organize them into 

taxonomies [8], [9]. 

The multitude of streaming data analysis algorithms have 

several things in common. First, they do not retain the entire 

dataset. They maintain “footprints” that summarize the 

structures discovered, and they usually have a mechanism to 

incrementally update footprints as new vectors arrive. In [10]–

[14], underlying probabilistic models are used and the footprint 

contains probability distribution parameters. Many of the 

density based streaming models also contain footprint entries 

that allow calculation of basic summary statistics [15]–[19]. 

The footprints can additionally contain the structure of fuzzy 

rules [20], [21]. In [22], an evolving system was proposed that 

could add, remove, merge and split clusters. These streaming 

methodologies generally maintain only summary information, 

i.e., footprints, and a means to incrementally update it. Some of 

the streaming methods are used in different real world 

applications such as identification, control and fault detection 

[23]–[27]. 

The other basic trait of these algorithms is that they assign 

labels to each point as it appears. For the most part, the labels 

are crisp – a point is assigned completely to an existing or new 

structure. Density-based algorithms put the point into a micro-

cluster and underlying probability models, like Gaussian 

mixtures, use maximum likelihood to make the assignment. 

Once the points are assigned to a structure, their labels cannot 

change, as only the footprints are preserved. Footprints have 

also been called summary information (prototypes, statistical 

properties, etc.) which are used to decide membership or the 

typicality of incoming data points, and whether a new 

class/cluster is needed to describe the data.  In fact, crisp labels 

are desirable because each incoming point is used to update the 

appropriate footprint. There is no iteration over the actual data, 

though some algorithms do form larger clusters by offline 

clustering of multiple footprints. Hence, what we call streaming 
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clustering is actually classification, and should be thought of in 

that way.  

Creating a crisp label vector implies that each point is 

assigned to one and only one existing structure. The newly 

labeled point is used to update the structure footprint. The 

exception to this rule is when an incoming sample is judged by 

the algorithm to be an outlier with respect to previously seen 

data. The point doesn’t receive a current class label, nor is it 

used to update the footprint. Different approaches deal with 

outliers in different ways, but they are the keys to discovery of 

new structure in the stream. 

We note that, while not specifically related to streaming data 

analytics, a related vein of research is called open set 

recognition [28], in which a classifier can recognize a closed set 

of objects but must operate on an open test set. This means that 

the classifier must have the ability to identify when samples do 

not belong to any class upon which it was trained. Approaches 

to achieving open set recognition include leveraging a series of 

one-vs-all support vector machines (SVMs) [28], the Nearest 

Non-Outlier (NNO) algorithm [29], and, more recently, the 

OpenMax model for deep neural networks [30]. 

The motivating streaming algorithm that we use in this paper 

is a variant of the Missouri University (MU) streaming 

clustering algorithm called MUSC. The version, MUSC II [12], 

is a modified form of the original method that is found in [10] 

and [11], where in both versions, the underlying footprints are 

modeled by the parameters of the components of a Gaussian 

Mixture. In MUSC II, initialization, and the search for new 

structures, is done using the sequential possibilistic one-means 

with dynamic eta (SP1M-DE) algorithm [31]. In that variant, 

crisp label vectors (including an “outlier” label) are assigned to 

each incoming point. The outliers are saved and examined 

frequently to detect new structures.  

There is no fundamental reason that crisp label vectors need 

to be assigned to incoming data. Our initial motivating example 

shows the desirability of soft labels in an object detection 

system where different classifiers are used in different contexts. 

In that scenario, a UUV traveling over different environments 

may employ different classifiers for detecting objects based on 

the observed seafloor type, like sand ripple, seagrass, etc. A 

baseline application of this type is described in [32], but without 

a streaming environment module. The environment-detecting 

component can be initialized with suspected known 

backgrounds. As new environment imagery is acquired, it must 

be matched to the known backgrounds to determine the 

appropriate classifier to use. However, the environment in a 

particular SAS image isn’t always an exact match to the known 

backgrounds; it can either be partially representative of more 

than one background, or something completely new. This is 

where possibilistic labels are particularly valuable. 

To be precise, if 𝑋 = {𝑥1, ⋯ , 𝑥𝑛} represents a set of objects, 

or a set of feature vectors for the objects, then a collection of 

subsets and membership functions {(𝐴1, 𝜇1), ⋯ , (𝐴𝐶 , 𝜇𝐶)}  is 

called a 

1. Crisp partition if 𝜇𝑖: 𝑋 → {0,1} and 

 ∑ 𝜇𝑖
𝐶
𝑖=1 (𝑥𝑘) = 1 𝑓𝑜𝑟 𝑘 = 1, ⋯ , 𝑛. 

2.  Fuzzy or Probabilistic partition if 𝜇𝑖: 𝑋 → [0,1]  and 

∑ 𝜇𝑖
𝐶
𝑖=1 (𝑥𝑘) = 1 𝑓𝑜𝑟 𝑘 = 1, ⋯ , 𝑛. 

3. Possibilistic partition if 𝜇𝑖: 𝑋 → [0,1] and 

 0 < ∑ 𝜇𝑖
𝑛
𝑘=1 (𝑥𝑘) ≤ 𝑛 𝑓𝑜𝑟 𝑖 = 1, ⋯ , 𝐶 , and 

max
𝑖

𝜇𝑖 (𝑥𝑘) > 0 𝑓𝑜𝑟 𝑘 = 1, ⋯ , 𝑛 . 

The vector (𝜇1(𝑥𝑘), ⋯ , 𝜇𝐶(𝑥𝑘)) of class membership values 

is called the label vector for 𝑥𝑘 . For a crisp label vector, 𝑥𝑘 

belongs to one and only one of the subsets; for a fuzzy label 

vector, the membership of 𝑥𝑘  is shared among the subsets 

(though constrained to sum to 1); but for a possibilistic label 

vector, the membership of 𝑥𝑘 is unconstrained and reflects the 

typicality of 𝑥𝑘 to each of the subsets. Hence, in a possibilistic 

framework, a particular patch of seafloor can have a high 

typicality to more than one known seafloor type (when there is 

a blend) or it can have a very low typicality to all of the 

currently known seafloor types, signaling an outlier or new 

seafloor type.  

If a streaming vector (new image) can be assigned typicalities 

in the known backgrounds, then classifiers can be blended. 

Images with low typicality in all known backgrounds are listed 

as outliers and some standard classifier fusion can be used. 

When a new structure (background class) is found in the data 

stream, either an automatically generated label can be assigned, 

or an active learning phase can be initiated in which a human 

will need to interact with the system to give the new class a label 

and perhaps then have a new classifier inserted. 

We are mainly interested in the environment recognition 

portion of such a system. We propose a new streaming 

classification algorithm called streaming soft neural gas 

(StreamSoNG). The StreamSoNG algorithm uses the neural gas 

algorithm (NG) [33] during initialization to find sparse data 

representations for known classes, i.e., to generate the class 

footprints. A modified version of the possibilistic k-nearest 

neighbors algorithm (PKNN) [34] is employed as the streaming 

classifier to assign soft (possibilistic) labels to data stream 

vectors. The typicality vector of possibilistic labels can be used 

directly in a classification scheme. Based on maximum 

typicality, class footprints are incrementally updated. This 

updating allows for class definitions to vary from their initial 

topologies. An incoming sample that has low typicality values 

in all currently known classes is marked as an outlier and saved 

to an anomaly list. The sequential possibilistic one-means 

algorithm (SP1M) [31] is run the anomaly list to identify a 

potential new class. 

The rest of the paper is organized as follows. Section II 

briefly reviews NG, PKNN and SP1M algorithms. Section III 

introduces our StreamSoNG algorithm. Section IV describes 

the four synthetic datasets used in this paper. Section V shows 

our experimental results. Section VI summarizes our 

conclusions and future work. 



 

II. BACKGROUND 

A. Neural Gas 

The neural gas algorithm (NG) [33] is a competitive-

learning neural network algorithm in the same family as the 

self-organizing feature map algorithm (SOFM) [35]. The NG 

algorithm aims to optimally describe the topology of data 

vectors using a fixed number of prototypes. 

In the standard NG, given a set of vectors 𝑋 =
{𝑥𝑡|𝑡 ∈ ℕ}, 𝑋 ⊂ 𝑅𝑞  and a finite number of prototype 

vectors 𝑝𝑖 , 𝑖 = 1, … , 𝑁, 𝑝𝑖 ⊂ 𝑅𝑞 , a data vector 𝑥𝑡 at timestamp t 

is randomly chosen from X. The distance order of the prototype 

vectors to the chosen data vector 𝑥𝑡 is computed using a chosen 

measure of distance on 𝑅𝑞 . Let 𝑖1  denote the index of the 

closest prototype vector, 𝑖2  denote the index of the second 

closet prototype vector, and 𝑖𝑁  denote the index of the 

prototype vector most distant to 𝑥𝑡 . Then each prototype vector 

is adapted according to 

𝑝𝑖𝑘

𝑡+1 = 𝑝𝑖𝑘

𝑡 + 𝜀𝑒−
𝑘
𝜆(𝑥𝑡 − 𝑝𝑖𝑘

𝑡 ), 𝑘 = 1, … , 𝑁 (1) 

where 𝜀  is the adaptation step size and 𝜆  is a neighborhood 

range parameter. Both 𝜀  and 𝜆  are reduced according to a 

predefined schedule with increasing iterations. After 

sufficiently many epochs using randomly sampled data vectors, 

the prototype vectors cover the data space with minimum 

representation error, i.e., the sum of squared errors of each point 

to its closest prototype. 

B. Possibilistic K-Nearest Neighbors 

The PKNN algorithm extends the crisp KNN algorithm that 

first assigns a fuzzy membership (between 0 and 1) to each 

training pattern rather than using a binary class membership. 

The membership is assigned as described in [36] using 

𝜇𝑖(𝑝) = {
0.51 + (

𝑛𝑖

𝐾
) × 0.49,         𝑖𝑓 𝑖 = 𝑗

(
𝑛𝑖

𝐾
) × 0.49,                       𝑖𝑓 𝑖 ≠ 𝑗

(2) 

where 𝑛𝑖 denotes the number of neighbors that belong to the 𝑖𝑡ℎ 

class, i.e., ∑ 𝑛𝑖
𝐶
𝑖=1 = K and j is the actual class label of protype 

p. Note, for StreamSoNG, we are assigning training vector 

memberships to the NG prototypes that make up class 

footprints. The pattern’s fuzzy membership 𝜇𝑖(𝑝) controls its 

contribution during the classification process.  

The version of PKNN proposed in [34] assigns membership 

values (typicalities) 𝑡𝑖(𝑥) of a data vector x to class i using  

𝑡𝑖(𝑥) = ∑ 𝜇𝑖(𝑝𝑘)𝑤(𝑥, 𝑝𝑘)

𝐾

𝑘=1

(3) 

where 𝑝𝑘 is the 𝑘𝑡ℎ nearest prototype to 𝑥 and 

𝑤(𝑥, 𝑝𝑘) =
1

1 + [max (0, ‖𝑥 − 𝑝𝑘‖ −
𝜂1

𝜂2
)]

2
𝑚−1

(4)
 

In Equation (4), 𝜂1 and 𝜂2 are constants that are estimated 

from the training data and 𝑚 > 1 is a “fuzzifier” parameter. 

One approach is to identify the five nearest prototypes to each 

training sample and construct a histogram containing all 

associated distances. Then, we take 𝜂1 = 𝜇𝐻 and 𝜂2 = 3 × 𝜎𝐻, 

where 𝜇𝐻  and 𝜎𝐻  are the mean and standard deviation of the 

histogram of distances [34].  

The expression in Equation (4), worked well for a two-class 

application. In the streaming scenario, the number of classes is 

unknown. We will formulate a version more closely aligned to 

the original PCM, the updates as shown in equations (5) and (6) 

that naturally extends to any number of classes. 

C. Sequential Possibilistic One-Means 

The sequential possibilistic one-means algorithm (SP1M) 

was developed from the possibilistic C-means (PCM) clustering 

algorithm [37]–[39] for static data. In static PCM, let 𝑋 =
{𝑥1, ⋯ , 𝑥𝑁} , 𝑋 ⊂ 𝑅𝑞  and C = the number of clusters in X. Each 

cluster is independent of the others and, effectively, is found 

separately by iterating between the following equations: 

𝑢𝑖𝑗 =
1

1 + (
𝑑𝑖𝑗

2

𝜂𝑖
)

1
𝑚−1

(5)
 

𝑣𝑖 =
∑ 𝑢𝑖𝑗

𝑚𝑥𝑗
𝑁
𝑗=1

∑ 𝑢𝑖𝑗
𝑚𝑁

𝑗=1

(6) 

where 𝑢𝑖𝑗  is the typicality value of 𝑗𝑡ℎ  data vector to the 𝑖𝑡ℎ 

cluster center 𝑣𝑖 , for j = 1,…, N, and i = 1, …, C, 𝑑𝑖𝑗  is the 

Euclidean distance value of 𝑗𝑡ℎ  data vector to the 𝑖𝑡ℎ  cluster 

center 𝑣𝑖  , 𝜂𝑖  (a cluster-based hyperparameter) is the distance 

from the cluster center at which the typicality value in that 

cluster is equal to 0.5, and 𝑚 > 1 is the fuzzifier value. See [26] 

for discussions about these parameters.  

The family of SP1M algorithms [31], [37], [38] sequentially 

search for one cluster at a time and choose the starting point 

probabilistically at a rate inversely proportional to the 

maximum typicality of each point with respect to the currently 

discovered clusters. These variants reject centroids that are 

coincident with one of the previously discovered prototypes. 

The SP1M pseudocode is shown in Table I. For additional 

details about the SP1M algorithm, see [31]. 

TABLE I: SP1M PSEUDO CODE 
Input: X, C, ε  

Output: U: Final membership partition 

             V: Final cluster centers 
01: Initialize U, V as empty 

02: Do { 

03: ---- Repeat <loop to find a suitable cluster> 

04: ---- ---- Pick 𝑣 ∈ 𝑋 from probabilities 

05: ---- ---- Repeat <loop to execute P1M> 

06: ---- ---- ---- Compute η dynamically (*) 

07: ---- ---- ---- Compute u (v, X)  (5) 

08: ---- ---- ---- Compute v (u, X)  (6) 

09: ---- ---- Until cluster center is stable 

10: ---- Until no coincident cluster is found   

11: ---- Append u to U 

12: ---- Append v to V 

13: } While (𝑖 + +< 𝐶 && #(P1M) < 𝐾) 
*details of dynamic η computation, along with the initialization 

probabilities and the stopping criterion are discussed in [31] 



 

III. STREAMING SOFT NEURAL GAS 

In this paper, we propose a new algorithm called the 

streaming soft neural gas algorithm (StreamSoNG) to classify 

streaming data vectors. The novel aspects of this technique 

include using NG prototypes as class footprints, a different 

PKNN formulation both in the initialization phase and in the 

streaming portion of a possibilistic label assignment for 

incoming features, and in the incremental update of class 

footprints. During initialization, we use NG to learn 

representations (prototypes) of the initial C classes, {𝑝𝑖𝑗|𝑖 =

1, … , 𝐶; 𝑗 = 1, … , 𝑛𝑖} , and only save the learned prototypes 

along with their labels as the class footprints.  

We compute each prototype’s distance to its K nearest 

prototypes (here, K is 5) in each existing class, then build a 

histogram of these distances for each class as shown in Fig. 1 

(a). The region in feature space that each prototype’s region of 

influence (the parameter ηi in Equation (5)) is estimated as the 

mean of the distance histogram using Equation (7). 

𝜂𝑖 =
1

𝑛 ∗ 𝐾
∑ ∑ ‖𝑝𝑘𝑗 − 𝑝𝑗‖

𝐾

𝑘=1

𝑛

𝑗=1
(7) 

where n is the number of neurons in each class, K is the number 

of nearest neighbors, i is the cluster number index. 

Fig. 1 (b) shows the value of 𝜂 plotted on the initialization 

set of the dataset 1. The ηi value in a class is the radius of the 

small circles in Fig. 1 (b). As we see, each prototype covers a 

potentially overlapping sub-area of the data distribution in each 

class. The clusters in the example dataset in Fig. 1 (b) were 

created by equal size circular Gaussians, so the values of ηi turn 

out to be the same for each class in this example. However, that 

need not be the case for more complex class definitions. 

 
(a) 

 
(b) 

Fig. 1. (a) Distance histogram in one class (b) η circle plot on the initialization 

set of dataset 1 

When streaming data 𝑥𝑡  arrives, we first get its K nearest 

prototypes and compute the prototypes’ fuzzy label 

memberships using Equation (2) and the typicalities of 

streaming data to its 𝐾 nearest prototypes using Equation (8) 

below. The typicality value 𝑡𝑖𝑘(𝑥𝑡  ) of the streaming data 𝑥𝑡 to 

its 𝑘𝑡ℎ nearest prototype is computed as in the original PCM 

using 

𝑡𝑖𝑘(𝑥𝑡  ) =
1

1 + (
‖𝑥𝑡 − 𝑝𝑖𝑘‖2

𝜂𝑖
)

1
𝑚−1

(8)
 

Here, i is the class label for the 𝑘𝑡ℎ nearest prototype, and 𝜂𝑖 

is estimated from the histogram of the distance between 

prototypes within a class, as shown in Fig. 1. Normally, and for 

the experiments in this paper, the Euclidean norm is used. Then, 

we multiply the fuzzy label memberships and typicalities to get 

the scaled typicalities with fuzzy labels, 𝑡𝑖𝑘
′ (𝑥𝑡), using Equation 

(9). 

𝑡𝑖𝑘
′ (𝑥𝑡  ) = 𝜇𝑖(𝑝𝑖𝑘) ∗ 𝑡𝑖𝑘(𝑥𝑡  ) (9) 

In other words, we compute the scaled typicality 𝑡𝑖𝑘
′ (𝑥𝑡  ) to 

each of the k prototypes using the typicality from Equation (8) 

and the fuzzy labels 𝜇𝑖(𝑝𝑖𝑘)  from Equation (2) for the 

prototypes of each class to get 𝑡𝑖𝑘
′ (𝑥𝑡  ), and then compute the 

class average typicality using 

𝑡𝑖̅ =
1

𝐾
∑ 𝑡𝑖𝑘

′ (𝑥𝑡  )
𝐾

𝑘=1
(10) 

and pass them to a scaling function, Equation (11) as its class 

typicality. 

𝑇𝑖(𝑥𝑡) = {

0, 𝑡𝑖̅ ≤ 0

2 ∗ 𝑡𝑖̅ − 𝑡𝑖̅
2

, 0 < 𝑡𝑖̅ ≤ 1

1, 𝑡𝑖̅ > 1

(11) 

Now we have the class typicality vector, 𝑇(𝑥𝑡) =

(𝑇1(𝑥𝑡), ⋯ , 𝑇𝐶(𝑥𝑡))
𝑇

 of the streaming data 𝑥𝑡  and use the 

maximum class typicality to represent the typicality of the 

streaming data to its closest class. If the maximum class 

typicality value is larger than a preset threshold, we assign the 

label of its closest class to this streaming data for footprint 

update. At that time, we update the prototypes that are in the 

same class of the current streaming data point according to 

𝑝𝑖𝑘
𝑡+1 = 𝑝𝑖𝑘

𝑡 + 𝛼 ∗ 𝑇𝑖(𝑥𝑡) ∗  𝑒−
𝑘
𝜆(𝑥𝑡 − 𝑝𝑖𝑘

𝑡 ) (12) 

where 𝛼 is a learning rate (we use 0.1 in this paper); 𝑝𝑖𝑘
𝑡  is 

the 𝑘𝑡ℎ closest prototype (neuron) to data vector 𝑥𝑡 at time t; 𝜆 

is a neighborhood range parameter (we use 2 in this paper). The 

typicality value 𝑡𝑖𝑘
′ (𝑥𝑡) measures the typicality of a streaming 

data vector 𝑥𝑡 to the prototype 𝑝𝑖𝑘
𝑡 . If 𝑥𝑡 has a high typicality to 

a given neighbor prototype, meaning that it is a good 

representation of that class, then we update the kth nearest 

prototype with a large step; otherwise, we only update the kth 

nearest prototype by a small amount.  

If the maximum class typicality value is smaller than a preset 

threshold, then the streaming data point has low connection to 

any class. In this case, we mark the streaming data as an unseen 

class (outlier) and save it to the outlier list O for future analysis. 

If the streaming data point is marked as an outlier, we run 

P1M on the updated outliers list O to search for a new class. If 

P1M finds a cluster for which the number of points with 

typicality bigger than 0.5 is larger than a minimum cluster-

formed threshold, we identify this subset as a new class, run NG 

on it, and remove these points from the outlier list O. The newly 

generated prototypes will be appended to the current learned 

prototypes and represent the new class. At this point, or actually 

at any time there is an outlier, the system can ask a human to 

provide a semantic class label or can reject an outlier 

completely.  

The pseudocode of the streaming soft neural gas algorithm is 

shown in Table II.



 

TABLE II. STREAMING SOFT NEURAL GAS PSEUDOCODE 

Initialization 

Input: initialization set X_init and class label y_init; 

Output: prototypes P;  

01: for i in each class y_init: 
02: ---- run NG on class(i) in X_init; 

03: ---- save neurons of each class(i) into prototypes𝑝𝑖𝑘 , 𝑘 = 1, … , 𝑛𝑖; 

04: end for 

Stream Processing 

Input: streaming set X, initial prototypes P, typicality threshold t, minimum number of points M to form a new class; 
Output: streaming set class label vector L and class typicality vector T 

01: initial PKNN model with P (declare PKNN); 

02: for x in streaming set X: 
03: ---- compute K nearest prototypes’ fuzzy label memberships using Eq. (2) 

04: ---- compute typicalities 𝑡𝑖𝑘(𝑥 ) of x to its K nearest prototypes in P using Eq. (8)  

05: ---- multiply typicalities with fuzzy label memberships to get the scaled typicalities 𝑡𝑖𝑘
′ (𝑥) using Eq. (9) 

06: ---- compute the class typicalities of x by taking the average of the scaled typicalities 𝑡𝑖𝑘
′ (𝑥) in each class  

                using Eq. (10) and apply scaling function using Eq. (11) 

07: ---- predict class label Li(x) and class typicality Ti(x) using the largest class typicality 

08: ---- if (class typicality Ti(x) > t): 

09: ---- ---- update P for class i with x incrementally using Eq. (12); 

10: ---- else: 

11: ---- ---- mark x as an outlier and save to outliers list O; 
12: ---- ---- run P1M on O to search for a new cluster C’; 

13: ---- ---- if (# of points with typicality>0.5 in C’ > M): 

14: ---- ---- ---- run NG on C’, and add the new prototypes to P; 
15: ---- ---- ---- remove the points with typicality>0.5 in C’ out of O and reset the outlier label in class label vector L with the new class; 

16: ---- ---- end if 

17: ---- end if 
18: end for 

IV. SYNTHETIC DATASETS 

To test the StreamSoNG algorithm, we use four synthetic 

datasets and one real world data set. The first three synthetic 

data sets use Gaussian clouds to provide a structured and well 

understood environment. In the first dataset, the mean values of 

three Gaussian classes in the initialization set are (10, 10), (20, 

20), and (30, 30). The mean values of two unknown (Gaussian) 

classes in the streaming set are (40, 40) and (50, 50). The 

covariance matrix in both the initialization and streaming sets 

are [4, 0; 0, 4]. In the second dataset, the mean values of three 

classes in the initialization set are (10, 10), (20, 20), and (30, 

30). The mean values of two unknown classes in the streaming 

set are (40, 40) and (50, 50). The covariance matrix in both the 

initialization and the streaming set is [15, 0; 0, 15]. In the third 

dataset, the mean values of three initialization classes are (10, 

20), (20, 30), and (30, 20), whereas the mean values of two 

unknown classes in the streaming set are (20, 10) and (20, 20). 

The covariance matrix in both the initialization and the 

streaming set is [5, 0; 0, 5]. The fourth dataset provides a non-

Gaussian example with two “circular” initialization sets with 

“centers” at (10, 20), and (20, 15). The radius of the circles is 

around 10. The mean value of a new unknown (Gaussian) class 

in the streaming set is (40, 30) with a covariance matrix [10, 0; 

0, 10]. All four synthetic datasets are two dimensional and the 

scatter plot of the four datasets is shown in Fig. 2. The top four 

scatter plots, (a) – (d), represent the initialization sets and the 

bottom four plots, (e) – (h), show the temporal sequence of the 

stream after initialization. The arrows in streaming sets show 

how the streaming data evolves over time.  
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Fig. 2. The scatter plot of four synthetic datasets (class initialization data: figures (a) – (d) and streaming sets: figures (e) - (h)) 



 

V. EXPERIMENTS 

In this section, we run four experiments to test the 

StreamSoNG algorithm. The first experiment compares 

different neuron (prototype) update mechanisms on the four 

synthetic datasets. The second experiment studies the effect of 

permuting the presentation order of streaming data on the 

algorithm. The third experiment visualizes how the maximum 

typicality value of a specific data sample changes as the model 

updates with streaming data. The last experiment tests 

StreamSoNG algorithm on a real-world texture image dataset. 

We use the precision score to evaluate the models. The 

precision score compares the prediction with the ground truth, 

and is defined as  

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝐴, 𝐵) =
∑ (𝐴𝑖 = 𝐵𝑖)𝑁

𝑖=1

𝑁
(12) 

where A is streaming prediction set, B is streaming ground truth 

set, and N is the samples number of the streaming set. The 

precision score is computed on the whole streaming set. Note 

that this measure is computed after hardening the possibilistic 

labels assigned to each streaming input vector. This makes our 

soft streaming classifier comparable to other crisp models. 

A. Parameter setting 

There are some user-specified choices in Table II that need 

to be made for implementation of StreamSoNG. We used the 

number of neurons in each class 𝑛 = 10, typicality threshold 

𝑡 = 0.1, minimum number of points to form a new class 𝑀 =
30 , epsilon 𝜀 = 0.01 , fuzzifier 𝑚 = 1.5 , learning rate α =
0.1 (in Equation (12)), neighborhood range lambda 𝜆 = 2 (in 

Equation (12)). We do not have room in this paper to perform 

experiments that establish constraints, rules of thumb, and 

recommendations in this paper, but we will make this a priority 

for a follow up study of the StreamSoNG algorithm. 

B. Experiment 1: Comparison of different neuron update 

mechanisms 

Three neuron updating mechanisms can be used in data 

stream processing. The first one is to save all data samples and 

rerun the NG algorithm on the updated data samples to get new 

data representations (neurons). The second method is to update 

only the K nearest neurons using Equation (12). The last method 

is to rerun the NG algorithm on the prototypes and the new 

streaming data sample, using it, in effect, as a potential 

prototype. Fig. 3 shows the precision scores of the three neuron 

updating mechanisms on the four synthetic datasets. The red 

dotted line is the first update mechanism that saves all data 

samples and reruns the NG algorithm on the entire updated 

samples. The blue line is the second update mechanism that 

updates the K nearest neurons. The black dotted line is the third 

update mechanism that reruns the NG algorithm on the neurons 

and the new streaming data sample. 

As we see in Fig. 3, the first method has the highest precision 

score but it requires more computation and data storage because 

it saves all data samples in both initialization and streaming 

sets. This method represents an upper bound but goes against 

the spirit of streaming data processing. The second method that 

updates the K nearest neurons performs well compared to the 

first approach and clearly outperforms the third method that 

reruns the NG algorithm on the neurons and new streaming data 

sample. The third neuron updating mechanism can easily forget 

the learned representations. Therefore, updating K nearest 

prototypes with streaming data is an accurate and efficient 

method to incrementally adjust the prototypes in a class. 

 
(a) 
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Fig. 3. Precision score on the four datasets with different neuron updating 

mechanisms 

Furthermore, the StreamSoNG algorithm can not only 

produce a class label for a data sample, but also a typicality 

matrix that measures how well a data sample belongs to a 

specific class. If the typicality value of a streaming data sample 

is high, the algorithm is more confident about its prediction. In 

this experiment, we compute the precision scores for the 

predictions only where typicality values are higher than 0.2. 
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Fig. 4. Precision scores of high typicality samples on the four datasets with 

different values of K in the PKNN 

As we see in Fig. 4, the precision scores for typicality values 

higher than 0.2 are higher than the precision score for all 

streaming data samples. That is, the StreamSoNG algorithm has 

a higher precision score for its confident predictions. 

In this experiment, we also run the K-Nearest Neighbor 

(KNN) algorithm [40], Adaptive Random Forest (ARF) 

classifier [41], Very Fast Decision Rules (VFDR) classifier 

[42], and DenStream algorithm [15] on the same synthetic 

datasets. The results are listed in Table III. 



 

Table III. Precision scores of existing methods and StreamSoNG 

 Dataset 1 Dataset 2 Dataset 3 Dataset 4 

KNN(K=3) [40] 0.271 0.259 0.271 0.331 

ARF [41] 0.182 0.117 0.095 0.167 

VFDR [42] 0.273 0.266 0.273 0.327 

DenStream [15] 1 0.073 0.627 0.82 

StreamSoNG(K=3) 0.979 0.862 0.924 0.94 

As we can see in Table III, the KNN, ARF, and VFDR 

schemes have low overall precision scores because they cannot 

detect the new classes in data streams but only deal with the 

concept drift problem. The lack of new classes in evaluation 

causes their low scores. DenStream has a perfect score on the 

well separated dataset (dataset 1) but has a poor score on the 

overlapping cluster dataset (dataset 2) because it merges close 

structures. The StreamSoNG algorithm has the highest overall 

precision score because it can not only detect new classes but 

also works well on the overlapping cluster dataset.  

C. Experiment 2: the effect of permuting the streaming data 

Suppose that the streaming data does not follow the specific 

pattern of arrival as we assumed in experiment 1. Here, we 

shuffle the order of streaming set and re-run the StreamSoNG 

algorithm on the shuffled streaming set. The precision scores 

using the k nearest neurons update mechanism on four synthetic 

datasets are shown in Fig. 5 as a function of k. 

 
(a) 
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Fig. 5. Precision score on the four shuffled datasets with different values of k 

in the PKNN 

As we see in Fig. 5, the precision scores on datasets 1 and 4 

stay very close to the precision scores on the unshuffled 

streaming set because the classes in datasets 1 and 4 are well 

separated. The precision scores on datasets 2 and 3 decrease on 

the shuffled streaming sets compared to the precision scores on 

the unshuffled streaming set. This is because the two clusters in 

streaming set are very close to each other and it is hard to 

distinguish them at the beginning with randomly presented 

vectors. In addition, we compute the precision scores for the 

streaming samples with typicality values higher than 0.2. As 

before, the precision scores with confident predictions are 

higher than the precision score for all streaming data samples. 

D. Experiment 3: Visualization of typicality value changes in 

streaming data 

In this experiment, we track the typicalities of several data 

samples and see how they change as the model updates with 

streaming data. It is as if these points are presented repeatedly, 

after each real sample of the data stream. They are not used to 

update the class footprints, but only to monitor changes in 

maximal typicality throughout the process. 

Fig. 6 shows how the streaming data in dataset 1 and the 

maximum typicality value of four points evolve over time. Fig. 

6 (a), (c), (e) plot the streaming data at time 𝑡1 , 𝑡2 , 𝑡3  and 4 

diamond symbols (in green, red, cyan, magenta color) in the 

data plots are studied. Fig. 6 (b), (d), (f) plots the maximum 

typicality value of the four points in different colors at the 

different time (the colors in one row matches).  

 
(a) time 𝑡1 

 
(b) time 𝑡1 

 
(c) time 𝑡2 

 
(d) time 𝑡2 

 
(e) time 𝑡3 

 
(f) time 𝑡3 

Fig. 6. (a), (c), (e) Streaming data plots at time 𝑡1, 𝑡2, 𝑡3, and (b), (d), (e) the 

maximum typicality plots of four points (in green, red, cyan, magenta color) at 

time 𝑡1, 𝑡2, 𝑡3  

In Fig. 6 (a) and (b), the streaming data just started at time 𝑡1 

and the cyan and magenta color points have low maximum 

typicality value because there are no prototypes close to them. 

In Fig. 6 (c) and (d), the streaming data formed a new class 

around the cyan color point at time 𝑡2. StreamSoNG detected 

this new class and generated new prototypes for this new class 

so that the maximum typicality of the cyan color point increased 

at time 𝑡2 . In Fig. 6 (e) and (f), the streaming data formed 

another new class around the magenta color point at time 𝑡3. 

Similarly, StreamSoNG detected this new class as well and 

generated new prototypes for this class so that the maximum 

typicality of the magenta color point increased at time 𝑡3. A 

similar analysis on the dataset 2-4 is included in the 

supplemental material.
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Fig. 7. Plot of maximum typicality for four locations (colored dots) over time on the four synthetic datasets.  

Fig. 7 shows the final maximum typicality plot of the four 

points in the four datasets. In Fig. 7 (a) – (d), 4 diamond 

symbols (in green, red, cyan, magenta color) in each dataset are 

studied. Their maximum typicality value plots with respect to 

time are shown in Fig. 7 (e) – (h).  

As we see in Fig. 7, the green diamond symbol always has a 

high maximum typicality value as the model updates with 

streaming data because it is always in the middle of a class. The 

red diamond symbol has a low typicality all the time because it 

is always in the sparse area. The cyan diamond symbol and the 

magenta diamond symbol are two interesting cases. Their 

typicality values are low at the beginning, then become high as 

more streaming data form a new cluster around their regions 

and the algorithm creates a new class around them.  

E. Experiment 4: Test on a real-world texture image dataset 

In this experiment, we run the StreamSoNG algorithm on the 

UMD texture dataset [43]. We use 400 images for initialization 

that includes pebbles and bricks images. We use another 600 

images as the streaming set that includes pebbles, bricks and 

plaid types of images. The plaid type image is new in the 

streaming set that is not included in the initialization set. Three 

examples of each type of image are shown in Fig. 8. This is a 

surrogate test for the intended use of determining typicalities of 

seafloor textures displayed in SAS imagery. 

 
(a) 

 
(b) 

 
(c) 

Fig. 8. Three examples of each type of images: (a) Pebbles (b) Bricks (c) Plaid 

 

 

First, we generate a texture feature vector from a deep pre-

trained Convolutional Neural Network, Resnet18 [44] with 

classification layers removed to extract 512 features from these 

images. Then we train an autoencoder model with three hidden 

layers on the 512 features of the initialization set. The Resnet18 

pre-trained model and encoder in the autoencoder are used 

together to process the streaming images to get 16 features. 

Then we run the StreamSoNG algorithm on the extracted 16 

features. StreamSoNG achieves 81.3% precision on the entire 

streaming set and 95.7% precision on the streaming samples 

that have maximum typicality value higher than 0.2. 

StreamSoNG detects the plaid class in the streaming set and 

produces a new class label for the plaid type of image. Fig. 9 

shows three examples of typicality changes in each class.  

 
(a) 

 
(b) 

 
(c) 

Fig. 9. Typicality value plot for (a) a streaming sample from the pebbles class, 

(b) a streaming sample from the bricks class, (c) a streaming sample from the 

new plaid class  

The first two samples in the pebbles and bricks class 

consistently have high typicality values as streaming data is 

fitted into the model. The typicality value of the third example 

from the new plaid class has low typicality value at the 

beginning and high typicality value when a new plaid class is 

created in the model.  

One application of our StreamSoNG model is to detect the 

environment using drones. Fig. 10 mimics a scenario that a 

drone flies from a brick region to a pebble region. In Fig. 10 (a), 

the drone is completely in the brick region. It gradually flies 

over to the pebble region as Fig. 10 (b) - (j) show. In the end, 

the drone is completely in the pebble region as Fig. 10 (k) 

shows. 



 

 
(a) transition=0.0 

 
(b) transition=0.1 

 
(c) transition=0.2 

 
(d) transition=0.3 

 
(e) transition=0.4 

 
(f) transition=0.5 

 
(g) transition=0.6 

 
(h) transition=0.7 

 
(i) transition=0.8 

 
(j) transition=0.9 

 
(k) transition=1.0 

 

 

Fig. 10. A sequence of transition images from the brick region (class 2) to the pebble region (class 1)

We keep track of the typicalities of the sequence of transition 

images in Fig. 10 while running the StreamSoNG model. The 

typicalities of the images to the pebble class (class 1) and the 

brick class (class 2) are shown in Fig. 11. 

 
Fig. 11. Typicalities of the sequence of transition images to the pebble class 

(class 1) and the brick class (class 2) 

As the environment shifts from the brick region (class 2) to 

the pebble region (class 1), the typicality value to class 1 is 

increasing and the typicality value to class 2 is decreasing. Our 

StreamSoNG reflects the environment transition fact in the 

typicality plot successfully.  

VI. CONCLUSION 

In this paper, we proposed a soft streaming classification 

algorithm. This is particularly useful for situations where the 

streaming data classes are overlapped, for example classifying 

land cover from drone imagery where individual images may 

contain more than one class and where classes blend from one 

to another. Each class, both during initialization and in the new 

structure discovery module, is summarized via a set of Neural 

Gas prototypes that are then used in a possibilistic K-nearest 

neighbor algorithm to assign typicalities to each incoming 

point. Class footprints (the NG prototypes) are incrementally 

updated. StreamSoNG’s performance is excellent on both 

synthetic and real datasets both from a precision standpoint 

after hardening the possibilistic labels, and from the standpoint 

of the actual possibilistic labels assigned to the incoming 

streaming data. There are several avenues for investigation 

within the actual structure of StreamSoNG including choices of 

parameters, scaling of typicalities, assigning and updating fuzzy 

class memberships of prototypes, and varying the number of 

prototypes per class, using for example Growing Neural Gas. 

We intend to couple this steaming classification approach to the 

problem of environmentally aware classifier fusion. For 

example, the typicalities can be used to build a fuzzy measure 

that drives a Choquet integral fusion of a series of deep nets 

trained on specific environments. A parallel problem that we 

will investigate is how to generate a new classifier when a novel 

environment is discovered.  
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