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Unsupervised Monocular Depth Estimation in
Highly Complex Environments

Chaoqiang Zhao, Yang Tang, Senior Member, IEEE, Qiyu Sun

Abstract—With the development of computational intelligence
algorithms, unsupervised monocular depth and pose estimation
framework, which is driven by warped photometric consistency,
has shown great performance in the day-time scenario. While
in some challenging environments, like night and rainy night,
the essential photometric consistency hypothesis is untenable
because of the complex lighting and reflection, so that the above
unsupervised framework cannot be directly applied to these
complex scenarios. In this paper, we investigate the problem
of unsupervised monocular depth estimation in highly complex
scenarios and address this challenging problem by adopting an
image transfer-based domain adaptation framework. We adapt
the depth model trained on day-time scenarios to be applicable to
night-time scenarios, and constraints on both feature space and
output space promote the framework to learn the key features
for depth decoding. Meanwhile, we further tackle the effects of
unstable image transfer quality on domain adaptation, and an
image adaptation approach is proposed to evaluate the quality
of transferred images and re-weight the corresponding losses,
so as to improve the performance of the adapted depth model.
Extensive experiments show the effectiveness of the proposed
unsupervised framework in estimating the dense depth map from
highly complex images.

Index Terms—Unsupervised estimation, domain adaptation,
monocular depth estimation, night, rainy night.

I. INTRODUCTION

Depth is one of the most important information for au-
tonomous systems in perceiving their surroundings and their
own states [1], [2]. Therefore, the accurate estimation of the
depth information from monocular images has become a hot
topic in recent years and been used to improve other perception
tasks [3]. Structure from motion and stereo matching are two
main ways to recover the depth information based on the
geometric relationship between images, and these methods
are widely used in traditional SLAM methods to map the
environments [4], [5]. With the development of computational
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Fig. 1. The monocular depth predictions of the proposed method at night
and rainy night. Note that the encoders of the above three depth models are
adapted from the same basic encoder, and their decoders are the same.

intelligence algorithms [6]–[8], deep learning algorithms have
shown great performance in many tasks [9], [10], and using
deep neural networks to estimate the pixel-level dense depth
from only a single image is becoming possible and has
attracted much attention [11]. Recently, different kinds of deep
learning-based monocular depth estimation frameworks have
been proposed, including supervised methods, semi-supervised
and unsupervised methods [12]–[14]. Because of the costly
ground truth, geometric constraints are gradually replacing
ground truth for the training of depth networks, and the
unsupervised framework has become a promising direction for
monocular depth estimation [15].

In the unsupervised framework of monocular depth estima-
tion [16], [17], the geometric constraints between adjacent im-
ages are considered to supervise the network training. There-
fore, only monocular image sequences and camera parameters
are needed during the training process. This unsupervised
framework is mainly composed of two deep neural networks,
including a depth network to regress the dense depth from
single images and a pose network to estimate the pose between
two frames. Based on the estimated depth map and pose,
the geometric relationship between images is built on the
projection function. The mainly supervised signal is calculated
from the photometric error of corresponding pixels between
adjacent images by using view reconstruction [16], [18].

However, since the unsupervised signal is built on pro-
jection consistency, the above unsupervised framework [16],
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[18] suffers from two big limitations, the static scenario
hypothesis and the photometric consistency hypothesis. For
the static scenario hypothesis, since the pixels on moving
objects do not satisfy the projection function of camera ego-
motion, which leads to incorrect calculation of the loss during
training, thereby affecting the accuracy of the depth network
[19]. Incorporating semantic information into the unsupervised
framework is an effective way to recognize moving objects and
eliminate their influence, and relevant results have emerged
[19], [20]. For the photometric consistency hypothesis, since
the training of the unsupervised framework relies heavily on
the photometric error, the photometric consistency of the same
pixel on different images is crucial to the overall framework
[21]. Since all objects are illuminated by the same light source
(sun) during the day, the photometric consistency assumption
is basically valid, just like that in traditional direct visual
odometer methods [22], [23]. Therefore, almost all of the
current unsupervised monocular depth estimation methods are
trained and tested on day-time images. When the environment
changes into other highly complex conditions, like night and
especially rainy night, static objects with non-Lambertian or
high reflectance surfaces in the night/rainy night with dynamic
lighting conditions violate the photometric consistency be-
tween frames. Besides, objects with low luminance in the night
lack reliable cues for providing accurate correspondences. The
problem of estimating monocular depth in such varying envi-
ronments is challenging but practical and important. Mean-
while, the perception of changing and complex environments
is crucial for autonomous systems [24], [25], like robots and
autonomous driving cars, and this problem has only received
some initial attention [21], [26].

Because of the limitations of the unsupervised framework
in complex scenarios, we tackle this challenging problem by
using an image transfer based domain adaptation framework.
Instead of training the unsupervised framework on the images
from complex environments, we adapt the model trained
by day-time images to other complex environments, thereby
circumventing the photometric inconsistency in complex en-
vironments and achieving satisfactory depth estimation in an
unsupervised way in the highly complex environments. We
only adapt the encoder of the depth network by following
[26]. An additional encoder is designed to encode the images
of complex environments, and after adaptation, the encoders
for complex environments share the same feature space with
the day-time encoder. Besides, the adapted encoders for dif-
ferent scenarios share the same decoder for monocular depth
estimation in different complex scenarios, which is meaningful
for practical applications. Therefore, this method not only
reduces computational complexity but also facilitates practical
applications: switching different encoders for adapting various
environments. Different from [26] using adversarial domain
adaptation in feature space for night-time depth estimation, we
propose to adopt the image transfer-based domain adaptation
framework and constrain the training from both feature space
and output space, which is more stable and accurate [27],
[28]. Besides, for image transfer based domain adaptation
framework, the generated paired images are used to get pseudo
labels from the known models and supervise the adaptation

process. Poor generated images result in wrong pseudo labels
and affect the training process, which is not considered in
previous works. Therefore, in this paper, we consider the
errors introduced by the unstable image transfer, and an
image quality adaptation approach is proposed to evaluate
the quality of the transferred images and reduce their effects.
The proposed image transfer-based domain feature adaptation
(ITDFA) framework not only can be used for night-time depth
estimation, but also shows outstanding performance on more
challenging rainy night-time images, as shown in Fig. 1.

In summary, in this paper, we analyze and tackle the
unsupervised monocular depth estimation problem in three
typical and challenging scenarios (night, rainy night), in-
cluding proposing the ITDFA framework, constructing novel
training/testing sets on different scenarios, digging into the
continuous adaptation ability of the ITDFA, and exploring the
influence of the image transfer model on ITDFA. Our main
contributions are as follows:
• This paper analyzes the major reason for the limited

performance and application of the current unsupervised
monocular depth estimation framework, and we tackle the
problem of unsupervised monocular depth estimation in
highly complex environments by using domain adapta-
tion.

• Image transfer-based unsupervised domain adaptation is
applied to estimate monocular depth from challenging
scenarios, like night and rainy night. To reduce the effects
of the unstable image transfer quality, we propose an
image quality adaptation approach to evaluate the quality
of the transferred images and re-weight the corresponding
losses.

• Extensive experiments and results on the RobotCar
dataset [29] show the effectiveness of our proposed
method in highly complex environments.

II. RELATED WORK

In this section, we introduce the popular unsupervised
monocular depth estimation framework [16], which is trained
on monocular sequences. Firstly, many recent research re-
sults for improving this unsupervised framework are briefly
reviewed, from the perspectives of occlusions, static scenario
hypothesis and photometric consistency hypothesis. Then, we
review the framework combined with domain adaptation, in
which depth models are trained on synthetic datasets and then
adapted to real-world scenarios through domain adaptation.

Unsupervised framework. To circumvent the need for
costly ground truth, Zhou et al. [16] propose to use geometric
constraints between frames instead of ground truth to train a
depth network. Their framework contains a depth network for
monocular depth estimation and a pose network for inter-frame
pose estimation. Then, based on the projection function estab-
lished by the estimated pose and depth, the view reconstruction
is designed to warp and construct the target frame from its
adjacent frame. The photometric error between the warped and
real target images is used to supervise the training process, so
that the depth and pose networks are trained in an unsupervised
manner. To improve the accuracy of depth estimation, several
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novel loss functions and network frameworks are proposed,
which are well reviewed in [11].

Photometric inconsistency. Photometric inconsistency is
one of the major reasons for the limited performance and
application of the unsupervised framework. For some highly
complex environments, like night-time environments and more
challenging rainy night-time environments, due to the complex
lighting conditions, e.g., street lamps, car lights, and especially
the reflection of light from the road caused by rain, the
essential photometric consistency hypothesis is untenable, so
the unsupervised framework shows unsatisfied accuracy and
robustness. The unsupervised monocular depth estimation in
such complex scenarios is a largely under explored domain,
and only a few methods for night-time monocular depth
estimation have been proposed most recently [21], [26]. To
overcome the photometric consistency of images, Spencer et
al. [21] propose to use dense feature representation of images
for unsupervised training. Since the corresponding features
between different images are consistent and unaffected by
light, this unsupervised framework can well adapt to night-
time scenarios. Nevertheless, since the whole framework is
unsupervised, their framework still needs the help of photo-
metric error during training. Different from [21], Vankadari
et al. [26] regard this challenge as a domain adaptation
problem. The depth and pose networks are trained on day-
time scenarios by following [18] at first. Then, an additional
encoder is designed to encode the night-time images, and an
adversarial domain feature adaptation method is used to adapt
the features encoded by the day-time encoder and night-time
encoder. Since the output of the encoder are multi-scale high-
dimensional feature maps, they design multiple discriminators
to constrain each scale feature map. However, adjusting the
adversarial framework consisting of multiple discriminators
and a generator is extremely complex, which influences its
stability for applying to other scenarios [30], [31]. Moreover,
although adversarial learning helps to reduce the distance
between the distributions of day and night feature spaces, the
key features for depth decoding are not valued because the
decoder is not involved in their domain adaptation process.

Domain adaptation. Due to the domain shift, like dif-
ferences in the background, lighting, weather, and so on of
images between different datasets/domains, the performance
of the trained model may degrade significantly when it was
applied to other datasets [32]–[34]. Therefore, a domain adap-
tation framework is proposed to transfer the model from one
domain to another for the same task [35], and most recently,
adaptation between multiple domains has received a lot of
attention [36], [37].

In monocular depth estimation, domain adaptation algo-
rithms are mainly applied to adapt the model trained on
synthetic datasets to real-world datasets [38]–[40]. Compared
with the ground truth obtained by different sensors in the real-
world, the ground truth obtained from virtual environments is
cheaper and easier. The depth model is trained on synthetic
and real-world datasets and supervised by the ground truth
of synthetic datasets. Since supervised training can get more
cues than unsupervised training, this method achieves better
accuracy on monocular depth estimation than unsupervised

methods, and it provides a new way to circumvent the need
for costly ground truth at the same time. Most recently, the
LAB-based images transfer approach is proposed to transfer
images between domains for domain adaptation [41]. While
for the night-time scenario, the above frameworks cannot
work because it is difficult to generate synthetic night-times
images that can capture all the vagaries of real-world night
conditions [26], let alone rainy night-time scenarios and even
more complex scenarios. Therefore, to tackle the unsupervised
monocular depth estimation in highly complex environments,
we use unsupervised domain adaptation to transfer the model
trained on day-time images to work for night-time and rainy
night-time images.

To increase the applicability and reduce the computational
complexity, our model only adapts the encoders during training
by following [26], but our model ITDFA does not need
to consider the stability of adversarial learning. Meanwhile,
Vankadari et al. [26] only consider the adversarial constraint
on feature space, while this paper constrains the training of
the encoder from both feature space and output space. The
constraints on output space help the encoder to focus on
learning the key features of depth decoding. Similar to the
concurrent work [42], the CycleGAN-based image transfer
method is introduced to generate paired images between
day and night because it can well mimic nighttime lighting
conditions, and the transferred images are used to gener-
ate pseudo labels and then supervise the training process.
However, as shown in Fig. 3 (a), poor transferred images
will generate wrong pseudo labels and supervised signals,
which will affect the performance of the network. We want to
tackle the above problems by evaluating the transferred images
and thus reducing their effect on training. However, since
the transfer models are trained in an unsupervised manner,
and there are no real paired images between domains, it is
difficult to demonstrate the quality of transferred images. After
lots of experiments, we find a new method to reflect the
quality of the transferred images, which is described in the
next section in detail. Hence, our proposed image transferred
domain adaptation model achieves a better performance than
[26], [42] in the night-time scenario. Moreover, they [26], [42]
only address the unsupervised monocular depth estimation on
night-time images, while our framework can also do well in
more challenging rainy night-time scenario.

Discussion: Why not adopt a framework that directly com-
bines image style transfer with monocular depth estimation:
the images from complex environments are first transferred to
normal day-time style and then use the day-time depth model
to estimate the depth. After testing, we find this is a possible
way to solve the problem, as shown in lines 1-2 of Fig. 3
(a). Nevertheless, poor real-time performance will limit the
application of this framework because of the two-step process.
Besides, since the accuracy of depth estimation relies heavily
on the quality of transferred images, this approach has great
instability in practical applications, as shown in lines 3-4 of
Fig. 3 (a). The proposed ITDFA framework can get a new
model for the new scene and predict the depth in an end-
to-end manner. Moreover, since only the encoder is trained,
our method can get multiple encoders for multiple scenes, and
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Fig. 2. The framework of ITDFA for unsupervised monocular depth estimation in highly complex environments. In (a), the unsupervised monocular depth
estimation framework follows monodepth2 [18]. In (b), our ITDFA framework contains two modules, image transfer module and depth adaptation module. Id
and IX refer to the image from day-time scenario and one of the complex scenarios, and Od and OX stand for their corresponding depth maps. The encoder
Ed and decoder Dd trained by day-time images do not update their weights during training.

these encoders share the same decoder, which is very practical.

III. METHODS

In this section, we will introduce the overall ITDFA frame-
work, loss functions for training as well as the image quality
adaptation strategy proposed in this paper.

A. Unsupervised depth estimation part

We use the famous unsupervised framework, monodepth2
[18], to acquire the trained depth network in an unsupervised
manner, which is shown in Fig. 2-a. Monodepth2 [18] has been
widely used as the basic unsupervised framework in this field
because of its high practicability and accuracy [20], [21], [43].
For the day time scenario, the unsupervised monocular depth
estimation is formulated as the minimization of the per-pixel
minimum reprojection error:

Lp = minΨ(It , Is→t), (1)

Ψ(Ia, Ib) =
α

2
(1−SSIM(Ia, Ib))+(1−α)||Ia− Ib||1, (2)

and
Is→t = Is〈pro j(Ot ,Tt→s,K)〉, (3)

where ||.||1 refers to the L1 distance in pixel space, and pro j
stands for the 2D coordinate projection based on the predicted
dense depth map Ot of the target image It and the related pose
Tt→s between target It and source images Is. Meanwhile, the
edge-aware smoothness loss is also used to improve the depth
map Ot :

Lsmooth = |∂xo∗t |e∂xIt + |∂yo∗t |e∂yIt , (4)

where d∗t = ot/ôt represents the mean-normalized inverse
depth.

The monodepth2 framework is supervised by combining the
per-pixel smoothness loss and masked photometric loss on the
day-time scenario. The depth model consisting of an encoder
Ed and a decoder Dd is used in the proposed ITDFA. The
depth model learns a mapping from the day-time images Id to
the pixel-level depth maps Od :

Od = Dd(Ed(Id)). (5)

B. Image transfer part

Since the LAB-based image transfer approach [41] cannot
well simulate the complex and heterogeneous lighting condi-
tions at night, we utilize the CycleGAN-based framework [44]
to transfer the images between scenarios. During training, the
full objective is:

Gd2X ,GX2d = argmin
G

max
D

L(Gd2X ,GX2d ,Dd ,DX ), (6)

L(Gd2X ,GX2d ,Dd ,DX ) = LCC +LD, (7)

where Gd2X tries to generate images Gd2X (Id) that look similar
to images from domain X , while DX aims to distinguish
between translated samples Gd2X (Id) and real samples X . LCC
and LD refer to the cycle consistency loss and adversarial loss:

LCC(Gd2X ,GX2d) = EId∼pdata(Id)[||GX2d(Gd2X (Id))− Id ||1]
+EIX∼pdata(IX )[||Gd2X (GX2d(IX ))− IX ||1]

,

(8)
and

LD = LD(Gd2X ,DX , Id , IX )+LD(GX2d ,Dd , IX , Id), (9)
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and all of the above constraints used for training image transfer
models (Gd2X and GX2d) are following Zhu et al. [44].

In this paper, for different complex environments, different
image transfer models (Gd2X and GX2d) based on CycleGAN
[44] are needed to transfer the images between day-time style
d and different complex environmental styles X :

Îd2X = Gd2X (Id), day to X
ÎX2d = GX2d(IX ), X to day
Îd2X2d = GX2d(Gd2X (Id)), cycle transfer
ÎX2d2X = Gd2X (GX2d(IX )), cycle transfer

, (10)

where X refers to night n or rainy night r. In addition, to
verify the continuous transfer ability of the model obtained
through domain adaptation, we also train an additional image
transfer model between night-time style and rainy night-time
style (Gn2r and Gr2n).

C. ITDFA part

As shown in Fig. 2-c, an encoder EX is designed to encode
the features of images from highly complex scenarios to the
same feature space as the features of day-time images encoded
by the day-time encoder Ed . In ITDFA, the pre-trained day-
time encoder Ed is used to encode the day-time images and
obtain their corresponding feature maps f :{

fd = Ed(Id)
fX2d = Ed(ÎX2d)

, (11)

where Id refers to the real day-time images, and ÎX2d stands
for the fake day-time images generated by CycleGAN model
GX2d from the highly complex scenario X . The encoder EX
for complex environments has the same network framework
as the day-time encoder Ed , and it is used to encode the real
and fake images of highly complex scenarios and obtain their
feature maps f : {

fX = EX (IX )
fd2X = EX (Îd2X )

, (12)

where IX refers to the real images from highly complex
scenarios, and Îd2X stands for the fake images transferred
from day-time scenario d. The pre-trained decoder Dd is
used to decode the features from Ed and EX and obtain their
corresponding depth maps O:

Od = Dd( fd)
OX2d = Dd( fX2d)
OX = Dd( fX )
Od2X = Dd( fd2X )

. (13)

During training, the weights of Ed and Dd are fixed, and only
EX is updated.

During testing, the depth map can be estimated from the
images of highly complex scenarios in one-step:

OX = Dd(EX (IX )). (14)

Training losses: The ITDFA framework is an unsupervised
framework, and neither ground truth nor real paired images are
used to train the depth model, CycleGAN model and domain
adaptation model. As shown in Fig. 2, different constraints

are designed to supervise the training process, including the
feature consistency loss LFC on feature space, and the depth
consistency loss LOC as well as smoothness loss LOS on output
(depth) space. Therefore, the overall loss function for training
the encoder EX is formulated as:

LDA = LFC +βLOC + γLOS. (15)

Feature consistency loss: Based on the pre-trained Cycle-
GAN model, we can get the paired images from day-time
scenario and highly complex scenario, like Id with Id2X and
IX with IX2d . Therefore, to promote the consistency of different
encoders in feature space, we direct minimize the error of the
feature maps, which are encoded by Ed and EX from these
image pairs:

LFCL1 = L1( fd , fd2X )+L1( fX , fX2d). (16)

Moreover, inspired by style transfer methods and related works
[42], [45], [46], to enhance the consistency of correlations
between features, the Gram Matrices G between features are
calculated to further improve the feature consistency:

LFC = LFCL1 +αLFCGram

= L1( fd , fd2X )+L1( fX , fX2d)
+L1(G ( fd),G ( fd2X ))+L1(G ( fX ),G ( fX2d))

. (17)

α , β and γ are the weights of each loss function for training.
Depth consistency loss: Although the above loss can help

to promote the consistency of feature space between the two
encoders, the ultimate goal is the depth map rather than
the feature map, and the contribution of different features to
the depth decoding is different. To further constrain the key
features of feature maps for depth decoding, we design a depth
consistency loss in output space:

LOC = L1(Od ,Od2X )+L1(OX ,OX2d). (18)

Smoothness loss: Moreover, to promote the smoothness of
the generated depth map, we propose to utilize the edge-aware
smoothness during training, which is widely used in previous
unsupervised depth framework [18], [47], [48]:

LOS = |∂xO∗d2X |e∂xId + |∂yO∗d2X |e∂yId , (19)

where O∗d2X = Od2X/Ōd2X represents the mean-normalized
inverse depth. Note that this loss is established between
the real day-time image Id and the depth map Od2X of its
corresponding transferred images Îd2X .

D. Image quality adaptation part

Inspired by the cycle consistency of CycleGAN during
the training, we try to use the consistency between the raw
image and cycle transferred image to report the performance.
Nevertheless, this method cannot work well because of the
overfitting, as shown in columns 1 and 3 of Fig. 3 (b).
After a series of tests, we found that using the models
saved from different epoch can demonstrate the quality of the
transferred images. As shown in column 4 of Fig. 3 (b), for the
good generated images, our method can generate good cycle
images; while for the poor generated images, our method can
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(a) Errors introduced by unstable image transfer

Unstable Transfer
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Cycle Transfer

Cycle Transfer

(b) Methods to reflect the quality of transferred images

Fig. 3. Samples of applying CycleGAN [44] for monocular depth estimation in complex environments. As shown in (a), since the CycleGAN-based image
transfer method is instable, the wrong image conversion will introduce the incorrect depth estimation into training. To reduce the effects of unstable transfer
on domain adaptation, the quality of transferred image (2nd column in (b)) should be accurately evaluated, and our proposed method reflects the quality
effectively(4th column in (b)).

well reflect the poor regions of the images. Therefore, we
compute the SSIM loss between the raw image (I) and cycle
transferred image Îcycle = GN(G(I)) to quantify the quality of
the transferred image Î = G(I). GN refers to a fixed transfer
model saved at initial epoch N, in this paper, we set ‘N’ = 30
in the training process.

During training, unpaired day and night time images are
sent to the transfer network and depth network during training.
Since the quality of transferred images varies from model to
model and image to image, we evaluate the image quality and
re-weight their domain adaptation loss LDA based on our image
adaptation method:

Ltotal = (1−η)Ld
DA +ηLX

DA, (20)

where Ld
DA and LX

DA refer to the losses calculated from day-
time input image flow and night/rainy night image flow. η

stands for:

η =
(1−SSIM(Id , Îd

cycle))

((1−SSIM(Id , Îd
cycle))+(1−SSIM(IX , ÎX

cycle)))
. (21)

However, the above weight η can only adjust the training
process to pay more attention to good transferred image sam-
ples in each input pair, and it cannot completely eliminate the
effects of poor transferred images. In the training framework,
the pseudo depth labels are the depth maps predicted by pre-
trained daytime models from real and transferred day-time
images. As shown in the negative samples in Fig. 3 (a), if
we directly use L1 to constrain the consistency of depth maps
(Eq. 18), the night-time depth model will be supervised by
wrong labels.

Therefore, to filter the errors introduced by instable image
transfer, inspired by the minimization loss used in monodepth2
[18], we propose a minimization loss to solve the above errors:

LOC = Min(< Od ,Od2X >,< Od2X ,Od2X2d >)
+Min(< OX ,OX2d >,< OX2d ,OX2d2X >)

, (22)

where Od2X2d and OX2d2X stand for the depth maps predicted
by the cycle transferred images În

d2X2d = GX2d(Gn
d2X (Id)) and

În
X2d2X = Gn

d2X (GX2d(Id)). As shown in the negative samples

in Fig. 3 (b), the proposed cycle transferred method can reflect
the quality of transferred images, which means that the depth
of transferred images is consistent with the depth of raw image
or the depth of cycle transferred images. With the help of
minimization loss, LOC helps the network learn from the more
accurate pseudo labels.

IV. EXPERIMENTS

A. Datasets

Since this paper focuses on the unsupervised monocular
depth estimation in multiple highly complex environments,
we choose the publicly available Oxford RobotCar dataset
[29] as our training and testing sets. RobotCar dataset [29] is
one of the most famous outdoor datasets, and it contains the
image sequences collected in all weather conditions, including
rain, night, direct sunlight and snow. The image sequences
captured by the left camera of Bumblebee XB3 are used for the
experiments of this paper. The images are manipulated to RGB
style from the raw recordings with the resolution of 1280x960,
and we crop the car-hood of the images and resize them to
512x256. For the day-time and night-time scenarios, we use
the sequences from 2014-12-09-13-21-02 and 2014-12-16-18-
44-24, which are the same as [26] for a fair comparison. For
the rainy night-time scenario that have not received attention
in recent research, we choose the sequences from 2014-12-17-
18-18-43.

B. Training and testing sets setup

Training sets: For the day-time depth model, the 5 splits
of the day-time sequence are used to train the unsuper-
vised framework [18], and the basic pre-trained depth model,
monodepth2 (day), is obtained for ITDFA. To improve the
performance of this depth model, 15,000 images are uniformly
selected from 5 splits for training, and the training set does
not include the images taken while parking. For the image
transfer model, 5000 images of each scenario are random
selected to obtain the image transfer models between different
scenarios by using CycleGAN [44]. The selection of these
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TABLE I
Comparison with the unsupervised depth estimation methods for night-time scenarios. “M” means that the supervisory signals mainly come from monocular

sequences.

Error Metrics (Lower is better) Accuracy (Higher is better)

Method Supervision Depth-range (m) Abs Rel Sq Rel RMSE RMSE log δ < 1.251 δ < 1.252 δ < 1.253

Monodepth2 (d) [18] M 40 0.4240 3.8665 8.3071 0.4562 0.317 0.595 0.828
Monodepth2 (n) [18] M 40 0.2484 5.0838 8.3473 0.3215 0.746 0.882 0.931
Vankadari et al. [26] M 40 0.2005 2.5750 7.172 0.278 0.735 0.883 0.942

Liu et al. [42] M 40 0.233 2.344 6.859 0.270 0.631 0.908 0.962
ITDFAd2n(JT) M 40 0.2274 1.4327 5.5849 0.2855 0.573 0.889 0.953
ITDFAd2n(ST) M 40 0.1469 0.9963 4.6851 0.2065 0.778 0.928 0.973

Monodepth2 (d) [18] M 60 0.5009 6.2895 11.5469 0.5100 0.295 0.538 0.756
Monodepth2 (n) [18] M 60 0.2899 6.8150 11.9479 0.3562 0.665 0.846 0.914
Vankadari et al. [26] M 60 0.2327 3.783 10.089 0.319 0.668 0.844 0.924

Liu et al. [42] M 60 0.231 2.674 8.800 0.286 0.620 0.892 0.956
ITDFAd2n(JT) M 60 0.2789 2.4936 8.5216 0.3350 0.453 0.821 0.937
ITDFAd2n(ST) M 60 0.1869 1.7752 7.370 0.252 0.692 0.889 0.961

TABLE II
Comparison with the unsupervised depth estimation methods for rainy night-time scenarios.

Error Metrics (Lower is better) Accuracy (Higher is better)

Method Supervision Depth-range (meter) Abs Rel Sq Rel RMSE RMSE log δ < 1.251 δ < 1.252 δ < 1.253

Monodepth2 (d) [18] M 40 0.4297 4.7547 8.780 0.463 0.369 0.640 0.828
Monodepth2 (r) [18] M 40 0.3902 50.8281 14.945 0.386 0.616 0.837 0.915

ITDFAd2r M 40 0.1642 0.9688 4.5737 0.2252 0.733 0.932 0.983
ITDFAd2n M 40 0.1678 1.0283 4.6862 0.232 0.733 0.922 0.976

ITDFAd2n2r M 40 0.1495 0.9116 4.3658 0.2117 0.780 0.940 0.983
Monodepth2 (d) [18] M 60 0.4838 6.7168 11.357 0.509 0.343 0.596 0.781
Monodepth2 (r) [18] M 60 0.4211 48.4135 17.129 0.423 0.541 0.794 0.897

ITDFAd2r M 60 0.1990 1.7338 6.9703 0.272 0.654 0.882 0.961
ITDFAd2n M 60 0.2060 1.8000 7.0483 0.280 0.644 0.878 0.958

ITDFAd2n2r M 60 0.1788 1.5625 6.5729 0.2530 0.716 0.902 0.967

TABLE III
Quantitative results for ablation study on RobotCar dataset [29] using the night-time images. Depth range is 40m.

LFC LO Error Metrics (Lower is better) Accuracy (Higher is better)

LFCL1 LFCGram LOC LOS Image adaptation Abs Rel Sq Rel RMSE RMSE log δ < 1.251 δ < 1.252 δ < 1.253
√ √

0.1675 1.3213 5.2446 0.2342 0.749 0.908 0.962√ √ √
0.1561 1.1678 4.9162 0.2161 0.767 0.921 0.967√ √
0.1637 1.1603 5.2037 0.2264 0.727 0.918 0.970√ √ √
0.1664 1.0535 4.8925 0.2222 0.739 0.927 0.972√ √ √ √ √
0.1469 0.9963 4.6851 0.2065 0.778 0.928 0.973√ √ √ √
0.1545 1.0954 4.8664 0.2140 0.764 0.925 0.970

LFC LO Image adaptation “N=” Abs Rel Sq Rel RMSE RMSE log δ < 1.251 δ < 1.252 δ < 1.253
√ √ √

latest 0.1501 1.0664 4.8121 0.2105 0.775 0.926 0.971√ √ √
50 0.1510 1.0585 4.7674 0.2118 0.775 0.926 0.970√ √ √
30 0.1466 0.9824 4.6649 0.2062 0.780 0.929 0.972√ √ √
20 0.1582 1.0953 4.8872 0.2174 0.750 0.922 0.971

images follows the rules before. To address the problem of
unsupervised monocular depth estimation in night-time and
rainy night-time scenarios, three image transfer models should
be pre-trained for ITDFA: between day and night (Gd2n and
Gn2d), and between day and rainy night (Gd2r and Gr2d).
In addition, to verify the continuous transfer ability of the
model obtained through domain adaptation, we also train an
additional image transfer model between night and rainy night
(Gn2r and Gr2n). During training the ITDFA, the training sets
used for domain adaptation are the same as that of the image
transfer model.

Testing sets: During testing, for the night scenario, the
testing set is the same as [26] for a fair comparison, which
contains 500 night images 1. While for the more complex

1https://github.com/zxcqlf/RobotCar DepthGT Generate

rainy night scenario, 300 rainy night-time images are randomly
selected from the remaining splits of each sequence to test the
model obtained by ITDFA. The evaluation metrics used in this
paper follow previous monocular methods [11], [18], [26], and
we evaluate the depth models from the aspect of error and
accuracy with different depth range (40m and 60m).

C. Experimental setup

The experiments are implemented by using Pytorch frame-
work on an NVIDIA RTX 2080 Ti GPU. The network
frameworks of depth models (including encoder and decoder)
and image transfer model are the same with previous work
monodepth2 [18] and CycleGAN [44]. To pre-train the depth
model and image transfer model, we use the original setting
proposed in monodepth2 [18] and CycleGAN [44] on the new

https://github.com/zxcqlf/RobotCar_DepthGT_Generate
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Images (n) Monodepth2 (n)ITDFAd2nGT

(a) Estimating the depth from night-time images.

Images (r) Monodepth2 (r)ITDFAd2rGT

(b) Estimating the depth from rainy night-time images.

Fig. 4. In (a), “Monodepth2(n)” refers to the depth model trained on night-time images by the unsupervised monocular framework, monodepth2. For night-time
scenario, it suffers from complex lighting conditions, like the street lights, car lights, and the reflection of light from the road, which bring big challenges to
the unsupervised training framework. In (b), “Monodepth2(r)” refers to the depth model trained on rainy night-time images by the unsupervised monocular
framework, monodepth2. For the rainy night scenario, it suffers from not only the complex lighting conditions at night but also the complex reflections on
the road and camera caused by rain.

datasets, and the resolution of images in training process is
resized to 512x256. For the ITDFA, the framework is trained
by using Adam optimizer [49] with a batch size of 1. The
learning rate is set as 0.0002 during training. The weights
of the three loss components are set to α = 15.0, β = 0.01
and γ = 0.001. The experimental setup of ITDFA is the same
when applied for different complex scenarios, including the
night and rainy night. Moreover, the encoders trained for
different complex scenarios share the same day-time decoder.
Therefore, in practice, this framework only needs to switch
the corresponding encoder to cope with the change of envi-
ronments, which is practical and meaningful for applying in
changing environments and all-day depth estimation.

As shown in Fig. 2 (b), the image transfer module and the
depth adaptation module can adopt two modes: joint training
(JT) and separate training (ST). For the ST mode, the image
transfer module is trained in advance, and then the latest saved
image transfer model is used to transfer the image between
different scenario styles in depth adaptation. To get better cycle
transfer models, we firstly test the image transfer models by
transferring many sample images, and then we select those
models without over-fitting in cycle transfer. According to the
experiments, we use the transfer model saved at 30 epoch
(N=30) to reflect the quality of the transferred images. For the
JT mode, the image transfer module and the depth adaptation
module are jointly trained. To get a more stable training
process, we detach the gradient propagation between the two
modules. Moreover, in the JT mode, we directly use the error
between the reconstructed image and raw image to reflect the
quality of the transferred image. ITDFA(ST) is trained for 50
epoches because the image transfer model is pretrained, while
ITDFA(JT) is trained for 200 epoches.

D. Results

1) Annotation: Results of related experiments are shown
in Table I and Table II. To the best of authors’ knowledge,
since the proposed work may be the first attempt at solving
the monocular depth estimation problem in rainy night-time
scenario, and no priors are available in the literature, we

compare the results of different models based on the well
known unsupervised framework, monodepth2 [18].

In the tables, “Monodepth2 (X)” refers to the depth model
trained on the images from ‘X’ by the monodepth2 framework
[18], and X refers to day (d), night (n), rainy night (r).
ITDFAd2X represents the depth model trained by the pro-
posed ITDFA for the complex scenario ‘X’, and these models
(ITDFAd2n, ITDFAd2r) are adapted from the same day-time
model, “Monodepth2 (d)”. Moreover, ITDFAd2n2r stands for
the rainy night-time model adapted from the night-time model,
ITDFAd2n, which means that the model is obtained through
two domain adaptations by ITDFA. Note that all the models
obtained by the proposed ITDFA framework share the same
decoder with the “Monodepth2 (d)”. The qualitative results are
shown in Fig. 4.

2) Night-time depth estimation: To verify the effectiveness
of the proposed ITDFA framework in night-time scenario,
we compare our model with the state-of-the-art method [26],
[42], which only focuses on unsupervised night-time depth
estimation. As shown in Table I, for estimating the depth
from night-time images, the depth model trained by ITDFA
gets a much better performance than the current state-of-the-
art method [26], [42] with lower error and higher accuracy.
Compared with the joint training mode (IT DFAd2n(JT)), the
separate training mode (IT DFAd2n(ST)) gets more accurate
adaptation results, because the pretrained image transfer model
can provide more stable transferred images. Besides, the train-
ing time of the separate training mode for domain adaptation
(1 day) is shorter than that of the joint training mode (1
week). Therefore, for the experiments of rainy night-time
depth estimation, we adopt the separate training mode to train
the depth models.

3) Rainy night-time depth estimation: As shown in Table
II, because of the domain drift, the monodepth2(d) does not
have a good performance when testing on the rainy night-time
images. Compared with the day-time and night-time scenarios,
the rainy night-time scenario suffers from not only photometric
inconsistency but also the reflection of road and camera caused
by rain. Therefore, the monodepth2(r) cannot get an accurate
depth estimation because of the limitation of the unsupervised
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framework [18] in such complex scenario. The rainy night-
time depth model trained by ITDFA (ITDFAd2r) shows a much
better performance than the monodepth2 models, which proves
the effectiveness of the framework proposed in this paper.

Double jump domain adaptation: Because the domain gap
between night and rainy night is smaller than that between
day and rainy night, ITDFAd2n shows more accurate depth
estimation than the monodepth2(d) on rainy night-time images.
To study the influence of different domain gaps on adaptation,
we additionally design a two-step adaptation method, in which
the day-time depth model is firstly adapted to night-time
scenario, and then the night-time model is adapted to rainy
night scenario, shown as ITDFAd2n2r. As shown in Table
II, even if after the second round adaptation, ITDFAd2n2r
achieves an outstanding accuracy than others in rainy night-
time scenario, which means that multi-step adaptation will be
helpful for the domain adaptation between large domain gap.
Besides, it also proves that the proposed ITDFA framework
has the ability to effectively learn the key features for depth
decoding, and these key features can be well adapted to new
scenarios. The qualitative results are shown in Fig. 4.

4) Ablation study: To analyze the effects of each compo-
nent in the overall loss function Ltotal , Eq. (15), we design a
series of ablations to analyze our approach, and quantitative
results are shown in Table III. Experiments show that the
constraint of feature space is more effective than that of
output space in promoting the consistency of feature maps,
because in our framework, the night-time network shares the
same decoder with the pretrained day-time models. Besides,
the model trained by the constraints from both feature space
and output space outperforms the others, which means that
the constraints of output space help encoder to focus on
learning the key features of depth decoding during training.
The smoothness loss helps to improve the accuracy of depth
estimation in complex environments. Moreover, the introduc-
tion of the proposed image adaptation method effectively
improves the accuracy and reduces the error of monocular
depth estimation.

E. Discussion

The ITDFA is an unsupervised framework, and the depth
models for highly complex scenarios are trained in a com-
pletely unsupervised manner. Neither the image style transfer
model nor the depth model use paired images or ground truth
labels during training process. Note that all the monocular
depth models trained by ITDFA for different environments
share the same decoder during testing, which has practical sig-
nificance. For example, in autonomous driving, facing different
weather conditions [50], the vehicle can independently switch
to the corresponding encoder to obtain better environmental
perception. Although this paper focuses on the effects of un-
stable transfer on image transfer-based domain adaptation, the
proposed method cannot completely eliminate the effects, and
the choices of transfer and cycle transfer models are important
for the performance of the overall adaptation framework.

V. CONCLUSION

In this paper, we tackle the problem of unsupervised
monocular depth estimation in highly complex environments,
which is important and practical for autonomous systems.
We survey the related research on solving the limitations of
current unsupervised monocular depth estimation framework,
and analyze the reason why the unsupervised framework can-
not do well in certain highly complex environments. A novel
domain adaptation framework, called ITDFA, is proposed in
this paper to address the above problem. The proposed ITDFA
framework is totally unsupervised and does not use any ground
truth labels in the training process. Our method considers the
shortcomings of image transfer-based domain adaptation ap-
proach and achieves more accurate depth estimation in night-
time scenario than the state-of-the-art [26], [42]. Moreover,
the performance of ITDFA in the more challenging rainy-time
scenario proves the practicability and effectiveness of ITDFA.
Therefore, ITDFA is able to provide a way to address the
complex environmental change problems faced by monocular
depth estimation during practical application. Furthermore,
there are still shortcomings that need to be addressed, like
enhancing the depth perception of some small objects in
complex environments, which is also a promising direction
for future work.
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