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Understand me, if you refer to Aspect Knowledge:
Knowledge-aware Gated Recurrent Memory
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Bowen Xing and Ivor W. Tsang, Fellow, IEEE

Abstract—Aspect-level sentiment classification (ASC) aims to
predict the fine-grained sentiment polarity towards a given
aspect mentioned in a review. Despite recent advances in ASC,
enabling machines to preciously infer aspect sentiments is still
challenging. This paper tackles two challenges in ASC: (1) due
to lack of aspect knowledge, aspect representation derived in
prior works is inadequate to represent aspect’s exact meaning
and property information; (2) prior works only capture either
local syntactic information or global relational information,
thus missing either one of them leads to insufficient syntactic
information. To tackle these challenges, we propose a novel ASC
model which not only end-to-end embeds and leverages aspect
knowledge but also marries the two kinds of syntactic information
and lets them compensate for each other. Our model includes
four key components: (1) a knowledge-aware gated recurrent
memory network recurrently integrates dynamically summarized
aspect knowledge; (2) a dual syntax graph network combines
both kinds of syntactic information to comprehensively capture
sufficient syntactic information; (3) a knowledge integrating
gate re-enhances the final representation with further needed
aspect knowledge; (4) an aspect-to-context attention mechanism
aggregates the aspect-related semantics from all hidden states
into the final representation. Experimental results on several
benchmark datasets demonstrate the effectiveness of our model,
which overpass previous state-of-the-art models by large margins
in terms of both Accuracy and Macro-F1. To facilitate further
research in the community, we have released our source code at
https://github.com/XingBowen714/KaGRMN-DSG ABSA.

Index Terms—Sentiment Analysis, Entity Knowledge, Aspect
Level, Memory Network.

I. INTRODUCTION

ASpect-level sentiment classification (ASC) [1] is a fine-
grained task of sentiment classification or emotion recog-

nition [2]–[5]. ASC aims to infer the fine-grained sentiment
of a given aspect mentioned in a review. Generally, an aspect
is a noun phrase included in a review sentence. For example,
in a review “It took so long to get the check, while the
dinner is great.”, there are two aspects (check and dinner)
of opposite sentiments. ASC has received increasing attention
and interest from both academia and the industry due to its

Bowen Xing is with Australian Artificial Intelligence Institute (AAII),
University of Technology Sydney. Ivor W. Tsang is with the A∗STAR
Centre for Frontier AI Research (CFAR), and also with Australian Ar-
tificial Intelligence Institute (AAII), University of Technology Sydney.
E-mail: Bowen.Xing@student.uts.edu.au, ivor tsang@ihpc.a-star.edu.sg

© 2022 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

wide applications in real-life scenarios such as dialog systems
[6], online reviews [7] and social networks [8].

Prior works have noticed the importance of aspect-context
interaction. Different kinds of attention mechanisms [9]–[11]
are proposed to extract aspect-relevant semantics from the
hidden states of context words. And more recently, syntactic
information is widely leveraged to facilitate the interactions
between the aspect and its related words that are distant in
context sequence. Graph Convolutional Networks (GCN) [12],
[13] and Graph Attention Networks (GAT) [14], [15] are
adopted to encode the syntax graphs predicted by off-the-shelf
dependency parsers. [12], [16] employed GCNs to capture the
local syntactic information. [15] proposed relational multi-head
attention (Relational MHA) to capture the global relational
information between aspect and each context word.

However, little attention has been spent on aspect representa-
tion and its conveyed semantics. Aspect representation and its
semantics not only guide the aspect-context interaction but also
provide important clues for ASC. Despite its importance, in
previous works [12], [15], [17], aspect representation is simply
derived by pooling the hidden states of aspect words. In Sec.
IV-H we empirically study the aspect representation generated
by BERT [18], and two cases are shown in Table VIII. We can
find that BERT cannot capture the exact meanings and property
information of Mountain Lion OS and iTune, although it is one
of the strongest language models. Merely relying on pre-trained
large language models cannot obtain sufficiently effective and
informative aspect representation, making it hard for machines
to address ASC. In contrast, humans can easily handle ASC
and we conjecture the key to master this task is to leverage
the adequate aspect knowledge they often refer to as the clue.
Thinking of and leveraging the aspect knowledge are instinctive
reactions of humans when they read an aspect in a review. For
example, there is a review “Just a not bad restaurant, because
the cheese and chips are both very soft.” With the knowledge of
‘cheese’ and ‘chips’, humans are aware that the former should
be soft and the latter should be click (not soft). Hence it is
easy for humans to infer the positive sentiment of ‘cheese’ and
the negative sentiment of ‘chips’. However, in contrast, in ASC
models there is no such mechanism, and aspect knowledge has
not been explored or leveraged. Inheriting this deficiency, the
aspect representation and semantics derived by prior models
may lose important aspect information, which hinders aspect
sentiment reasoning and make ASC challenging for machines.

On the other hand, both GCN and Relational MHA are useful
for modeling distinct syntax graphs, but they have respective
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shortages: GCN is hard to capture the global relations between
aspect and its non-adjacent context words on the syntax graph;
Relational MHA fails to capture the local syntactic information
among context words because they are isolated from each
other on the star-shaped aspect-oriented syntax graph. However,
prior works only consider one of them, resulting in insufficient
syntactic information.

To tackle the aforementioned two challenges, we suggest
that (1) aspect knowledge should be explicitly leveraged in
ASC models; (2) both kinds of syntactic information should
be combined to capture sufficient syntactic information. We
observe that there is plenty of entity descriptions in popular
and easily accessible knowledge bases, such as DBpedia1

and Wikipedia2. From their statistics, there are about 6.6
Million and 50 Million entities in current DBpedia and
Wikipedia datasets. These descriptions can sufficiently represent
the entities’ meanings and conveying a wealth of entities’
knowledge. In ASC, aspects are always entities, making it
more convenient to retrieve their descriptions.

In this work, we propose a Knowledge-aware Gated
Recurrent Memory Network with Dual Syntax Graph Modeling
(KaGRMN-DSG) model as our solution to the two challenges.
Specifically, its novelty lies in three core modules. The first one
is Knowledge-aware Gated Recurrent Memory Network (KaGR-
MN) which recurrently integrates the aspect knowledge into
aspect representation and then context memories. An aspect-to-
description attention mechanism is devised to dynamically
summarize the needed aspect knowledge from the aspect
description regarding the current semantic state. An adaptive
knowledge integrating gate is designed to adaptively integrate
the summarized knowledge into aspect representation. Then
a self multi-head attention is employed to contextualize the
integrated knowledge and update the context memory bank. The
second one is Dual Syntax Graph Network (DSG-Net), which
marries the proposed Position-aware GCN and Relational MHA,
then learns the dual syntactic interaction to comprehensively
capture sufficient syntactic information. The third one is the
knowledge integrating gate (KI Gate) which re-enhances the
final representation with further needed knowledge.

We highlight our contributions as follows:
(1) Based on plenty of informative entity descriptions from
easily accessible knowledge bases, we end-to-end embed and
leverage the aspect knowledge to address ASC.
(2) We propose a novel KaGR-MN, which combines the
advantages of LSTM, Transformer, and Memory Networks. It
recurrently embeds and integrates beneficial aspect knowledge
into aspect representation and all context memories.
(3) We propose a dual syntax graph network, in which the
local syntactic information and global relational information
are combined to comprehensively capture sufficient syntactic
information.
(4) We conduct extensive experiments on three benchmark
datasets. Results show that our model achieves new state-
of-the-art performances, significantly outperforming previous
best results. Ablation study and further analysis validate the

1https://wiki.dbpedia.org/
2https://www.wikipedia.org/

effectiveness of our model.

II. RELATED WORKS

In early studies [19], [20], sentiment classifiers were built
by traditional machine learning algorithms which demanded
labor-intensive feature engineering. Most recently proposed
ASC models are based on neural networks which can auto-
matically learn representations. Conventionally, neural ASC
model contains an aspect encoder, a context encoder and an
aspect-to-context attention mechanism [9]–[11], [17], [21].

Different kinds of networks are adopted as the encoder. As
for LSTM, [22] employed two separated LSTMs to encode the
aspect-left and -right word sequences and then combined the
two last hidden sates for classification;

[23] proposed to leverage external document sentiment
analysis corpus in a multi-task framework to enhance the
context modeling of LSTM. Besides, convolutional neural
networks (CNN) and Memory Networks (MNs) are also
exploited as encoders. [24] introduced parameterized filters and
parameterized gates into CNN to integrate aspect information
for context encoding. [25] designed a gated CNN layer to
extract the aspect-specific features from the context hidden
states. Based on standard MNs, [26] proposed the target-
sensitive memory networks to focus on the impact of aspect
semantics on the classification.

The attention mechanism is utilized to extract aspect-related
sentiment features via assigning a weight to each context word
regarding its relevance to the aspect. [9] proposed an aspect-to-
context attention and a context-to-aspect attention to study the
interactions between the aspect and context. [11] proposed an
algorithm to automatically mine useful supervised information
for the attention mechanism through the training process.

However, attention mechanisms may hardly capture the
important words which is far from the aspect in the input
context. As the development of graph neural networks [27]–
[30], recent works utilize graph convolution network (GCN)
[12], [13], [16], [28] and graph attention network (GAT)
[15], [27], [31] to model the syntax graph for shortening the
distance between the aspect and its sentiment trigger words
and leveraging the syntactical information. [12] employed
LSTM as encoder and exploit GCN to capture local syntactic
information via encoding the syntax graph produced by off-
the-shelf dependency parsers. [15] proposed Relational MHA,
which can capture the global dependency between the aspect
and each context word via operating on the star-shaped aspect-
oriented syntax graph.

To enhance the context modeling, [23] and [32] trained their
models on both document-level sentiment classification and
ASC tasks in the multi-task framework with a shared encoder.
[33] proposed an aspect-aware LSTM which introduces aspect
information into LSTM cells to generate better context hidden
states in which more aspect-related information is retained
and aspect-irrelevant information is discarded. As BERT has
proven its power of language modeling on hetergenuous NLP
tasks, more recently proposed work [13], [15] adopted BERT
as the context encoder to obtain high-quality hidden states.

However, prior models neglect to leverage aspect knowledge,
resulting in inadequate aspect semantics. And the syntactic
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Fig. 1. The architecture of KaGRMN-DSG. The internal architecture of KaGR-MN cell is shown in Fig.2

information they captured is insufficient. In this paper, we
propose KaGRMN-DSG to solve these two challenges. There
are two main differences from our model and previous works.
The first one is leveraging aspect knowledge, which is achieved
by a novel KaGR-MN. The other one is combining both of
local syntactic information and global relational information,
which is achieved by a DSG-Net.

III. KAGRMN-DSG
Overview The architecture of our KaGRMN-DSG model
is illustrated in Fig. 1. To extract the beneficial clues for
aspects, knowledge-aware gated recurrent memory network
and knowledge integration gate incorporate summarized aspect
knowledge to enrich aspect representation and all context
memories. To capture sufficient syntactic information, dual
syntax graph network combines local syntactic information
and global relational information, then learns their mutual
interaction. To comprehensively abstract high-level clues,
aspect-to-context attention mechanism aggregates aspect-related
semantics from all hidden states into the final representation.
And we believe that these modules can effective cooperate to
further improve aspect sentiment reasoning.
Description Retrieval We use aspect (A) to query DBpedia
first and then Wikipedia to get its description (D). If multiple
descriptions are returned (polysemy), the one with the highest
semantic similarity to context (C) is selected as D. The
semantic similarity of a description candidate and review
context is calculated as:

avg(C) =
1

NC

NC∑
i=1

e(ci) (1)

avg(D′) =
1

ND

ND∑
i=1

e(di) (2)

sim(C,D′) = cos
(
α ∗ avg(C) + (1− α) ∗ e(dl), avg(D′)

)
(3)

where NC and N ′D denotes the number of words in the
context and description candidate respectively, e(w) denotes

the word embedding3 of word w, dl denotes domain label
(e.g. the dl of Lap14 dataset is ‘laptop’). Here we intuitively
set α as 0.5 because both of the context semantics avg(C)
and domain information e(dl) are important in selecting the
correct description candidate. The reason why we use domain
label here is that sometimes there may be not enough words
conveying domain-specific semantics for distinguishing the
needed description. Besides, the retrieval is enhanced with
some rules, such as soft matching with lemmatization and stop
word filtering. Finally, about 70% aspects in the datasets can
be equipped with retrieved descriptions.

A. Memory Bank Construction

In this work, we adopt BERT to encode the description and
context to produce their hidden states. For description (D),
the formal input is 〈[CLS];D;[SEP]〉, where 〈; 〉 denotes
concatenation operation. The description is encoded in the
single-sentence manner then a series of its hidden states is
generated: HD = {hid ∈ Rde}ND

i=1, which is taken as the
description memory bank MD.

As for context (C), we model the context-aspect pair in the
sentence-pair manner to generate aspect-aware hidden states
[33]. The formal input is 〈[CLS]; C; [SEP]; A; [SEP]〉.
In this way, we obtain the hidden state of [CLS]: hcls and
a series of aspect-aware context hidden states: HC = {hic ∈
Rde}NC

i=1. As BERT has a strong capability of sentence-pair
modeling, hcls contains not only the information from both of
the aspect and the context but also their dependencies. Thus
we take hcls as the initial contextualized aspect representation
r0a. Then we use r0a to replace the hidden states of aspect
words (HA = {hia ∈ Rde}NA

i=1) in HC, obtaining the initial
context memory bank M0

C = [h1c , h
2
c , ..., r

0
a, ..., h

N
c ], where

N = NC −NA + 1.
MD and M0

C are two strands of input of KaGR-MN cell.
Along time steps, MC is recurrently updated while MD

remains identical.

3We use Glove word embedding [34].



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

B. Knowledge-aware Gated Recurrent Memory Network

As the series of context hidden states and description
hidden states have been obtained, now the challenge is how to
incorporate as much beneficial aspect knowledge as possible
without losing the original semantics obtained from BERT?.

The first thing is to conserve the original semantics in the
context memories obtained from BERT. To this end, we employ
Memory Networks (MNs) as the backbone to store context
memories, because that MNs can accurately remember original
facts [35]. Secondly, we are supposed to make the integrated
knowledge beneficial. In other words, we should provide each
sample the aspect knowledge it needs. Hence we propose
an aspect-to-description attention (A2D Att) mechanism to
summarize the needed aspect knowledge from the description
memory bank. Thirdly, we should integrate the beneficial aspect
knowledge into the aspect representation. Then we propose an
adaptive knowledge integration gate, which borrows the idea
of gating mechanisms in LSTM [36]. Gate mechanism has
proven its strong ability of information integration in many
tasks [33], [37]. However, only integrate knowledge into aspect
representation is insufficient, not exploring the full value of
aspect knowledge. It is intuitive that the aspect knowledge
should be incorporated into all context memories. Besides,
an appropriate mechanism should be devised to update the
context memory bank. To achieve these two goals, inspired
by Transformer [38], we utilize self multi-head attention to
update the context memories, and in the meanwhile, the aspect
knowledge in the aspect representation can be spread to all
context memories. Finally, all the above mechanisms form the
Knowledge-aware Gated Recurrent Memory Network (KaGR-
MN), which combines the advantages of MNs, LSTM, and
Transformer.

The architecture of KaGR-MN cell is illustrated in Fig. 2.
In the following texts, we depict the details of KaGR-MN.

1) Dynamic Knowledge Summarizing: Intuitively, on the
one hand, the context-aspect pair of each sample may demand
individual aspect knowledge, even if they have the same aspect.
On the other hand, at each time step, KaGR-MN should
integrate specifically needed aspect knowledge according to the
current cell state. Therefore, the aspect knowledge summarizing
should be dynamic. To achieve this, we design an aspect-to-
description attention (A2D Att) mechanism to dynamically
summarize the specifically needed aspect knowledge from
the description memory bank MD at each time step. The
architecture of A2D Att is shown in Fig. 2. At each time step
(t), the aspect representation of previous time step rt−1a serves
as the cell state and is used to query MD. Then an attention
weight α is assigned to each hd regarding its importance to
rt−1a :

αi =SoftMax(F(hid, rt−1a ))

=
exp(F(hid, rt−1a ))∑ND

k=1 exp(F(hkd, r
t−1
a ))

(4)

where F(hid, rt−1a )) is a score function defined as:

F(hid, rt−1a )) = (Wd h
i
d + bd) (r

t−1
a )T (5)

Self MHA

S
o
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a
x
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Fig. 2. The architecture of KaGR-MN cell.

where Wd and bd are weight matrix and bias respectively, and
T denotes transposition. Then we can obtain the summarized
knowledge representation as: rtk =

∑ND

i=1 αih
i
d.

2) Adaptive Knowledge Integration: As the specifically
needed knowledge has been summarized, it should be integrated
into the aspect representation regarding the current cell state.
As the gate mechanisms [36], [37], [39] have proven their
ability of controlling information flow, here we design an
Adaptive Knowledge Integration (AdaKI) Gate to integrate rtk
into rt−1a . Its architecture is shown in Fig. 2. AdaKI Gate can
be formulated as:

rt∗a = rt−1a + rtk � (Wk[r
t−1
a , rtk]) (6)

where � denotes Hadamard product, [, ] denotes concatenation
and Wk is weight matrix. The core of AdaKI Gate is to
produce a gate vector using rtk and rt−1a . This gate vector
achieves the fine-grained control on each dimension of rtk.

There are two merits of this fine-grained control. First, AdaKI
Gate can determine what knowledge and how much knowledge
from rtk should be integrated into rt−1a . Second, it can map
the integrated knowledge into the same semantic space of
rt−1a and Mt−1

C . This adaption helps maintain the semantics
consistency of rt∗a and Mt−1

C , which is beneficial to later
knowledge contextualizing. In Sec. IV-F, we investigate the
effect of different knowledge gates used here. After rt∗a is
obtained, it replaces rt−1a in Mt−1

C , forming Mt∗
C .

3) Knowledge Contextualizing and Context Memory Bank
Updating: Although the needed beneficial knowledge has
been integrated into rt∗a , the other context memories in Mt∗

C

remain the same as the ones in Mt−1
C . Intuitively, all context

memories should benefit from aspect knowledge to facilitate
aspect-related information aggregation. To achieve this, we
propose a knowledge contextualizing mechanism to broadcast
the newly-integrated knowledge in rt∗a to all context memories
in Mt∗

C . Here we borrow the idea of self-attention [38], [40],
which can effectively relate the different tokens in a sentence
and capture the intra-sentence dependencies.

In this work, we adopt the self multi-head attention (Self
MHA) formulation in [38]. We first map Mt∗

C to queries
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(Q), keys (K) and values (V) matrices by individual linear
projections, where Q,K,V ∈ RN×ds . And this process repeats
Hs
n times, where Hs

n is the number of heads and Hs
n×ds = de.

The scaled dot-product attention is used to produce the output
of each head, then all of the Hs

n outputs are concatenated to
form the updated context memory bank Mt

C:

Mt
C = ‖H

s
n

h=1SoftMax

(
QKT

√
ds

)
V (7)

This simple but effective knowledge contextualizing mechanism
updates Mt∗

C and rt∗a by letting context memories (including
rt∗a ) exchange useful information with each other, which is
beneficial to capture aspect-related information. Along time
steps, ra and MC would contain more and more reasonable
and beneficial semantics for ASC.

C. Dual Syntax Graph Network

As proven in prior works, GCN can capture local syntactic
information and Relational MHA can capture the global relation
between the aspect and each context word via operating on
the star-shaped aspect-oriented syntax graph (as shown in
Fig. 1). However, as we have discussed in Sec. I, they have
respective shortages. They can only capture one of the two kinds
of syntactic information and lose the other. Previous models
only employ one of them, leading to insufficient syntactical
information.

To this end, we propose DSG-Net (as shown in Fig. 1)
which marries the proposed Position-aware GCN and Relational
MHA and learns their interaction, capturing sufficient syntactic
information.

1) Local Syntactic Information Modeling: Graph Construc-
tion Based on the original syntax graph G4, we first add a new
aspect node A and merge all edges between nodes of aspect
words and non-aspect context words to A. Then we delete all
of the original nodes of aspect words and their edges. The
obtained graph is similar to G, and only several context word
nodes are connected to A. Thus we term it sparse graph Gs
(shown in Fig.1).
Position-aware GCN In this work, we augment the standard
GCN with a position weight wip = 1− |i−τ |N+1 , in which τ denotes
the position of aspect, i denotes the ith context word. As the
Self MHA in KaGR-MN does not consider the order of context
memories, some positional and ordering information may be
lost. wip can supplement this information, which helps capture
local syntactic information. Besides, it indicates the position
of A and highlights the potential aspect-related words which
are generally closer to A. In lth-layer, the local neighborhood
information is aggregated as:

hli =
∑
j∈N s

i

Ws
g(w

j
p h

l−1
j )/(di + 1) + bs

g (8)

in which N s
i is the first-order neighbors of node i (including

i) in Gs, di is the degree of node i, Ws
g and bs

g are weight
matrix and bias.

4obtained by spaCy toolkit: https://spacy.io/

2) Global Relational Information Modeling: We obtain the
star-shaped aspect-oriented syntax graph following [15]. In
this syntax graph, every context word directly connects to the
aspect node A, so we term it dense graph Gd. Then we employ
the Relational MHA to model the global relational dependency
between aspect and each context word. The node representation
is:

hi =

Hd
n∑

m=1

( ∑
j∈Nd

i

βmijW
1
mhj

)
/Hd

n

βmij = SoftMax(gmij )

gmij = ReLU
(
rijW

2
m + b1

m

)
W3

m + b2
m

(9)

where Hd
n denotes the head number, rij is the embedding

of the relation between nodes i and j, W1,2,3
m and b1,2

m are
weight matrices and biases.

3) Dual Syntactic Information Fusion: Now the Position-
aware GCN has captured the important local syntactic infor-
mation and the Relational MHA has captured the important
global relational information. To integrate them together and
let them compensate for each other, we concatenate the
aspect node representations respectively derived by Position-
aware GCN and Relational MHA, then we employ a multi-
layer perception (MLP), which can automatically abstract the
integrated representation [41], [42], to generate the unified
node representation sequence, which include the unified aspect
representation R̃a.

D. Knowledge Re-enhancement

After graph modeling, sufficient syntactic information has
been integrated into R̃a. On the one hand, some new clues
may be captured by DSG-Net and retained in R̃a. Thus R̃a

may further need more aspect knowledge to collaborate with
these new clues to support ASC. On the other hand, as the
syntax graph may be imperfectly generated by the parser, some
wrong connections and relations may be introduced. In this
case, re-integrating some knowledge can help alleviate the
influence of the imperfect syntax graph. To this end, we design
a knowledge integrating gate (KI Gate) to re-enhance R̃a with
further needed knowledge contained in rTk . The function of
KI gate is given as:

Ra = R̃a + rTk ∗Wr
k[R̃a, r

T
k ] (10)

where Wr
k is weight matrix. Here R̃a and rTk produces a

gate scalar rather than a gate vector. There is no subsequent
contextualizing module thus rTk can be directly integrated
into R̃a without fine-tuning for adaption. In Sec. IV-F, we
investigate the effect of different knowledge gates used here.

E. Aspect-related Semantics Aggregation

Here we employ an Aspect-to-Context Attention (A2C Att)
mechanism to aggregate the aspect-related semantics retained
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in all hidden states into a final representation Rf . Similar to
A2D Att, A2C Att can be formulated as:

βi =SoftMax(F(hic,Ra)) (11)

F(hic, Ra) = (Wac h
i
c + bac) (Ra)

T (12)

Rf =

N∑
i=1

αih
i
c (13)

where Wac and bac are weight and bias.

F. Sentiment Classification

We concatenate Rf with hcls and then fed the final vector
into a linear layer, which is followed by a SoftMax classifier
for prediction:

P = SoftMax(Wp[hcls,Rf ] + bp) (14)

where P is the predicted sentiment distribution, Wp and bp

are weight matrix and bias. The cross-entropy loss function is
adopted for model training.

There are two reasons why we introduce hcls here. First,
this can add a skip connection to BERT, shortening its loss
back-propagation path to facilitate training. The second is for
robustness. Possibly the syntax graphs are imperfect and the
integrated knowledge contains noise. Hence hcls serves as a
reference and makes the whole model more robust.

IV. EXPERIMENTS

A. Datasets

We conduct experiments on three popular datasets for the
ASC task: Lap14 and Res14 datasets are from SemEval 2014
task 4 [7], and Res15 dataset is from SemEval 2015 task 12
[43]. The statistics of all datasets are presented in Table I.

TABLE I
DATASET STATISTICS OF THE THREE DATASETS.

Dataset
Positive Neutral Negative

Train Test Train Test Train Test

Lap14 994 341 464 169 870 128
Res14 2164 728 637 196 807 196
Res15 912 326 36 34 256 182

B. Experiment Setup

We adopt the BERT-base uncased version [18]. We train our
model using Adam optimizer [44] with default configuration.
The hyper-parameters are listed in Table II. Accuracy (Acc)
and Macro-F1 (F1) are adopted as evaluation metrics. As there
is no official validation set, following previous works [12], [13],
[45], we run our model three times with random initialization
and report the average results on test sets, as shown in Table
III. And to compare with the works reporting best results, we
also report the best results on test sets, as shown in Table IV.
All computations are done on an NVIDIA Quadro RTX 6000
GPU.

TABLE II
SETTING OF HYPER-PARAMETERS.

Hyper-params
Dataset

Lap14 Res14 Res15

learning rate 1× 10−5 5× 10−5 3× 10−5

batch size 32 32 32
dropout rate 0.3 0.3 0.3

de 768 768 768
ds 256 256 128
Hs

n 3 3 6
Hd

n 2 4 6
T 4 4 2

GCN layer number 2 2 2

C. Compared Baselines

According to what kinds of external information are utilized,
we divide the baselines into several group:
1) No external information is used:
• IAN [9] separately encodes the aspect and context, then

model their interactions using an interactive attention
mechanism.

2) External corpus is used:
• PRET+MULT [23] first pre-trains the model on document-

level task, then trains the model on both document-level
sentiment classification and ASC in the multi-task learning
framework.

• TransCap [32] utilizes a devised aspect-based capsule
network to transfer knowledge from document-level task
to aspect-level task.

3) Syntax Graph is used:
• ASGCN [12] employs a GCN to encode the syntax graph

for capturing local syntactic information.
• BiGCN [45] convolutes over hierarchical syntactic and

lexical graphs to encode not only original syntactic
information but also the corpus level word co-occurrence
information.

4) BERT encoder is used:
• BERT-SPC [18] takes the same input as our model and

use hcls for sentiment classification.
• AEN-BERT [46] adopts BERT encoder and uses the

attentional encoder network to model the interactions
between the aspect and context.

5) Both of syntax graph and BERT encoder are used:
• R-GAT+BERT [15] use the relational graph attention

network to aggregate the global relational information
from all context word into the aspect node representation.

• DGEDT-BERT [13] employs a dual-transformer network
to model the interactions between the flat textual knowl-
edge and dependency graph empowered knowledge.

• A-KVMN+BERT [47] uses a key-value memory network
to leverage not only word-word relations but also their
dependency types.

• BERT+T-GCN [48] leverages the dependency types in
T-GCN and use an attentive layer ensemble to learn
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TABLE III
PERFORMANCES COMPARISONS OF AVERAGE RESULTS WITH RANDOM INITIALIZATION. K,B, T AND G DENOTE THE MODEL LEVERAGES ASPECT

KNOWLEDGE, BERT, EXTRA T RAINING CORPUS AND SYNTAX GRAPH, RESPECTIVELY. BEST RESULTS ARE IN BOLD AND PREVIOUS SOTA RESULTS ARE
UNDERLINED. ∗ DENOTES THAT WE PRODUCE THE RESULTS USING THEIR ORIGINAL SOURCE CODES. † INDICATES KAGRMN-DSG SIGNIFICANTLY

OUTPERFORMS BASELINES UNDER T-TEST (p < 0.01).

External
Information

Model
Lap14 Res14 Res15

Acc F1 Acc F1 Acc F1

− − − IAN [9] 72.05 67.38 79.26 70.09 78.54 52.65
− T − PRET+MULT [23] 71.15 67.46 79.11 69.73 81.30 68.74
− T − TransCap [32] 73.51 69.81 79.55 71.41 - -
− − G ASGCN [12] 75.55 71.05 80.77 72.02 79.89 61.89
− − G BiGCN [45] 74.59 71.84 81.97 73.48 81.16 64.79
− B − BERT-SPC∗ [18] 78.47 73.67 84.94 78.00 83.40 65.00
− B − AEN-BERT [46] 79.93 76.31 83.12 73.76 - -
− B G R-GAT+BERT∗ [15] 79.31 75.40 86.10 80.04 83.95 69.47
− B G DGEDT-BERT [13] 79.8 75.6 86.3 80.0 84.0 71.0
− B G A-KVMN+BERT∗ [47] 79.20 75.76 85.89 78.29 83.89 67.88
− B G BERT+T-GCN∗ [48] 80.56 76.95 85.95 79.40 84.81 71.09
K B G KaGRMN-DSG (Ours) 81.87† 78.43† 87.35† 81.21† 86.59† 74.46†

Our Improvements 1.62% 1.92% 1.22% 1.46% 2.10% 4.74%

TABLE IV
PERFORMANCES COMPARISONS OF BEST RESULTS. K,B, T AND G DENOTE THE MODEL LEVERAGES ASPECT KNOWLEDGE, BERT, EXTRA T RAINING
CORPUS AND SYNTAX GRAPH, RESPECTIVELY. BEST RESULTS ARE IN BOLD AND PREVIOUS SOTA RESULTS ARE UNDERLINED. ∗ DENOTES THAT WE

PRODUCE THE RESULTS USING THEIR ORIGINAL SOURCE CODES.

External
Information

Model
Lap14 Res14 Res15

Acc F1 Acc F1 Acc F1

− B − BERT-SPC∗ [18] 78.84 73.95 85.80 78.48 83.76 68.33
− B G SAGAT [14] 80.37 76.94 85.08 77.94 - -
− B G KGCapsAN-BERT [49] 79.47 76.61 85.36 79.00 - -
− B G R-GAT+BERT∗ [15] 79.46 75.75 86.61 80.78 84.13 71.12
− B G A-KVMN+BERT [47] 79.78 76.14 85.98 77.94 84.14 68.49
− B G BERT+T-GCN [48] 80.88 77.03 86.16 79.95 85.26 71.69
K B G KaGRMN-DSG (Ours) 82.13 79.42 87.68 81.98 87.08 75.34

Our Improvements 1.55% 3.10% 1.24% 1.49% 2.13% 5.09%

the comprehensive representation from different T-GCN
layers.

• SAGAT [14] utilizes graph attention network and BERT
to fully obtain both syntax and semantic information.

• KGCapsAN-BERT [49] utilizes multi-prior knowledge to
guide the capsule attention process and use a GCN-based
syntactic layer to integrate the syntactic knowledge.

And we label all models with what kinds of external
information they leverage, as shown in Table III and Table IV.

D. Main Results

The performance comparison of all models on average scores
is shown in Table III, and the comparison on best scores
is shown in Table IV. We can observe that: Syntax graphs,
external training corpus, and BERT can all improve ASC.
Especially, simple BERT-SPC significantly outperforms all
models that do not adopt BERT, even if some of them leverage
syntax graph and external training corpus. This shows the
power of pre-trained language models on ASC. And combining
BERT and syntactic information can further improve results
as sufficient semantics captured by BERT and the syntactic
information conveyed by syntax graphs can cooperate to
assist ASC. However, all baselines do not leverage aspect

knowledge and only consider either local syntactic information
or global relational information. As a result, their derived aspect
representation lack some important clues of aspect and their
captured syntactic information is insufficient, leading to their
inferior performance compared to our KaGRMN-DSG model.

We obtain consistent improvements over baselines in terms
of Acc and F1 on all datasets, achieving new state-of-the-art
results. On average results, our KaGRMN-DSG overpasses
previous best results by 1.92%, 1.46%, and 4.74% in terms of
Macro-F1 on Lap14, Res14, and Res15 datasets respectively.
On best results, KaGRMN-DSG overpasses previous best
results by 3.10%, 1.49%, and 5.09% in terms of Macro-
F1 on Lap14, Res14, and Res15 datasets respectively. The
improvements are contributed by the superiorities of KaGR-
MN, which effectively leverage beneficial aspect knowledge,
and DSG-Net, which combines GCN and Relational MHA to
capture sufficient syntactic information.

E. Ablation Study

We empirically analyze KaGRMN-DSG and prove the
necessity of every component by conducting an ablation study,
whose results are shown in Table V. In this section we answer
the following research questions (RQs):
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TABLE V
RESULTS OF ABLATION STUDY.

Variants
Lap14 Res14 Res15
Acc Acc Acc

M0: KaGRMN-DSG (full model) 81.87 87.35 86.59
M1: w/o Aspect Knowledge (descriptions are replaced with aspects) 80.30 (↓ 1.57) 86.43 (↓ 0.92) 85.24 (↓ 1.35)
M2: only KaGRMN (w/o DSG-Net + KI Gate + A2C Att) 80.72 (↓ 1.15) 86.55 (↓ 0.80) 85.36 (↓ 1.23)
M3: w/o DSG-Net 80.56 (↓ 1.31) 86.43 (↓ 0.92) 85.56 (↓ 1.03)
M4: w/o Relational MHA 80.98 (↓ 0.89) 86.67 (↓ 0.68) 85.79 (↓ 0.8)
M5: w/o Position-aware GCN 81.03 (↓ 0.84) 86.76 (↓ 0.59) 85.67 (↓ 0.92)
M6: w/o KI Gate 81.09 (↓ 0.78) 87.11 (↓ 0.24) 85.79 (↓ 0.80)
M7: w/o A2C Att 81.50 (↓ 0.37) 87.00 (↓ 0.35) 86.41 (↓ 0.18)
M8: w/o A2D Att 80.93 (↓ 0.94) 86.70 (↓ 0.65) 85.61 (↓ 0.98)
M9: w/o Self MHA 80.36 (↓ 1.51) 86.46 (↓ 0.89) 85.24 (↓ 1.35)

Effect of Aspect Knowledge. To study the pure impact
of aspect knowledge, we devise two variants: M1 and M2.
In M1, the original description is replaced with the aspect
itself. In this case, there is no aspect knowledge available for
KaGR-MN and its function becomes modeling the interactions
between the aspect and context. Surprisingly, even without
knowledge, M2 can obtain promising results. We attribute
this to the advanced architecture and effective functions of
KaGR-MN, in which aspect and context are separately encoded
and their interactions are effectively modeled by KaGR-
MN. On the other hand, the performance degradation of M0

convincingly demonstrates the pure improvements contributed
by the aspect knowledge conveyed by aspect descriptions.
In M2, DSG-Net, KI Gate, and A2C Att are all removed,
so M2 has a BERT+KaGR-MN architecture and the final
aspect representation is used for prediction. M2 consistently
outperforms baselines, proving that KaGR-MN can derive a
good enough aspect representation in which the clues for aspect
sentiment reasoning are retained. Along time steps, recurrently
leveraging aspect knowledge, KaGR-MN can capture more
and more beneficial clues, semantics and dependencies then
retain them in aspect representation and context memories.
And effectively utilizing beneficial aspect knowledge is the key
advantage of our method compared with previous works.

Effect of Syntactic Information. The results gap of M3 and M0

shows the improvement DSG-Net achieves by cooperating with
the aspect knowledge. These results validate the advantages
of combining both kinds of syntactic information to capture
sufficient syntactic information. We then study the effects of
Position-aware GCN and Relational MHA. We can observe that
both M4 and M5 perform worse than M0, proving both the local
syntactic information and global relational information should
be captured for ASC. In previous works, only either one of
them is considered, leading to insufficient syntactic information.
In contrast, our model marries them and lets them compensate
for each other, sufficiently capturing syntactic clues.

Effect of Knowledge Integration Gate. Without KI Gate, M6

obtains worse results than M0. This indicates that after DSG-
Net, some aspect knowledge is further needed and KI Gate is
efficient to re-enhance the final aspect representation with the
needed knowledge.

Effect of Aspect-to-Context Attention. In M7, the final aspect
representation is used for prediction. We can find that M7 has
limited performance degradation compared to M0. This proves
that although previous modules can discover and extract clues
for ASC, there are still important clues contained in non-aspect
hidden states rather than final aspect representation. Hence it
is necessary to employ A2C Att to aggregate the aspect-related
semantics in all hidden states into the final representation.

Effect of A2D Att and Self MHA in KaGR-MN Cell. The
significant performance decrease of M8 shows that A2D Att is
indispensable to dynamically summarize the specifically needed
aspect knowledge from MD. Without Self MHA, the integrated
knowledge in aspect representation can not be contextualized
and context memories cannot be updated. As a result, M9

performs much worse than M0.

F. Investigation on Knowledge Gates

KaGRMN-DSG has two different knowledge gates (AdaKI
and KI) for knowledge integrating. Here we empirically
investigate these two knowledge gates by testing their four
different settings. The results are shown in Table VI. We can
find that M10 and M12 have slight decreases in performances
when respectively compared with M0 and M11. This is because
KI Gate can preserve the knowledge in rTk while AdaKI Gate
may lose some knowledge when adapting to the semantic
space of R̃a. M11 and M12 perform much worse than M0 and
M10. This is because the semantic space adaption of AdaKI
Gate in KaGR-MN can maintain the semantics consistency
of rt∗a and Mt−1

C , which is crucial for subsequent knowledge
contextualizing.

G. Impact of Time Step Number T

We plot the performance trends of KaGRMN-DSG with
increasing T on the three datasets, as presented in Fig. 3. We
can observe that the performances show a trend of increases
at first and then decreases. And the best result is obtained
when T is 2 or 3 for Res15 and 4 for Lap14 and Res14. This
shows that appropriately increasing T can gradually improve
the results, which is consistent with our expectation. This can
also prove the effectiveness of the recurrent manner of KaGR-
MN. However, too large T leads to inferior performances,
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TABLE VI
RESULTS OF DIFFERENT KNOWLEDGE GATE SETTINGS.

Variants Gate 1 Gate 2
Lap14 Res14 Res15
Acc Acc Acc

M0 AdaKI KI 81.87 87.35 86.59
M10 AdaKI AdaKI 81.50 (↓ 0.37) 87.05 (↓ 0.30) 85.98 (↓ 0.61)
M11 KI KI 81.09 (↓ 0.78) 86.73 (↓ 0.62) 85.36 (↓ 1.23)
M12 KI AdaKI 81.03 (↓ 0.84) 86.58 (↓ 0.77) 85.24 (↓ 1.35)

Fig. 3. Impact of the time step number T

TABLE VII
CASES DEMONSTRATION. [N, P, O] DENOTES PREDICTED SENTIMENT DISTRIBUTION: [NEGATIVE, POSITIVE, NEUTRAL].

Case [N, P, O]

1.
C: The [Mountain Lion OS]A is not hard to figure out if you are familiar with Microsoft Windows.
D: OS X Mountain Lion is ... Apple Inc.’s desktop and server operating system ...

M0: [0.0, 0.999X, 0.001]
M1: [0.01, 0.49×, 0.5]

2.
C: On start up it asks endless questions just so [iTune]A can sell you more of their products.
D: iTunes is a media player, media library, Internet radio broadcaster, mobile device management utility ...

M0: [0.57X, 0.41, 0.02]
M1: [0.03, 0.67×, 0.30]

3.
C: While the [smoothies]A are a little big for me, the fresh juices are the best i have ever had!
D: A smoothie is a drink made from pureed raw fruit and/or vegetables, typically using a blender ...

M0: [0.62X, 0.0, 0.38]
M1: [0.02, 0.97×, 0.01]

4.
C: All the various Greek and Cypriot dishes are excellent, but the [gyro]A is the reason to come – if you
don’t eat one your trip was wasted. D: A gyro or gyros is a Greek dish made from meat cooked on a ...

M0: [0.02, 0.98X, 0.0]
M1: [0.88×, 0.11, 0.01]

which is also consistent with our expectation. One possible
explanation is that too much knowledge integrated into the
aspect representation and context memories will harm their
original contextual information. Another is that too many
recurrent steps will lead to overfitting on training sets.

H. Case Study

We show some cases in Table VII. Note that the only
difference between KaGRMN-DSG (M0) and M1 is that the
input D in M1 is replaced with A. We can observe that M0

can accurately predict the correct labels in all cases, while M1

fails all cases although its overall performance is promising
(as shown in Table V)

Without leveraging aspect knowledge, the aspect representa-
tion and semantics derived by M1 are inadequate. As shown
in Table VIII, BERT cannot capture the exact meanings and
properties of Mountain Lion OS and iTune, although it is one of
the strongest language models. In Case 1, M1 regards Mountain
Lion OS as ‘lion’ which is ‘dangerous’. Then considering ‘not

hard’, M1 is confused on P and O. In contrast, leveraging
aspect knowledge, M0 captures the exact meaning: an operating
system. Then considering the aspect-related semantics (‘not
hard’), M0 correctly predicts P. In Case 2, the aspect sentiment
expression is a little obscure as there are no explicit sentiment
trigger words (e.g. delicious, good, expensive). Even if M1

captures aspect-related context semantics, it fails due to the
lack of property information of iTune. Thanks to the integrated
aspect knowledge, M0 is aware that iTune is primarily used
for media playing rather than selling products, thus correctly
predicts N.

Looking into Case 3 and Case 4, we can find that due to
the lack of aspect knowledge, M1 is prone to be affected by
some misleading sentiment trigger words: ‘best’ in case 3 and
‘but’ in case 4. The reason why M0 wins M1 is that M0 can
combine the aspect knowledge and the aspect-related semantics
together to capture the correct clues for ASC.
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TABLE VIII
MISUNDERSTANDING FROM BERT PRESENTED BY SEMANTIC COSINE
SIMILARITY (S). v IS THE AVERAGE OF ENTITY’S HIDDEN STATES. ai

DENOTES THE A IN CASE i.

Entity (e) S(ve, va1 ) Entity (e) S(ve, va2 )

lion 0.8516 media player 0.4720
mountain 0.7997 radio broadcaster 0.5887

operating system 0.6826 software 0.7051
dangerous animal 0.8272 utility 0.6982

TABLE IX
COMPARISON OF TRAINING TIME AND INFERENCE TIME (PER SAMPLE) AS

WELL AS THE AVG F1 ON THE THREE DATASETS.

Models Training Time↓ Inference Time↓ Avg F1↑

BERT-SPC 0.007309s 0.002219s 73.59%
BERT+T-GCN 0.033835s 0.003350s 76.22%
KaGRMN-DSG 0.015333s 0.004208s 78.91%

I. Computation Time Analysis

The comparison of time costing and avg F1 of BERT-SPC,
BERT+T-GCN and our KaGRMN-DSG model is shown in
Table IX. We can find that although our model demands more
training time and inference time than BERT-SPC, it overpasses
BERT-SPC on avg F1 by a large margin (6.3%). As for
BERT+T-GCN, which is the best-performing baseline, although
it costs lightly less inference time than our KaGRMN-DSG, it
costs much more time for training, and more importantly, its
performance is significantly inferior to us. Additionally, since
Local Syntactic Information Modeling and Global Relational
Information Modeling both take the output of KaGRMN as
input, they can be parallelized theoretically, so the training time
and inference time of our KaGRMN-DSG model can be further
reduced in practice. In a word, our model may cost more time
for training and inference than some baseline models, but it is
worthy considering the significant performance improvement.

V. CONCLUSION

In this paper, we point out the two challenges encountering
existing ASC models and we therefore propose a novel
KaGRMN-DSG model to end-to-end embed and leverage aspect
knowledge, then capture sufficient syntactic information by
marrying both kinds of syntactic information. In our model, the
integrated beneficial aspect knowledge and sufficient syntactic
information can effectively cooperate, yielding new state-of-
the-art results.

Future directions include exploring the visual knowledge of
aspects, as well as designing deeper and more sufficient dual
syntactic interaction to let the two kinds of syntactic information
interact with each other in their respective modeling processes.
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