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Towards Faster Training Algorithms Exploiting
Bandit Sampling from Convex to Strongly Convex
Conditions

Yangfan Zhou, Kaizhu Huang, Cheng Cheng, Xuguang Wang, Amir Hussain, and Xin Liu*.

Abstract—The training process for deep learning and pattern
recognition normally involves the use of convex and strongly
convex optimization algorithms such as AdaBelief and SAdam
to handle lots of ‘“uninformative' samples that should be ig-
nored, thus incurring extra calculations. To solve this open
problem, we propose to design bandit sampling method to
make these algorithms focus on “informative' samples during
training process. Qur contribution is twofold: first, we propose
a convex optimization algorithm with bandit sampling, termed
AdaBeliefBS, and prove that it converges faster than its original
version; second, we prove that bandit sampling works well for
strongly convex algorithms, and propose a generalized SAdam,
called SAdamBS, that converges faster than SAdam. Finally, we
conduct a series of experiments on various benchmark datasets
to verify the fast convergence rate of our proposed algorithms.

Index Terms—Bandit Sampling, Convex Optimization, Image
Processing, Training Algorithm.

I. INTRODUCTION

RAINING involves a large number of parameters and a
T complex structure in pattern recognition and deep learn-
ing. Such a process is typically difficult and time-consuming
especially in cases of a large amount of data samples [1]. To
accomplish training in deep learning, efficient optimization
algorithms are crucially demanded [2]. To examine the per-
formance of optimization algorithms, two indicators, i.e., con-
vergence rate and generalization ability are usually adopted.
Additionally, current optimization algorithms often assume
that their loss function and feasible region are both convex
to obtain better algorithm benefits from the good properties of
convexity.

With a strong generalization ability, stochastic gradient
descent (SGD) is one of the most popular algorithms that
has been widely used in many applications. Unfortunately,
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SGD is limited due to its slow convergence rate. Thereby a
large number of labeled samples are necessary to complete
the SGD training. To tackle this limitation, many faster opti-
mization algorithms have been proposed including Adam [3],
AMSGrad [4], and AdaBound [5]. These algorithms focus
on adjusting adaptive step sizes and historical gradients to
improve the convergence rate. For example, as one most
successful algorithm, Adam considers the historical gradients
by the first-order momentum (m; = Sim;_1 + (1 — 51)g)
and adapts the step sizes by the second-order momentum
(vi = Bavi_1 + (1 — Ba2)g?) (where (31,32 denote the
exponential decay rates, g; represents the original gradient,
m; denotes the first-order momentum, and v, represents the
second-order momentum). In fact, Adam has been extensively
used in the past few years and its two momentum strategies
have inspired many other improved adaptive algorithms.

Although Adam converges faster than SGD, it has a weak
generalization ability. Such drawback limits its application
in deep learning, requiring both efficiency and precision.
To promote the generalization ability of Adam, [6] pro-
posed an effective method named AdaBelief, which resets
the second-order momentum as a new form s; = [as; 1 +
(1 — B2)(g: — my)?. Its main motivation is to adjust the
step size according to the difference between the observed
gradient and the predicted gradient (called the “belief" in
the current gradient direction (belief-gradient)). Under convex
conditions, AdaBelief guarantees a theoretical superiority to
Adam on generalization ability with the same convergence
bound O (d\/T) +0 (7”“\/%” 7”171%” \/T), where T is a time
horizon, n represents the total number of samples, d is the
dimension of the decision vector, and K denotes the mini-
batch size.

On the other hand, in addition to improving further the
generalization ability, investigations have also been made
to explore if the convergence bound of various algorithms
including Adam can be further lifted up particularly in convex
cases. Indeed, many prior works indicate that sampling training
examples is one effective method to improve the convergence
rate without any additional optimization constraints or as-
sumptions. For instance, SGD’s convergence rate has been
accelerated by different sampling methods [7]-[10]. Moreover,
to improve Adam’s convergence rate, bandit sampling is used
to select a mini-batch examples from the training set for
each iteration [11]. This work focuses on the relationship
between sample distribution and model parameters during
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Fig. 1. Left is the AdaBelief with bandit sampling when loss functions are convex; Right is the SAdam with bandit sampling when loss functions are strongly

convex.

training process. Importantly, with bandit sampling, AdamBS
certificates theoretically a faster convergence than the original
Adam.

Interestingly, though efforts have been made to improve
these popular algorithms from the perspective of either gen-
eralization ability (e.g. AdaBelief) or convergence rate (e.g.
AdamBS), there are rarely works exploring if an optimization
algorithm can be developed improving both the generalization
ability and convergence rate, particularly for the recent strong
methods such as Adam and its variants. For instance, though
bandit sampling has been shown successful in boosting the
convergence for Adam, it remains an open question whether
it also works when second order momentum is introduced as
typically used in improving the generalization ability.

To this end, this paper presents a novel design that suc-
cessfully bridges various Adam-based algorithms including
AdaBelief and SAdam with bandit sampling. As a major
contribution, we prove that the proposed algorithm named
AdabeliefBS has a more compact convergence bound than the
extended Adam, i.e., AdaBelief for the first time though some
computational overhead incurred by maintaining and updating
distribution of bandit sampling. On the other hand, inherited
from AdaBelief, AdabeliefBS has also stronger generaliza-
tion ability as empirically verified in the experiments. Going
further, we also examine the strongly convex optimization
that converges faster than convex optimization algorithms. We
propose a new model called SAdamBS which integrates bandit
sampling to attain a guaranteed bound more compact than
SAdam.

More specifically, we incorporate the bandit sampling
method into AdaBelief with s, = fas,_1 4 (1—f2)(Gy —m,)?
which is different from that of Adam and SGD. The difference
in the second-order momentum leads to a challenge on the
convergence analysis. Moreover, we propose the strongly con-
vex algorithm with bandit sampling and prove its convergence
property theoretically. This is also distinct with the existing
works that are usually conducted under convex conditions.

Our ideas are shown in Figure 1 that are inspired by [11].
Our main contributions can be summarized as follows:

o We propose AdaBeliefBS that integrates bandit sampling
to improve the convergence rate for the original Ad-
aBelief, and prove that AdaBeliefBS converges faster than
AdaBelief under convex conditions.

« We further study whether bandit sampling could acceler-
ate the convergence rate for strongly optimization algo-
rithms, and propose the corresponding algorithm named
SAdamBS. Moreover, we also prove that SAdamBS
converges faster than SAdam under strongly convex con-
ditions.

« We prove that the convergence of the proposed algorithms
can be further bounded when the samples follow doubly
heavy-tailed distribution.

« We conduct a series of experiments to verify our proposed
algorithms AdaBeliefBS and SAdamBS, which in prac-
tice also converge faster than the other algorithms under
convexity and strongly convexity, respectively. Moreover,
these experimental results are consistent with our theo-
retical proofs.

Notations. In this paper, a bold symbol denotes a vector, and
x2, /X, and 3 represent the element-wise square, square root,
and division, respectively. In addition, | ] indicates a projection
operator. For a deep model training task, its dataset contains
N labeled samples in total. We use p; = {p},p?,...,pN}
to denote the sample distribution at time ¢. Additionally, p;
represents the related importance of samples in the training
process. At each time, the optimizer chooses a mini-batch of
K samples. Moreover, the gradient of the k-th sample at time
t is denoted as gf.

II. RELATED WORK
A. Adaptive Gradient Optimization Algorithms

Adaptive gradient optimization algorithms, represented by
Adam, are widely used in pattern recognition and deep learn-
ing because of their fast convergence speed. For Adam, [4]
pointed out that the quantity of the adaptive learning rate with

respect to time, I';41 = ( o ag‘f , could be negative,

leading that Adam fails to converge to an optimal solution. To

vV Vit
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solve this problem, [4] modified the second-order momentum
as vy = max{v, v¢}.

Though the convergence problem of Adam has been solved,
the gap of its generalization ability in deep model training
processes still haunts its applications. To reduce this gap,
[5] demonstrated that some extreme learning rate in Adam
and AMSGrad can lead to poor performance, and proposed a
new adaptive gradient algorithm named AdaBound that adds a
dynamic bound on its learning rate to improve generalization
ability. Another method to improve generalization is called
Lookahead [12], which tries to update iteratively the weights
of SGD and Adam. In addition to AdaBound and Lookahead,
there are many other different methods to ameliorate the
performance for Adam including [13]-[15].

In regard to the essential reason of Adam’s poor perfor-
mance, [6] analyzed three different cases about curvature
of the loss function in which Adam always takes improper
stepsize. To ensure the optimizer make proper decision in
all the three cases, [6] completely modified the second-
order momentum to s; = fos; 1 + (1 — Bo)(g: — my)?
and proposed a new algorithm called AdaBelief. Nowadays,
AdaBelief showed a new idea in improving the performance of
Adam and achieved good results. Nevertheless, its convergence

bound still follows Adam and AMSGrad with o(dﬁ) i

O<7V”1\/%gd 7@ \/T) In this paper, we try to improve the
convergence rate of these popular algorithm further while
maintaining their excellent generalization ability.

As we know, optimization algorithms adapted to strongly
convex functions can converge faster than those adapted to
convex functions. For example, Adam [3] has a guaranteed
convergence bound O(v/T) when loss functions are convex,
while its strongly convex variant SAdam [16] can achieve
a much faster convergence bound of O(logT). Therefore,
strongly convex algorithms enjoy the advantage of faster con-
vergence rate when loss functions are strong convex. However,
it keeps uncertain if further improvement can be made towards
an even fast convergence rate for the strong convex algorithms.
To fill this gap, we exploit bandit sampling and propose a mini-
batch gradient descent optimization algorithm under strongly
convex conditions, called SAdamBS.

B. Sampling Methods

Sampling methods play an important role in deep model
training which enable optimization algorithms even faster.
Bandit sampling is a standard online learning problem which
applies (S-distribution to describe the importance of sample
and updates its parameters based on the regret of each de-
cision. Many optimization algorithms have introduced bandit
sampling to improve their performance. To speed up the
convergence rate of SGD, [17] proposed a novel and efficient
algorithm for generalized linear bandit with a regret bound
of order O(v/T)). Moreover, to reduce the variance caused by
uniform sampling of mini-batch of samples by SGD during
each training, [18] exploited bandit sampling to non-uniformly
select a mini-batch of samples for each iteration. In addition,
bandit sampling is also utilized for Adam in [11], in which the
mini-batch of samples of each iteration is selected by bandit

sampling. As a result, the subterm of regret bound of AdamBS

proposed by [11] is improved from O(\/?) to O( 10%

Important sampling is a widely used method that could
both improve the computation rate and stability of numerical
results. Important sampling estimates the original function
with a simple probability distribution function and performs
sampling on it, and then updates the weight of each part
of this simple function according to the sampling result.
The block coordinate descent (BCD) optimization algorithm
randomly selects a block of coordinates to compute gradient
for each iteration to avoid the costly computation of full
coordinate gradient. However, improving the efficiency of
BCD’s coordinate block selection is always a difficult problem.
To this end, [19], [20] utilizes the importance sampling to
choose coordinate blocks to improve convergence rate of BCD
algorithms. However, it is not clear how much importance
sampling has accelerated these methods due to the difficulty
of theoretical analysis.

Up to now, lots of optimization algorithms are based on
mini-batch gradient descent which uses a mini-batch of sam-
ples for each iteration. However, not every batch of samples
is equally important to the optimizer. Therefore, some opti-
mization algorithms take the boosting sampling to choose the
optical mini-batch of samples for each time. For instance,
[21] studied how boosting sampling help accelerate SGD’
convergence rate and proposed a new explanation for this
process; [22] proposed a clustered sampling to reduce the vari-
ance of the clients stochastic aggregation weights in federated
learning. In summary, boosting sampling learns multiple weak
classifiers by changing the weight distribution of samples,
and then combines them linearly to form a strong classifier.
However, this method requires each sample to be calculated
once, therefore incurring extra computational overhead.

III. PRELIMINARIES

A. Online Learning

In this work, we consider an online learning problem that is
formed as min,, cga ZL 1 Je(x¢), where T is a time horizon.
In an online learning problem, the optimizer deals with tasks
one by one in order. For the task of time ¢, the optimizer makes
a decision x; without knowing whether its outcome is good
or bad. In contrast, the adversary returns a loss f;(x;) based
on the above decision. Consequently, the target of the online
learning task is to minimize the loss of the optimizer suffered
from the adversary. To measure this problem intuitively, the
regret was introduced and its mathematical form is as follows:

ey

where R(T) represents the cumulative regret at time 7', R?
is the set of real number with dimension d and 7" denotes a
time horizon. For simplicity, we use x* to denote the optimal
solution of f; with ¢ € [T] on R<. Therefore, we have that

S filx®) = mingera S, folx).
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B. Mini-batch Gradient Descent

Since the deep model training process typically applies
gradient descent that requires massive labeled samples, it will
take a lot of computation and memory cost if all the samples
are used at each iteration. Alternatively, if one single sample
is used for each iteration, the gradient direction cannot be
accurately estimated. As a trade-off, the most commonly used
method is to select a mini-batch of samples at each iteration.
We assume that a mini-batch is uniformly sampled from all the
training samples. Therefore, at time ¢, the unbiased gradient
estimate G of the mini-batch 1; is defined as

A 1
Gi=— )Y g 2)

where gF denotes the k-th sample gradient at time ¢. The
definition of the unbiased gradient estimate G follows [11] in
which more detailed explanations are provided.

IV. BANDIT SAMPLING FOR CONVEX OPTIMIZATION

In this section, we first propose a belief-gradient based al-
gorithm with bandit sampling in convex online learning cases,
named AdaBeliefBS. Second, we present the convergence
analysis for AdaBeliefBS.

As described in Section III-B, mini-batch gradient descent
algorithms such as SGD, Adam, and AdaBelief are uniformly
sampled at each iteration. These algorithms do not adequately
account for differences between samples. For this reason, we
propose a gradient descent algorithm that adaptively selects
mini-batch samples under convex conditions. The proposed
algorithm selects a mini-batch of Ksamples from the training
set containing N samples for each iterdtion Assume that the
distribution of the samples is p; = {pt p?,...,pN}, and the
gradient of a single sample is gf for t 6 (1], k € [K].
Therefore, the unbiased e%tlmate of gf is gF = gF/(Npf).
Moreover, since E,, [F] = + ZZ 18 =G, gF is unbiased.
Thus, the unbiased gradient estimate GL of a mini-batch with
K samples at iteration ¢ is

1
= gl 3)

Q>
-

From equation (3), we have [, [G;] = + Zf\;l gi = G.
Therefore, the unbiased estimate Gt can be used in our
proposed algorithm.

Details of our proposed algorithm are shown in Algorithm 1
in which the modifications from its original version are
highlighted in blue font. As we can see, there are not many
steps highlighted in blue, but the convergence of the proposed
algorithm should be re-proof due to these modifications, which
is a challenge. In the algorithm, f;(z) € R is the loss function
at time ¢ that satisfies online learning cases. At time ¢, x; € R4
is the decision vector, where d is the number of dimension.
Moreover, gF is the original gradient of the k-th sample at time
t. And G, is unbiased gradient estimate of one mini-batch with
K samples. In addition, m; and s; are exponential moving
average of Gy and (Gt —my)?, respectively. The typical values
of hyper-parameters are 51 = 0.9, 52 = 0.999. Specifically,

learning rate « is set to 102, and normal term € is set to
1078,
Algorithm 1 AdaBeliefBS

Input: 31, 5o, €

Initialize: xo, mg < 0,vy < 0,pf « 1/n,¥1 < k < N,
and set time start with ¢ = 0.

1: while x; not converged do

2 t+t+1

3:  select a mini-batch of K samples by sampling with
replacement from p;_;

4:  compute original gradient of one sample:

5: gt < Vifi(xi-1)

6:  compute unblased gradlent estimate of one mini-batch:

7

8

9

Gt K Zk 1 npt !
compute the first-order momentum:
my « Bimy_y + (1 - f1)Gy
10:  compute the second-order momentum based on gradient

belief:
11 st < Basi—1 + (1 — B2)(Gy — my)?,
12: St < max{st, St—l}
13:  compute bias correction of my:
14: ﬁlt (—mt/(l—ﬁ{)
15:  compute bias correction of s;:
16: ét — St/(]. — ﬂé)
17:  update the decision vector x;:
18: X¢ <— H]_—y\/g (Xt 1— \(;Ln—te
19:  update the sample distribution:
20: pe < update(pi—1, I, {gF 1))

21: end while
22: Return: x;

Next, we set out the following theorem under online learn-
ing framework to prove that our proposed algorithm has a
guaranteed regret bound, which indicates the convergence of

AdaBeliefBS.

Theorem 1: Assume that the gradient of the loss function is
i 1(23) — Vfi(2))|loe < Goo for all x;,x; €
R? and the convex feasiable set R is also bounded, i.e.,
x; — x;|| < Dy for all x;,x; € RY, where G and D,

- 2

are constants. Moreover, suppose that v = % < 1. Let
Bre = LA A € (0,1), and oy = % Then, the regret of
AdaBeliefBS has the following bound:

Vda(l+8)VTHToaT | 1~ IS ledl
R(T) < \/27(:(1—51)3 \jKNQ;E ; pg

dGoc D2NT D2, 51G o
2a(1— A1) 2a(l— (1 - N2 @

Proof. [6] proved that the regret of AdaBelief is with the
following upper bound:

Z[ft(xt >]_2a1_ﬁl S Ve

— i=1
a(l+ B1) 1—|—logT
2/c(1— B

00/81G
a(l=p)(1 =)
%)

_|_
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We first consider the term Z?Zl v/87,; in inequation (5). Note
that the second-order momentum in [6] is defined as follows:

st = Basi—1 + (1 — B2)(gr — my)?,
R St + €

St:l—ﬁé' 6)

Moreover, the first-order momentum m; in [6] is:

=fimy_q1 + (1 — 51)g:. @)

Using the recursive algorithm for equation (7), we have the
following upper bound:

mi; < (1= f7)Ge. ®
From (8), we obtain:

Gti — M = B1gei — Bimy—1,; < B G . ©)]

Meanwhile, applying the recursive algorithm for equation (6),
and by (8), we have:

st = Bosi—1,i + (1 — B2)(gr,i — mei)?
< (1= B2)(ge,i — 7”1&,1’)2 + Bo(1 — B2)(ge-1,i — 7”1&—1,1’)2
+... 4+ ﬂT_l(l — B2)(go,i — mo,i)?
[32 T 2
( B ) /82 ( 1 GOO)
< (15 >G§o- (10)

Therefore, from inequation (10) and the 9-th step of Algorithm
1, we attain:

d d
Do VEra S Y < dGa (1
i=1 2

Note that the regularization ¢ is ignored for brevity as in other
articles, such as [4], [6], [11]. Next, we consider the term

20, in (5.

(12)
The inequation in (12) holds because f(z) = \/x is concave,
ie., f(””);rf(y) = ﬁ;‘/g < f(HY) = (/=L Therefore,

from inequations (11) and (12), inequation (5) can be rewritten
as:

> [t - 1)

t=1
< Vda(1l + B1)v/I+logT
N V2e(1 - )3
D? 3G dG D> \T
Taat-pa-2 " mi-py P

Note that the bound in inequation (13) is AdaBelief’s regret
bound. Since our proposed algorithm, AdaBeliefBS, uses

bandit sampling to choose a mini-batch samples with K size,

we have the following bound:

> [t 1)

t=1
_ Yda(1+ 81)yT +logT
- V2c(1— B1)3
DgoﬁlGoc
2a(l— A1 - N2

(14)

We next consider the upper bound of term E[||ét|| ] in the

above inequation. Since that G = 7 Z =19 % and gF = n;;k ,
. t
we attain:
K k 2
A 1 8t
E{(h }:E =y 24
K 1 Np;
K k|2 K N 3|2
1 [E4 1 lezl”
< E = E ]
Ve 2 [ Wb ) = W 2B 2 e

] . 15)

Therefore, plugging inequation (15) into (14), we obtain the
following bound for the regret:

RT) = 3 [0 = 1166

t=1

< \/aa(1+51)\/1+logT\J — i i

J 2
t

V2c(l - )3
dGo DZVT DZ.B1G o 16)
2a(1—B1) | 2a(l—B)(1 - N7
Therefore, the proof of Theorem 1 is completed. ]
The update strategy p; < update(p,_1,1;, {gF}s ) in

Algorithm 1 follows Algorithm 2 in [11]. For the sake of
algorithm self-containess, we present the update strategy in
Algorithm 2. Note that the number of arms is N, L denotes
the upper bound, I; represents the mini-batch of training sam-
ples at time ¢, and Dxr (¢|lw:) indicates the KL divergence
between ¢ and w;. Moreover, the set P := {p € RY :
27 1P = 1,0j > pminVj}, Where pyi, is a constant.

Algorithm 2 The distribution update strategy for p; [11].

1: Function: p; < update(p;—1, I, {gF }— )
2: Compute p;:
J_ Hg;f\l2
3 P =
1 et
4: Compute the Toss:
5 o= ”(g};lz + pim if j € I; otherwise, I =0
6: Compute an unbiased gradlent estimate:
7 hg—ilzkll(]”V1<3<N
. Kp;
8: wl = pl_ exp(—a,hl),¥1 <j < N
9: py = argmingep Dxr(q||wy)
10: Return: p;
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Obviously, inequality (4) in Theorem 1 shows that p,
affects the regret bound, thereby the optimal p; that pro-
motes the convergence rate is desirable. Although the

optimal solution is pt = Zl‘vgt ll‘lg T for the problem
. =1 t
] 2

arg minziv: i1 E =1 p‘j , its computation is prohibitive

due to the grad1ent calculation of all samples at each iteration.
For this reason, Algorithm 2 proposed by [11] uses a multi-
armed bandit method based on EXP3 [23] to overcome this
problem. To further obtain the upper bound of the regret, we

introduce the following lemma from [11].
Lemma 1: If let By(z,y) = ¢(z) — (Vo(y), z —y) — d(y)
be the Bregman divergence associated with gb where ¢(p) =

Z P’ logp?, assume that legl|l < L, p! > pmm for all
t € [T] and j € [N}, and By(p,p’) < R? forany p,p’ € P, set

oy = 2]}\%,:,? e the update strategy in Algorithm 2 implies:
T N j 112 2
IIgtH2 : gt |l RL
o o3 B iy 5oy 181 < A2 o
t=1 j=1 t=1 j=1 Py min
a7

The proof of Lemma 1 has been provided in Appendix B in
[11]. Furthermore, from Theorem 1 and Lemma 1, we have

the following corollary.

Corollary 1: Suppose that assumptions in Theorem 1 and
Lemma 1 are satisfied, AdaBeliefBS with the distribution
update strategy attain the following regret bound:

Vida(l + p1)y/T+ logT L\/R(QNT)1/4
NvV2cK(1 - 31)3 Pmin

Vda(1+ 8)VTFlogT | .
T TNVEY(1 — Br)? &IHZE
DgoﬂlGoo

dGoo D2 NT

2a(1=B1) | 2a(l— A1 - N7
Obviously, Theorem 1 and Corollary 1 prove that AdaBeliefBS
converges under online convex conditions.

Indeed, the regret bound R(T') can be further bounded
under the doubly heavy-tailed distribution, which is tighter
than AdaBelief with uniform sampling. The doubly heavy-
tailed distribution is a more extensive distribution of random
variables than the normal distribution, and it mainly shows
that a small number of samples take up a large number of
resources. Specifically, let gl represent the gradient of k-
th sample at time ¢, z¥ denote the feature vector for k—
th sample at time ¢, and zF, is the i-th dimension of z}.
Then the case of doubly heavy-tailed distribution implies that
g2 < |1281% = S0, (2F,)? = Bsi k7, where d is the
dimensional number, (3 and -y are constants with v > 2. In
this case, the regret bounds of AdaBelief and AdaBeliefBS are

shown in the following theorems.

Theorem 2: If feature vector follows doubly heavy-tailed
distribution, for a neural network with ReLU hidden layer and
sigmoid output layer, AdaBelief achieves the following regret
bound:

R(T) <

(18)

R(T) < O@VT) + 0 | V08N YOO8 /o)
N VK
(A)
(19

The proof of Theorem 2 can be easily obtained by following
Theorem 3 of [11].

Theorem 3: If feature vector follows doubly heavy-tailed
distribution, for a neural network with ReLU hidden layer
and sigmoid output layer, AdaBeliefBS achieves the following
regret bound:

R(T) < O(dVT) + O LﬁzN V(f/l%gds/T(lJrlogT)
—_——

(B)
(20

The proof of Theorem 3 is shown in Appendix A.

From inequalities (19) and (20), their different terms, (A)
and (B), distinctly indicate that the proposed algorithm con-
verges faster than AdaBelief when the feature vector follows
doubly heavy-tailed distribution under convex conditions. In
short, this work first proves that bandit sampling benefits
the convergence rate for AdaBelief in convex optimization.
Additionally, we also make a further step: we are interested
in whether bandit sampling improves the convergence rate in
strongly convex optimization. To this end, we develop the
following strongly convex optimization algorithm with bandit
sampling.

V. BANDIT SAMPLING FOR STRONGLY CONVEX
OPTIMIZATION

For strongly convex optimization, we present the following
optimization algorithm which is improved by bandit sampling.
This algorithm named SAdamBS is based on SAdam [16], a
variant of Adam under strongly convex conditions. Moreover,
its pseudo code is shown in Algorithm 3 in which the
modifications from its original version are highlighted in blue
font. Although there are not many modifications in terms of
algorithm steps, these modifications will bring challenges to
the convergence proof of the proposed algorithm.

Same as AdamBS, we take the unbiased gradient estimate
Gy to compute the first-order and second-order momentums
for SAdamBS. Under the conditions and assumptions of
SAdam in [16], we can obtain the following regret bound for
SAdamBS.

Theorem 4: Assume that the gradient of the loss func-
tion is bounded, ie, ||V fi(z;) — Vfi(z;)]leo < Goo for
all x;,x; € Rd and the convex feasldble set R¢ is also
bounded, i.e., — Xj|| € Do for all x;,%x; € R?, where
Gs and DOC are constants. Moreover, suppose that all loss
functions {f1(), f2(*), ..., fr(-)} are A-strongly convex. Set
a> S Let§ > 0,06 = Bt~ where f; € [0,1) and
{Bas}_, €0,1]7 satisfy the Conditions 3 and 4 in [16]. We
have the following bound for the regret of SAdamBS:

R(T) S Z <C5KNQZ {Z é
21

dDgoé dp1 D2, (G2, + 6)
2a(l— 1) | 2a(l—B)(v —1)°"
The proof of Theorem 4 is provided in Appendix B. By

applying Lemma 1 into Theorem 4, we have the following
corollary.

—+
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Algorithm 3 SAdamBS

Input: {/glt}?:17 {/32t}?:17 0

Initialize: x5, mg < 0,vo + 0,pk «+ 1/n,V1 < k < N,
and set time start with ¢ = 0.

1: while x; not converged do

20 t+t+1

3:  select a mini-batch of K samples by sampling with
replacement from p;_

4:  compute original gradient of one sample:

5: g < Vft(xt—l)
6: compute the unbiased gradient estimate of one mini-
batch: .
. K g
7: G =+ _ o
t— K k=1 npF

8:  compute the first-order momentum:
: my  Bymy_1 + (1 — B1t)Gy
10:  compute the second-order momentum based on gradient

belief: A
11 Vi < Borvie1 + (1 — Bay)G?
12 compute the diagonal matrix:
13: Vi = diag{v:}, Vi =V, + 14
14:  update the decision vector x;:
15: Xt H]—',\}} (Xt — %V;lmt)
16:  update the sample distribution:
17: pt < update (pf,_h I, {gf}i{:l)

18: end while
19: Return: x;

Corollary 2: Suppose that assumptions of both Lemma 1
and Theorem 4 are satisfied, SAdamBS obtains the following
convergence rate

¢ d 1 RI?
R < =gy 2108 (e (4 5) +1)
dp1 D3 (G% +9)
2a(1 = B1)(v = 1)%’

(9],)?
J

where M = min, >3, E |37,

The proof of Corollary 2 can be obtained by plug-
ging Lemma 1 into Theorem 4. Since SAdamBS uses the
same update strategy as AdamBS, Lemma 1 also holds in
SAdamBS. Obviously, this corollary proves that SAdamBS
has an upper regret bound. Therefore, SAdamBS is proved to
converge in strongly convex cases.

Next, we demonstrate that the regret bound of SAdamBS
can be further bounded when the feature vector follows the
doubly heavy-tailed distribution. SAdamBS’s convergence rate
is provably better than that of SAdam, which uses uniform
sampling.

Theorem 5: 1f the feature vector follows doubly heavy-tailed
distribution, for a neural networks with the ReLU hidden layer
and sigmoid output layer, SAdam achieves the following regret
bound:

N dD2.5
20((1 — 61)

(22)

R(T) < O(dlog(TNlog N log d)). (23)

The proof of Theorem 5 is presented in Appendix C.

On the other hand, SAdamBS achieves the following con-
vergence rate for the same case.

Theorem 6: 1f the feature vector follows doubly heavy-tailed
distribution, for a neural network with ReLU hidden layer
and sigmoid output layer, SAdamBS achieves the following
convergence rate:

log2 N
Proof. From Lemma 1, we have
T N J 2 T N 7 \2 2
E ZZ Lt;) :| < min [ZZ Lt;) + RZL 2NT.
t=1 j=1 P PEP t=1 j=1 23 min
(25)
Moreover, reviewing Lemma 3 of [11], we attain that
Y (g )2
min Y Y ==~ = O(log dlog® N). (26)

p{ 2Pmin j=14=1 pt,i

Plugging inequation (25) and equation (26) into Corollary 2,

we obtain
log? N
T) < 1 T 1 . 2
R( )_O(d og( N7 ogd)) 27
Therefore, the proof of Theorem 6 is completed. ]

Comparing the regret bounds of SAdam and SAdamBS, we
find that our proposed SAdamBS achieves a faster convergence
rate than SAdam. Therefore, bandit sampling is proved to
also improve the convergence rate of optimization algorithms
under strongly convex conditions. To further demonstrate that
our proposed algorithm converges faster, we execute our
algorithms and other classical algorithms on the public datasets
in the next section.

VI. EXPERIMENTS

In the above content, we prove that the two proposed
algorithms, AdaBeliefBS and SAdamBS, have tighter con-
vergence bounds than AdaBelief and SAdam in convex and
strongly convex cases, respectively. In order to verify the
above theoretical results in practice, we conduct a series of
experiments in this section. In our experiments, we use 1)
SGD, 2) SGD with momentum (SGD-M) with ()(%) decaying
step size, and 3) RMSProp [31] with parameter settings
B =0.9,7=0.9,8 = 1078, as comparison algorithms.

The experiments are completed on four 1080-Ti GPUs. For
the comparison algorithms, we use the same parameter initial-
ization to ensure fairness. All the experiments are executed five
times, and their mean values and the corresponding confidence
intervals are taken as the final results. Moreover, we use
four classical benchmark datasets in the experiments: MNIST
[24], CIFAR-10 [25], CIFAR-100 [25], and Penn TreeBank
[26]. MNIST is a famous public dataset of handwritten digits,
which has a training set of 60,000 samples, and a test set of
10,000 samples. CIFAR-10 and CIFAR-100 are both consists
of 60,000 color images of size 32 x 32, where CIFAR-10 has
10 classes with 6,000 images per class and CIFAR-100 has
100 classes with 600 images per class. Penn TreeBank is a
well-known corpus dataset, widely used in nature language
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TABLE I
SUMMARY OF MODELS AND DATASETS.

Our Algorithm  Task Model Dataset
. P CIFAR-10,
AdaBeliefBS Image Classification =~ VGG-11, ResNet-34, DenseNet-121 CIFAR-100
AdaBeliefBS Language Modeling  1,2,3-layers LSTM Penn TreeBank
SAdamBS Softmax Regression - MNIST, CIFAR-10, CIFAR-100
SAdamBS Image Classification  2,4-layers CNN MNIST, CIFAR-10, CIFAR-100

processing tasks, which contains 1 million words come from
2,499 articles. In this section, we conduct two experiments:
the first one is to validate that our proposed algorithm Ad-
aBeliefBS outperforms the other algorithms on convergence
under convex conditions; the second one is to verify that our
proposed algorithm SAdamBS converges faster than the other
algorithms in strongly convex cases.

A. AdaBeliefBS: Bandit Sampling for Convex Optimization

To examine the performance of AdaBeliefBS, we execute
extensive experiments to train two classical deep neural net-
works: convolutional neural networks (CNN) and recurrent
neural networks (RNN). The relationship between models and
datsets are summarized in Table I. Moreover, experiments are
implemented in Keras with TensorFlow based on the codes
from [10]' and [6]%. Since the importance sampling method
proposed by [10] could also be applied to AdaBelief, we use
it as a comparison algorithm and call it AdaBelief-IS. To
show the performance of our proposed algorithm on training
acceleration, we plot the curves of training loss vs. epochs for
the experimental results that follows [11].

To be fair, we set the same hyper-parameters as the orig-
inal settings for all executed algorithms. In AdaBelief-IS
and AdaBeliefBS, we set their hyper-parameters, 81 = 0.9,
B2 = 0.999, ¢ = le — 14, and o = 1le — 3, following their
original method AdaBelief [6].

1) CNNs on Image Classification: We perform this group
of experiments on CIFAR-10 and CIFAR-100 with VGG-11
[27], ResNet-34 [28] and DenseNet-121 [29], respectively.
We report the average of five runs and the corresponding
confidence intervals in Figure 2. As we can see, Figure 2
shows that the proposed algorithm converges faster than the
others in a fixed number of epochs on CIFAR-10 and CIFAR-
100. The curves in Figure 2 validate that the regret bound of
our proposed algorithm AdaBeliefBS is more compact than
AdaBelief. As the generalization ability is another important
indicator of training algorithm, we need to verify whether
our method has a negative effect on the generalization perfor-
mance of the original algorithm. For this reason, we further
examine the generalization results of all executed algorithms
on CIFAR-10 and CIFAR-100. These results are reported in
Figure 3, which plots the curves of test accuracy vs. epochs.
Obviously, within 200 epochs on CIFAR-10 and CIFAR-100,
our proposed algorithms achieve high test accuracy at the
fastest speed. Our algorithms’ highest accuracy in many cases

Uhttp://github.com/idiap/ importance-sampling
Zhttp://github.com/juntang-zhuang/Adabelief-Optimizer

is almost the same as or better than that of SGD and other
excellent algorithms. Inherited from AdaBelief, the proposed
algorithm uses more reasonable momentum to choose more
appropriate step size. More importantly, the proposed algo-
rithm can lead to good generalization ability by extracting
more useful information at each iteration, which is empirically
verified from the experiments.

2) RNNs on Language Modeling: In pattern recognition,
natural language processing is another important application.
For this reason, we further consider whether our proposed
algorithm could bring benefit for language modeling tasks.
To this end, we respectively adopt 1-layer, 2-layer and 3-
layer LSTMs as the RNN model to conduct the experiments
on Penn TreeBank. In this experiment, we report the curve
of perplexity vs. epochs to validate our proposed algorithm’s
training acceleration. Note that the lower perplexity, the better.
The experimental results are shown in Figure 4. As observed,
our proposed algorithm is able to quickly obtain a lower
perplexity than the other algorithms; this verifies the theo-
retical superiority of our proposed algorithm on the language
modeling task.

B. SAdamBS: Bandit Sampling for Strongly Convex Optimiza-
tion

In the original article [16], SAdam is proved to converge
faster than the other algorithms under strongly convex and
even non-convex conditions. Since the SAdamBS we proposed
is derived from SAdam, SAdamBS is also a strongly convex
training algorithm. For this reason, we follow the settings of
SAdam and provide two groups of experiments to verify the
performance of SAdamBS. The first is to solve the problem of
mini-batch /-regularized softmax regression, which is a typical
strongly convex optimization problem. The second is to train
artificial neural models for image classification, which is a
classical non-convex optimization problem [16].

1) Regression Problem: In this experiment, we consider a
classical online strongly convex optimization problem, i.e., the
problem of mini-batch ¢-regularized softmax regression. We

exploit the following strongly convex function to measure the
loss value for this problem:

N wTXv—Q—b .
1 e vt Y
J(w,b) =— — log| ———
( ) N; ¢ (ZK 16w?xj+bj)

=
K K

) Iwell* + A2 Y0,
k=1 k=1

where {(x;,y;)}Y; denotes a mini-batch of training samples,
N is the batch size, y; € [K],Vi € [N], K is the number of

(28)
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Fig. 3. Convex optimization: Test accuracy of image classification on CIFAR-10 and CIFAR-100 for 200 epochs.

classes, and {w;,b;}[X, represents model parameters. More-
over, both Ay and X\, are set to 0.01.

The results are shown in Figure 5. It can be seen that
our proposed algorithm quickly achieves lower loss than the
others, which verifies the acceleration effect of the bandit
sampling method on strongly convex algorithms. Therefore,
the faster convergence of SAdamBS is verified in the strongly
convex optimization task. Moreover, we further conduct a
group of experiments to validate the performance of our
proposed algorithm on test accuracy, which is plotted in Figure
6. It shows that our proposed algorithm again achieve a
good performance on test accuracy in 100 epochs on the /5-
regularized softmax regression problem.

2) Image Classification: In this experiment, we evaluate
our proposed algorithm and the comparison algorithms in a

non-convex optimization task. Specifically, we use the same
experimental settings as [16]: for MNIST, the CNN model
contains two layers of 3 x 3 filters, its max pooling is with
size 2 x 2 applied to the second convolution layer that follows
a fully connected layer of 128 hidden units; for CIFAR-10 and
CIFAR-100, the CNN model has 4 layers of 3 x 3 filters and
2 x 2 max pooling, its dropping probability is 0.25 applied to
the second and fourth convolution layers, and it is followed
by a fully connected layer of 512 hidden units.

The experimental results for image classification are shown
in Figure 7. As we know, recent studies have indicated that
the original SAdam could achieve superior performance even
in artificial neural network training tasks which are highly
non-convex cases [16]. For this reason, we present this group
of experiments to validate that our proposed algorithm also
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outperforms the others on quickly achieving lower training
loss in machine learning cases. Furthermore, we observe the
test accuracy performance of all executed algorithms in this
experiment under strongly convex settings. Although our aim
is to propose a faster convergence algorithm, in the image
classification task using the 4 layers network in the non-convex
case, the resulting curves in Figure 8 show that our proposed
algorithm has test accuracy advantage within 100 epochs. We
believe this is the additional benefit brought by the proposed
algorithm for extracting informative samples at each iteration.

VII. CONCLUSION AND FUTURE WORK

In this paper, we present two accelerated optimization
algorithms exploiting bandit sampling. First, we focus on the
convex optimization problem, and propose AdaBeliefBS that
extends the general framework of AdaBelief. AdaBeliefBS

utilizes the bandit sampling method to select informative
samples from the full training sample set, thereby accelerating
the convergence rate of the convex optimization algorithm.
Second, we further consider whether bandit sampling could
accelerate the training process of strongly convex optimization.
The proposed algorithm SAdamBS follows the framework
of SAdam and accelerates the strongly convex algorithm by
exploiting bandit sampling. Moreover, we provide complete
proofs for the convergence of our proposed algorithms. The
theoretical conclusions indicate that the two proposed algo-
rithms achieve tighter regret bounds compared to their original
variants. Furthermore, to verify our algorithms empirically,
we conduct a series of experiments on benchmark MNIST,
CIFAR-10, CIFAR-100, and Penn TreeBank datasets for deep
learning and machine learning tasks including image clas-
sification and language modeling. The results clearly show
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that our proposed algorithms are effective in accelerating the
training processes for different deep learning and machine
learning tasks whilst maintaining good generalization ability.

We have demonstrated that the bandit sampling method
can accelerate AdaBelief and SAdam, and infer that bandit
sampling can benefit most training algorithms. However, the
theoretical proof to support this general inference has not
yet been established. Therefore, we plan to address this
outstanding challenge in future.

VIII. BROADER IMPACT

Pattern recognition and deep learning have been widely
applied in many fields, such as image recognition and nature
language processing. However, the time-consuming training
process brings difficulties for practical application of deep
learning. To address this open problem, we innovatively ex-
ploit the bandit sampling method to reduce training time of
both convex and strongly convex algorithms. Our proposed
algorithms can select informational samples to train the mod-
els by utilising bandit sampling. We believe our methods:
AdaBeliefBS and SAdamBS can be applied to all scenarios
where their original versions can be used, and take less training
time. In conclusion, our methods have the potential to deliver
broad impact in many real-life applications that rely on these
algorithms.
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APPENDIX
A. Proof of Theorem 2
Proof. Lemma 3 in [11] has proved that
- lles 2 i
min 220 < Bslogd min —, (29)

Pj > Pmin J=1 j P>Pmin “

where 83 € (0,1], and v > 2. Plugging equation (29) into

inequation (18), we have:

Vda(l+ 81)v1+1ogT LVR
N\/ 26K(1 — /31)3 Pmin

n Vida(l + 1)+ logT

R(T) < (2NT)/!

N .
-
BsTlogd min > L —

NVEV2¢(1 - 61)3 P2Pmin S Pj
dG e D2 NT D2,81Go 30)
2a(1- 1) " 2a(l—-B)(1—- A2
From Proposition 5 in [30], we know
N .,
B3logd min Z - O(log® N). 31

P2Pmin = Dj
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By inequation (30) and equation (31), we attain:
/ 2
R(T) < O(dVT) + O <l‘;\gfjv””\/%gd\/T(1 ¥ 10gT)> e
Therefore, the proof of Theorem 2 is completed. ]

B. Proof of Theorem 4

Proof. According to Theorem 1 from [16], we know that
the regret bound of SAdam is as follows:

T
> Lfelxe) = fe(x)] § 3210g ZQJ, +1
t=1 ) C(S

dD?.s dB1 DgO(G%;, +9)
2a(1 —B1)  2a(l —p1)(v—1)2°

Since we use bandit sampling in the SAdamBS optimization
algorithm, the gradient expectation should be considered in
its convergence analysis. For this reason, the regret bound of
SAdamBSg can be attained as follows from inequation (33):

a¢ (L ek
6l Sm§l°g (caZE[Gt’J “)
. dD2. 6 dp1 D2 (G% +9)
2a(1 — 1) 2a(l—pB1)v—1)2

For a mini-batch with K samples at time t, its gradient of
gt 1

(33)

Z fe(xe)
t=1

(34)

the i-th dimension is G‘t,i = Il( k 1 “ =% Zk 1N
Therefore, inequation (34) can be rewritten as:

Z fe(xe) (X*)]
t=1
o s 1 E g 2
< —"— 1 ~< E|—= =
7(1751)3;()“; gé; K;Npk
L 4D dBiDA(G5 +9)
2a(1—/31) 2a(1 = pr)(v —1)?
Tk 2
Gt,i
S 320g(g5N2K2;;E_pf +1>
N dDio(s dp1 D3, (G2 +6)
20(1 = p1)  2a(1 — ﬂl)(’/ - 1)2
- QC Zlog ZZE XN: (ggmp’ +1
I 46N2K2 S = e
N dpgocs dB1 D%, (G2, + )
20(1 = p1)  2a(1—pB1)(v—1)2
d T N (532
al 1 (9i,)
TR ; % (&KN? 2 ; v )
dD2,§ dB1 D% (G% +6)
. 35
T 20— ) " 20(1—B)(v—1) &
Therefore, the proof of Theorem 4 is completed. |

C. Proof of Theorem 5

Proof. In SAdam, the examples are sampled with uniform
distribution, thus p; = 1/N for all j € [1, N]. From Lemma 2
of [11], we have

E (36)

g7, ZIIQ _
Z = B3N log N log d.
j=1 pt

By plugging inequation (36) into Theorem 1 of [16], we
directly attain inequation (23). Therefore, the proof of The-
orem 5 is completed. ]
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