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PSNet: Parallel Symmetric Network for Video
Salient Object Detection
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Abstract—For the video salient object detection (VSOD) task,
how to excavate the information from the appearance modality
and the motion modality has always been a topic of great concern.
The two-stream structure, including an RGB appearance stream
and an optical flow motion stream, has been widely used as a
typical pipeline for VSOD tasks, but the existing methods usually
only use motion features to unidirectionally guide appearance
features or adaptively but blindly fuse two modality features.
However, these methods underperform in diverse scenarios due
to the uncomprehensive and unspecific learning schemes. In this
paper, following a more secure modeling philosophy, we deeply
investigate the importance of appearance modality and motion
modality in a more comprehensive way and propose a VSOD
network with up and down parallel symmetry, named PSNet.
Two parallel branches with different dominant modalities are set
to achieve complete video saliency decoding with the cooperation
of the Gather Diffusion Reinforcement (GDR) module and Cross-
modality Refinement and Complement (CRC) module. Finally, we
use the Importance Perception Fusion (IPF) module to fuse the
features from two parallel branches according to their different
importance in different scenarios. Experiments on four dataset
benchmarks demonstrate that our method achieves desirable and
competitive performance. The code and results can be found from
the link of https://rmcong.github.io/proj PSNet.html.

Index Terms—Salient object detection, Video sequence, Parallel
symmetric structure, Importance perception.

I. INTRODUCTION

V IDEO salient object detection (VSOD) focuses on ex-
tracting the most attractive and motion related objects

in a video sequence [1], [2], which has been used as a pre-
processing step for a wide range of tasks, such as video
understanding [3]–[6], video compression [7], video tracking
[8], and video caption [9]. Due to the characteristic of video,
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Fig. 1. Top: The structures of VSOD models between our method (c) and
the other optical flow-based two-stream VSOD methods (a) (b). Bottom: The
saliency results from different models in different scenes. (d) RGB images; (e)
Optical flow images; (f) GT; (g) Saliency maps deduced by different methods,
where the first row is generated by the MGA method [16], the second row is
generated by our baseline model with addition fusion, and the last two rows
are generated by the CAG method [18]; (h) Our model.

in addition to the appearance cue, the motion attribute plays
an important role, which is different from the SOD task for
static images. Entering the deep learning era, a variety of
VSOD methods have been explored, which can be roughly
divided into two categories, e.g., single-stream methods using
the temporal convolution/long short-term memory [10]–[14]
and two-stream methods using the optical flow [15]–[18]. Even
so, it is still very challenging for current VSOD methods to
fully excavate and integrate the information from motion and
appearance cues. For the optical flow-based two-stream VSOD
model, how to achieve the information interaction according to
the role of the two modalities is very important. In this paper,
we first rethink and review the interaction mode in the optical
flow-based two-stream VSOD structure, and the existing meth-
ods can be further categorized into two categories. One is the
unidirectional guidance model, as shown in Fig. 1(a), in which
the motion information mainly plays a supplementary role. For
example, Li et al. [16] encouraged motion features to guide
the appearance features in the designed VSOD model. As a
result, the model pays too much attention to the spatial branch,
while the advantage of the motion branch is weakened when
dealing with some challenging scenes, such as the stationary
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objects with salient appearance may be incorrectly preserved.
(see the 1st row of Fig. 1). To alleviate the problems mentioned
above, the undifferentiated and bidirectional fusion mechanism
is proposed as another typical interaction mode, as shown in
Fig. 1(b), which no longer distinguishes their primary and sec-
ondary roles. Fusing the two modality features by addition or
concatenation is the simplest solution, but this way often fails
to achieve the desired results, especially for some complex
scenes (see the 2nd row of Fig. 1). In addition, some works
[18] learn the weights to determine the contributions of spatial
and temporal features, and then achieve adaptive fusion of two
modality features. Although these methods appear to be quite
intelligent and achieve relatively competitive performance, this
black-box adaptive fusion strategy sometimes only trades off
performance rather than maximizing gains when faced with
different scenarios. As shown in 3rd and 4th rows of Fig.
1, they are different frames from different moments of the
same video. Although they are similar scenes, the contribution
of the two modality data to the final saliency detection is
different. We can find that the appearance cues are more
important than the motion cues in the 3rd row, where the
dramatic moving of objects and the change of camera position
lead to unclear and blur motion cues. While in the 4th row,
motion cues can provide more effective guidance information
compared with appearance cues that contain some irrepressible
noise. According to these observations, when salient objects
and backgrounds share similar appearances or background
interference is disturbing, interlaced and wrong appearance
cues could greatly contaminate the final detection results. But
at this time, perhaps accurate motion cues will help us to
segment the salient objects correctly. Alternatively, too slow
or too fast object motion will blur the estimated optical flow
map, thus failing to provide discriminative motion cues and
affecting the final detection. In this case, satisfactory detection
results can be obtained by exploiting the semantic information
from distinctive appearance cues and features. In other words,
the roles of the two modalities in different scenes or even
similar scenes cannot be generalized, and the uncertainty
of the scene makes it very difficult to model interaction
fully adaptively. Instead of learning the importance of these
two modalities regardless and fully adaptively, we propose
a more secure modeling strategy, where the importance of
appearance cues and motion cues will be comprehensively
and explicitly taken into account to generate the saliency
maps, as shown in Fig. 1(c). In our network, we design a
top-bottom parallel symmetric structure, which sacrifices the
full-automatic intelligence so that we can fuse features more
comprehensively, considering the adaptability of the network
to different scenarios. Since it struggles for the network to
distinguish which modality is more important in one particular
scenario, we design two branches with varying tendencies
of importance for VSOD, taking one modality feature as a
dominant role in each branch and then supplementing from
another modality.

Under the parallel symmetric structure, we need to do
two things, one is how to realize the utilization of the two
modality information in each branch more clearly, and the
other is how to integrate the information of the upper and lower

branches to generate the final result. For the first issue, we
design the Gather Diffusion Reinforcement (GDR) module and
Cross-modality Refinement and Complement (CRC) module
to achieve dominate-modality feature reinforcement and cross-
modality feature interaction, respectively. Considering that the
high-level semantic information can reduce the interference of
non-salient information in a single modality and multi-scale
information can contribute to more comprehensive features,
we design a GDR module to enhance the effectiveness of
dominant features in each branch and improve the multi-scale
correlation of the dominant features themselves. The outputs
of the GDR module are then used for the CRC module in a top-
down manner. The key ideas behind the design of the CRC
module are as follows. Even if the data from one modality
plays a dominant role, there is more or less useful information
from the other modality. We divide this role into two types,
one is the refinement role, which is mainly used to suppress
the irrelevant redundancies in the dominant features, and the
other is the complementary role, mainly used to compensate
for potential information missing in dominant features. There-
fore, we design the CRC module to achieve comprehensive
information interaction in the case of explicit primary and
secondary relations, which can play the most significant role
in our proposed parallel symmetric framework. Although both
our upper and lower branches are fully implemented in the
VSOD task, the dominant modality they set is different. To
obtain more robust and generalized final results, we need to
integrate the two branches, which is the second problem we
need to solve. Considering the different importance of the
upper and lower branches in different scenarios, we introduce
an Importance Perception Fusion (IPF) module for adaptive
fusion. All designed modules are closely cooperated and
integrated under our parallel symmetrical structure to achieve
better detection performance. As shown in the 5th column
of Fig. 1, our model can accurately locate salient objects in
different types of scenes, with obvious advantages in detail
representation and background suppression. The contributions
of this paper can be summarized as:
• Considering the adaptability of the network to different

scenarios and the uncertainty of the role of different
modalities, we propose a parallel symmetric network
(PSNet) for VSOD that simultaneously models the im-
portance of two modality features in an explicit way.

• We propose a GDR module in each branch to perform
multi-scale content enhancement for dominant features
and design a CRC module to achieve cross-modality
interaction, where the auxiliary features are applied to
refine and supplement dominant features.

• Experimental results on four mainstream datasets demon-
strate that our PSNet outperforms 25 state-of-the-art
methods both quantitatively and qualitatively.

II. RELATED WORK

A. Salient Object Detection in Single Image and Image Group

For decades, single image-based SOD task has achieved
extensive development [19]–[33], and has been widely used
in many related fields [2], such as object segmentation [34],
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Fig. 2. The flowchart of the proposed Parallel Symmetric Network (PSNet) for video salient object detection. We first extract the multi-level features from
RGB images and optical flow maps via spatial encoder and temporal encoder respectively, which are denoted as fai and fmi (i = {1, 2, · · · , 5}). Then, the
appearance-dominated branch (top branch) and motion-dominated branch (bottom branch) are used to feature decoding. For each decoding, we use Gather
Diffusion Reinforcement (GDR) module to perform cross-scale feature enhancement, and then use the Cross-modality Refinement and Complement (CRC)
module to achieve cross-modality interaction with an explicit primary and secondary modality relationship. Finally, the Importance Perception Fusion (IPF)
module is used to integrate the upper and lower branches by considering their different importance in different scenarios.

content enhancement [35]–[46], and quality assessment [47],
[48]. Chen et al. [21] developed a method to make full use
of global context. Liu et al. [22] introduced a network to
selectively attend to informative context locations for each
pixel. In addition, the salient boundaries have been introduced
into the model to improve the representation and highlight
the desirable boundaries [23]–[25]. Some methods integrated
features in multiple layers of CNN to exploit the context
information at different semantic levels [25], [26]. In some
challenging and complex single image scenarios, some works
seek help from other modality data (e.g., depth map [49]–
[55] and thermal map [56]). In addition, co-salient object
detection (CoSOD) aims to detect salient objects from an
image group containing several relevant images [57]–[66]. The
difference between CoSOD and VSOD is that it does not have
temporal consistency, and the co-salient object is generally
only consistent in semantic categories, rather than the same
object.

B. Salient Object Detection in Video

The last decade has witnessed the considerable development
of salient object detection in video sequences. Earlier VSOD
methods mostly locate salient objects through hand-crafted
features [67]–[70]. Tu et al. [67] detected the salient object in
the video through two distinctive object detectors and refined
the final spatiotemporal saliency result by measuring the
foreground connectivity between two maps from two detectors.
Chen et al. [68] divided the long-term video sequence into
some short batches and proposed to detect saliency in a batch-
wise way, where the low-rank coherency is introduced to

guarantee temporal smoothness. However, the performance
of these methods is not satisfactory due to the limited fea-
ture representation capabilities. Recently, deep learning has
demonstrated its power in VSOD tasks. Among them, some
VSOD models adopt a single-stream structure that directly
feeds the video sequences recursively into the network. For
instance, Wang et al. [10] proposed the first work applying
deep learning to the VSOD task. Li et al. [71] proposed a two-
stage FCN-based model, where the first stage is responsible
for detecting static saliency, and the second stage is utilized to
detect spatiotemporal saliency with two consecutive frames. In
general, this method models saliency in a relatively primitive
way. With the development of the model, some subtle module
designs are proposed. For example, Song et al. [13] used the
designed Pyramid Dilated Bidirectional ConvLSTM to achieve
deeper spatiotemporal feature extraction. Fan et al. [14] intro-
duced a VSOD model based on ConvLSTM, which is applied
to model spatiotemporal features in a fixed length of video
frames. Moreover, a new VSOD dataset with human visual
fixation to model the human saliency shifting is proposed as
well. Chen et al. [72] focused on the results derived from
previous SOTA models, which are applied as pseudo labels to
fine-tune a new model, considering the motion quality. Chen et
al. [12] presented a novel spatiotemporal modeling unit based
on 3D convolution.

In addition, another typical VSOD pipeline is the two-
stream structure, where the optical flow image generated by
FlowNet2 [73] or other methods is directly fed into the
network as another stream input. Current two-stream models
can be divided into two categories. One is the uni-direction
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guidance model, as shown in Fig. 1(a). Li et al. [16] used
the two-stream model to extract two modality features, where
the temporal branch is designed to affect the spatial branch
for better salient results. Ren et al. [74] proposed to excite
the video saliency branch with encoded optical flow features,
and developed the semi-curriculum learning manner to learn
saliency. The other is the undifferentiated and bidirectional
fusion model, as shown in Fig. 1(b). Ji et al. [17] proposed to
exploit the cross-modality features by considering a mutual re-
straint scheme. Chen et al. [18] tried to adaptively fuse features
from motion and appearance via estimating confidence scores.
Su et al. [15] dynamically learned the weight vector of two
modality features and aggregated the corresponding features
complementarily. Zhao et al. [75] used scribble labels to train
the VSOD model, in which cross-modality fusion and temporal
constraint are used to model spatiotemporal information.

It is worth mentioning that the VSOD task is highly related
to the unsupervised video object segmentation (VOS) task. Lu
et al. [76] proposed an unsupervised video object segmenta-
tion method, where a co-attention layer learns discriminative
foreground information in video frame pairs. Zhou et al.
[77] used an asymmetric motion-attentive transition to identify
moving motion information and facilitate the representation of
spatiotemporal cues in the zero-shot video object segmentation
task. Wang et al. [78] built a fully connected graph to explore
more representative and high-order relation information for
zero-shot VOS. Cho et al. [79] regarded motion cues as op-
tional in the unsupervised video object segmentation network,
thereby designing a motion branch that can be adaptively
turned on or off to participate or not in saliency detection.

The differences between our method and existing methods
can be summarized in two major points. The previous two-
stream structure is mainly a unidirectional guidance model
or undifferentiated and bidirectional fusion model. But they
may lead to insufficient information extraction due to wrong
selection or ignoring the primary and secondary roles of
different modalities (i.e., appearance and motion). Hence, we
propose a more comprehensive and more secure strategy for
modeling cross-modality interaction in the VSOD task under
the two-stream structure, including an appearance-dominated
branch and a motion-dominated branch. Two branches each
consider the fusion with opposite modality tendencies, owning
a clear and specific modality guidance tendency. Furthermore,
to implement our overall framework, we also design concrete
models that differ from existing methods, where the GDR
module, CRC module, and IPF module cooperate to fully
mobilize the relationship between different modalities and
different detection branches.

III. METHODOLOGY

A. Overview of Proposed Network

As shown in Fig. 2, the proposed PSNet is a two-stream
encoder-decoder network, following an up-down mirror-
symmetrical structure. For the concise of the following de-
scription, we denote the current RGB frame as Rt, and the
next RGB frame as Rt+1. These two adjacent images are
input into FlowNet2 [73] to predict optical flow Ot,t+1 in

an end-to-end way. With these inputs, the Rt and Ot,t+1

are fed into the pre-trained ResNet50 backbone network that
removes the last average pooling layer and the fully connected
layer to obtain the encoder features of f ai and fmi , where
i = {1, 2, 3, 4, 5} indicates the ith layer. The parameters of
the spatial encoder and temporal encoder are not shared in our
model. In this network, we only use the features from the last
four layers for the savings of computational costs. After that,
both f ai and fmi are further input to the appearance-dominated
branch and motion-dominated branch for feature decoding.
As for the feature decoding process, we briefly illustrate
the appearance-dominated branch as an example. First, all
the dominant encoder features f ai from the last four layers
(i.e., i = {1, 2, 3, 4, 5}) are embedded into the GDR module
to achieve the dominate-modality feature reinforcement and
generate the corresponding reinforced dominant features f a,ri .
Following that, the reinforced dominant features f a,ri , the
corresponding appearance and motion features of f ai and
fmi , and the previous decoder features f a,di+1 are input to the
CRC module, thereby completing the explicit cross-modality
information interaction and obtaining the decoder features f a,di

of the current layer. Finally, we aggregate the outputs of the
two decoder branches and generate the final saliency map
through the IPF module.

B. Gather Diffusion Reinforcement Module

As mentioned earlier, each of our decoding branches has
clear dominant and auxiliary modality partitions. In order
to ensure the effectiveness and comprehensiveness of the
dominant modality features as much as possible, we consider
the following motivations for designing a GDR module to
strengthen the dominant features of each layer. In the encoding
stage, the features extracted by each layer are relatively
independent and have their own characteristics. With the
network going deeper, the high-level features may contain
more location and abstract semantic information about the
salient object. At the same time, the low-level features are
prone to have more detailed information, such as textures
and boundaries. Both high-level and low-level features are
essential for salient object detection and integrating them can
help to generate high-quality multi-level features. Based on
this, the primary function of our GDR module is to correlate
the relationship between encoder features at different scales
to develop more comprehensive encoder features. The detailed
architecture of the GDR module is shown in Fig. 3.

Given several features from different levels of the dominant
branch, a Gather module is designed to exploit cross-layer and
cross-scale information interaction. Specifically, considering
that the features of different layers may contain some noise,
especially in the low-level features, the coarse semantic mask
predicted by the top encoder layer is used to filter out such
noise, which is defined as:

mask5 = σ (C3×3 (C3×3 (f5))) , (1)
fsi = Up (mask5)⊗ fi, (2)

where C3×3 is convolution layer with the kernel size of
3 × 3, σ denotes sigmoid function, ⊗ refers to element-wise
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Fig. 3. The architecture of our proposed Gather Diffusion Reinforcement
(GDR) module.

multiplication operation, fsi are the features after the semantic
filtering, and Up is the upsampling operation. For simplicity,
the superscript a or m of the encoder features fi indicating
the appearance branch or the motion branch is omitted.

Subsequently, inspired by [80], we use a recursive bidi-
rectional structure to fuse multi-level features and establish
relationships between features across scales in a hierarchical
manner. That is, the fusion process is not limited to top-
down but also explores bottom-up fusion to achieve more
comprehensive multi-scale fusion. The top-down multi-scale
feature interaction can be described as:

yi =

{
C3×3 (C1×1 (fsi ) + yi+1) , i = {2, 3, 4}
C3×3 (C1×1 (fsi )) , i = 5

(3)

where C1×1 is convolution layer with the kernel size of 1× 1.
Then, the reverse operation is also performed to achieve a

more comprehensive cross-scale interaction:

y′i =

{
C3×3

(
yi + y′i−1

)
, i = {3, 4, 5}

C3×3 (yi) , i = 2
(4)

As such, all interaction features {y′i | i = {2, 3, 4, 5}} are
fused together in the form of concatenation-convolution:

yf = C3×3 (Cat [y′2, y′3, y′4, y′5]) , (5)

where Cat is channel-wise concatenation operation.
Finally, considering that each level of CRC needs a different

scale of features from GDR, a straightforward way is to use
a diffusion module to diffuse features. Here, we perform 3×3
convolution with stride 2 on the fusion features and generate
the reinforced features:

fri =

{
C3×3 stride 2

(
yf
)
, i = 2

C3×3 stride 2

(
fri−1

)
, i = {3, 4, 5} (6)

where C3×3 stride 2 denotes 3 × 3 convolution with the stride
of 2. The reinforced features in the appearance-dominated
branch and motion-dominated branch can be distinguished
as f a,ri and fm,ri , respectively. In fact, both DSS [81] and
our GDR module adopt a structure similar to FPN [82],
which is used for enriching the representation of multi-scale
information. But our GDR module acts as a single-modality
feature enhancement with cross-level, cross-scale information,
and then passes them to the decoder. In the implementation,
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Fig. 4. The structure of our proposed Cross-modality Refinement and
Complement (CRC) module.

for the FPN and short connection in [81], the multi-scale
information is fused in a single direction (up-to-down). While
for our GDR module, the interaction direction is not restricted
to a single direction but follows a recursive way to achieve
more comprehensive multi-scale information. In addition, the
high-level features from the encoder are used to filter out the
noise in low-level features for a more robust single-modality
representation in our GDR module.

C. Cross-modality Refinement and Complement Module

The cross-modality interaction has always been a core
topic in video salient object detection. Fortunately, under our
parallel symmetric architecture, each branch has a definite
dominant modality and a corresponding auxiliary modality,
so that we can design the interaction module more explicitly
and clearly. For concise, we denote the dominant modality
features as fdomi , and the auxiliary features as fauxi . The
structure of CRC is depicted in Fig. 4. As mentioned earlier,
for each dominated branch, the fdomi are more dominant than
fauxi , but this does not mean that auxiliary features are entirely
useless. In other words, there is still some helpful information
in fauxi , which will contribute to the saliency feature learning.
Therefore, starting from the auxiliary modality, we divide its
role into two types of refinement and complement and design
a CRC module to maximize the use of auxiliary information.
Furthermore, the features of fdomi are fed into the GDR
module to generate the reinforced dominant features fdom,ri

for the current CRC module.
On the one hand, the supplement of the feature dimension is

the most direct from the perspective of information interaction.
But direct and indiscriminate integration of fauxi may intro-
duce contamination noise into the dominant features. There-
fore, we try to select auxiliary features from the perspective
of dominant features and determine the feature components
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that need to be supplemented. Specifically, two convolutions
are employed on the fdom,ri to obtain the importance response
map masksi . Then, we use this map to weight the auxiliary
features of fauxi and utilize the dense block and residual block
to strengthen the features, thereby determining the auxiliary
features that need to be supplemented to the reinforced dom-
inant features. The above operations are presented as follows:

masksi = σ
(
C1×1

(
C3×3

(
fdom,ri

)))
, (7)

fwauxi = masksi ⊗ fauxi , (8)
f cauxi = C1×1 (Dense (fwauxi ) + fwauxi ) , (9)

where fwauxi are the weighted auxiliary features, f cauxi de-
note the final complemented auxiliary features, and Dense
represents the dense block in [83].

On the other hand, in addition to the complement of
feature dimensions, auxiliary features can also be used to
refine the irrelevant interference and misinformation in the
dominant features. However, considering the difference and
interference noise of the two modalities, as well as the large
variation of the characteristics of the two modalities with
the scene, we do not directly apply f cauxi to refine fdom,ri ,
but introduce the dynamic convolution filters [84], [85] to
adaptively generate the convolution kernel for different sce-
narios, so as to ensure the generalization and robustness of the
network. With the complemented auxiliary features f cauxi , we
use the local dynamic convolution [84] with different dilated
rates to generate multi-scale convolution kernels. Then, the
generated dynamic convolution kernels are used to convolve
the reinforced dominant features fdom,ri , achieving the goal of
refining the details. The process can be expressed by:

k1 = FG1 (f cauxi )~ fdom,ri , (10)

k3 = FG3 (f cauxi )~ fdom,ri , (11)

k5 = FG5 (f cauxi )~ fdom,ri , (12)

fdyi = C3×3 (Cat [k1, k3, k5]) , (13)

where FGj presents the filter generator with the dilated rate
of j by using two convolutions and reshaping operations, and
~ indicates convolution operation.

Next, we employ fdyi to generate a refinement mask, and
then revise and refine the features of fdomi :

Ci = Cat
(
maxpool

(
fdyi

)
, avgpool

(
fdyi

))
, (14)

maskri = σ (C3×3 (Ci)) , (15)

frefi = maskri ⊗ fdomi , (16)

where frefi denote the refined dominant features, maskri is the
generated refinement mask, and maxpool and avgpool denote
max-pooling and average pooling respectively. Finally, we
combine the complemented auxiliary features f cauxi and re-
fined dominant features frefi after the channel compaction:

frci = CA (f cauxi ) + CA
(
frefi

)
, (17)

where CA presents channel attention block [86]–[88].
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Fig. 5. The structure of our proposed Importance Perception Fusion (IPF)
module.

With the final interaction features frci , we combine them
with the decoder features of the previous layer fdom,di+1 to
generate the final decoder features of the current layer:

fdom,di =

 C3×3
(
Cat

(
frci , Up

(
fdom,di+1

)))
, i = {2, 3, 4}

C3×3
(
Cat

(
frci , f

dom,r
i

))
, i = 5

(18)
where the decoder features of ith layer in the appearance-
dominated branch and motion-dominated branch are as f a,di

and fm,di , respectively.

D. Importance Perception Fusion Module

Under the parallel symmetric framework, the appearance-
dominated branch and motion-dominated branch generate
comprehensive spatiotemporal features corresponding to dif-
ferent modality dominance with clear and well-defined roles.
Although both branches can be regarded as complete VSOD
branches, the dominant modality they set is different, and the
learned features are also different. To obtain a more robust and
generalized final result, inspired by the MF module in [89],
we introduce an IPF module to achieve the branch fusion,
considering the different importance of the upper and lower
branches in different scenarios. Fig. 5 illustrates the flowchart
of the IPF module. The input features of the IPF module
can be divided into two parts. One is the last-layer features
of the encoder (f5), which is used to perceive the different
importance of the upper and lower branches in different
scenes. In this way, an adaptive importance weight W ∈ R128

is learned. More specifically, the features from the 5th layer
of appearance and motion encoders (i.e., fa5 and fm5 ) are first
fed into global average polling and then concatenated together
to learn a channel-wise weight:

W = σ (FC (Cat (GAP (fa5 ) , GAP (fm5 )))) , (19)

where GAP is global average pooling, and FC represents a
full-connected layer.

Another input to the IPF module is the top-layer features
of two decoders. The reason why we choose top-layer fea-
tures fd2 of the decoder is that the fd2 has higher resolution
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than fd3 and fd4 , and contains more comprehensive decoding
information, which is more suitable for our purpose in IPF.
More specifically, we use the weight W to combine the
output decoder features of two branches fa,d2 and fm,d2 into
importance weighted features Fimp:

Fimp =W � fa,d2 + (1−W)� fm,d2 , (20)

where fa,d2 and fm,d2 are the decoder features of last layer
in the corresponding branch, and � denotes element-wise
multiplication with the broadcasting strategy.

Furthermore, the common response between two outputs
from two branches is also important for the final saliency
result. Thus, a simple but effective way is to perform mul-
tiplication to highlight the common part of the two branches:

Fc = fa,d2 ⊗ fm,d2 . (21)

Finally, the common features Fc and importance weighted
features Fimp are combined by concatenation operation to
predict the final saliency map:

pres = σ (C3×3 (C3×3 (Cat (Fc,Fimp)))) . (22)

E. Loss Function
The network is trained in a multiple supervision manner for

the sake of faster convergence and better performance. First,
for the final saliency results generated by the IPF module, we
employ a joint loss function Lsal to train our model, which is
given by:

Lsal = Lbce (pres, GT ) + Lssim (pres, GT ) , (23)

where Lbce is the binary cross-entropy loss, and Lssim is the
structural similarity loss.

In addition, we add the side-output supervision on each
branch. Taking the appearance-dominated branch as an exam-
ple, firstly, the saliency map Sa predicted by the appearance-
dominated branch will be trained by the Lsal loss. Besides,
the intermediate saliency results from GDR and CRC modules
are also supervised by the ground truth. Specifically, the
supervisions include: (1) the appearance backbone saliency
map mask5 deduced from the 5th layer of appearance back-
bone, which is employed in GDR as a noise filter; (2) the
importance response map masksi deduced from each CRC in
the appearance-dominated branch, in which i = {2, 3, 4, 5}.
Therefore, for the appearance-dominated branch, the loss
function can be formulated as:
Lappearance = Lsal (Sa, GT ) + λ1Lbce (mask5, GT )

+ λ2

5∑
i=2

Lbce (masksi , GT )
, (24)

where λ1 and λ2 are hyper-parameters for balancing the
losses, which are empirically set to 0.6 and 0.4, respectively.
To fit the size of the predicted map, all ground truth will
be downsampled to the size of the corresponding predicted
map. Similarly, we can get the loss function of the motion-
dominated branch, denoted as Lmotion.

Finally, the total loss is defined as follows:

Ltotal = Lsal + Lappearance + Lmotion. (25)

IV. EXPERIMENTS

A. Datasets and Evaluation Metrics

We conduct experiments on four widely used public VSOD
datasets in order to fully evaluate the effectiveness of our
proposed method, i.e., DAVIS [101], DAVSOD [14], SegV2
[102], and ViSal [103]. DAVIS [101] dataset consists of
50 clips of 480p and 720p videos with high-quality dense
annotations, which is further split into 30 videos for training
and 20 videos for testing. DAVSOD [14] dataset includes 226
clips of densely annotated videos, where the salient objects are
annotated by dynamic eye-tracking. In DAVSOD, 80 clips of
videos are for testing. SegV2 [102] dataset is an early proposed
dataset with 14 videos and 1065 annotated frames, including
multiple objects that make it more challenging than others.
ViSal [103] is a dataset containing 19 videos with 193 pixel-
wise annotated frames. In this paper, the test will be carried
out on the whole datasets of ViSal and SegV2, and the testing
subset of DAVIS and DAVSOD datasets. To quantitatively
evaluate the effectiveness of the proposed method, we intro-
duce three evaluation metrics, including maximum F-measure
(Fβ) [104], S-measure (Sm) [105], and Mean Absolute Error
(MAE) [106]. For these three metrics, except for the MAE
score, larger values of the F-measure and S-measure indicate
better performance.

B. Implementation Details

We use the Pytorch toolbox to implement our network and
train our model with an NVIDIA GTX3090 GPU. We also
implement our network by using the MindSpore Lite tool1.
Following the setting in [17], we use the stage-wise training
protocol with image saliency datasets and video saliency
datasets to train our model. In the first stage, we initialize
our spatial backbone with a ResNet-50 [107]. Following [17],
we remove the CRC and IPF modules, and pre-train this model
on the training set of the DUTS dataset [108]. In this stage,
the batch size and initial learning rate are set to 16 and 0.002,
respectively. Moreover, the learning rate decays 0.1 times per
10 epochs. In the second stage, we use FlowNet2 [73] to
generate the corresponding optical flow map for each frame
of the DAVIS dataset and pre-train the temporal branch. The
training settings are the same as stage 1. Next, in stage 3, we
use the DAVIS dataset, including RGB images and optical flow
maps, to fine-tune our whole PSNet. Concretely, we load the
learned weights from stage 1 and stage 2 to the spatial branch
and temporal branch, respectively. The number of batch sizes
is set to 8. The learning rate is set to 0.0002 for finer learning
and stops learning after 20 epochs. In each stage, we use the
stochastic gradient descent (SGD) optimizer to train our model
with a momentum of 0.9 and a weight decay of 0.0005. We
resize all input images to 384 × 384. Furthermore, we apply
a multi-scale training strategy with scales of {0.75, 1, 1.25},
random horizontal flipping, and random vertical flipping to
enhance the generalizability and stability of our trained model.

1https://www.mindspore.cn/

https://www.mindspore.cn/
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TABLE I
QUANTITATIVE RESULTS ON THE DAVIS, SEGV2, DAVSOD, AND VISAL DATASETS. THE TOP TWO SCORE WAS MARKED IN BOLD AND UNDERLINE,

RESPECTIVELY.

Methods Years DAVIS SegV2 ViSal DAVSOD
Fβ ↑ Sm ↑ MAE ↓ Fβ ↑ Sm ↑ MAE ↓ Fβ ↑ Sm ↑ MAE ↓ Fβ ↑ Sm ↑ MAE ↓

Deep Learning Static Salient Obejct Detection
EGNet [23] 2019 0.768 0.829 0.056 0.774 0.845 0.024 0.941 0.946 0.015 0.604 0.719 0.101
CPD [90] 2019 0.778 0.859 0.032 0.778 0.841 0.023 0.941 0.942 0.016 0.608 0.724 0.092
ITSD [91] 2020 0.835 0.876 0.033 0.807 0.787 0.027 – – – 0.651 0.747 0.094

Traditional Video Salient Object Detection
MSTM [92] 2016 0.429 0.583 0.165 0.526 0.643 0.114 0.673 0.749 0.095 0.344 0.532 0.211
SGSP [93] 2017 0.655 0.592 0.138 0.673 0.681 0.124 0.677 0.706 0.165 0.426 0.577 0.207
STBP [94] 2016 0.544 0.677 0.096 0.640 0.735 0.061 0.622 0.629 0.163 0.410 0.568 0.160
FDOS [67] 2017 0.701 0.784 0.061 0.683 0.765 0.045 0.767 0.801 0.063 0.456 0.582 0.157
SCOM [95] 2018 0.783 0.832 0.048 0.764 0.815 0.030 0.831 0.762 0.122 0.464 0.599 0.220
SFLR [68] 2017 0.727 0.790 0.056 0.745 0.804 0.037 0.779 0.814 0.062 0.478 0.624 0.132

Deep Learning Video Salient Object Detection
SCNN [96] 2018 0.714 0.783 0.064 – – – 0.831 0.847 0.071 0.532 0.674 0.128
DLVS [10] 2018 0.708 0.794 0.061 – – – 0.852 0.881 0.048 0.521 0.657 0.129
FGRN [71] 2018 0.783 0.838 0.043 – – – 0.848 0.861 0.045 0.573 0.693 0.098
MBNM [97] 2018 0.861 0.887 0.031 0.716 0.809 0.026 0.883 0.898 0.020 0.520 0.637 0.159
PDB [13] 2018 0.861 0.887 0.028 0.800 0.864 0.024 0.888 0.907 0.032 0.572 0.698 0.116
RCR [98] 2019 0.855 0.882 0.027 0.781 0.842 0.035 0.906 0.922 0.026 0.653 0.741 0.087
SSAV [14] 2019 0.861 0.893 0.026 0.801 0.851 0.023 0.939 0.943 0.020 0.603 0.724 0.092
MGA [16] 2019 0.892 0.910 0.023 0.821 0.865 0.030 0.933 0.936 0.017 0.640 0.738 0.084
PCSA [11] 2020 0.880 0.902 0.022 0.810 0.865 0.025 0.940 0.946 0.017 0.655 0.741 0.086
CASNet [99] 2020 0.860 0.873 0.032 0.847 0.820 0.029 – – – – – –
DSNet [15] 2020 0.891 0.914 0.018 0.832 0.875 0.028 0.950 0.949 0.013 – – –
STVS [12] 2021 0.865 0.892 0.018 0.860 0.891 0.017 0.952 0.952 0.013 0.651 0.746 0.086
WVSOD [75] 2021 0.793 0.846 0.038 0.762 0.819 0.033 0.875 0.883 0.035 0.593 0.694 0.115
TransVOS [100] 2021 0.869 0.885 0.018 0.800 0.816 0.024 0.928 0.917 0.021 – – –
CAG [18] 2021 0.898 0.906 0.018 0.826 0.865 0.027 0.950 0.950 0.013 0.670 0.762 0.072
FSNet [17] 2021 0.907 0.920 0.020 0.805 0.870 0.024 – – – 0.685 0.773 0.072
PSNet - 0.907 0.919 0.016 0.852 0.889 0.016 0.955 0.954 0.012 0.678 0.765 0.074

C. Comparison with the State-of-the-arts

Our proposed method is compared with 25 state-of-the-
art methods, including three static SOD methods (EGNet
[23], CPD [90], ITSD [91]), six traditional VSOD methods
(MSTM [92], STBP [94], SGSP [93], SCOM [95], FDOS [67],
SFLR [68]), and sixteen deep learning-based VSOD methods
(SCNN [96], DLVS [10], FGRN [71], MBNM [97], PDB [13],
RCR [98], SSAV [14], MGA [16], PCSA [11], CASNet [99],
WVSOD [75], DSNet [15], TransVOS2 [100], STVS [12],
CAG [18], FSNet [17]). For fair comparisons, all the saliency
maps are provided by authors or tested by the released code
under the default parameters.

1) Quantitative Evaluation: The quantitative results max-
F, S-measure, and MAE results are listed in Table I. The static
SOD methods perform well in some simple datasets (e.g.,
ViSal) and even outperform VSOD methods, mainly because
the image appearance cues in these datasets dominate most
scenes. Quantitatively, the static SOD method CPD [90] wins
the percentage gain of 0.9% in Fβ and 31.3% in MAE against
the MGA [16] method on the ViSal dataset. However, this
advantage will no longer exist in the face of complex video
scenes, such as the DAVSOD dataset, whose performance is
far lower than the VSOD methods. For traditional VSOD
methods, due to the limitation of only using hand-crafted

2TransVOS is a semi-supervised VOS method.

features, their performance is even lower than that of static
SOD methods. Taking the best traditional VSOD method
SCOM [95] as an example, it achieves comparable perfor-
mance with some deep learning-based static SOD methods
(e.g., EGNet [23] and CPD [90]) on the DAVIS dataset.
However, its performance is 50% lower than deep learning-
based static SOD methods on the DAVSOD dataset. Seeing
Table I, it is observed that our method achieves competitive
performance on these four datasets, basically ranking in the top
two. Specifically, our method outperforms all other models on
the ViSal dataset, which achieves the percentage gain of 7.6%
in terms of MAE score compared with the second best method
(i.e., CAG [18]). In addition, compared with the second best
model on the DAVIS dataset, the percentage gain reaches
11.1% for the MAE score. Our method is slightly inferior to
the FSNet method [17] on the DAVSOD dataset, but achieves
comparable performance on the DAVIS dataset, and has a
clear performance advantage on the SegV2 dataset. From the
analysis of the model size, the size of our method (67.9 M) is
only about 80% of the size of FSNet (83.4 M). Overall, our
method still has certain advantages in terms of performance
and model size.

The training time of PSNet is about 20 hours for all three
stages of training, and the testing speed of our PSNet reaches
19 FPS with the model size of 67.9 M. Compared with optical-
flow-based methods, such as the MGA (47 FPS and 91.5
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Fig. 6. The visualization results of different video salient object detection methods.

M) [16] and CAG (29 FPS and 55.3 M) [18], although the
performance of our algorithm achieves the best result, our
testing time and model size are not optimal, which is related
to the inclusion of operations such as dynamic convolution
in our network design. That is, at present, our model is still
far from the real-time effect. Therefore, in the future, we can
consider lightweight alternative modules to further improve
the efficiency of model testing.

2) Qualitative Evaluation: To further illustrate the advan-
tages of our proposed method, we provide some qualitative
saliency results in Fig. 6. Compared with other methods, our
method achieves superior results with complete object struc-
ture, precise saliency location, and sharp boundaries. As can be
seen, the traditional VSOD methods cannot achieve desirable
results due to their limitations and deficiencies in feature rep-
resentation, such as the 3rd and 4th columns. By contrast, deep
learning-based methods achieve more competitive results, es-
pecially our proposed method is capable of addressing scenes
with small objects and complex backgrounds. Taking the 2nd

and 3rd rows as an example, these two sequences contain
some tough challenges, in which the background exists some
moving but non-salient objects. However, most methods, such
as STVS [12] and PCSA [11], cannot completely suppress
the distracting background objects in such complicated scenes.
Thanks to the design of our network, our model can com-
pletely suppress such background disturbances that consider

motion modality as the dominant feature in such scenes and
reduce the interference of wrong appearance cues. Meanwhile,
in the 10th row, the scene is more complex, where the man
dancing in front of the audience is our salient object. However,
the motion of the foreground objects changes very quickly,
and the audience gathered in the back will not only form a
relatively strong disturbance in appearance but also have a
certain movement of their own, which will undoubtedly make
things worse. Therefore, basically all comparison algorithms
struggle to handle this scene well, especially the background
areas. By contrast, our method can more fully exploit the
roles of different modalities through two symmetrical parallel
branches, resulting in satisfactory saliency results.

D. Ablation Study

In this section, some experiments are conducted to verify
the effectiveness of our proposed pipeline and key modules.

1) Verification of the GDR and CRC modules: We first
conduct several experiments to demonstrate the effectiveness
of the proposed GDR and CRC modules. Therefore, we keep
the IPF module in this part of the experiment. In order to
construct our baseline model, the GDR and CRC modules
are removed from the two branches to construct our baseline
model. Due to the different importance tendencies of the
two modality features in these two branches, we retain the
importance sensor in CRC to generate the importance response
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TABLE II
THE ABLATION VERIFICATION OF CRC AND GDR MODULES ON THE

DAVIS AND DAVSOD DATASETS.

DAVIS DAVSOD
Fβ ↑ Sm ↑ MAE↓ Fβ ↑ Sm ↑ MAE↓

B 0.891 0.904 0.020 0.658 0.746 0.082
B+GDR 0.895 0.907 0.019 0.663 0.750 0.080
B+CRC 0.904 0.913 0.017 0.671 0.759 0.075

B+CRC+GDR 0.907 0.919 0.016 0.678 0.765 0.074

(a) (b) (c) (d) (e) (f)

Fig. 7. Some visual comparisons of different ablation settings. (a) RGB
images; (b) B; (c) B+GDR; (d) B+CRC; (e) B+GDR+CRC; (f) GT.

map. Then, we activate the auxiliary features by multiple them
with the importance response map. And the activated auxiliary
features are further concatenated with the dominant features
in a particular branch. Finally, we accordingly construct a
baseline model for our verification (denoted as ‘B’ in Table II).
We gradually add CRC and GDR modules into the baseline
model for ablation experiments, and the quantitative and
qualitative results are shown in Table II and Fig. 7.

Firstly, we add the GDR module to the baseline model
(denoted as ‘B + GDR’) to demonstrate the effectiveness of
the proposed GDR module. In ‘B + GDR’, the basic setting
is similar to ‘B’, but the auxiliary features are activated by
the enhanced features from the GDR module. As reported
in the second row of Table II, compared with the baseline
model on the DAVSOD dataset, the MAE score is improved
from 0.082 to 0.080, with a percentage gain of 2.4%. From
Fig. 7(c), after introducing the GDR module, we can see
that some background noise can be suppressed slightly, such
as the left camel in the third image. In addition, we also
add the CRC module to the baseline model (denoted as ‘B
+ CRC’) to verify the effectiveness of the CRC module.
We can see that introducing the CRC module can boost
performance compared with the baseline. Quantitatively, on
the DAVIS dataset, introducing the CRC module achieves
performance gains of 1.5% in terms of Fβ , and 15.0% for
the MAE score. As can be seen in Fig. 7(d), the model with
the CRC module has better background suppression ability,
such as the items on the right in the fourth image being
effectively suppressed. Thus, these observations verify that

TABLE III
THE IPF MODULE VERIFICATION ON DAVIS AND DAVSOD DATASETS.

APPEARANCE REPRESENTS APPEARANCE-DOMINATED BRANCH.
MOTION REPRESENTS MOTION-DOMINATED BRANCH.

DAVIS DAVSOD
Fβ ↑ Sm ↑ MAE↓ Fβ ↑ Sm ↑ MAE↓

Parallel-A 0.905 0.917 0.017 0.661 0.749 0.079
Parallel-C 0.900 0.915 0.019 0.671 0.761 0.076
Parallel-F 0.901 0.915 0.018 0.668 0.757 0.076

Parallel-IPF 0.907 0.919 0.016 0.678 0.765 0.074
Appearance 0.898 0.911 0.018 0.662 0.753 0.081

Motion 0.896 0.910 0.019 0.648 0.744 0.079

(d) (e) (f)(a) (b) (c)

Fig. 8. Some visual comparisons on the output saliency results of Appearance-
Dominated Branch, Motion-Dominated Branch, and our IPF. (a) RGB images;
(b) Optical flow maps; (c) GT; (d) Saliency results deduced from Appearance-
Dominated Branch; (e) Saliency results deduced from Motion-Dominated
Branch; (f) Saliency results deduced from our proposed PSNet.

the CRC module can effectively extract useful complementary
information from auxiliary modality features and further refine
our more important modality features. Finally, both the GDR
and CRC module are introduced into the baseline model to
form our full model, which is denoted as ‘B + CRC + GDR’.
Compared with other ablation settings in Table II, our full
model achieves the best performance. From Fig. 7(e), we can
see that our method achieves a more complete structure, more
accurate localization, and clearer background.

2) Verification of the IPF module: To further verify the
effectiveness of our proposed IPF module, we conduct the
following ablation models.
• ‘Parallel-A’ denotes that a simple element-wise addition

is used to fuse output features from two branches.
• ‘Parallel-C’ denotes that concatenation operation is used

for fusing two output features.
• ‘Parallel-F’ denotes that channel-wise attention is used to

adaptively fuse the output features of two branches.
• ‘Parallel-IPF’ denotes our proposed Importance Percep-

tion Fusion module, which uses high-level features in the
backbone to sense the importance of two modality data.

We retain the multiplication operation for the above ex-
periments to get the common response features between two
branch output features and combine the common features with
the fused features. As shown in Table III, our designed IPF
module obtains a more robust and generalized final result by
considering the different importance of the upper and lower
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branches in different scenarios. Compared with the ‘Parallel-
F’ mode, the percentage gain of the MAE score reaches
11.1% on the DAVIS dataset and 2.6% on the DAVSOD
dataset, respectively. In addition, we also report the results
for the upper and lower branches (i.e., Appearance-Dominated
Branch and Motion-Dominated Branch) under the full-model
architecture with the IPF module, as shown in the last two
rows of Table III. It can be seen that the results of any
single branch cannot reach the results with the IPF module,
which also illustrates the effectiveness and necessity of our IPF
module design. Moreover, in order to further understand the
effectiveness of the proposed IPF, some visualization results
are shown in Fig. 8. As illustrated in Fig. 8, the motion-
dominated branch achieves better saliency results in the top
two rows of scenes. While in the last two rows, the appearance-
dominated branch achieves better saliency results. And for all
these scenes depicted in Fig. 8, our proposed PSNet with the
IPF module achieves robust and stable saliency results.

V. CONCLUSION

In this paper, we presented a parallel symmetric network
(PSNet) for video salient object detection. Noticing that the
importance between appearance cues and motion cues is dif-
ferent under different scenes, we propose to detect saliency via
two parallel symmetric branches (i.e., appearance-dominated
branch and motion-dominated branch) in an explicitly discrim-
inative way. These two branches have the same structure but
regard different modality data as dominant features. Especially,
the GDR module is proposed to highlight the multi-scale and
multi-layer information, and the CRC module is designed to
extract useful information from less important modality data
and refine dominant modality data. We also introduce the IPF
module to sense the importance weights of two modality data
and fuse them adaptively. Extensive quantitative evaluations
and visualization on four benchmark datasets demonstrate that
our model achieves promising performance.
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