
© 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse

of any copyrighted component of this work in other works.

Abstract—Examining most streaming clustering algorithms

leads to the understanding that they are actually incremental

classification models. They model existing and newly discovered

structures via summary information that we call footprints.

Incoming data is normally assigned a crisp label (into one of the

structures) and that structure’s footprint is incrementally

updated. There is no reason that these assignments need to be

crisp. In this paper, we propose a new streaming classification

algorithm that uses Neural Gas prototypes as footprints and

produces a possibilistic label vector (of typicalities) for each

incoming vector. These typicalities are generated by a modified

possibilistic k-nearest neighbor algorithm. The approach is tested

on synthetic and real image datasets. We compare our approach

to three other streaming classifiers based on the Adaptive Random

Forest, Very Fast Decision Rules, and the DenStream algorithm

with excellent results.

Index Terms— streaming classification, neural gas, possibilistic

clustering

I. INTRODUCTION

onsider the following problem, An autonomous mobile

agent has to locate particular objects over a large, and

potentially unknown area. This agent could be a vehicle or

flying drone equipped with a variety of Electro-Optical/Infra-

Red (EO/IR) and depth sensors, or could be an underwater

drone, an Unmanned Underwater Vehicle (UUV) using

Synthetic Aperture Sonar (SAS). Let’s pick the latter as an

example, and assume we wish to detect sunken pirate booty on

the seafloor. The objects of interest will present different

signatures based on the surrounding seafloor environment such

as bare sand, sea grass, sand ripples, coral, mud, rocks, etc.

Some backgrounds will allow for simple classifiers, whereas

others require more sophisticated algorithms. But the key is for

the UUV to recognize the current environment to determine the

correct tailored object classifier. More realistically, the current

SAS image can easily be a blend of multiple seafloor textures,

including as yet unseen environments, and so a blend of

classifiers will provide the best chance at detecting the treasure.

This example, derived from an actual ongoing project,

illustrates the need for streaming classification that can handle

diverse and changing class definitions (e.g., seafloor textures)

while being able to identify new, but unknown environments.

The streaming classifier needs to be able to provide soft (fuzzy,

probabilistic, or possibilistic) labels that can be used for object

classifier fusion. The focus of this paper is that initial

component: streaming soft classification to create a possibilistic

label vector to be fed to a secondary object detection system.

Data stream processing techniques have gained much

attention in recent years. Streaming data, such as social network

clique information or daily sensor firing information, are

generated every day. Conventional clustering and classification

models use static (batch) data and hence, are not directly

applicable to data streams. Therefore, alternate strategies are

required to incrementally update models as new feature vectors

become available. In [1], the authors argue that in fact, all

streaming data analysis should be thought of as classification.

There has been some research on classification in data streams

[2], such as adapting CluStream as an on-line classifier [3],

Very Fast Decision Trees [4], [5], rule based classifiers [6], and

a nearest neighbor technique [7]. However, for the most part,

these approaches are collectively referred to as streaming

clustering, and there are a number of ways to organize them into

taxonomies [8], [9].

The multitude of streaming data analysis algorithms have

several things in common. First, they do not retain the entire

dataset. They maintain “footprints” that summarize the

structures discovered, and they usually have a mechanism to

incrementally update footprints as new vectors arrive. In [10]–

[14], underlying probabilistic models are used and the footprint

contains probability distribution parameters. Many of the

density based streaming models also contain footprint entries

that allow calculation of basic summary statistics [15]–[19].

The footprints can additionally contain the structure of fuzzy

rules [20], [21]. In [22], an evolving system was proposed that

could add, remove, merge and split clusters. These streaming

methodologies generally maintain only summary information,

i.e., footprints, and a means to incrementally update it. Some of

the streaming methods are used in different real world

applications such as identification, control and fault detection

[23]–[27].

The other basic trait of these algorithms is that they assign

labels to each point as it appears. For the most part, the labels

are crisp – a point is assigned completely to an existing or new

structure. Density-based algorithms put the point into a micro-

cluster and underlying probability models, like Gaussian

mixtures, use maximum likelihood to make the assignment.

Once the points are assigned to a structure, their labels cannot

change, as only the footprints are preserved. Footprints have

also been called summary information (prototypes, statistical

properties, etc.) which are used to decide membership or the

typicality of incoming data points, and whether a new

class/cluster is needed to describe the data. In fact, crisp labels

are desirable because each incoming point is used to update the

appropriate footprint. There is no iteration over the actual data,

though some algorithms do form larger clusters by offline

clustering of multiple footprints. Hence, what we call streaming

StreamSoNG: A Soft Streaming Classification Approach

Wenlong Wu, Student Member, IEEE, James M. Keller, Life Fellow, IEEE,

Jeffrey Dale, Student Member, IEEE, and James C. Bezdek, Life Fellow, IEEE

C

clustering is actually classification, and should be thought of in

that way.

Creating a crisp label vector implies that each point is

assigned to one and only one existing structure. The newly

labeled point is used to update the structure footprint. The

exception to this rule is when an incoming sample is judged by

the algorithm to be an outlier with respect to previously seen

data. The point doesn’t receive a current class label, nor is it

used to update the footprint. Different approaches deal with

outliers in different ways, but they are the keys to discovery of

new structure in the stream.

We note that, while not specifically related to streaming data

analytics, a related vein of research is called open set

recognition [28], in which a classifier can recognize a closed set

of objects but must operate on an open test set. This means that

the classifier must have the ability to identify when samples do

not belong to any class upon which it was trained. Approaches

to achieving open set recognition include leveraging a series of

one-vs-all support vector machines (SVMs) [28], the Nearest

Non-Outlier (NNO) algorithm [29], and, more recently, the

OpenMax model for deep neural networks [30].

The motivating streaming algorithm that we use in this paper

is a variant of the Missouri University (MU) streaming

clustering algorithm called MUSC. The version, MUSC II [12],

is a modified form of the original method that is found in [10]

and [11], where in both versions, the underlying footprints are

modeled by the parameters of the components of a Gaussian

Mixture. In MUSC II, initialization, and the search for new

structures, is done using the sequential possibilistic one-means

with dynamic eta (SP1M-DE) algorithm [31]. In that variant,

crisp label vectors (including an “outlier” label) are assigned to

each incoming point. The outliers are saved and examined

frequently to detect new structures.

There is no fundamental reason that crisp label vectors need

to be assigned to incoming data. Our initial motivating example

shows the desirability of soft labels in an object detection

system where different classifiers are used in different contexts.

In that scenario, a UUV traveling over different environments

may employ different classifiers for detecting objects based on

the observed seafloor type, like sand ripple, seagrass, etc. A

baseline application of this type is described in [32], but without

a streaming environment module. The environment-detecting

component can be initialized with suspected known

backgrounds. As new environment imagery is acquired, it must

be matched to the known backgrounds to determine the

appropriate classifier to use. However, the environment in a

particular SAS image isn’t always an exact match to the known

backgrounds; it can either be partially representative of more

than one background, or something completely new. This is

where possibilistic labels are particularly valuable.

To be precise, if 𝑋 = {𝑥1, ⋯ , 𝑥𝑛} represents a set of objects,

or a set of feature vectors for the objects, then a collection of

subsets and membership functions {(𝐴1, 𝜇1), ⋯ , (𝐴𝐶 , 𝜇𝐶)} is

called a

1. Crisp partition if 𝜇𝑖: 𝑋 → {0,1} and

 ∑ 𝜇𝑖
𝐶
𝑖=1 (𝑥𝑘) = 1 𝑓𝑜𝑟 𝑘 = 1, ⋯ , 𝑛.

2. Fuzzy or Probabilistic partition if 𝜇𝑖: 𝑋 → [0,1] and

∑ 𝜇𝑖
𝐶
𝑖=1 (𝑥𝑘) = 1 𝑓𝑜𝑟 𝑘 = 1, ⋯ , 𝑛.

3. Possibilistic partition if 𝜇𝑖: 𝑋 → [0,1] and

 0 < ∑ 𝜇𝑖
𝑛
𝑘=1 (𝑥𝑘) ≤ 𝑛 𝑓𝑜𝑟 𝑖 = 1, ⋯ , 𝐶 , and

max
𝑖

𝜇𝑖 (𝑥𝑘) > 0 𝑓𝑜𝑟 𝑘 = 1, ⋯ , 𝑛 .

The vector (𝜇1(𝑥𝑘), ⋯ , 𝜇𝐶(𝑥𝑘)) of class membership values

is called the label vector for 𝑥𝑘 . For a crisp label vector, 𝑥𝑘

belongs to one and only one of the subsets; for a fuzzy label

vector, the membership of 𝑥𝑘 is shared among the subsets

(though constrained to sum to 1); but for a possibilistic label

vector, the membership of 𝑥𝑘 is unconstrained and reflects the

typicality of 𝑥𝑘 to each of the subsets. Hence, in a possibilistic

framework, a particular patch of seafloor can have a high

typicality to more than one known seafloor type (when there is

a blend) or it can have a very low typicality to all of the

currently known seafloor types, signaling an outlier or new

seafloor type.

If a streaming vector (new image) can be assigned typicalities

in the known backgrounds, then classifiers can be blended.

Images with low typicality in all known backgrounds are listed

as outliers and some standard classifier fusion can be used.

When a new structure (background class) is found in the data

stream, either an automatically generated label can be assigned,

or an active learning phase can be initiated in which a human

will need to interact with the system to give the new class a label

and perhaps then have a new classifier inserted.

We are mainly interested in the environment recognition

portion of such a system. We propose a new streaming

classification algorithm called streaming soft neural gas

(StreamSoNG). The StreamSoNG algorithm uses the neural gas

algorithm (NG) [33] during initialization to find sparse data

representations for known classes, i.e., to generate the class

footprints. A modified version of the possibilistic k-nearest

neighbors algorithm (PKNN) [34] is employed as the streaming

classifier to assign soft (possibilistic) labels to data stream

vectors. The typicality vector of possibilistic labels can be used

directly in a classification scheme. Based on maximum

typicality, class footprints are incrementally updated. This

updating allows for class definitions to vary from their initial

topologies. An incoming sample that has low typicality values

in all currently known classes is marked as an outlier and saved

to an anomaly list. The sequential possibilistic one-means

algorithm (SP1M) [31] is run the anomaly list to identify a

potential new class.

The rest of the paper is organized as follows. Section II

briefly reviews NG, PKNN and SP1M algorithms. Section III

introduces our StreamSoNG algorithm. Section IV describes

the four synthetic datasets used in this paper. Section V shows

our experimental results. Section VI summarizes our

conclusions and future work.

II. BACKGROUND

A. Neural Gas

The neural gas algorithm (NG) [33] is a competitive-

learning neural network algorithm in the same family as the

self-organizing feature map algorithm (SOFM) [35]. The NG

algorithm aims to optimally describe the topology of data

vectors using a fixed number of prototypes.

In the standard NG, given a set of vectors 𝑋 =
{𝑥𝑡|𝑡 ∈ ℕ}, 𝑋 ⊂ 𝑅𝑞 and a finite number of prototype

vectors 𝑝𝑖 , 𝑖 = 1, … , 𝑁, 𝑝𝑖 ⊂ 𝑅𝑞 , a data vector 𝑥𝑡 at timestamp t

is randomly chosen from X. The distance order of the prototype

vectors to the chosen data vector 𝑥𝑡 is computed using a chosen

measure of distance on 𝑅𝑞 . Let 𝑖1 denote the index of the

closest prototype vector, 𝑖2 denote the index of the second

closet prototype vector, and 𝑖𝑁 denote the index of the

prototype vector most distant to 𝑥𝑡 . Then each prototype vector

is adapted according to

𝑝𝑖𝑘

𝑡+1 = 𝑝𝑖𝑘

𝑡 + 𝜀𝑒−
𝑘
𝜆(𝑥𝑡 − 𝑝𝑖𝑘

𝑡), 𝑘 = 1, … , 𝑁 (1)

where 𝜀 is the adaptation step size and 𝜆 is a neighborhood

range parameter. Both 𝜀 and 𝜆 are reduced according to a

predefined schedule with increasing iterations. After

sufficiently many epochs using randomly sampled data vectors,

the prototype vectors cover the data space with minimum

representation error, i.e., the sum of squared errors of each point

to its closest prototype.

B. Possibilistic K-Nearest Neighbors

The PKNN algorithm extends the crisp KNN algorithm that

first assigns a fuzzy membership (between 0 and 1) to each

training pattern rather than using a binary class membership.

The membership is assigned as described in [36] using

𝜇𝑖(𝑝) = {
0.51 + (

𝑛𝑖

𝐾
) × 0.49, 𝑖𝑓 𝑖 = 𝑗

(
𝑛𝑖

𝐾
) × 0.49, 𝑖𝑓 𝑖 ≠ 𝑗

(2)

where 𝑛𝑖 denotes the number of neighbors that belong to the 𝑖𝑡ℎ

class, i.e., ∑ 𝑛𝑖
𝐶
𝑖=1 = K and j is the actual class label of protype

p. Note, for StreamSoNG, we are assigning training vector

memberships to the NG prototypes that make up class

footprints. The pattern’s fuzzy membership 𝜇𝑖(𝑝) controls its

contribution during the classification process.

The version of PKNN proposed in [34] assigns membership

values (typicalities) 𝑡𝑖(𝑥) of a data vector x to class i using

𝑡𝑖(𝑥) = ∑ 𝜇𝑖(𝑝𝑘)𝑤(𝑥, 𝑝𝑘)

𝐾

𝑘=1

(3)

where 𝑝𝑘 is the 𝑘𝑡ℎ nearest prototype to 𝑥 and

𝑤(𝑥, 𝑝𝑘) =
1

1 + [max (0, ‖𝑥 − 𝑝𝑘‖ −
𝜂1

𝜂2
)]

2
𝑚−1

(4)

In Equation (4), 𝜂1 and 𝜂2 are constants that are estimated

from the training data and 𝑚 > 1 is a “fuzzifier” parameter.

One approach is to identify the five nearest prototypes to each

training sample and construct a histogram containing all

associated distances. Then, we take 𝜂1 = 𝜇𝐻 and 𝜂2 = 3 × 𝜎𝐻,

where 𝜇𝐻 and 𝜎𝐻 are the mean and standard deviation of the

histogram of distances [34].

The expression in Equation (4), worked well for a two-class

application. In the streaming scenario, the number of classes is

unknown. We will formulate a version more closely aligned to

the original PCM, the updates as shown in equations (5) and (6)

that naturally extends to any number of classes.

C. Sequential Possibilistic One-Means

The sequential possibilistic one-means algorithm (SP1M)

was developed from the possibilistic C-means (PCM) clustering

algorithm [37]–[39] for static data. In static PCM, let 𝑋 =
{𝑥1, ⋯ , 𝑥𝑁} , 𝑋 ⊂ 𝑅𝑞 and C = the number of clusters in X. Each

cluster is independent of the others and, effectively, is found

separately by iterating between the following equations:

𝑢𝑖𝑗 =
1

1 + (
𝑑𝑖𝑗

2

𝜂𝑖
)

1
𝑚−1

(5)

𝑣𝑖 =
∑ 𝑢𝑖𝑗

𝑚𝑥𝑗
𝑁
𝑗=1

∑ 𝑢𝑖𝑗
𝑚𝑁

𝑗=1

(6)

where 𝑢𝑖𝑗 is the typicality value of 𝑗𝑡ℎ data vector to the 𝑖𝑡ℎ

cluster center 𝑣𝑖 , for j = 1,…, N, and i = 1, …, C, 𝑑𝑖𝑗 is the

Euclidean distance value of 𝑗𝑡ℎ data vector to the 𝑖𝑡ℎ cluster

center 𝑣𝑖 , 𝜂𝑖 (a cluster-based hyperparameter) is the distance

from the cluster center at which the typicality value in that

cluster is equal to 0.5, and 𝑚 > 1 is the fuzzifier value. See [26]

for discussions about these parameters.

The family of SP1M algorithms [31], [37], [38] sequentially

search for one cluster at a time and choose the starting point

probabilistically at a rate inversely proportional to the

maximum typicality of each point with respect to the currently

discovered clusters. These variants reject centroids that are

coincident with one of the previously discovered prototypes.

The SP1M pseudocode is shown in Table I. For additional

details about the SP1M algorithm, see [31].

TABLE I: SP1M PSEUDO CODE
Input: X, C, ε

Output: U: Final membership partition

 V: Final cluster centers
01: Initialize U, V as empty

02: Do {

03: ---- Repeat <loop to find a suitable cluster>

04: ---- ---- Pick 𝑣 ∈ 𝑋 from probabilities

05: ---- ---- Repeat <loop to execute P1M>

06: ---- ---- ---- Compute η dynamically (*)

07: ---- ---- ---- Compute u (v, X) (5)

08: ---- ---- ---- Compute v (u, X) (6)

09: ---- ---- Until cluster center is stable

10: ---- Until no coincident cluster is found

11: ---- Append u to U

12: ---- Append v to V

13: } While (𝑖 + +< 𝐶 && #(P1M) < 𝐾)
*details of dynamic η computation, along with the initialization

probabilities and the stopping criterion are discussed in [31]

III. STREAMING SOFT NEURAL GAS

In this paper, we propose a new algorithm called the

streaming soft neural gas algorithm (StreamSoNG) to classify

streaming data vectors. The novel aspects of this technique

include using NG prototypes as class footprints, a different

PKNN formulation both in the initialization phase and in the

streaming portion of a possibilistic label assignment for

incoming features, and in the incremental update of class

footprints. During initialization, we use NG to learn

representations (prototypes) of the initial C classes, {𝑝𝑖𝑗|𝑖 =

1, … , 𝐶; 𝑗 = 1, … , 𝑛𝑖} , and only save the learned prototypes

along with their labels as the class footprints.

We compute each prototype’s distance to its K nearest

prototypes (here, K is 5) in each existing class, then build a

histogram of these distances for each class as shown in Fig. 1

(a). The region in feature space that each prototype’s region of

influence (the parameter ηi in Equation (5)) is estimated as the

mean of the distance histogram using Equation (7).

𝜂𝑖 =
1

𝑛 ∗ 𝐾
∑ ∑ ‖𝑝𝑘𝑗 − 𝑝𝑗‖

𝐾

𝑘=1

𝑛

𝑗=1
(7)

where n is the number of neurons in each class, K is the number

of nearest neighbors, i is the cluster number index.

Fig. 1 (b) shows the value of 𝜂 plotted on the initialization

set of the dataset 1. The ηi value in a class is the radius of the

small circles in Fig. 1 (b). As we see, each prototype covers a

potentially overlapping sub-area of the data distribution in each

class. The clusters in the example dataset in Fig. 1 (b) were

created by equal size circular Gaussians, so the values of ηi turn

out to be the same for each class in this example. However, that

need not be the case for more complex class definitions.

(a)

(b)

Fig. 1. (a) Distance histogram in one class (b) η circle plot on the initialization

set of dataset 1

When streaming data 𝑥𝑡 arrives, we first get its K nearest

prototypes and compute the prototypes’ fuzzy label

memberships using Equation (2) and the typicalities of

streaming data to its 𝐾 nearest prototypes using Equation (8)

below. The typicality value 𝑡𝑖𝑘(𝑥𝑡) of the streaming data 𝑥𝑡 to

its 𝑘𝑡ℎ nearest prototype is computed as in the original PCM

using

𝑡𝑖𝑘(𝑥𝑡) =
1

1 + (
‖𝑥𝑡 − 𝑝𝑖𝑘‖2

𝜂𝑖
)

1
𝑚−1

(8)

Here, i is the class label for the 𝑘𝑡ℎ nearest prototype, and 𝜂𝑖

is estimated from the histogram of the distance between

prototypes within a class, as shown in Fig. 1. Normally, and for

the experiments in this paper, the Euclidean norm is used. Then,

we multiply the fuzzy label memberships and typicalities to get

the scaled typicalities with fuzzy labels, 𝑡𝑖𝑘
′ (𝑥𝑡), using Equation

(9).

𝑡𝑖𝑘
′ (𝑥𝑡) = 𝜇𝑖(𝑝𝑖𝑘) ∗ 𝑡𝑖𝑘(𝑥𝑡) (9)

In other words, we compute the scaled typicality 𝑡𝑖𝑘
′ (𝑥𝑡) to

each of the k prototypes using the typicality from Equation (8)

and the fuzzy labels 𝜇𝑖(𝑝𝑖𝑘) from Equation (2) for the

prototypes of each class to get 𝑡𝑖𝑘
′ (𝑥𝑡), and then compute the

class average typicality using

𝑡𝑖̅ =
1

𝐾
∑ 𝑡𝑖𝑘

′ (𝑥𝑡)
𝐾

𝑘=1
(10)

and pass them to a scaling function, Equation (11) as its class

typicality.

𝑇𝑖(𝑥𝑡) = {

0, 𝑡𝑖̅ ≤ 0

2 ∗ 𝑡𝑖̅ − 𝑡𝑖̅
2

, 0 < 𝑡𝑖̅ ≤ 1

1, 𝑡𝑖̅ > 1

(11)

Now we have the class typicality vector, 𝑇(𝑥𝑡) =

(𝑇1(𝑥𝑡), ⋯ , 𝑇𝐶(𝑥𝑡))
𝑇

 of the streaming data 𝑥𝑡 and use the

maximum class typicality to represent the typicality of the

streaming data to its closest class. If the maximum class

typicality value is larger than a preset threshold, we assign the

label of its closest class to this streaming data for footprint

update. At that time, we update the prototypes that are in the

same class of the current streaming data point according to

𝑝𝑖𝑘
𝑡+1 = 𝑝𝑖𝑘

𝑡 + 𝛼 ∗ 𝑇𝑖(𝑥𝑡) ∗ 𝑒−
𝑘
𝜆(𝑥𝑡 − 𝑝𝑖𝑘

𝑡) (12)

where 𝛼 is a learning rate (we use 0.1 in this paper); 𝑝𝑖𝑘
𝑡 is

the 𝑘𝑡ℎ closest prototype (neuron) to data vector 𝑥𝑡 at time t; 𝜆

is a neighborhood range parameter (we use 2 in this paper). The

typicality value 𝑡𝑖𝑘
′ (𝑥𝑡) measures the typicality of a streaming

data vector 𝑥𝑡 to the prototype 𝑝𝑖𝑘
𝑡 . If 𝑥𝑡 has a high typicality to

a given neighbor prototype, meaning that it is a good

representation of that class, then we update the kth nearest

prototype with a large step; otherwise, we only update the kth

nearest prototype by a small amount.

If the maximum class typicality value is smaller than a preset

threshold, then the streaming data point has low connection to

any class. In this case, we mark the streaming data as an unseen

class (outlier) and save it to the outlier list O for future analysis.

If the streaming data point is marked as an outlier, we run

P1M on the updated outliers list O to search for a new class. If

P1M finds a cluster for which the number of points with

typicality bigger than 0.5 is larger than a minimum cluster-

formed threshold, we identify this subset as a new class, run NG

on it, and remove these points from the outlier list O. The newly

generated prototypes will be appended to the current learned

prototypes and represent the new class. At this point, or actually

at any time there is an outlier, the system can ask a human to

provide a semantic class label or can reject an outlier

completely.

The pseudocode of the streaming soft neural gas algorithm is

shown in Table II.

TABLE II. STREAMING SOFT NEURAL GAS PSEUDOCODE

Initialization

Input: initialization set X_init and class label y_init;

Output: prototypes P;

01: for i in each class y_init:
02: ---- run NG on class(i) in X_init;

03: ---- save neurons of each class(i) into prototypes𝑝𝑖𝑘 , 𝑘 = 1, … , 𝑛𝑖;

04: end for

Stream Processing

Input: streaming set X, initial prototypes P, typicality threshold t, minimum number of points M to form a new class;
Output: streaming set class label vector L and class typicality vector T

01: initial PKNN model with P (declare PKNN);

02: for x in streaming set X:
03: ---- compute K nearest prototypes’ fuzzy label memberships using Eq. (2)

04: ---- compute typicalities 𝑡𝑖𝑘(𝑥) of x to its K nearest prototypes in P using Eq. (8)

05: ---- multiply typicalities with fuzzy label memberships to get the scaled typicalities 𝑡𝑖𝑘
′ (𝑥) using Eq. (9)

06: ---- compute the class typicalities of x by taking the average of the scaled typicalities 𝑡𝑖𝑘
′ (𝑥) in each class

 using Eq. (10) and apply scaling function using Eq. (11)

07: ---- predict class label Li(x) and class typicality Ti(x) using the largest class typicality

08: ---- if (class typicality Ti(x) > t):

09: ---- ---- update P for class i with x incrementally using Eq. (12);

10: ---- else:

11: ---- ---- mark x as an outlier and save to outliers list O;
12: ---- ---- run P1M on O to search for a new cluster C’;

13: ---- ---- if (# of points with typicality>0.5 in C’ > M):

14: ---- ---- ---- run NG on C’, and add the new prototypes to P;
15: ---- ---- ---- remove the points with typicality>0.5 in C’ out of O and reset the outlier label in class label vector L with the new class;

16: ---- ---- end if

17: ---- end if
18: end for

IV. SYNTHETIC DATASETS

To test the StreamSoNG algorithm, we use four synthetic

datasets and one real world data set. The first three synthetic

data sets use Gaussian clouds to provide a structured and well

understood environment. In the first dataset, the mean values of

three Gaussian classes in the initialization set are (10, 10), (20,

20), and (30, 30). The mean values of two unknown (Gaussian)

classes in the streaming set are (40, 40) and (50, 50). The

covariance matrix in both the initialization and streaming sets

are [4, 0; 0, 4]. In the second dataset, the mean values of three

classes in the initialization set are (10, 10), (20, 20), and (30,

30). The mean values of two unknown classes in the streaming

set are (40, 40) and (50, 50). The covariance matrix in both the

initialization and the streaming set is [15, 0; 0, 15]. In the third

dataset, the mean values of three initialization classes are (10,

20), (20, 30), and (30, 20), whereas the mean values of two

unknown classes in the streaming set are (20, 10) and (20, 20).

The covariance matrix in both the initialization and the

streaming set is [5, 0; 0, 5]. The fourth dataset provides a non-

Gaussian example with two “circular” initialization sets with

“centers” at (10, 20), and (20, 15). The radius of the circles is

around 10. The mean value of a new unknown (Gaussian) class

in the streaming set is (40, 30) with a covariance matrix [10, 0;

0, 10]. All four synthetic datasets are two dimensional and the

scatter plot of the four datasets is shown in Fig. 2. The top four

scatter plots, (a) – (d), represent the initialization sets and the

bottom four plots, (e) – (h), show the temporal sequence of the

stream after initialization. The arrows in streaming sets show

how the streaming data evolves over time.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig. 2. The scatter plot of four synthetic datasets (class initialization data: figures (a) – (d) and streaming sets: figures (e) - (h))

V. EXPERIMENTS

In this section, we run four experiments to test the

StreamSoNG algorithm. The first experiment compares

different neuron (prototype) update mechanisms on the four

synthetic datasets. The second experiment studies the effect of

permuting the presentation order of streaming data on the

algorithm. The third experiment visualizes how the maximum

typicality value of a specific data sample changes as the model

updates with streaming data. The last experiment tests

StreamSoNG algorithm on a real-world texture image dataset.

We use the precision score to evaluate the models. The

precision score compares the prediction with the ground truth,

and is defined as

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝐴, 𝐵) =
∑ (𝐴𝑖 = 𝐵𝑖)𝑁

𝑖=1

𝑁
(12)

where A is streaming prediction set, B is streaming ground truth

set, and N is the samples number of the streaming set. The

precision score is computed on the whole streaming set. Note

that this measure is computed after hardening the possibilistic

labels assigned to each streaming input vector. This makes our

soft streaming classifier comparable to other crisp models.

A. Parameter setting

There are some user-specified choices in Table II that need

to be made for implementation of StreamSoNG. We used the

number of neurons in each class 𝑛 = 10, typicality threshold

𝑡 = 0.1, minimum number of points to form a new class 𝑀 =
30 , epsilon 𝜀 = 0.01 , fuzzifier 𝑚 = 1.5 , learning rate α =
0.1 (in Equation (12)), neighborhood range lambda 𝜆 = 2 (in

Equation (12)). We do not have room in this paper to perform

experiments that establish constraints, rules of thumb, and

recommendations in this paper, but we will make this a priority

for a follow up study of the StreamSoNG algorithm.

B. Experiment 1: Comparison of different neuron update

mechanisms

Three neuron updating mechanisms can be used in data

stream processing. The first one is to save all data samples and

rerun the NG algorithm on the updated data samples to get new

data representations (neurons). The second method is to update

only the K nearest neurons using Equation (12). The last method

is to rerun the NG algorithm on the prototypes and the new

streaming data sample, using it, in effect, as a potential

prototype. Fig. 3 shows the precision scores of the three neuron

updating mechanisms on the four synthetic datasets. The red

dotted line is the first update mechanism that saves all data

samples and reruns the NG algorithm on the entire updated

samples. The blue line is the second update mechanism that

updates the K nearest neurons. The black dotted line is the third

update mechanism that reruns the NG algorithm on the neurons

and the new streaming data sample.

As we see in Fig. 3, the first method has the highest precision

score but it requires more computation and data storage because

it saves all data samples in both initialization and streaming

sets. This method represents an upper bound but goes against

the spirit of streaming data processing. The second method that

updates the K nearest neurons performs well compared to the

first approach and clearly outperforms the third method that

reruns the NG algorithm on the neurons and new streaming data

sample. The third neuron updating mechanism can easily forget

the learned representations. Therefore, updating K nearest

prototypes with streaming data is an accurate and efficient

method to incrementally adjust the prototypes in a class.

(a)

(b)

(c)

(d)

Fig. 3. Precision score on the four datasets with different neuron updating

mechanisms

Furthermore, the StreamSoNG algorithm can not only

produce a class label for a data sample, but also a typicality

matrix that measures how well a data sample belongs to a

specific class. If the typicality value of a streaming data sample

is high, the algorithm is more confident about its prediction. In

this experiment, we compute the precision scores for the

predictions only where typicality values are higher than 0.2.

(a)

(b)

(c)

(d)

Fig. 4. Precision scores of high typicality samples on the four datasets with

different values of K in the PKNN

As we see in Fig. 4, the precision scores for typicality values

higher than 0.2 are higher than the precision score for all

streaming data samples. That is, the StreamSoNG algorithm has

a higher precision score for its confident predictions.

In this experiment, we also run the K-Nearest Neighbor

(KNN) algorithm [40], Adaptive Random Forest (ARF)

classifier [41], Very Fast Decision Rules (VFDR) classifier

[42], and DenStream algorithm [15] on the same synthetic

datasets. The results are listed in Table III.

Table III. Precision scores of existing methods and StreamSoNG

 Dataset 1 Dataset 2 Dataset 3 Dataset 4

KNN(K=3) [40] 0.271 0.259 0.271 0.331

ARF [41] 0.182 0.117 0.095 0.167

VFDR [42] 0.273 0.266 0.273 0.327

DenStream [15] 1 0.073 0.627 0.82

StreamSoNG(K=3) 0.979 0.862 0.924 0.94

As we can see in Table III, the KNN, ARF, and VFDR

schemes have low overall precision scores because they cannot

detect the new classes in data streams but only deal with the

concept drift problem. The lack of new classes in evaluation

causes their low scores. DenStream has a perfect score on the

well separated dataset (dataset 1) but has a poor score on the

overlapping cluster dataset (dataset 2) because it merges close

structures. The StreamSoNG algorithm has the highest overall

precision score because it can not only detect new classes but

also works well on the overlapping cluster dataset.

C. Experiment 2: the effect of permuting the streaming data

Suppose that the streaming data does not follow the specific

pattern of arrival as we assumed in experiment 1. Here, we

shuffle the order of streaming set and re-run the StreamSoNG

algorithm on the shuffled streaming set. The precision scores

using the k nearest neurons update mechanism on four synthetic

datasets are shown in Fig. 5 as a function of k.

(a)

(b)

(c)

(d)

Fig. 5. Precision score on the four shuffled datasets with different values of k

in the PKNN

As we see in Fig. 5, the precision scores on datasets 1 and 4

stay very close to the precision scores on the unshuffled

streaming set because the classes in datasets 1 and 4 are well

separated. The precision scores on datasets 2 and 3 decrease on

the shuffled streaming sets compared to the precision scores on

the unshuffled streaming set. This is because the two clusters in

streaming set are very close to each other and it is hard to

distinguish them at the beginning with randomly presented

vectors. In addition, we compute the precision scores for the

streaming samples with typicality values higher than 0.2. As

before, the precision scores with confident predictions are

higher than the precision score for all streaming data samples.

D. Experiment 3: Visualization of typicality value changes in

streaming data

In this experiment, we track the typicalities of several data

samples and see how they change as the model updates with

streaming data. It is as if these points are presented repeatedly,

after each real sample of the data stream. They are not used to

update the class footprints, but only to monitor changes in

maximal typicality throughout the process.

Fig. 6 shows how the streaming data in dataset 1 and the

maximum typicality value of four points evolve over time. Fig.

6 (a), (c), (e) plot the streaming data at time 𝑡1 , 𝑡2 , 𝑡3 and 4

diamond symbols (in green, red, cyan, magenta color) in the

data plots are studied. Fig. 6 (b), (d), (f) plots the maximum

typicality value of the four points in different colors at the

different time (the colors in one row matches).

(a) time 𝑡1

(b) time 𝑡1

(c) time 𝑡2

(d) time 𝑡2

(e) time 𝑡3

(f) time 𝑡3

Fig. 6. (a), (c), (e) Streaming data plots at time 𝑡1, 𝑡2, 𝑡3, and (b), (d), (e) the

maximum typicality plots of four points (in green, red, cyan, magenta color) at

time 𝑡1, 𝑡2, 𝑡3

In Fig. 6 (a) and (b), the streaming data just started at time 𝑡1

and the cyan and magenta color points have low maximum

typicality value because there are no prototypes close to them.

In Fig. 6 (c) and (d), the streaming data formed a new class

around the cyan color point at time 𝑡2. StreamSoNG detected

this new class and generated new prototypes for this new class

so that the maximum typicality of the cyan color point increased

at time 𝑡2 . In Fig. 6 (e) and (f), the streaming data formed

another new class around the magenta color point at time 𝑡3.

Similarly, StreamSoNG detected this new class as well and

generated new prototypes for this class so that the maximum

typicality of the magenta color point increased at time 𝑡3. A

similar analysis on the dataset 2-4 is included in the

supplemental material.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig. 7. Plot of maximum typicality for four locations (colored dots) over time on the four synthetic datasets.

Fig. 7 shows the final maximum typicality plot of the four

points in the four datasets. In Fig. 7 (a) – (d), 4 diamond

symbols (in green, red, cyan, magenta color) in each dataset are

studied. Their maximum typicality value plots with respect to

time are shown in Fig. 7 (e) – (h).

As we see in Fig. 7, the green diamond symbol always has a

high maximum typicality value as the model updates with

streaming data because it is always in the middle of a class. The

red diamond symbol has a low typicality all the time because it

is always in the sparse area. The cyan diamond symbol and the

magenta diamond symbol are two interesting cases. Their

typicality values are low at the beginning, then become high as

more streaming data form a new cluster around their regions

and the algorithm creates a new class around them.

E. Experiment 4: Test on a real-world texture image dataset

In this experiment, we run the StreamSoNG algorithm on the

UMD texture dataset [43]. We use 400 images for initialization

that includes pebbles and bricks images. We use another 600

images as the streaming set that includes pebbles, bricks and

plaid types of images. The plaid type image is new in the

streaming set that is not included in the initialization set. Three

examples of each type of image are shown in Fig. 8. This is a

surrogate test for the intended use of determining typicalities of

seafloor textures displayed in SAS imagery.

(a)

(b)

(c)

Fig. 8. Three examples of each type of images: (a) Pebbles (b) Bricks (c) Plaid

First, we generate a texture feature vector from a deep pre-

trained Convolutional Neural Network, Resnet18 [44] with

classification layers removed to extract 512 features from these

images. Then we train an autoencoder model with three hidden

layers on the 512 features of the initialization set. The Resnet18

pre-trained model and encoder in the autoencoder are used

together to process the streaming images to get 16 features.

Then we run the StreamSoNG algorithm on the extracted 16

features. StreamSoNG achieves 81.3% precision on the entire

streaming set and 95.7% precision on the streaming samples

that have maximum typicality value higher than 0.2.

StreamSoNG detects the plaid class in the streaming set and

produces a new class label for the plaid type of image. Fig. 9

shows three examples of typicality changes in each class.

(a)

(b)

(c)

Fig. 9. Typicality value plot for (a) a streaming sample from the pebbles class,

(b) a streaming sample from the bricks class, (c) a streaming sample from the

new plaid class

The first two samples in the pebbles and bricks class

consistently have high typicality values as streaming data is

fitted into the model. The typicality value of the third example

from the new plaid class has low typicality value at the

beginning and high typicality value when a new plaid class is

created in the model.

One application of our StreamSoNG model is to detect the

environment using drones. Fig. 10 mimics a scenario that a

drone flies from a brick region to a pebble region. In Fig. 10 (a),

the drone is completely in the brick region. It gradually flies

over to the pebble region as Fig. 10 (b) - (j) show. In the end,

the drone is completely in the pebble region as Fig. 10 (k)

shows.

(a) transition=0.0

(b) transition=0.1

(c) transition=0.2

(d) transition=0.3

(e) transition=0.4

(f) transition=0.5

(g) transition=0.6

(h) transition=0.7

(i) transition=0.8

(j) transition=0.9

(k) transition=1.0

Fig. 10. A sequence of transition images from the brick region (class 2) to the pebble region (class 1)

We keep track of the typicalities of the sequence of transition

images in Fig. 10 while running the StreamSoNG model. The

typicalities of the images to the pebble class (class 1) and the

brick class (class 2) are shown in Fig. 11.

Fig. 11. Typicalities of the sequence of transition images to the pebble class

(class 1) and the brick class (class 2)

As the environment shifts from the brick region (class 2) to

the pebble region (class 1), the typicality value to class 1 is

increasing and the typicality value to class 2 is decreasing. Our

StreamSoNG reflects the environment transition fact in the

typicality plot successfully.

VI. CONCLUSION

In this paper, we proposed a soft streaming classification

algorithm. This is particularly useful for situations where the

streaming data classes are overlapped, for example classifying

land cover from drone imagery where individual images may

contain more than one class and where classes blend from one

to another. Each class, both during initialization and in the new

structure discovery module, is summarized via a set of Neural

Gas prototypes that are then used in a possibilistic K-nearest

neighbor algorithm to assign typicalities to each incoming

point. Class footprints (the NG prototypes) are incrementally

updated. StreamSoNG’s performance is excellent on both

synthetic and real datasets both from a precision standpoint

after hardening the possibilistic labels, and from the standpoint

of the actual possibilistic labels assigned to the incoming

streaming data. There are several avenues for investigation

within the actual structure of StreamSoNG including choices of

parameters, scaling of typicalities, assigning and updating fuzzy

class memberships of prototypes, and varying the number of

prototypes per class, using for example Growing Neural Gas.

We intend to couple this steaming classification approach to the

problem of environmentally aware classifier fusion. For

example, the typicalities can be used to build a fuzzy measure

that drives a Choquet integral fusion of a series of deep nets

trained on specific environments. A parallel problem that we

will investigate is how to generate a new classifier when a novel

environment is discovered.

REFERENCES

[1] J. C. Bezdek and J. M. Keller, “Streaming Data Analysis: Clustering or
Classification?,” IEEE Trans. Syst. Man, Cybern. Syst., 51(1), 91-102,

2021.

[2] C. C. Aggarwal, Data streams: models and algorithms, vol. 31. Springer

Science & Business Media, 2007.

[3] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, “On demand classification

of data streams,” in Proceedings of the tenth ACM SIGKDD international
conference on Knowledge discovery and data mining, 2004, pp. 503–508.

[4] P. Domingos and G. Hulten, “Mining high-speed data streams,” in

Proceedings of the sixth ACM SIGKDD international conference on
Knowledge discovery and data mining, 2000, pp. 71–80.

[5] F. Ferrer-Troyano, J. S. Aguilar-Ruiz, and J. C. Riquelme, “Discovering

decision rules from numerical data streams,” in Proceedings of the 2004
ACM symposium on Applied computing, 2004, pp. 649–653.

[6] G. Hulten, L. Spencer, and P. Domingos, “Mining time-changing data

streams,” in Proceedings of the seventh ACM SIGKDD international
conference on Knowledge discovery and data mining, 2001, pp. 97–106.

[7] Y.-N. Law and C. Zaniolo, “An adaptive nearest neighbor classification
algorithm for data streams,” in European Conference on Principles of

Data Mining and Knowledge Discovery, 2005, pp. 108–120.

[8] M. Carnein and H. Trautmann, “Optimizing data stream representation:
An extensive survey on stream clustering algorithms,” Bus. Inf. Syst. Eng.,

vol. 61, no. 3, pp. 277–297, 2019.

[9] J. A. Silva, E. R. Faria, R. C. Barros, E. R. Hruschka, A. C. de Carvalho,
and J. Gama, “Data stream clustering: A survey,” ACM Comput. Surv.,

vol. 46, no. 1, pp. 1–31, 2013.

[10] O. A. Ibrahim, J. Shao, J. M. Keller, and M. Popescu, “A temporal
analysis system for early detection of health changes,” in 2016 IEEE

International Conference on Fuzzy Systems (FUZZ-IEEE), 2016, pp. 186–

193.
[11] O. A. Ibrahim, Y. Du, and J. Keller, “Robust on-line streaming

clustering,” in International Conference on Information Processing and

Management of Uncertainty in Knowledge-Based Systems, 2018, pp. 467–
478.

[12] W. Wu, J. M. Keller, M. Skubic, and M. Popescu, “Data Stream

Trajectory Analysis Using Sequential Possibilistic Gaussian Mixture
Model,” in 2019 IEEE International Conference on Fuzzy Systems

(FUZZ-IEEE), 2019, pp. 1–7.

[13] M. Moshtaghi, C. Leckie, and J. C. Bezdek, “Online clustering of
multivariate time-series,” in Proceedings of the 2016 SIAM international

conference on data mining, 2016, pp. 360–368.

[14] N. Mozafari, S. Hashemi, and A. Hamzeh, “A statistical approach for
clustering in streaming data.,” Artif. Intell. Res., vol. 3, no. 1, pp. 38–45,

2014.

[15] F. Cao, M. Estert, W. Qian, and A. Zhou, “Density-based clustering over
an evolving data stream with noise,” in Proceedings of the 2006 SIAM

international conference on data mining, 2006, pp. 328–339.

[16] C. C. Aggarwal, S. Y. Philip, J. Han, and J. Wang, “A framework for
clustering evolving data streams,” in Proceedings 2003 VLDB

conference, 2003, pp. 81–92.

[17] S. Guha, N. Mishra, R. Motwani, and L. o’Callaghan, “Clustering data
streams,” in Proceedings 41st Annual Symposium on Foundations of

Computer Science, 2000, pp. 359–366.

[18] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: an efficient data
clustering method for very large databases,” ACM sigmod Rec., vol. 25,

no. 2, pp. 103–114, 1996.

[19] M. R. Ackermann, M. Märtens, C. Raupach, K. Swierkot, C. Lammersen,
and C. Sohler, “StreamKM++ A clustering algorithm for data streams,” J.

Exp. Algorithmics, vol. 17, pp. 1–2, 2012.

[20] S. Blažič and I. Škrjanc, “Incremental Fuzzy C-Regression Clustering

From Streaming Data for Local-Model-Network Identification,” IEEE

Trans. Fuzzy Syst., vol. 28, no. 4, pp. 758–767, 2019.

[21] P. P. Angelov and X. Zhou, “Evolving fuzzy-rule-based classifiers from
data streams,” Ieee Trans. fuzzy Syst., vol. 16, no. 6, pp. 1462–1475, 2008.

[22] I. Škrjanc, J. A. Iglesias, A. Sanchis, D. Leite, E. Lughofer, and F.
Gomide, “Evolving fuzzy and neuro-fuzzy approaches in clustering,

regression, identification, and classification: a survey,” Inf. Sci. (Ny)., vol.

490, pp. 344–368, 2019.
[23] E. Lughofer, “Flexible evolving fuzzy inference systems from data

streams (FLEXFIS++),” in Learning in Non-Stationary Environments,

Springer, 2012, pp. 205–245.
[24] D. Dovžan, V. Logar, and I. Škrjanc, “Implementation of an evolving

fuzzy model (eFuMo) in a monitoring system for a waste-water treatment

process,” IEEE Trans. Fuzzy Syst., vol. 23, no. 5, pp. 1761–1776, 2014.
[25] C. G. Bezerra, B. S. J. Costa, L. A. Guedes, and P. P. Angelov, “A new

evolving clustering algorithm for online data streams,” in 2016 IEEE

Conference on Evolving and Adaptive Intelligent Systems (EAIS), 2016,
pp. 162–168.

[26] I. Škrjanc and D. Dovžan, “Evolving gustafson-kessel possibilistic c-

means clustering,” Procedia Comput. Sci., vol. 53, pp. 191–198, 2015.
[27] G. Andonovski, P. Angelov, S. Blažič, and I. Škrjanc, “A practical

implementation of Robust Evolving Cloud-based Controller with

normalized data space for heat-exchanger plant,” Appl. Soft Comput., vol.
48, pp. 29–38, 2016.

[28] W. J. Scheirer, A. de Rezende Rocha, A. Sapkota, and T. E. Boult,
“Toward open set recognition,” IEEE Trans. Pattern Anal. Mach. Intell.,

vol. 35, no. 7, pp. 1757–1772, 2012.

[29] A. Bendale and T. Boult, “Towards open world recognition,” in
Proceedings of the IEEE conference on computer vision and pattern

recognition, 2015, pp. 1893–1902.

[30] A. Bendale and T. E. Boult, “Towards open set deep networks,” in
Proceedings of the IEEE conference on computer vision and pattern

recognition, 2016, pp. 1563–1572.

[31] W. Wu, J. M. Keller, and T. A. Runkler, “Sequential possibilistic one-
means clustering with dynamic eta,” in 2018 IEEE International

Conference on Fuzzy Systems (FUZZ-IEEE), 2018, pp. 1–8.

[32] A. Galusha, J. Dale, J. M. Keller, and A. Zare, “Deep convolutional neural
network target classification for underwater synthetic aperture sonar

imagery,” in Detection and Sensing of Mines, Explosive Objects, and

Obscured Targets XXIV, 2019, vol. 11012, p. 1101205.
[33] T. Martinetz and K. Schulten, “A" neural-gas" network learns

topologies,” 1991.

[34] H. Frigui and P. Gader, “Detection and discrimination of land mines in
ground-penetrating radar based on edge histogram descriptors and a

possibilistic $ k $-nearest neighbor classifier,” IEEE Trans. Fuzzy Syst.,

vol. 17, no. 1, pp. 185–199, 2008.

[35] T. Kohonen, “The self-organizing map,” Proc. IEEE, vol. 78, no. 9, pp.

1464–1480, 1990.

[36] J. M. Keller, M. R. Gray, and J. A. Givens, “A fuzzy k-nearest neighbor
algorithm,” IEEE Trans. Syst. Man. Cybern., no. 4, pp. 580–585, 1985.

[37] T. A. Runkler and J. M. Keller, “Sequential possibilistic one-means
clustering,” in 2017 IEEE International Conference on Fuzzy Systems

(FUZZ-IEEE), 2017, pp. 1–6.

[38] T. Runkler and J. Keller, “Sequential Possibilistic One–Means Clustering
With Variable Eta,” in Proceedings, 27th Workshop on Computational

Intelligence, 2017, pp. 103–116.

[39] R. Krishnapuram and J. M. Keller, “A possibilistic approach to
clustering,” IEEE Trans. fuzzy Syst., vol. 1, no. 2, pp. 98–110, 1993.

[40] N. S. Altman, “An introduction to kernel and nearest-neighbor

nonparametric regression,” Am. Stat., vol. 46, no. 3, pp. 175–185, 1992.
[41] H. M. Gomes et al., “Adaptive random forests for evolving data stream

classification,” Mach. Learn., vol. 106, no. 9, pp. 1469–1495, 2017.

[42] P. Kosina and J. Gama, “Very fast decision rules for classification in data
streams,” Data Min. Knowl. Discov., vol. 29, no. 1, pp. 168–202, 2015.

[43] Y. Xu, H. Ji, and C. Fermüller, “Viewpoint invariant texture description

using fractal analysis,” Int. J. Comput. Vis., vol. 83, no. 1, pp. 85–100,
2009.

[44] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

