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A New Perspective on Stabilizing GANs training:
Direct Adversarial Training

Ziqiang Li, Pengfei Xia, Rentuo Tao, Hongjing Niu, Bin Li Member, IEEE

Abstract—Generative Adversarial Networks (GANs) are the
most popular image generation models that have achieved re-
markable progress on various computer vision tasks. However,
training instability is still one of the open problems for all
GAN-based algorithms. Quite a number of methods have been
proposed to stabilize the training of GANs, the focuses of
which were respectively put on the loss functions, regularization
and normalization technologies, training algorithms, and model
architectures. Different from the above methods, in this paper, a
new perspective on stabilizing GANs training is presented. It is
found that sometimes the images produced by the generator act
like adversarial examples of the discriminator during the training
process, which may be part of the reason causing the unstable
training of GANs. With this finding, we propose the Direct
Adversarial Training (DAT) method to stabilize the training
process of GANs. Furthermore, we prove that the DAT method
is able to minimize the Lipschitz constant of the discriminator
adaptively. The advanced performance of DAT is verified on
multiple loss functions, network architectures, hyper-parameters,
and datasets. Specifically, DAT achieves significant improvements
of 11.5% FID on CIFAR-100 unconditional generation based on
SSGAN, 10.5% FID on STL-10 unconditional generation based
on SSGAN, and 13.2% FID on LSUN-Bedroom unconditional
generation based on SSGAN. Code will be available at https:
//github.com/iceli1007/DAT-GAN

Index Terms—Adversarial training, Generative adversarial
networks, Lipschitz robustness.

I. INTRODUCTION

Recently, Generative Adversarial Networks (GANs) [1]
have been used in many generative tasks [2], [3], such as image
inpainting [4], [5], attribute editing [6], [7], and adversarial
examples [8], [9]. GANs is a two-player zero-sum game in
which the discriminator measures the distance between real
and generated distributions, while the generator tries to fool
the discriminator by minimizing the distance. Specifically, the
optimal discriminator of vanilla GAN [1] estimates the JS
divergence, optimal discriminators of f -GAN [10] and WGAN
[11] estimate the f divergence and Wasserstein divergence,
respectively. Although various types of GANs have shown
impressive performance in many tasks, the training of GANs
is still quite unstable and remains difficult to understand
theoretically.

There are many methods proposed to stabilize GANs train-
ing, including works of loss functions [11], [12], regularization
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and normalization technologies [13], [14], training algorithms
[15], [16], and model architectures [17], [18], [19]. Notably,
Wasserstein GAN (WGAN) [11] is proposed to avoid the
instability caused by mismatched generator and data distri-
bution supports. The optimal discriminator of WGAN can
be considered as estimating the Wasserstein distance of two
distributions. To solve the Kantorovich duality problem [20]
of the Wasserstein distance, the discriminator should meet the
1-Lipschitz continuity, which is the first time that Lipschitz
continuity has been introduced into the design of GANs.
Except for 1-Lipschitz continuity in WGANs, Lipschitz con-
tinuity is also important for generalizability and distributional
consistency for all GANs [21]. Qi [21] proved that, for the
discriminator with Lipschitz continuity, the generated distri-
butions converge to the real distributions in GANs. In prac-
tice, gradient penalties [13] and spectral normalization [14]
are used to implement the Lipschitz continuity. Furthermore,
recent methods [22], [23] stabilize GANs training through
representation learning of the discriminator. See [24], [25] for
some more thorough reviews.

Different from the above perspectives, we argue that the
stability of GANs’ training relates to the adversarial robustness
of the discriminator. Non-robust discriminators are vulnerable
to adversarial examples, adding noises into the gradient of
the generator, which influences the stability of GANs training.
Adversarial examples [26] of the discriminator are generated
unintentionally by the generator during GANs training. Un-
realistic adversarial perturbations in adversarial examples can
incur error predictions for the discriminator. Formally, given
a generated sample xf = G(z) that satisfies: D(xf ) = F ,
the adversarial examples of it are defined as x̂f = G(ẑ) that
should satisfy: D(x̂f ) = R and ‖x̂f − xf‖p ≤ δ where
D and G represent discriminator and generator, respectively.
F and R are target of the discriminator’s outputs for fake
and real images, respectively. δ is to restrict the x̂f to the p-
norm neighbourhood of xf . Although xf and its adversarial
examples x̂f are both generated by the generator and p-norm
similar, the discriminator has different outputs for them. Since
the model is assumed to have infinite capacity [1], without
any prior, the generator has a high probability of generating
adversarial examples that can mislead the discriminator. Fig.
1 illustrates the proportion of generated samples existing
adversarial examples on the CIFAR-10 dataset.

In this paper, a new method called Direct Adversarial
Training (DAT) has been proposed to mitigate the harm of
non-robust discriminator in GANs and improve the stability
of training process. Furthermore, DAT can also be considered
as a new regularization method that minimizes the Lipschitz
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Fig. 1: Following the definition of adversarial examples, we
set δ = 0.1 in this figure. The proportion of generated

samples existing adversarial samples is sufficiently large and
unstable for various GAN models, which affects the training

of the GANs. All results are the average of three
independent runs.

constant adaptively. Compared to some works on loss func-
tions [11], [12], training algorithms [15], [16], and model
architectures [17], [18], the proposed method is Plug-and-Play
and orthogonal to the above methods. Therefore, DAT can be
applied to multiple loss functions and network architectures.

The main contributions can be summarized as follows:
• We testify that the generator may generate adversarial

examples to the discriminator during the training of
GANs and analyze the the effect of it to the training
process for the first time.

• We propose Direct Adversarial Training (DAT) for sta-
bilizing the training process of GANs and show that the
DAT can adaptively minimize the Lipschitz constant of
the discriminator, which is different from the gradient
penalty methods proposed by previous works.

• Without excessive cost, our method dramatically im-
proves the training quality and efficiency on multiple
models.

II. BACKGROUND AND RELATED WORK

A. Generative Adversarial Networks

GANs is a two-player zero-sum game, where the generator
G(z) transforms randomly sampled latent distribution z into
the high-fidelity image distribution pg through adversarial
learning. And the discriminator D(x) evaluates the distance
between generated distribution pg and real distribution pr.
The generator and discriminator minimize and maximize the
distribution distance, respectively. This minimax game can be
expressed as follows:

min
φ

max
θ
fGAN(φ, θ) =Ex∼pr [g1(Dθ(x))]

+Ez∼pz [g2(Dθ(Gφ(z)))],
(1)

where φ and θ are parameters of G and D, respectively.
Specifically, vanilla GAN [1] can be indicated by g1(t) =
g2(−t) = − log(1 + e−t), WGAN [11] and f -GAN [10] can
be demonstrated by g1(t) = g2(−t) = t and g1(t) = −e−t,
g2(t) = 1− t, respectively.

B. Lipschitz Constant and WGAN
Lipschitz constant of the function f : X → Y is defined

by:

||f ||L = sup
x,y∈X;x 6=y

||f(x)− f(y)||
||x− y||

. (2)

For a given constant K ≥ 0 and any variables x, y ∈ X , the
function f satisfies the K-Lipschitz continuity when and only
when ||f(x) − f(y)|| ≤ K||x − y||. Furthermore, Lipschitz
constant of the neural network can be approximated by spectral
norm of the weight matrix [24]:

‖W‖2 = max
x 6=0

‖Wx‖
‖x‖

. (3)

The Lipschitz constant can express the Lipschitz continuity
of the neural network. The lower Lipschitz constant means
that the neural network is less sensitive to input perturbation
and the bounded Lipschitz constant indicates that the network
has better generalization [27], [28], [29].

For GANs, lots of works are proposed to limit the Lipschitz
constant of the discriminator, such as spectral normalization
[14] and WGAN [11]. Spectral normalization normalizes the
spectral norm of the discriminator, which limits its Lipschitz
constant to 1. Furthermore, the Lipschitz constant in WGAN
is derived from Kantorovich duality [20], and the Wasserstein
distance corresponding to the optimal transportation is repre-
sented as:

W (P1, P2) = sup
||f ||L=1

Ex∼prf(x)− Ex∼pgf(x), (4)

where f : X → R is called the Kantorovich potential, which
can be used as a discriminator. To make the discriminator
satisfy the Lipschitz continuity, WGAN [11] uses the weight
clipping that restricts the maximum value of each weight;
WGAN-GP [13] uses the gradient penalty (∇x̂Dθ(x̂)) with
the interpolation of real samples and generated samples:
x̂ = tx + (1 − t)y for t ∼ U [0, 1] and x ∼ Pr, y ∼ Pg
being a real and generated samples; WGAN-ALP [30] inspired
by Virtual Adversarial Training (VAT) [31] restricts the 1-
Lipschitz continuity at x̂ = {x, y} with the direction of
adversarial perturbation. Different from the above methods
which restrict the 1-Lipschitz continuity [13], [30], [32], [33],
WGAN-LP [34] restricts the k-Lipschitz continuity (k ≤ 1),
which is derived from the optimal transport with regular-
ization. Also, Qi. [21] is motivated to have lower sample
complexity by directly minimizing the Lipschitz constant
rather than constraining it to 1, which can be described as 0-GP
[35], [36], [37]. Among them, [36] demonstrates that adding
0-GP with real (∇xr

Dθ(xr)) or fake images (∇xf
Dθ(xf ))

leads to convergence of the GANs training. In summary, there
are many methods [24] for restricting the Lipschitz constant,
some restrict the constant to 1, some restrict it to k (k ≤ 1),
and some minimize the Lipschitz constant. See [24], [25] for
some more thorough reviews.
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C. Adversarial Examples and Adversarial Training

Adversarial example is a common problem in neural net-
works. Given a pre-trained model h, adversarial examples
x′ are defined by x′ = x + δ with h(x′) 6= h(x) for
untargeted attack or h(x′) = t for targeted attack, where x
is a clean image and δ is an imperceptible tiny perturbation.
There are many methods to get adversarial examples, such as
Fast Gradient Sign Method (FGSM) [38], Projected Gradient
Descent (PGD) [39], and Basic Iterative Methods (BIM) [40].
FGSM uses the single gradient step to generate adversarial
examples:{

x′ = x+ ε · sign(∇xL(x, y)) for untargeted,

x′ = x− ε · sign(∇xL(x, t)) for targeted,
(5)

where L is the loss function of the classification. PGD is
a multi-step method that creates adversarial examples by
iterative:{
xk+1 = clip

(
xk + α · sign(∇xL(xk, y))

)
for untargeted,

xk+1 = clip
(
xk − α · sign(∇xL(xk, t))

)
for targeted,

(6)
where clip is the clip function, α is the step size of gradient,
x0 = x, x′ = xK , and K is the number of iterations. Besides,
some works [41], [42] use GANs to generate adversarial
examples.

Adversarial training is a good and simple method to avoid
adversarial examples, which improves the robustness of the
neural networks by introducing adversarial examples into
training:

min
θ

Ex,y∼D[ max
||δ||p≤ε

Lθ(x+ δ, y)], (7)

where x, y ∼ D are sampled from the joint distribution
of data (image, label), θ is the parameters of the network.
This min-max problem is similar to the GANs. The main
difference between them is that the independent variable of
the maximization problem in the adversarial training is image
samples x, rather than the discriminator parameters.

D. The Adversarial Robustness with GANs Training

Recently, some works have begun to analyze the relationship
between GANs training and adversarial robustness. RobGAN
[43] is the first work to introduce adversarial training in
GANs training, which adds the adversarial training for the
classifier in cGANs. This method does not directly analyze
adversarial examples of the discriminator. Furthermore, Zhou
et al. [44] analyze the non-robust characteristics of the dis-
criminator for the first time. They propose the consistent
regularization between adversarial images and clean images
during the training of GANs, which will let the discriminator
not be fooled by adversarial examples. As we all know,
adversarial training is a remarkable method to improve the
robustness of networks. Concurrent with our work, several
methods [45], [46] independently propose adversarial training
for the training of GANs. Compared with concurrent works
mentioned above, our paper analyzes the possibility of the
generator to generate adversarial examples and the relationship
between Direct Adversarial Training and adaptive Lipschitz

Gen
PGD attack

PGD attack

Discrimination
Loss

Dis

Adversarial 
examples

Adversarial 
examples

Fig. 2: Introductions of the proposed DAT that is similar to
the training of GANs. The difference is that we add the

one-step PGD attack for real and generated images, we hope
that the discriminator not only can identify real or fake, but

also be robust to adversarial examples.

minimum. Moreover, our work contains richer experiment
results and better performance.

III. PROPOSED APPROACH

The pipeline of DAT is applying adversarial examples to
train GANs, which is the same as other adversarial training
methods on classifier. However, unlike previous adversarial
training for classifiers, the proposed DAT method targets to a
distribution metric function: discriminator. The unintentional
attack for discriminator can be regarded as a targeted attack
that minimizes the distance (under the discriminator) between
the adversarial examples of the real images and the generated
images, the same is true for adversarial examples of the fake
images.

In the following contents, we first introduce the DAT
method, from which an adversarial perturbation strategy ac-
cording to various distribution metrics have been proposed.
Moreover, we also analyze the correlation between the pro-
posed method and the gradient penalty.

A. Direct Adversarial Training

Motivated by adversarial examples leading to unstable train-
ing of GANs, we propose an adversarial training method DAT
for GANs in Fig.2. According to the loss function of GANs
in Eq (1), the loss of GANs with DAT can be formed as:

min
φ

max
θ
fDAT(φ, θ) = Exr∼pr [g1(Dθ(x̂r))]

+Exf∼pf [g2(Dθ(x̂f ))],
(8)

where x̂r and x̂f are adversarial examples of real and fake
images, respectively. They are defined as x̂r = xr + δ(xr),
x̂f = xf + δ(xf ), and xf = Gφ(z), where δ(xr) and δ(xf )
are adversarial perturbation of xr and xf , respectively. In this
part, we use some image perturbations to obtain adversarial
examples, which is an approximation to the adversarial ex-
amples defined in Introduction. Adversarial examples defined
in the Introduction can be considered generated by latent
perturbations, which need too much cost to obtain in training.
According to the above formulas, the complete algorithm is
demonstrated in Algorithm 1.
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Algorithm 1 Direct Adversarial Training
Input: The batch size m, the real image distribution Pr(x), the random noize z ∼ N(0, 1), the maximum number of training

steps K, the number of steps to the discriminator N, the loss function g1 and g2.
Output: a fine-tuned generator G and discriminator D

1: for k=1, 2, · · · , K do
2: for n=1,2, · · · , N do
3: Sampled m real samples xr = {x(1)r , x

(2)
r , · · · , x(m)

r } from the real distribution pr.
4: Sampled m latent noise z = {z(1), z(2), · · · , z(m)} from the low-dimension latent distribution pz .
5: xf = {x(1)f , x

(2)
f , · · · , x(m)

f } = Gφ
(
{z(1), z(2), · · · , z(m)}

)
6: δ

(i)
f = −ε∇

x
(i)
f

( ∣∣∣g1(D(x
(i)
f ))− g1(D(xr))

∣∣∣ ) for i ∈ 1, 2, · · · ,m

7: δ
(i)
r = −ε∇

x
(i)
r

( ∣∣∣g2(D(x
(i)
r ))− g2(D(xf ))

∣∣∣ ) for i ∈ 1, 2, · · · ,m
8: x̂

(1)
f , x̂

(2)
f , · · · , x̂(m)

f = {x(1)f + δ
(1)
f , x

(2)
f + δ

(2)
f , · · · , x(m)

f + δ
(m)
f }

9: x̂
(1)
r , x̂

(2)
r , · · · , x̂(m)

r = {x(1)r + δ
(1)
r , x

(2)
r + δ

(2)
r , · · · , x(m)

r + δ
(m)
r }

10: Update the discriminator by ascending its stochastic gradient:

∇θ
{

1

m

m∑
i=1

[
g1(Dθ(x̂

(i)
r )) + g2(Dθ(x̂

(i)
f ))

]}
11: end for
12: Draw m latent noise {z(1), z(2), · · · , z(m)}.
13: Update the generator by descending its stochastic gradient:

∇φ
{
−1

m

m∑
i=1

[
g1(Dθ(x

(i)
r )) + g2(Dθ(Gφ(z(i))))

]}
14: end for
15: return

B. Adversarial Perturbation of the Discriminator

Most of the adversarial training is about classifiers, and
the goal of the classifier is fixed. For untargeted attacks,
the direction of adversarial perturbation is the solution of
maxL(x, y). For targeted attacks, the direction of adversarial
perturbation is the solution of minL(x, t), where L is the
loss function of the classifiers, and t is target label of the
attack. But for discriminator, goal of the output is dynamic.
For instance, the outputs of the real images and generated
images are both 0.5 for the optimal discriminator in vanilla
GAN, but which is not true at the beginning of training.
So the target label of adversarial attack changes dynamically
with training. Based on this, we propose a new adversarial
perturbation for the discriminator, in which the direction of
adversarial perturbation for real images is the solution of
arg min

∣∣∣g1(Dθ(xr + δ(xr)))− g1(Dθ(xf ))
∣∣∣. Similarly, the

direction of adversarial perturbation for generated images is
the solution of arg min

∣∣∣g2(Dθ(xf + δ(xf )))− g2(Dθ(xr))
∣∣∣.

Taking the above together, the adversarial perturbation for the
discriminator can be defined as:

δ(xr) = arg min
∣∣∣g1(Dθ(xr + δ(xr)))− g1(Dθ(xf ))

∣∣∣ ,
δ(xf ) = arg min

∣∣∣g2(Dθ(xf + δ(xf )))− g2(Dθ(xr))
∣∣∣ , (9)

where xr and xf are real image and generated image, respec-
tively. δ(xr) and δ(xf ) are adversarial perturbation of the real
image xr and generated image xf , respectively. g1(Dθ(xr))
and g2(Dθ(xf )) are the average of the discriminator output

in batches for the real and generated images, which can be
considered as target label of the generated and real images
attack, respectively. |·| indicates the calculation of absolute
value. For above optimization problems, we use the one-step
PGD attack to achieve:

δ(xr) = −ε∇xr

( ∣∣∣g1(Dθ(xr))− g1(Dθ(xf ))
∣∣∣ ),

δ(xf ) = −ε∇xf

( ∣∣∣g2(Dθ(xf ))− g2(Dθ(xr))
∣∣∣ ), (10)

where ε is perturbation level1 and the goal of the adversarial
perturbation changes with the training of the discriminator.

C. Direct Adversarial Training and Lipschitz Continuity

Minimizing the Lipschitz constant through gradient penalty
could stabilize the training of the discriminator, thus ensuring
the convergence of the GANs [36]. However, recent studies
[47] demonstrate that the limitation restricts the capacity of
the discriminator and thus deteriorates the performance of the
generative model. In this part, we analyze the relationship
between DAT and gradient penalty. The result demonstrates
that our method can minimize the Lipschitz constant of the
discriminator adaptively. The instability of GANs training
is mainly caused by the discriminator, and our adversarial
training is only for the discriminator, so we do not consider
the generator at present. For adversarial perturbation of real

1Generally, we set ε = 1, while more discussion of the ε will be given in
section 6.1
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images δ(xr) = −ε · ∇xr

( ∣∣∣g1(D(xr))− g1(D(xf ))
∣∣∣ ), the

loss function of the discriminator can be written as:

max
θ

Ex∼pr
[
g1
(
Dθ(x+ δ(x))

)]
≈max

θ
Ex∼pr

[
g1
(
Dθ(x)

)
+∇xg1

(
Dθ(x)

)
· δ(x)

]
.

(11)

Considering the interior of expectation in the Eq (11):

g1
(
Dθ(xr)

)
+∇xr

g1
(
Dθ(xr)

)
· δ(xr)

=g1
(
Dθ(xr)

)
− ε∇xrg1

(
Dθ(xr)

)
· ∇xr

∣∣∣g1(Dθ(xr))− g1(Dθ(xf ))
∣∣∣

=g1
(
Dθ(xr)

)
− εg′1∇xr

Dθ(xr)

· ∇xr

∣∣∣g1(Dθ(xr))− g1(Dθ(xf ))
∣∣∣ .

(12)

Because xf is sampled from fake images, which is indepen-
dent of xr, when g1(Dθ(xr))− g1(Dθ(xf )) ≥ 0, it is true in
most cases, the Eq (12) is g1

(
Dθ(xr)

)
− εg′1

2‖∇xr
Dθ(xr)‖22.

In this case, the loss function of the discriminator

to real imgaes is represented as max
θ

[
g1
(
Dθ(xr)

)
−

εg′1
2‖∇xr

Dθ(xr)‖22
]

, whch is equivalent to adding gradient

penalty (0-GP) to loss function. 0-GP can be used to limit
the Lipschitz constant and stabilize the training of GANs.
However, when g1(Dθ(xr))− g1(Dθ(xf )) < 0, which means
that the discriminator is incorrect to the xr. In this case,
the loss function of the discriminator to real imgae xr is

represented as max
θ

[
g1
(
Dθ(xr)

)
+εg′1

2‖∇xr
Dθ(xr)‖22. In this

case, max
θ
‖∇xr

Dθ(xr)‖22 means that we hope the discrimina-
tor will have a large change for perturbation (gradient reward),
so as to jump out of the situation of the wrong discrimination.

In summary, the proposed DAT can adaptively choose
strategies (gradient penalty or gradient reward) for different
samples. Therefore, the loss function of the discriminator to
real images in DAT can be summarized as:



max
θ

[
g1
(
Dθ(xr)

)
− εg′1

2‖∇xr
Dθ(xr)‖22

]
for g1(Dθ(xr))− g1(Dθ(xf )) ≥ 0 Gradient Penalty

max
θ

[
g1
(
Dθ(xr)

)
+ εg′1

2‖∇xr
Dθ(xr)‖22

]
for g1(Dθ(xr))− g1(Dθ(xf )) < 0 Gradient Reward

(13)
For adversarial perturbation of generated images δ(xf ) =

−ε∇xf

( ∣∣∣g2(D(xf ))− g2(D(xr))
∣∣∣ ), where xf = Gφ(z).

Update of the discriminator can be written as:

max
θ

Exf∼pf

[
g2
(
Dθ(xf + δ(xf ))

)]
≈max

θ
Exf∼pf

[
g2
(
Dθ(xf )

)
+∇xg2

(
Dθ(xf )

)
· δ(xf )

]
.

(14)
We can get the loss function similar to the real images:

g2
(
Dθ(xf )

)
−εg′2∇xf

Dθ(xf )

· ∇xf

∣∣∣g2(Dθ(xf ))− g2(Dθ(xr))
∣∣∣ . (15)

When g2(Dθ(xf )) ≥ g2(Dθ(xr)), the Eq (15) is
g2
(
Dθ(xf )

)
− εg′2

2‖∇xf
Dθ(xf )‖22. For generated images

xf , usually, g2(Dθ(xf )) is greater than g2(Dθ(xr)), in this
case the adversarial training is equivalent to 0-GP; and
g2(Dθ(xf )) < g2(Dθ(xr)) indicates that the discriminator has
an error and may get the local saddle point, so we maximize
the gradient of the discriminator ‖∇xf

Dθ(xf )‖22, which can
make the discriminator jump out of the error point as soon as
possible.

From the above analyses, it can be seen that our DAT
can adaptively minimize the Lipschitz continuity, which is
equivalent to 0-GP when the discriminator performance is
better, and relax the limit on the Lipschitz constant when the
discriminator performance is poor.

IV. EXPERIMENTS

In this section, we implement the proposed DAT method for
DCGAN, Spectral Normalization GAN (SNGAN) [14], Self-
Supervised GAN (SSGAN) [23], and Information Maximum
GAN (InfoMAXGAN) [48]. Furthermore, we adopt three
metrics to evaluate the performance of the method: Fréchet
Inception Distance (FID) [49], Kernel Inception Distance
(KID) [50], and Inception Score (IS) [51]. Among them, IS
only uses generated images to measure the performance of
the GANs, where FID and KID evaluate the performance of
GANs by measuring the distance between real and generated
images. So FID and KID are calculated on both the train and
test datasets. More descriptions on FID, IS, and KID will be
shown in section A of the Appendix.

We validate the method on the following datasets:
• This paper creates the 2D synthetic dataset that contains

two tiny sets: balanced mixture and imbalanced mixture.
Both sets are sampled from a 2D mixture distribution
of nine Gaussian distribution, where the variance of
the Gaussian distribution is 0.1, covariance is 0, and
means are {-1, 0, 1}. The probability of each Gaussian
distribution in the balanced mixture is equal, while the
probabilities of Gaussian distribution in the imbalanced
mixture are 0.15, 0.05, 0.8 from left to right. The vi-
sualizations are illustrated in (a) and (h) of Figure 3,
respectively.

• The CIFAR-10 datasets [52] contains 60K images with
the resolution of 32 × 32 pixels, including 50K images
in the train set and 10K images in the test set, and all
images are divided equally into 10 classes. Thus train
dataset is used to train GANs’ models and calculate the
Train FID and Train KID. Naturally, Test FID and Test
KID are calculated on the test dataset.

• The CIFAR-100 dataset [52] is similar to the CIFAR-
10 dataset that includes 50K train images and 10K test
images, but all images are divided equally into 100
classes. Thus train dataset is used to train GANs’ models
and calculate the Train FID and Train KID. Naturally,
Test FID and Test KID are calculated on the test dataset.
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(a) real samples (b) GAN-2k (c) GAN-3k (d) GAN-10k (e) GAN-DAT-2k (f) GAN-DAT-3k (g) GAN-DAT-10k

(h) real samples (i) GAN-2k (j) GAN-3k (k) GAN-10k (l) GAN-DAT-2k (m) GAN-DAT-3k (n) GAN-DAT-10k

Fig. 3: Qualitative results of nine 2D-Gaussian synthetic data. The first line is a balanced Gaussian mixture distribution, and
the second line is an imbalanced Gaussian mixture distribution. First line: (a): the real samples from a balanced mixture of
nine Gaussian distributions, where variance is 0.1 and means are {-1, 0, 1}; (b), (c) and (d): the results of iterating 2k times,
3k times, and 10k times in DCGAN; (e), (f) and (g): the results of iterating 2k times, 3k times, and 10k times in DCGAN

with DAT. Second line: (h): the real samples from an imbalanced mixture of nine Gaussians. The probability of mixing
Gaussian from left to right is 0.15, 0.05, 0.8. The other parts are the same as the first line.

• The STL-10 dataset [53] contains 100K unlabeled images
and 8K test images with a spatial resolution of 96 ×
96 resolution. All images are resized to 48 × 48 pixels
saving computing resources. Furthermore, GAN models
are trained on the whole unlabeled dataset, and Train FID
and Train KID are computed on the unlabeled dataset
with random 50K images. Naturally, Test FID and Test
KID are calculated on the test dataset.

• The Tiny ImageNet dataset [54] includes 200 classes with
100K images for training and 10K images for testing.
All images are of size 64 × 64. Similarly, we train GAN
models on the whole train dataset and compute Train FID
and Train KID on the training dataset with 50K random
images. Naturally, Test FID and Test KID are calculated
on the test dataset.

• The LSUN Bedroom dataset [55] has approximately 3M
images. We took out 10K of them as a test set which is
used to calculate the Test FID and Test KID and train
the models on the rest images. Naturally, we compute
Train FID and Train KID on the training dataset with
50K random images.

A. Experiments on DCGAN

In this section, we use DCGAN to experiment on two
datasets (a 2D synthetic dataset and the CIFAR-10 dataset)
showing the advancement of our method. The first experiment
demonstrates that the proposed DAT can accelerate the training
of GANs and avoid mode collapse, and the second experiment
indicates that the proposed DAT is robust to hyper-parameters.

We use a four-layer and fully-connected MLP with 64
hidden units per layer to model the generator and discriminator
on the 2D synthetic dataset. Fig.3 illustrates the qualitative
results of different iterations. The first line is visual results on
a balanced mixture of nine Gaussians. DAT can speed up the
generation. When iterating 2k times, the generated distribution
with adversarial training is closer to the true distribution. Even

after training 10k times, the GANs without adversarial training
cannot fit the real distribution well. Also, we evaluate the
method on an imbalanced mixture of nine Gaussians in the
second line. The results illustrate that standard DCGAN will
lose some small probability distribution, resulting in mode
collapse, and this phenomenon will be significantly improved
after applying DAT.

Furthermore, we use DCGAN2 to do some comparative ex-
periments on the CIFAR-10 dataset [52]. As shown in Figure 4,
under different hyper-parameters, the proposed DAT improves
the performance of the GANs consistently. Especially when
Learning Rate is large (1e-3, 2e-3, and 5e-3), the vanilla train-
ing DCGAN cannot be trained due to the gradient vanishing,
while DAT-GAN alleviates this situation eminently. The results
indicate that our DAT method reduces the sensitivity to hyper-
parameters during the training of GANs.

B. Evaluation on some popular methods in different datasets

In this section, we apply DAT to some popular methods,
such as SNGAN, SSGAN, and InfoMAXGAN. The archi-
tectures used for all models are equivalent to SNGAN and
code can be available on Github3. We evaluate our method
on five different datasets: CIFAR-10, CIFAR-100, STL-10,
Tiny-ImageNet, and LSUN-Bedroom. All training parameters
are selected with the best results on baseline networks. The
details can be found in Table I, where the Adam parameters are
Learning Rate (LR=2e-4), β1=0 and β2=0.9; ndis is number
of discriminator steps per generator step; niter is the trained
times of the generator. Besides, we use the hinge loss to train
all the models. The results are illustrated in Table II.

As seen in Table II, DAT improves FID, KID, and IS
consistently and significantly across many datasets with three

2 In this part, we do confirmatory experiments using DCGAN with the
simple architecture. The dimension of the latent vector is set to 100. Generator
and discriminator are all implemented by 4 convolution layers and BN layers.
At last, we use the Adam optimizer with the most popular hyper-parameters.

3https://github.com/kwotsin/mimicry

https://github.com/kwotsin/mimicry
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TABLE I: Some parameters on SOTA methods

Dataset Resolution Batch Size Learning Rate β1 β2 Decay Policy ndis niter

CIFAR-10 32 x 32 64 2e-4 0.0 0.9 Linear 5 100K
CIFAR-100 32 x 32 64 2e-4 0.0 0.9 Linear 5 100K

STL-10 48 x 48 64 2e-4 0.0 0.9 Linear 5 100K
Tiny-ImageNet 64 x 64 64 2e-4 0.0 0.9 None 5 100K

LSUN-Bedroom 64 x 64 64 2e-4 0.0 0.9 Linear 5 100K

TABLE II: FID, KID, and IS of several networks across different datasets. IS: higher is better. FID and KID: lower is better.

Evaluation set Metric Dataset Models

SNGAN SNGAN-DAT SSGAN SSGAN-DAT InfoMaxGAN InfoMaxGAN-DAT

Train

FID

LSUN-Bedroom 27.26 24.10 23.54 20.43 35.69 34.21
Tiny-ImageNet 47.14 43.40 40.83 38.98 41.81 38.83

STL-10 42.62 41.05 39.84 35.64 42.39 40.77
CIFAR-100 23.70 21.09 22.43 19.86 21.36 20.46
CIFAR-10 19.75 17.93 16.75 15.34 17.71 17.69

KID

LSUN-Bedroom 0.0313 0.0286 0.0267 0.0246 0.0373 0.0369
Tiny-ImageNet 0.0411 0.0391 0.0355 0.0337 0.0371 0.0323

STL-10 0.0391 0.0380 0.0388 0.0336 0.0418 0.0384
CIFAR-100 0.0158 0.0160 0.0155 0.0147 0.0152 0.0140
CIFAR-10 0.0149 0.0133 0.0125 0.0116 0.0134 0.0128

Test

FID

LSUN-Bedroom 86.10 83.50 85.10 82.20 87.14 86.17
Tiny-ImageNet 52.29 48.72 45.79 44.63 47.26 43.97

STL-10 62.03 60.41 56.56 52.71 61.93 59.07
CIFAR-100 28.48 26.49 27.61 24.67 26.36 25.28
CIFAR-10 24.19 22.46 21.23 19.45 22.03 21.88

KID

LSUN-Bedroom 0.0324 0.0296 0.0298 0.0275 0.0388 0.0375
Tiny-ImageNet 0.0415 0.0393 0.0371 0.0341 0.0372 0.0332

STL-10 0.0445 0.0428 0.0403 0.0352 0.0443 0.0404
CIFAR-100 0.0164 0.0161 0.0160 0.0148 0.0153 0.0142
CIFAR-10 0.0150 0.0142 0.0128 0.0118 0.0139 0.0141

None IS

LSUN-Bedroom - - - - - -
Tiny-ImageNet 8.17 8.44 8.63 8.95 8.80 9.18

STL-10 8.34 8.45 8.59 8.72 8.28 8.57
CIFAR-100 7.66 7.82 7.74 8.09 8.02 8.06
CIFAR-10 7.84 7.97 8.13 8.25 8.01 8.07

TABLE III: Train FID scores on the CIFAR-10 dataset for various GAN losses and regularization methods.

loss regularization

None GP[13] LP[34] 0-GP AR[44] RFM[44] ASGAN[46] DAT(ours) DATT(DAT+T)

GAN[1] 30.20 27.80 27.25 29.76 29.37 27.89 27.24 26.98 26.77
LSGAN[56] 25.20 24.40 25.38 28.67 26.49 26.05 26.46 24.38 24.35
WGAN[11] 29.43 26.03 26.90 43.06 27.26 26.83 25.98 25.67 25.66

popular models, which suggests our method is versatile and
can generalize across multiple data domains. For instance,
compared to SNGAN, the improvement in Traning FID of
SNGAN-DAT is 9.2%, 11.0%, 3.7%, 7.9%, 11.6% from
CIFAR-10 (32*32), CIFAR-100 (32*32), STL-10 (48*48),
Tiny-ImageNet (64*64), to LSUN-Bedroom (64*64). Simi-
larly, compared to SSGAN, the improvement in Traning FID
of SSGAN-DAT is 8.4%, 11.5%, 10.5%, 4.5%, 13.2% from
CIFAR-10, CIFAR-100, STL-10, Tiny-ImageNet, to LSUN-
Bedroom.

Due to the large difference between the LSUN-Bedroom
distribution and the ImageNet distribution, IS does not seem
meaningful for the metric of generation on the LSUN-
Bedroom dataset. So we do not show IS on the LSUN-
Bedroom dataset.

Furthermore, for qualitative comparisons, we present ran-
domly sampled and non-cherry picked images generated by
SSGAN and SSGAN with DAT for CIFAR-10, CIFAR-100,
STL-10, and LSUN-Bedroom datasets in section B of the
Appendix.

C. The FID Results on CIFAR-10 Dataset with Other Regu-
larization Methods

From section 4.3, the proposed DAT can be considered as
an adaptive gradient minimum (0-GP) method. To demonstrate
the advancements of our method, we compare it with other
regularization methods, such as GP, LP, 0-GP, AR, RFM, and
ASGAN, on the CIFAR-10 dataset. To make the conclusion
more general, we conduct comparative experiments on three
loss functions of GANs (GAN [1], LSGAN [56], and WGAN
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Fig. 4: Training FID of the DCGAN with different
hyper-parameters on the CIFAR-10 dataset. Smaller distance
to the origin indicates smaller FID/better performance. Left:
the experiment on different Learning Rate (LR) of the Adam

optimizer, where the other hyper-parameters are β1=0.5,
β2=0.999, and ndis=1. Right: the experiment on different

(β1, β2) of the Adam optimizer, where the other
hyper-parameters are LR=0.0002 and ndis=1. Compared to

the vanilla training DCGAN ( ), our method ( )
consistently improves the performance of GANs with

different parameters.

[11]). The baseline architecture and code adopt the implemen-
tation of AR and RFM, which can be available on Github4.
From which, the dimensions of the latent vector is 128, the
batch size is 64, and the Adam optimizer is set to lr = 0.0001,
β1 = 0.5, and β2 = 0.999.

We have implemented LP, 0-GP, ASGAN, DAT, and DATT
based on the baseline code. For instance, LP is a relaxation
constraint of GP, and it limits the gradient of the discrim-
inator to k (k ≤ 1). 0-GP minimizes the gradient of the
discriminator, which is similar to the DAT with adaptive
gradient minimization. AR and RFM propose the consistent
regularization between clean images and adversarial images
in the training of GANs, which will let the discriminator
not be fooled by adversarial examples. ASGAN is another
method using adversarial training for the discriminator. How-
ever, like using adversarial training in classification tasks,
the adversarial examples in ASGAN are generated by x̂ =
x − ε sign∇x(Vm

(
θ, φ, x, z)

)
, which is similar to the untar-

geted FGSM in Eq 5. Vm
(
θ, φ, x, z) is the loss function of

the discriminator. Here, we use the best-performing hyper-
parameter in [46], to be more specific, using FGSM on both
real and fake samples and the key hyper-parameter ε = 1

255 .
DAT represents training the GANs as shown in Algorithm 1,
while DATT represents training the network with adversarial
examples and normal examples together. Training FID results
are illustrated in Table III, which confirm the advancements of
our method. Compared to DAT, DATT has tiny improvement
but requires more training time, which is not cost-effective.
We recommend adopting the DAT method to train the GAN
model. More specifically, we compare the generation results
of 0-GP and DAT under the WGAN Loss, as shown in
Figure 5. We find that the generation results on 0-GP with
WGAN loss are inferior, which may be caused by the strict
limit of minimizing the gradient penalty. DAT will adaptively

4https://github.com/bradyz/robust-discriminator-pytorch

minimize the gradient, which relieves the above limitation to
improve the performance of the generation.

Taking above together, it has been clearly shown that our
proposal has more competitive enhancements to those existing
efforts for GANs training.

D. The Results on Adversarial Robustness of the Discrimina-
tor

In this section, we illustrate the adversarial robustness of
the discriminator. Figure 8 illustrates the proportion of gen-
erated samples existing adversarial samples with and without
DAT on the CIFAR-10 dataset. DAT can significantly reduce
this proportion. Furthermore, we also show the robust to
adversarial attack of the trained discriminator in Figure 9.
Figure 9 (a) illustrates that average iterations for successfully
attacking a discriminator without DAT through PGD are 3.2
and 3.88, which indicates that vanilla GAN models can be
easily attacked. Also, we cannot distinguish between clean
images and adversarial examples intuitively. Average iterations
of the successful attack are significantly reduced when DAT
is used in Figure 9 (b).

V. EXPLORATORY AND ABLATION STUDIES

A. Evaluation with different perturbation levels

Similar to other adversarial training, perturbation level (ε in
Eq (10)) is also important for DAT. In this section, we evaluate
the performance of the DAT with different ε settings on the
CIFAR-10 dataset. Specifically, we perform unconditional im-
age generation with SNGAN architecture in different settings
of perturbation level. We select certain classic perturbation
levels for experiments such as {0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4,
2, 3}. All experiments are conducted twice independently to
reduce the effect of randomness.

As shown in Figure 6, the performance of the DAT is robust
for different settings of ε, and the optimal setting of ε is around
0.6. We analyze the impact of ε from two perspectives. From
the perspective of adversarial training, the improvement of the
original model by a small level of perturbation is negligible.
In this case, the impact of adversarial training is finite. On
the contrary, strong perturbation levels affect the distribution
of the images and degrade the performance compared to the
optimal parameter settings. Furthermore, from the perspective
of gradient penalty, perturbation level is the coefficient of
the gradient penalty, as shown in Eq 12 and Eq 15. A tiny
penalty relaxes the restriction on the discriminator’s Lipschitz
continuity, while a strong penalty leads to the tight restriction
of the discriminator’s Lipschitz continuity. Both of them affect
the performance of GANs.

B. Evaluation with different perturbation numbers

As acknowledged, in addition to the one-step adversarial
perturbation mentioned in Section 4, adversarial training can
be implemented by multi-step methods, such as PGD. Gen-
erally, these multi-step methods can also be used to generate
adversarial examples in DAT. Certainly, different perturbation
numbers are expected to get more attractive performance for

https://github.com/bradyz/robust-discriminator-pytorch
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DAT0-GP

Fig. 5: Randomly generated images with 0-GP (left) and DAT (right) methods under the WGAN loss on the CIFAR-10
dataset. The generated images with 0-GP are unrealistic and contain much artifact, which can be mitigated by the proposed

DAT.

TABLE IV: The results using DAT in different perturbation position for training the GANs on CIFAR-10 dataset. "Generator
only" uses DAT to position (iii) (see Figure 10); "Real only" uses DAT to position (i); "Fake only" uses DAT to position (ii);
"Discriminator only" uses DAT to both position (i) and position (ii), but not position (iii); "All" uses DAT to position (i), (ii),

and (iii). "Discriminator only" is described in section 4 and is applied in other sections. We select the best FID results for
each method during the training.

Methods
Where DAT ? Results
(i) (ii) (iii) IS Train_FID Test_FID Train_KID Test_KID

SNGAN(Baseline) 7.84 19.75 24.19 0.0149 0.0150

SNGAN-DAT (Generator only) X 1.59 309 310.5 0.3836 0.3822
SNGAN-DAT (Real only) X 7.86 19.48 23.73 0.0147 0.0149
SNGAN-DAT (Fake only) X 7.84 19.64 24.1 0.015 0.0155

SNGAN-DAT (Discriminator only) X X 7.97 17.93 22.46 0.0133 0.0142
SNGAN-DAT (All) X X X 1.62 292 294 0.3603 0.3605

Fig. 6: Training FID of two independent runs with different
perturbation level (ε) settings. (Lower is better)

GANs. In this section, we experiment the DAT method with
different number of adversarial perturbations on the CIFAR-
10 dataset, where the basic architecture is SNGAN and the
perturbation level (ε) are set to 0.6 or 1. We select certain

classic perturbation numbers for experiments such as {1, 2, 3,
4, 5}. All experiments are performed two times to reduce the
effect of randomness.

As shown in Figure 7, the left part illustrates the Train
FID with ε = 0.6 and the right part illustrates the Train FID
with ε = 1. DAT with multiple perturbation numbers achieves
more significant improvement when the perturbation level is
set to 0.6. However, the performance of GANs decreases with
the number of perturbations when the perturbation level is set
to 1. The results also demonstrate that neither too large nor
too small adversarial perturbations are effective in improving
the performance of GANs. For instance, the best performance
has been achieved when perturbation level is set to 0.6 and
perturbation number is set to 2.

C. Evaluation with different perturbation positions

Different from the perturbation in classifiers, adversarial
perturbation in GANs can be applied to different positions,
which have different effects. In this section, we experiment
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(a) Training FID in different perturbation numbers of two
independent runs (ε = 0.6)

(b) Training FID in different perturbation numbers of two
independent runs (ε = 1)

Fig. 7: Training FID in different perturbation numbers of two independent runs (Lower is better)

Fig. 8: Percentage of generated images with adversarial
examples on CIFAR-10 dataset. Following the definition of

adversarial examples, we set δ = 0.1 in this figure. With
DAT, the proportion of generated samples existing

adversarial samples is low and stable for different GAN
models, which stabilizes the training of the GANs. All

results are the average of three independent runs.

the DAT with different positions of adversarial perturbation on
the CIFAR-10 dataset, where the base architecture is SNGAN,
the perturbation level, and the perturbation number are set
to 1. Figure 10 illustrates the updating of discriminator and
generator with the DAT during GANs training, where (i),
(ii), (iii) are different perturbation positions for DAT. The
experimental results in Table IV illustrate that applying DAT to
the generator’s training ("Generator only" and "All" methods)
destroys the training of GANs, which is noticeable. Generator
is trained by information from discriminator. During generator
training, adversarial training is not useful and breaks the
gradient. Furthermore, using DAT only for fake images ("Fake
only" method) or real images ("Real only" method) does not
significantly improve the performance of GANs training. As
described in Algorithm 1, the best performance is using DAT

for real and fake images during discriminator training.

VI. CONCLUSIONS

Motivated by adversarial examples in neural networks, in
this paper, we argue that the instability of GANs training has
close relation with adversarial examples of the discriminator.
Unlike the adversarial perturbation in classifiers, adversarial
noise of the discriminator produces the incorrect gradient of
the generator, which misleads the update of the generator and
causes the instability of GANs training. With this discovery,
we propose the DAT method to avoid the adversarial exam-
ples during discriminator training. Furthermore, the proposed
DAT method can adaptively adjust the Lipschitz constants,
superior to some fixed gradient penalty methods, such as
GP, LP, and 0-GP. The validation with different architectures
on varied datasets indicates that the proposed DAT method
can significantly improve the performance and alleviate mode
collapse. In addition, some ablation studies compare the effect
of different perturbation levels, perturbation numbers, and
perturbation positions. The results indicate that more complex
adversarial manipulation methods can further improve the
DAT’s performance.
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APPENDIX

A. Evaluation Settings

In this paper, we use three metrics: Fréchet Inception
Distance (FID) [49], Kernel Inception Distance (KID) [50],
and Inception Score (IS) [51] to evaluate the quality and
diversity of generated images.

1) Fréchet Inception Distance: FID is the most popular
metric evaluating the performance of GANs, which is widely
used in the literature. FID calculates the Wasserstein-2 distance
of features produced by pre-trained Inception network between
real and generated images. Formally, FID is defined as:

dFID = ‖µr − µg‖22 + Tr
(

Σr + Σg − 2 (ΣrΣg)
1
2

)
, (16)

where µr and µg denote the mean of feature vectors produced
by real and fake images, respectively, and Σr and Σg denote
the covariance of feature vectors produced by real and fake
images, respectively. However, FID can produce biases, where
the FID between train and generated images have better scores,
and FID between test and generated images have worse scores.

2) Kernel Inception Distance: KID is also a alternative
metric of FID, which produces small bias. Formally, KID
measures the square of the Maximum Mean Discrepancy
(MMD) between two distributions:

dKID = MMD2(X,Y )

=
1

m(m− 1)

m∑
i 6=j

k (xi, xj)

+
1

n(n− 1)

n∑
i6=j

k (yi, yj)−
2

mn

m∑
i=1

n∑
j=1

k (xi, yj) ,

(17)
where X and Y represent real and generated distribution,
respectively, m and n are sample sizes from real and generated
distribution, and k is the polynomial kernel defined by:

k(x, y) =

(
1 +

1

d
xT y

)3

. (18)

Furthermore, the feature of real and generated images is also
produced by pre-trained Inception network.

3) Inception Score: Different from above methods measur-
ing the distance between real and generated distributions, IS
only uses generated images to produce scores. IS measures the
performance of GANs in terms of both quality and diversity
of images. Quality of generated images is represented by
the entropy of the conditional class distribution: H(p(y|x)).
The smaller H(p(y|x)) indicates the higher certainty of the
current image classification, which demonstrates the better
quality of the generated images. Furthermore, diversity of
images is represented by the entropy of marginal class distri-
bution: H(p(y)). The larger H(p(y)) indicates the generation
of category-balanced images, which demonstrates the better
diversity of the generated images. In summary, IS can be
formally defined as:

dIS = exp
(
Ex∼pgDKL(p(y | x)‖p(y))

)
. (19)

Also, Both the H(p(y|x)) and H(p(y)) are computed by a
pre-trained Inception network.

B. Generated Image Samples

In this section, we show some sampled images generated by
SSGAN and SSGAN-DAT on CIFAR-10, CIFAR-100, STL-
10, and LSUN-Bedroom dataset in Figures 11 and 12. The
results demonstrate that the images generated images are more
diverse and have higher quality after the use of DAT.
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(a) CIFAR10

(b) CIFAR100

(c) STL10

Fig. 11: Randomly sampled images generated by SSGAN (left) and SSGAN-DAT (right) on CIFAR-10, CIFAR-100, and
STL-10 datasets.
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(a) SSGAN

(b) SSGAN-DAT

Fig. 12: Randomly sampled images generated by SSGAN (top) and SSGAN-DAT (bottom) on LSUN-Bedroom dataset.


	I Introduction
	II Background and Related Work
	II-A Generative Adversarial Networks
	II-B Lipschitz Constant and WGAN
	II-C Adversarial Examples and Adversarial Training
	II-D The Adversarial Robustness with GANs Training

	III Proposed Approach
	III-A Direct Adversarial Training
	III-B Adversarial Perturbation of the Discriminator
	III-C Direct Adversarial Training and Lipschitz Continuity

	IV Experiments
	IV-A Experiments on DCGAN
	IV-B Evaluation on some popular methods in different datasets
	IV-C The FID Results on CIFAR-10 Dataset with Other Regularization Methods
	IV-D The Results on Adversarial Robustness of the Discriminator

	V Exploratory and Ablation Studies
	V-A Evaluation with different perturbation levels
	V-B Evaluation with different perturbation numbers
	V-C Evaluation with different perturbation positions

	VI Conclusions
	References
	Biographies
	Ziqiang Li
	Rentuo Tao
	Pengfei Xia
	Hongjing Niu
	Bin Li

	Appendix
	A Evaluation Settings
	A1 Fréchet Inception Distance
	A2 Kernel Inception Distance
	A3 Inception Score

	B  Generated Image Samples


