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Abstract—In many real-world applications, one object (e.g.,
image) can be represented or described by multiple instances
(e.g., image patches) and simultaneously associated with multiple
labels. Such applications can be formulated as multi-instance
multi-label learning (MIML) problems and have been extensively
studied during the past few years. Existing MIML methods
are useful in many applications but most of which suffer
from relatively low accuracy and training efficiency due to
several issues: i) the inter-label correlations (i.e., the probabilistic
correlations between the multiple labels corresponding to an
object) are neglected; ii) the inter-instance correlations (i.e., the
probabilistic correlations of different instances in predicting
the object label) cannot be learned directly (or jointly) with
other types of correlations due to the missing instance labels;
iii) diverse inter-correlations (e.g., inter-label correlations, inter-
instance correlations) can only be learned in multiple stages.
To resolve these issues, a new single-stage framework called
broad multi-instance multi-label learning (BMIML) is proposed.
In BMIML, there are three innovative modules: i) an auto-
weighted label enhancement learning (AWLEL) based on broad
learning system (BLS) is designed, which simultaneously and
efficiently captures the inter-label correlations while traditional
BLS cannot; ii) A specific MIML neural network called scalable
multi-instance probabilistic regression (SMIPR) is constructed to
effectively estimate the inter-instance correlations using the object
label only, which can provide additional probabilistic information
for learning; iii) Finally, an interactive decision optimization (IDO)
is designed to combine and optimize the results from AWLEL and
SMIPR and form a single-stage framework. As a result, BMIML
can achieve simultaneous learning of diverse inter-correlations
between whole images, instances, and labels in single stage for
higher classification accuracy and much faster training time.
In this work, medical image classifications is employed as an
illustration. Experiments show that BMIML is highly competitive
to (or even better than) existing methods in accuracy and much
faster than most MIML methods even for large medical image
data sets (> 90K images).

Index Terms—Multi-instance learning, multi-label learning,
simultaneous learning, medical image classification, single-stage
framework.

I. INTRODUCTION

IN traditional supervised learning, one object is only rep-
resented by a single instance and associated with a single

label. However, in many real-world applications, one object
can be naturally described by a collection of instances (called
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a bag) and has multiple class labels simultaneously. Such
applications can be formulated as multi-instance mult-label
learning (MIML) problem [1] and have been extensively
applied in many fields such as image classification [2], [3],
video annotation [4], [5], biomedicine [6] and protein function
prediction [7]. Out of many MIML applications, medical
image classification is one of the most popular research areas
for its practical use. Nowadays, with higher pressure on public
health and a shortage of professionals on different types of
medical imaging [8], it is necessary to further investigate
general, effective, and efficient automated methods for clinical
use. In recent works [9]–[11], extensive applications have
been proposed to explore a possible way of automated disease
classification. Literature [12]–[14] show that the MIML-based
methods have great potential in automated disease classifica-
tion and clinical diagnosis in the medical field. These indicate
the feasibility of a MIML-based automated approach for
disease classification. Therefore, medical image classification
is employed as an illustrative application in this work.

Medical image classification task is typically formulated as
a multi-class or multi-label learning (MLL) problem. Strictly
speaking, the medical image is usually multi-labeled, and
for each image, the distribution of different labels is often
imbalanced. As shown in Fig. 1, Label 1 is the dominant
position and is accurately predicted while Label 3 is almost
ignored since Label 3 only occupies a small part of the images.
For this reason, the easily recognized labels usually result in
a dominant position, which always leads to relatively poor
performance. MIML has been applied to deal with the above
problem, which offers a way for understanding the correlations
between the input images and the output labels. In MIML
setting, an image can be divided into several segments or
patches (i.e., instances) so that the multi-label classification
tasks can be performed at the instance-level as shown in Fig. 1.
Meanwhile, a collection of instances is called a bag which can
represent an image (training sample) and the bag is assigned
with a set of multiple class labels (i.e., label set).

Practically, clinicians consider diverse correlations in medi-
cal image classification as illustrated in Fig. 1, where the solid
lines indicate the correlations between bags (global view),
instances (local view), and labels while the dash lines indicate
the inter-correlations (partially ignored in existing works but
practically all are required) between bags-bags, instances-
instances, labels-labels. In other words, all correlations are
practically used to estimate the correlation between bags and
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Fig. 1. The details of diverse correlations between bags (global view),
instances (local view), and the multiple labels. Solid lines indicate the
correlations between bags, instances, and labels. Dash lines indicate the inter-
correlations (partially ignored in existing works but practically all are required)
between bags-bags, instances-instances, labels-labels.

labels to achieve the best possible classification performance
[15]. For example, to identify if an image is relevant to
suspicion lesions (i.e., the correlation between bags and la-
bels) or not, the following information should be considered
simultaneously:

1) the bag-level correlations that reveal the difference of
medical images of distinct diseases from the perspective
of the whole image (global view);

2) the inter-instance correlations that reveal which parts of
an image are significant to distinguish from different
diseases (local view);

3) the inter-label correlations that quantitatively indicate the
margin between two diseases with the class probabilities
(or confidence) of the intraclass samples.

Therefore, for more effective medical image classification,
the diverse correlations which were partially neglected in
existing methods should be simultaneously considered [16].

However, how to make use of inter-instance correlations
[17], [18] (i.e., the probabilistic correlations of different in-
stances in predicting the bag labels) remains a challenging
research topic because, in almost all available data sets,
only image/bag-level (global view) labels are available while
instance-level (local view) labels are missing due to the heavy
burden in manual labeling for the clinicians. For this reason,
traditional supervised learning methods are unable to learn the
inter-instance correlations directly.

Although existing MIML methods can learn the inter-
instance correlations indirectly through multiple independent
learning procedures, this indirect multi-stage way will affect
the model performance in accuracy and efficiency. Moreover,
considering diverse correlations will bring time-consuming
which is another challenge for existing MIML methods [19],
especially in large data sets. Thus, it is necessary to design a
unified single-stage interactive framework that can learn the
information of whole images/bags (global view) and instances
(local view) simultaneously and improve efficiency. However,
existing MIML methods do not provide the way of simultane-
ous learning so that it becomes highly nontrivial to implement
over MIML methods. To our best knowledge, there is no such
simultaneous learning mechanism of diverse correlations for

MIML in existing works as summarized in Table I.
Recently, efficient discriminative learning called Broad

Learning System (BLS) [20] was proposed. The main advan-
tage of BLS is its efficient network training under random
feature mapping with the ability to jointly learning of multiple
sub-networks. In BLS, the original inputs are transferred as
the mapping features and placed in the feature layer (a sub-
network), and the structure is extended to the enhancement
layer (another sub-network) in a broad sense. Both the feature
and enhancement layers are then connected to the output
layers. Thus, BLS offers the necessary mechanism of simul-
taneous/joint learning efficiently.

Although BLS can deal with MLL tasks (e.g., one sample
corresponding to several labels), it does not consider the inter-
label correlations [21], [22] which must be considered in
MLL. Moreover, BLS requires that all inputs are independent
of each other and simply sets the entire data matrix X as
input [20]. However, medical image classification is always a
MIML problem in which the instances of the input samples
are highly relevant, so it is impossible to assume all inputs
independently. Therefore, the application of BLS in medical
image classification becomes nontrivial and challenging.

In this paper, a novel approach for medical image clas-
sification called Broad Multi-Instance Multi-Label network
(BMIML) is proposed. Concretely, the BMIML is based on
BLS which can jointly learn multiple sub-networks in a
broad sense so that the diverse correlations between bags,
instances, and labels can be simultaneously captured. However,
standard BLS cannot capture the inter-label correlation which
is necessary for handling MIML problems. Also, it cannot
utilize the inter-instance correlations for training directly.
Thus, in BMIML, an interactive framework is newly designed
that includes three novel modules: i) auto-weighted label
enhancement learning (AWLEL), ii) scalable multi-instance
probabilistic regression (SMIPR), and iii) an interactive de-
cision optimization (IDO). On the one hand, AWLEL as part
of MLL in BMIML can model diverse correlations, including
the inter-label correlation which can improve the accuracy of
BMIML. On the other hand, SMIPR as part of multi-instance
learning in BMIML is a way to model the inter-instance
correlations using bag labels only. Finally, IDO works as a
bridge to connect AWLEL and SMIPR to integrate their results
into a network, forming an interactive single-stage framework
that can deal with MIML problems efficiently and effectively.

Hence BMIML overcomes the weaknesses of the BLS and
existing MIML framework by simultaneously learning the
diverse (inter-)correlations. The illustrations of the diverse
(inter-)correlations mentioned above are shown in Fig. 1 and
Table I. The main contributions of BMIML are summarized
below:

1) Through our proposed method BMIML, the diverse
correlations between bags, instances, and multiple labels
can be considered simultaneously for higher classi-
fication accuracy. This simultaneous consideration of
diverse correlations cannot be done in existing MIML
works as illustrated in Table I.

2) In BMIML, an interactive single-stage learning frame-
work is newly designed which can simultaneously con-
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TABLE I
DIVERSE INTER-CORRELATIONS EXPLOITED BY PROPOSED BMIML AND MIML METHODS

Approaches Diverse Inter-correlations
Bag-Bag Inter-instances Inter-labels Bag-Instance Bag-Label Instance-Label

MIMLNN [23]
√ √ √

MIMLSVM [1]
√ √ √

MIMLmiSVM [23]
√ √ √

MIMLkNN [24]
√ √ √ √

MIMLBoost [1]
√ √ √

MIMLfast [19]
√ √ √ √

DeepMIML [25]
√ √ √ √ √

Proposed BMIML
√ √ √ √ √ √

sider the correlations of both global views (whole im-
ages/bags) and local view (image patches/instances) for
image classification tasks. This single-stage framework
can further improve classification accuracy, learning
efficiency, and human burden, especially on large data
sets. This is a non-trivial challenging task because local
view labels are always missing in the training data set.

The organization of this article is as below. Section II
provides a brief review of BLS and MIML. Section III details
our proposed methods: BMIML, including AWLEL, SMIPR,
and IDO. Section IV demonstrates the experimental results
with analysis and discussion. At last, a conclusion is drawn in
Section V.

II. PRELIMINARIES

A. Multi-instance Multi-label Learning (MIML)

Divided into 
several patches

Bags of 
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Raw image

𝑿𝑿𝑖𝑖 = {𝒙𝒙𝑖𝑖1,𝒙𝒙𝑖𝑖2, … ,𝒙𝒙𝑖𝑖
𝑛𝑛𝑖𝑖}{𝒙𝒙𝑖𝑖

j}𝑗𝑗=1
𝑛𝑛𝑖𝑖𝑿𝑿𝑖𝑖
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𝑛𝑛𝑖𝑖
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Fig. 2. A brief introduction of the MIML setting. Xi represents the i-th image
in the dataset and then it was divided into several patches called instances xj

i ,
where j = 1, 2, . . . , ni, ni is the number of the instances in the i-th image.
Yiis the label set associated with Xi. K indicates the number of categories.

Clinically, a medical image can be described by multiple
semantic labels, as shown in Fig. 1. However, these labels
are only closely related to their respective regions/patches
(called instances) rather than the entire image [26], as il-
lustrated in Fig. 1. For this reason, a more rational and
natural strategy is to model medical image classification as
a multi-instance multi-label learning (MIML) tasks [23]. As
illustrated in Fig.2, given a training set {(Xi,Yi)}ni=1 where
Xi =

{
x1
i ,x

2
i , . . . ,x

ni
i

}
(i = 1, 2, . . . , n) represents a bag

of instances (image patches) xj
i divided from the ith original

image Xi, Yi is a K-dimensional label vector [y1i , y
2
i , . . . , y

K
i ]

or Xi and yki ∈ {−1, 1} , k = 1, 2, . . . ,K entry yki indicates
the membership corresponding to Xi with the kth class
label. Unfortunately, as shown in Fig.2, the relation between
Yi and each instance xj

i is not explicitly indicated in the
training set, which is exactly our training target. Therefore,
we introduce a probabilistic regression framework to construct
the probabilistic correlations between instances xj

i and bag
label Yi. Based on the training set, the MIML probabilistic
regression aims to approximate a function that can predict the
class probability (or confidence) of testing set as accurately as
possible.

B. Broad Learning System (BLS)

BLS is simply introduced here and the readers can refer
[20] for details. Given the training set {X,Y } ∈ RN×(D+K)

where X = [Xi] ∈ RN×D is the input matrix where Xi

denotes the ith sample with the relevant output Yi and Y =
[Yi] ∈ RN×K is the output matrix. D is the dimension of
input vector Xi and K is the number of class labels. Then
the input matrix X is mapped into a series of random features
Zm1 ,m1 = 1 to M1. Each feature mapping node Zm1 can be
represented as:

Zm1 = ξzm1
(Xwz

m1
+ βz

m1
) (1)

where m1 is a user-specified parameter and ξzm1
is an ac-

tivation function (e.g., sigmoid). bmwz
m1

and βz
m1

are the
randomly generated weights and bias matrices with the proper
dimensions for input X , respectively. Similarly, the enhance-
ment nodes Hm2

,m2 = 1 to M2 are denoted by:

Hm2
= ξhm2

(Zm1
wh

m2
+ βh

m2
) (2)

where ξhm2
is a non-linear function (e.g., tanh(·)) which can

be selected differently in building a model as well as ξzm1

and m2 is a user-specified parameter. Here, the number of
mapping nodes Zm1

and enhancement nodes Hm2
can be

same or different. It is set according to the actual situation
and will not be described here. wh

m2
and βh

m2
are respectively

random weights and bias matrices for the mapped features
Zm1

. Hence, the output nodes Y of BLS can be denoted by:

Y = [Z1,Z2, . . . ,ZM1 ,H1,H2, . . . ,HM2 ]W (3)

where the weights W are connecting the layer of features
nodes and the layer of enhancement nodes to the output nodes,
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Fig. 3. Structure of the proposed BMIML.

and W = A+Y , which can be easily computed using ridge
regression approximation of pseudoinverse as follows:

argmin
W
∥AW − Y ∥22 + λ ∥W ∥22 (4)

A+ = lim
λ→0

(
λI +AAT

)−1
AT (5)

where A = [Z1,Z2, . . . ,ZM1
,H1,H2, . . . ,HM2

]. The value
λ indicates the further constraints on the squared weights W .
Consequently, we have

W = (λI +AAT )−1ATY (6)

Since BLS simply takes the entire data matrix X as input
[20] i.e., all inputs are assumed independent of each other,
and it cannot capture correlations between multiple labels.
Therefore, BLS cannot directly employ MIML tasks. In our
tasks, an improved BLS framework is designed by i) adding a
retargeting layer enables BLS to capture the inter-label correla-
tions; and ii) simultaneously modeling the diverse correlations
between the bags, instances, and labels (see Table I).

III. PROPOSED BMIML

BLS is good at joint learning of different information and
therefore suitable for learning diverse correlations simultane-
ously. Although BLS has demonstrated its strong classification
ability in many fields [?], [?], [27], it does not work very well
for semantically complex images (e.g., multi-label images)
sinceit cannot consider the inter-label correlations and the
property of weakly discriminative features in the image. In
this section, aiming at improving the performance for medical
image classification, an single-stage interactive framework is
newly designed based on i) auto-weighted label enhancement
learning (AWLEL) to process MLL in MIML, i.e., handling
diverse correlations, and reformulating the original single-
label space into an enhanced retargeted multi-label space
by considering intraclass and interclass scatters for better
discrimination under weak features (as shown in Fig. 4);
ii) a novel scalable multi-instance probabilistic regression

(SMIPR) to provide multi-instance probabilistic predictions by
fully utilizing the inter-instance correlations (as shown in Fig.
5); and iii) using an interactive decision optimization (IDO)
to combine the AWLEL and SMIPR, forming an end-to-end
framework to deal with MIML tasks. The entire process of
the proposed BMIML is summarized in Fig. 3, which has the
following four computational stages.

A. Overview of BMIML Stages

Stage 1 (Preprocessing): The training data set includes
original images Xi (global view) and instances xj

i (local
view, simply dividing from original images, detailed in Section
IV-B), which are the inputs to the AWLEL and SMIPR,
respectively.

Stage 2 (Auto-Weighted Label Enhancement Learning):
AWLEL is designed based on the BLS, as shown in Fig.3,
stage 2. Different from the standard BLS, a new retargeting
layer Ri is added in the BLS that aims to improve the issue of
MLL tasks and can automatically generate the retargeted labels
for instances from bag-level labels. In addition, it can guaran-
tee to impose the constraint of large margin of classification
boundary for the requirement of correct classification for each
data point. The learning details for the proposed AWLEL
module is described in Section III-B, and its optimization
strategy is detailed in Section III-E.

Stage 3 (Scalable Multi-Instance Probabilistic Regression):
SMIPR is a neural network specifically designed for MIML
which performs probabilistic regression on each instance ac-
cording to the retargeted labels Ti only generated by AWLEL.
In other words, SMIPR can estimate the inter-instance corre-
lations by using the images/bags labels only. Different from
traditional neural network structure, the first layer of SMIPR
is a clustering process to generate S disjoint groups of bags
G1, G2, . . . , GS , and calculate the corresponding medoids vp
of the clusters Gp, p = 1 to S. Since clustering helps uncover
the underlying structure of the training data set, the medoid
of each cluster may make full use of the instance information
and encodes some distribution information of different bags.
The detail is discussed Section III-C.
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Stage 4 (Interactive Decision Optimization): In almost all
data sets, there are only bag-level (global view) labels while
the instance-level (local view) labels are missing. Therefore, an
interactive decision optimization (IDO) is designed as a bridge
to connect the above two modules: AWLEL and SMIPR. In
other words, IDO integrates the results of i) simultaneous
learning of diverse correlations and ii) direct learning the
instance class membership probability in a single network,
which can achieve an end-to-end learning. The detailed is
provided by Section III-D.

In summary, we aim to construct BMIML for the effective
and efficient classification of medical images. For this purpose,
an interactive end-to-end learning framework is designed, as
shown in Figure 3. First, the AWLEL captures the inter-label
correlation, which helps to enlarge the target gaps between the
interclass samples. Then, SMIPR was employed to learn the
inter-instance correlation according to the inter-label correla-
tion so that it can better capture the local view information.
Finally, the AWLEL and SMIPR are connected under IDO
and therefore a single-stage muti-instance multi-label learning
framework can be achieved. Also, for this reason, IDO cannot
work independently for the multi-label image classification
task.

B. Auto-Weighted Label Enhancement Learning (AWLEL)

In standard BLS, all inputs are assumed independent of
each other and the entire data matrix X is taken as input.
Besides, the output matrix Y in standard BLS is a strict
zero-one matrix, i.e., only the label entry of each row is one,
where label ∈ {1, 2, . . . ,K} is class label of sample Xi, as
shown in Fig. 4(a). Practically, a medical image is always
associated with multiple labels and the distribution of labels
is imbalanced. Strict zero-one indicator do not make sense
and may be detrimental to classification. Moreover, a series of
instances (divided from an image) in a bag are often dependent
with each other (i.e., inter-instance correlations). Hence, there
is also a probabilistic correlation between multiple labels (i.e.,
inter-label correlations) associated with a bag. To tackle this
issue, another sub-network (called retargeting nodes) is added
into the standard BLS which can enable BLS for multi-label
tasks and capture the inter-label correlations. In our work, the
retargeting nodes is defined as

Ri = ξri
(
Xiw

z
m1

+Zm1w
h
m2

+ βr
i

)
(7)

where ξri is a non-linear function (e.g., Tribas) and βr
i is a

regularization parameter controlling the degree of bias. The
weights wz

m1
and wh

m2
can be generated from Eqs. (1) and

(2), respectively. And then we define the retargeted labels of
the ith training sample as below:

Ti = (Xi,Zm1 ,Hm2 ,Ri)w
t
i (8)

where the weight wt
i is jointly optimized by feature nodes,

enhance nodes, and retargeting nodes. The simultaneously
learning of random mapping and regression target of BLS is
as follows:

arg min
wt,T

∥∥Awt − T
∥∥2
2
+ λ

∥∥wt
∥∥2
2

(9)

where T ∈ RN×K is the retargeted labels and consists of
Ti which can reflect the classification separability (see Fig.3
Stage 2) of each sample (global view) with respect to different
class labels. To improve the interclass separability, Eq. (9) is
reformulated as:

arg min
wt

i ,Ti

N∑
i=1

(γi
∥∥Aiw

t
i − Ti

∥∥2
2
+ λ

∥∥wt
i

∥∥2
2

+ θωi ∥Ti − Yi∥22)

(10)

where the weighted penalty factors γi and ωi control the effect
of outliers and the balance between the loss components in the
total loss, γi =

(
1

[∥AiWi−Ti∥2]

)
and omegai =

(
1

[∥Ti−Yi∥2]

)
.

Ai is the ith row vector in the matrix A, as illustrated
in Section II-B. The value ϑ indicates further constraint
on the squared difference of retargeted label and ground
truth. Using the diagonal matrices Γ = [γ1, γ2, ..., γN ]

T and
Ω = [ω1, ω2, ..., ωN ]

T and combining with Eq. (10), we have:

arg min
wt,T

∥∥∥√ΓAwt − T
∥∥∥2
2
+ λ

∥∥wt
∥∥2
2

+ ϑ
∥∥∥√Ω (T − Y )

∥∥∥2
2

(11)

(a) (b)

Class 1 (samples) Class 2 (samples)

0-1 targets

Projected space

Retargeted label Separation operator

Flexible 

target gap
Target gap

𝚪

𝛀

Fig. 4. The difference between the standard BLS and the AWLEL. In (a), all
intraclass samples shrink to the fixed 0-1 targets in standard BLS projector
space while in (b), AWLEL can auto-weight all intraclass samples to enlarge
the gaps between interclass samples.

As shown in Fig.4 (a) and (b), we aim to overcome the
limitation of BLS and promote effective separability. There-
fore, we expect the samples are drawn from the same class
and gather to the corresponding targets. This allows adaptive
learning of intraclass targets while enlarging the gaps between
interclass targets, resulting to more generalized properties. As
formulated in Eq. (10), unlike standard BLS, the retargeted
labels (Ti) can be flexibly balanced between strict zero-one
targets (Yi) and regression results (wt), leading to better
classification results. In addition, normal samples can receive



6

higher weights to increase their contributions, while lower
weights are assigned to suspicious outliers to reduce their
negative effects [27]. Finally, similar to Yi, the retargeted
label can reformulate as Ti =

[
t1i , t

2
i , . . . , t

K
i

]
where tki

(k = 1, 2, . . . ,K) denotes a class label rather than the real-
valued yki . Then we can obtain the retargeted label T as
follows:

T =

 t11 . . . tK1
...

. . .
...

t1i . . . tKi

 (12)

C. Scalable Multi-instance Probabilistic Regression (SMIPR)

The MIML regression task is the natural extension of tradi-
tional (single instance or single label) regression to the MIML
setting. MIML regression models the sample in the same
way as MIML classification, with the important difference
that each bag is relevant to several real-valued outcomes but
not categorical classes. However, each instance in the bag
makes a (possibly different) contribution to the bag label [28].
For this reason, it becomes necessary to make full use of
the probabilistic correlations of different instances in the bag
instead of a single score-maximizing instance in predicting
the object label. According to the definition about the class-
conditional probability density and the prior probability, we
can formulate the probability of the joint distribution at the
instance-level as below:

P
(
xj
i , ŷ

c
i

)
= P

(
xj
i

)
P
(
ŷci | x

j
i

)
(13)

where xj
i indicates the jth instance in the ith bag while ŷci

indicates the cth class probability of the ith bag and ŷci ∈
Ŷi = [ŷci ]1×K , c = 1, 2, ...,K. Note that the index c stands
for the most probable class, and K equals to the number of
the correct classes (ground truth). According to the MIML
property, the bag includes a series of instances corresponding
to K possible classes and therefore we have

P
(
Ŷi |Xi

)
=

∏K
c=1P

(
ŷci | x

j
i

)
(14)

where Xi indicates the ith bag while Ŷi =
[
ŷ1i , ŷ

2
i , ..., ŷ

K
i

]T
indicates the K-dimensional output vector. Since Eq. (14)
is computationally intractable, a specifically designed MIML
probabilistic regression function g is designed to solve Eq.
(14). The function g of an input bag Xi on each of the output
vector of the possible label Yi is illustrated in Fig. 5. Inspired
by minimum squared error criteria [29], no matter whether
there is any interdependence between the values of g (Xi,Yi)
for different values of c, the squared error attains its absolute
minimum if the probabilistic regression function g (Xi,Yi)i)
is identical to the class probability P

(
Ŷi |Xi

)
:

g (Xi,Yi) = P
(
Ŷi |Xi

)
(15)

Fig. 5 shows the scalable multi-instance probabilistic re-
gression (SMIPR) structure employed by BMIML. The re-
gression problem is to determine the WPR from training
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Fig. 5. Scalable multi-instance probabilistic regressions (SMIPR) structure.

set {(Xi,Ti)}ni=1. We define WPR =
[
wl

p,q

]
, and wl

p,q

indicates the weight connecting the pth node in (l-1)th layer
and the qth node in lth layer. For the probabilistic regression
structure, by regarding each bag as an individual object, the
training set {Xi}ni=1 is clustered in the first layer (l=1) into S
disjoint groups of bags {Gp}Sp=1 (Gs1 ∩s1̸=s2 Gs2 = ∅) with⋃S

p=1Gp = {Xi}ni=1 by k-means algorithm [30]. After the
clustering process, the training set is divided into S partitions
and their medoids vp are decided as:

vp = arg min
A∈Gp

∑
B∈Gp

dist (A,B) (16)

where dist (A,B) denotes the Hausdorff distance [31] be-
tween two bags of instances A = {a1,a2, . . . ,aN1} and B =
{b1, b2, . . . , bN2}, which can be defined as: dist (A,B) =
max {maxa∈A minb∈B ∥a− b∥ ,maxb∈B mina∈A ∥b− a∥}
where ∥a− b∥ measures the distance between instances
a and b When the number of the layers is set to 2 (i.e.,
l=2), the numbers of input and output nodes are fixed so
that WPR =

[
wl

p,q

]
S×K

where S is the maximum number
of the clusters (input), and K is the maximum number of
output classes. For the lth 2 < l < L layer, the maximum
number of nodes is defined as ñl while the number of output
nodes (l=L) is still set to K, which is the scalable part of
the multi-instance probabilistic regression structure, as shown
in Fig. 5. Then the weights

[
wl

p,q

]
can be optimized by

minimizing the following sum-of-squares error function:

E =
1

2

∑n
i=1

∑K
q=1

{
glq(Xi)− tqi

}2
(17)

where tqi is the desired output values in output layer (l = L
and q = 1 to K) of Xi on the qth class with the elements
[tqi ]n×K=T , and glq(Xi) is defined as:

glq(Xi) =

{∑ñl−1

p=1 w
l
p,qϕ

l−1
p (Xi) if l > 2∑S

p=1w
l
p,qϕ

l
p(Xi) if l = 2

(18)

where p and q are the numbers of nodes in the (l-1)th and l
layer, respectively. Finally, ϕl

p(Xi) can be calculated as below:

ϕl
p(Xi) =

{∑ñl−1

p=1 w
l
p,qfg(ϕ

l−1
p (Xi)) if l > 2

dist(Xi, vp) if l = 2
(19)
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where fg(·) is an activation function (e.g., sigmoid) and the

weights wl
p,q =

{
0, p = q
1, p ̸= q

if l=2, wl
p,q, (l > 2) can be

updated using gradient descent:

wl+1
p,q = wl

p,q + η(fg(ϕ
l
p(Xi))△l) (20)

where η is a learning rate and △l is denoted as the gradient
of the lth layer obtained in back-propagation:

△l =

{
△l+1wl+1F l, if 2 < l < L

(T − g(X))TF l if l = L
(21)

where F l =



f
′

g(ϕ
l
i,1) · · · 0 · · · 0

...
. . .

... · · ·
...

0 · · · f
′

g(ϕ
l
i,p) · · · 0

... · · ·
... · · ·

...
0 · · · 0 · · · f

′

g(ϕ
l
ñl,1

)


.

D. Interactive Decision Optimization (IDO)

To combine the classification result from AWLEL and
probabilistic regression from SMIPR, an interactive module
called IDO is designed, which forms an end-to-end learning
framework to reduce user intervention (individual learning of
bags and instances) and achieve better classification results.
By combining Eqs. (8), (10) (14) and (17), the predicted label
of a bag Xi can be obtained as follows:

Ŷi =
{
f c
decision(g

l
k(Xi))

}K

c=1

s.t.glk(Xi) ∈ [min(T1),max(T1)]
(22)

where f c
decision is the decision function for cth class

(c = 1, 2, . . . ,K), and it can be formulated as

f c
decision(r) =

{
1, ρ(r) > τ
0, ρ(r) ≤ τ

(23)

where τ is the user-defined decision threshold, and it is
individually set for every c, and ρ(·) represents the softmax
function. In our experiment, we set τ = 0.8, that is, only when
the probability of belonging to class c is larger than 0.8, it can
be classified as class c.

E. Optimization Strategy

In this section, we give the optimal solution of Eq. (10)
through the strategy of the ADMM algorithm [32]. For sim-
plicity, Eq. (10) is reformulated with the Lagrangian function
as

fL(w
t) =

∥∥∥√Γ(Awt − T )
∥∥∥2
2
+ λ ∥wt∥22 (24)

fL(T ) =
∥∥∥√Γ(Awt)− T

∥∥∥2
2
+ ϑ

∥∥∥√Ω(T − Y )
∥∥∥2
2

(25)

Fix T Update wt: When T are known, taking the derivative
of Eq. (24) and setting it to 0. Then Eq. (24) can be written
as the following optimization with respect to wt:

2ATΓ(Awt − T ) + 2λwt = 0

⇒ wt = (λI +ATΓA)−1ATΓT
(26)

Fix wt Update T : Since wt is fixed, similarly setting the
derivative of Eq. (24) to 0, we arrive at

2Γ(Awt − T ) + 2ϑΩ(T − Y ) = 0

⇒ T = (Γ+ ϑΩ)−1(ΓAwt + ϑΩY )
(27)

Based on the above results, we alternatively update T and
wt through the Eqs. (9) and (27) until convergence or the
termination condition is satisfied.

Algorithm 1 BMIML

Input: The matrix representation of ith samples in all n
training samples: Xi; the set of training instances matrix
(bags):

{
xj
i

}ni

j=1
; the label matrix for all n training samples

and bags: Yi, i = 1 to n, decision threshold τ .
Output: Predicted Label Ŷi.
Steps of label enhancement learning:

Calculate Z and H in the board learning system with
the input X according to Eq.(1)-Eq.(3);

Calculate wt and T by solving the problem of Eq. (11)
using Eq.(26)-Eq.(27);
Steps of multi-instance probabilistic regression:

Do
For t = 1 to n

Generate distance matrix of Xi according to
Eq.(16);

Clustering instances in Xi into S clusters:⋃S
p=1Gp = {Xi}ni=1;

Update the weights of probabilistic regression
WPR according to Eq.(20);

END
until Convergence

Classification:
Predict the label according to Eq.(22):

Ŷi ← f c
decision(g

k
L(Xi))

IV. EXPERIMENTAL

A. Datasets

TABLE II
PROPERTIES OF DATASETS

dataset Instances Bags Labels Image Type Resolution
NuCLS 5,432 1,358 7 WSI Various
Breast 2,416 151 22 WSI 1024*1024
Pannuke 31,616 7,904 5 WSI 256*256

ODR 90,000 10,000 8 fundus
photos 576*576

NIH 896,960 112,120 14 X-ray 512*512

Our experiment was conducted over 5 real-world data sets
from TCGA and Github for multi-label medical image classifi-
cation about whole-slide images (WSIs), X-ray, and computed
tomography (CT), etc. The NuCLS data set [33] is collected
by TCGA, which contains 1358 WSIs for breast cancer with 7
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possible labels. The Breast Cancer Semantic Segmentation
data set (BCSS) [34] consists of 151 hematoxylin and eosin
stained WSIs corresponding to 22 histologically-confirmed
breast cancer cases. Pannuke data set [35] consists of 7904
WSIs across 19 different tissue types with 5 possible labels.
The ODR data set [36] contains 10,000 color retinal fundus
images annotated with 8 possible labels. ODR is collected
by Shanggong Medical Technology Co., Ltd. from different
hospitals/medical centers in China. In these institutions, fundus
images are captured by various cameras in the market, such as
Canon, Zeiss and Kowa, under various image resolutions. The
largest data set NIH Cheat X-ray data set collected by the
NClinical Center (clinicalcenter.nih.gov) and National Library
of Medicine (www.nlm.nih.gov) contains 112,120 images with
14 possible labels, and each image is represented with a bag of
4 instances. The properties of these data sets are summarized
in Table II. For each data set, 60% of the data are randomly
selected for training, 10% for validation, and the remaining
30% for testing. In our experiment, the results are recorded
after 10 epochs of model training where the instances in the
bags were shuffled in each epoch.

B. Settings
To verify the advantage of BMIML on the task of multi-

label medical image classification, seven state-of-the-art MIL
approaches were compared: MIMLNN [23], MIMLSVM [1],
MIMLmiSVM [23], MIMLkNN [24], MIMLBOOST [1],

MIMLfast [19], DeepMIML [25]. For fair comparison, the
parameters of all the compared approaches are determined
in the same way if no value is suggested in their literature.
Instances are simply divided according to the size of the
original image. In our experiment, we try to ensure that the
size of each instance is about 64 * 64. Thus, the number
of instances in each bag is equal to the resolution of the
original image divided by 64 (See Table II for details of
the data sets). Of course, other methods can also be used to
generate the instances. Four commonly used MIML metrices
are employed for performance evaluation: hamming loss (HL),
one error (OE), ranking loss (RL), and average precision
(AP). All definitions of these metrices can be found in [22, 40].
For better performance evaluation, 10-fold cross validation is
conducted on a machine with i7-9700k 3.60GHz CPU and 32
GB RAM memory.

C. Performance Comparison

Medium data sets The comparison results on three medium
data sets are listed in Table III. BMIML achieves the best
performance in most cases, MIMLNN and MIMLkNN work
steadily on all the data sets but are not competitive when
compared with BMIML. Although MIMLSVM achieves com-
parable results with our proposed methods in some cases, it is
less effective on large data sets in Table IV. MIMLBoost and
DeepMIML can handle only two smallest data sets (NuCLS

TABLE III
COMPARISON RESULTS (MEAN ± STD.) ON THREE MEDIUM DATA SETS

Methods MIMLNN MIMLSVM MIMLmiSVM MIMLkNN MIMLBoost MIMLfast DeepMIML BMIML
NuCLS
H.L.↓ .125±.004 .106±.008 .494±.017 .233±.005 .116±.025 .253±.028 .202±.030 .088±.030
O.E.↓ .264±.010 .132±.027 .136±.043 .284±.022 .029±.001 .583±.061 .525±.008 .037±.015
R.L.↓ .077±.002 .041±.020 .368±.017 .380±.023 .099±.005 .392±.004 .325±.019 .043±.010
A.P.↑ .857±.041 .941±.006 .856±.028 .757±.007 .921±.009 .722±.011 .815±.046 .968±.007
Breast
H.L.↓ .293±.060 .297±.011 .511±.041 .297±.033 .460±.030 .318±.021 .541±.032 .290±.017
O.E.↓ .219±.013 .206±.032 .183±.003 .250±.062 .013±.001 .500±.016 .500±.003 .094±.001
R.L.↓ .204±.007 .196±.050 .438±.028 .483±.010 .943±.041 .493±.022 .502±.046 .172±.004
A.P.↑ .822±.028 .832±.064 .770±.071 .599±.025 .624±.019 .591±.016 .530±.026 .854±.021
Pannuke
H.L.↓ .299±.036 .285±.041 .510±.018 .299±.005 N/A .377±.011 N/A .276±.005
O.E.↓ .250±.012 .167±.024 .182±.033 .200±.022 N/A .600±.032 N/A .212±.038
R.L.↓ .209±.030 .189±.006 .438±.009 .509±.036 N/A .465±.031 N/A .151±.014
A.P.↑ .806±.042 .823±.045 .770±.013 .441±.040 N/A .439±.060 N/A .846±.003
↑(↓) indicates that the larger (smaller) the value, the better the performance;Bold indicates the best performance of this metric;
underline indicates the next best performance of this metric; N/A represents that no result was obtained in 72 hours.

TABLE IV
CLASSIFICATION AVERAGE PRECISION (AP) (MEAN ± STD.) OF COMPARISON ALGORITHMS ON TWO LARGE DATA SETS WITH VARIOUS DATA SIZES

Dataset (Size) MIMLNN MIMLSVM MIMLmiSVM MIMLkNN MIMLBoost MIMLfast DeepMIML BMIML

ODR

#2K .670±.080 .649±.002 .700±.088 .214±.022 .580±.088 .465±.070 .686±.002 .727±.056
#4K .741±.047 .747±.010 N/A .225±.060 .604±.036 .466.±.048 N/A .778±.028
#6K .756±.020 .775±.003 N/A .243±.031 N/A .483±.005 N/A .835±.039
#8K .778±.031 .797±.014 N/A .294±.090 N/A .506.±.043 N/A .878±.047

#10K .794±.018 .846±.041 N/A .342±.066 N/A .512±.056 N/A .917±.030

NIH

#30K .391±.090 .508±.080 N/A .271±.082 N/A .344±.026 N/A .536±.046
#60K .396±.002 .511±.052 N/A .274±.091 N/A .350±.075 N/A .574±.002
#90K .396±.0081 .519±.019 N/A .274±.026 N/A .370±.036 N/A .603±.041

#120K .397±.041 .527±.066 N/A N/A N/A .376±.028 N/A .661±.039
N/A means that no result was obtained in 72 hours.
Bold indicates the best performance of this metric; underline indicates the next best performance of this metric.
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(a) (b) (c)
Fig. 6. Comparison results on ODR with varying data size; the values smaller, the performance better.

(a) (b) (c)
Fig. 7. Comparison results on NIH with varying data size; the values smaller, the performance better.

and Breast), and do not yield very good performance. MIML-
fast works very poorly over all metrics on these three data
sets. When the number of instances increases, its accuracy
drops obviously.

Large data sets ODR and NIH contain 10,000 and 112,120
bags respectively, which are too large for most existing MIML
approaches. Therefore, the comparison was conducted on their
subsets with various data sizes. The number of bags in ODR
ranges from 2,000 to 10,000, and the number of bags in NIH
ranges from 30,000 to 120,000, and the average precision (AP)
is shown in Table IV. For NIH, MIMLmiSVM and MIMIBoost
cannot return any result after 72 hours even for the smallest
data size (30K). Similarly, in ODR, MIMIBoost can only
handle up to 4,000 bags while MIMLmiSVM up to 2,000
bags. In Table IV, the AP performance of MIMLkNN and
MIMLfast are not comparable with other methods. For this
reason, their performances on HL, OE and RL are not shown
in Figs. 6 and 7. In Figs. 6 and 7, the trends of HL, OE, and
RL drop along with increasing data sizes on the two large data
sets ODR and NIH, respectively, while our proposed BMIML
is obviously better than the others. Furthermore, BMIML is
much more stable and effective than other methods on NIH
data set for four evaluation the metrics (HL, OE, RL, AP).

D. Module Analysis

To evaluate the performance of the two proposed modules
(AWLEL and SMIPR) ablation studies are conducted. The
number of layers l in BMIML and SMIPR is both set to
3. For medium datastes, as shown in Table V, BMIML
achieves the best performance and the proposed SMIPR alone
performs the next best in most cases which validate our idea to
consider both global view and local view rather than local view
only. The performance of AWELE alone in various metrics
is not competitive to SMIPR and BMIML since the ability
of BLS feature learning is relatively weak. As illustrated in
Table VI, for large data sets AWELE does not work well
while SMIPR is relatively better but still not comparable to
BMIML. With the increasing data set sizes, the advantage of
BMIML becomes more and more obvious. Combined with
Tables VI and VII, it can be observed that for large data sets,
the combination of AWELE and SMIPR not only improve
accuracy but also training efficiency.

E. Efficiency Comparison

The training time of each approach on the three data sets
is shown in Table VII and their trends (based on log10) are
drawn in Fig 8 for easier comparison. Obviously, MIMLfast
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TABLE V
CLASSIFICATION PERFORMANCE (MEAN ± STD.) OF AWLEL, SMIPR, AND BMIML ON THREE MEDIUM DATA SETS

Datasets AWLEL SMIPR IDO H.L.↓ O.E.↓ R.L.↓ A.P.↑

NuCLS

√
.463±.021 .250±.011 .169±.042 .736±.080√
.105±.005 .056±.020 .051±.003 .908±.012√ √ √
.088±.030 .037±.015 .043±.010 .968±.007

Breast

√
.600±.020 .500±.013 .543±.050 .548±.016√
.291±.040 .193±.003 .190±.006 .833±.019√ √ √
.290±.017 .094±.001 .172±.004 .854±.021

Pannuke

√
.617±.070 .400±.023 .594±.061 .432±.084√
.290±.031 .238±.022 .187±.030 .825±.051√ √ √
.276±.005 .212±.038 .151±.014 .846±.003

Fig. 8. Training time comparison (in seconds).

TABLE VI
CLASSIFICATION AVERAGE PRECISION (AP) (MEAN ± STD.) OF AWLEL,

SMIPR AND BMIML ON TWO LARGE DATASETS WITH VARIOUS DATA
SIZES

datasets (size) AWLEL SMIPR BMIML

ODR

#2K .462±.064 .714±.008 .727±.056
#4K .469±.025 .755±.016 .778±.028
#6K .502±.016 .785±.054 .835±.039
#8K .508±.076 .837±.023 .878±.047
#10K .519±.033 .864±.033 .917±.030

NIH

#30K .310.±.025 .535±.021 .536±.046
#60K .318.±.030 .554±.045 .574±.002
#90K .320.±.011 .580±.002 .603±.041

#120K .331.±.061 .612±.033 .661±.039

is the most efficient one. However, as illustrated in Tables
III and IV, MIMLfast does not work well in the four MIML
metrics (HL, OE, RL, AP) because MIMLfast only employs a
simple linear classifier and lacks preprocessing the raw images.
Although such a framework greatly improves efficiency, it does
not work well on the raw images. MIMLBoost is most time-
consuming, followed by MIMLmiSVM and MIMLkNN. As
shown in Table VII, the advantage of our proposed BMIML
is obvious. On ODR, MIMLBoost can obtain results in 72

hours for the two smallest subsets only, while MIMLmiSVM
can handle only 2000 samples. In contrast, BMIML takes
only 19 hours even for the largest size (120K). On NIH,
MIMLBoost and MIMLmiSVM fail to obtain any result in
72 hours even with the smallest size, while MIMLkNN and
MIMLSVM cannot work when the data size reaches 90k, but
BMIML can still work well and efficiently. On the largest
data (NIH 120K), the advantage of BMIML is even more
obvious. Except for MIMLfast, none of the existing methods
can deal with large data sets faster than BMIML. In Table
VII, both MIMLfast and AWELE can achieve high efficiency,
but when the data size reaches 30k, the efficiency of AWELE
decreases significantly. As observed in Tables IV, VI and VII,
MIMLfast is sensitive to the number of instances, and AWLEL
is sensitive to the number of bags. In other words, the time
cost is not only related to the number of bags but also to the
number of instances in each bag.

V. CONCLUSION

In this paper, an accurate and efficient BMIML framework
was successfully developed, which is suitable for multi-label
image classification in medical scenarios. The proposed frame-
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TABLE VII
TRAINING TIME COMPARISON (IN SECONDS)

Datasets MIMLNN MIMLSVM MIMLmiSVM MIMLkNN MIMLBoost MIMLfast DeepMIML AWLEL SMIPR BMIML
NuCLS 63.7 189.6 13672.8 178.4 32165.2 14.7 50980.1 15.9 73.4 102.1
Breast 213.3 832.5 130212.2 899.38 314913.4 31.4 499114.2 26.2 99.3 149.94
Pannuke 10918.4 40600.3 390637.3 42383.2 N/A 972.5 N/A 550.3 9174.7 9691.3
ODR 2K 110.5 424.5 34689.6 584.57 78909.2 49.7 788860.1 15.8 108.6 157.3
ODR 4K 592.2 1677.0 N/A 1669.3 356740.7 109.4 N/A 54.3 600.4 685.4
ODR 6K 1326.3 3848.5 N/A 4248.5 N/A 357.4 N/A 180.7 1510.7 1690.7
ODR 8K 4875.1 7056.7 N/A 7656.9 N/A 745.9 N/A 252.6 3321.5 3651.5
ODR 10K 12832.4 13446.8 N/A 13680.2 N/A 972.5 N/A 444.6 6872.3 7349.1
NIH 30K 9454.7 10577.6 N/A 10839.8 N/A 500.9 N/A 1303.6 4406.9 5352.3
NIH 60K 35718.9 54054.6 N/A 131671.5 N/A 1062.5 N/A 3012.7 16994.8 18657.2
NIH 90K 85520.1 217528.8 N/A N/A N/A 1720.9 N/A 12303.6 38416.6 47335.3
NIH 120K 135587.2 N/A N/A N/A N/A 2420.1 N/A 21077.3 53180.8 68459.3

work consists of three novel modules i) auto-weighted label
enhancement learning (AWELE), ii) scalable multi-instance
probabilistic regression (SMIPR), and iii) interactive decision
optimization (IDO). AWELE fully takes into account the inter-
correlations of the bags, instances, and labels from the training
sample, leading to more effective classification. Compared
to the existing indirect methods, SMIPR utilizes the inter-
instance correlations directly which can reduce the information
loss incurred during the conversion process so that it is more
effective and efficient than existing indirect methods. IDO
works as a bridge to interactively combine and optimize the re-
sults from AWELE and SMIPR. Therefore, an interactive end-
to-end single network for MIMIL becomes possible, which has
never been done in the literature. Extensive experiments were
conducted on several real-world medical image databases. The
results demonstrate that the proposed BMIML is: i) highly
effective (improved by up to 2% − 40.7% on AP) under the
four-evaluation metrics (HL, OR, RL, AP) than other state-of-
the-art MIML algorithms; ii) significantly more efficient (about
16.56%− 99.99% faster) than most existing algorithms while
dealing with large data sets (except for MIMLfast, which is
with very poor accuracy). In the future, we will try to employ
other kinds of images rather than medical images only.
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