
1

Multi-Agent Task Assignment in Vehicular Edge
Computing: A Regret-Matching Learning-Based

Approach
Bach Long Nguyen, Duong D. Nguyen, Hung X. Nguyen, Duy T. Ngo, and Markus Wagner

Abstract—Vehicular edge computing has recently been pro-
posed to support computation-intensive applications in Intelligent
Transportation Systems (ITS) such as self-driving cars and
augmented reality. Despite progress in this area, significant
challenges remain to efficiently allocate limited computation
resources to a range of time-critical ITS tasks. To this end,
the current paper develops a new task assignment scheme for
vehicles in a highway. Because of the high speed of vehicles and
the limited communication range of road side units (RSUs), the
computation tasks of participating vehicles are to be dynamically
migrated across multiple servers. We formulate a binary non-
linear programming (BNLP) problem of assigning computation
tasks from vehicles to RSUs and a macrocell base station. To
deal with the potentially large size of the formulated optimization
problem, we develop a distributed multi-agent regret-matching
learning algorithm. Based on the regret minimization principle,
the proposed algorithm employs a forgetting method that allows
the learning process to quickly adapt to and effectively handle
the high mobility feature of vehicle networks. We theoretically
prove that it converges to the correlated equilibrium solutions of
the considered BNLP problem. Simulation results with practical
parameter settings show that the proposed algorithm offers
the lowest total delay and cost of processing tasks, as well
as utility fairness among agents. Importantly, our algorithm
converges much faster than existing methods as the problem size
grows, demonstrating its clear advantage in large-scale vehicular
networks.

Index Terms—Correlated equilibrium, intelligent transporta-
tion systems, multi-agent learning, regret matching, task assign-
ment, vehicular edge computing

I. INTRODUCTION

Due to limited computation and storage capabilities of
vehicular users, it is rather difficult to meet the strict require-
ments of Intelligent Transportation System (ITS) applications,
i.e., intensive computation and content caching with low la-
tency [1], [2]. To this end, Vehicular Edge Computing (VEC),
as an application of Mobile Edge Computing (MEC) in high-
mobility environments, has been proposed as a solution [3]–
[6]. Even so, there remains the significant challenge to effi-
ciently allocate the limited communication and computation

Bach Long Nguyen, Hung X. Nguyen and Markus Wagner are
with the School of Computer Science, The University of Ade-
laide, Adelaide, SA 5005, Australia (email: long.nguyen@adelaide.edu.au,
hung.nguyen@adelaide.edu.au, markus.wagner@adelaide.edu.au).

Duong D. Nguyen is with the School of Electrical and Electronic Engi-
neering, The University of Adelaide, Adelaide, SA 5005, Australia (email:
duong.nguyen@adelaide.edu.au).

Duy T. Ngo is with the School of Electrical Engineering and Computing,
The University of Newcastle, Callaghan, NSW 2308, Australia (email:
duy.ngo@newcastle.edu.au).

resources of servers in VEC, due to an increasing number of
vehicles that need their tasks processed.

We consider network scenarios as depicted in Fig. 1. Specif-
ically, autonomous vehicles left-drive in two directions along
a six-lane highway, similar to M1 Pacific Highway linking
Newcastle with Sydney in New South Wales, Australia [7]. A
macrocell base station (BS) is deployed to provide network
connectivity along the highway. For data and computation
offloading, a set R of road side units (RSUs) are deployed
at an inter-RSU distance of DR to bring the network closer
to the vehicles. We denote by {BS} the set containing only
the BS, and by |R| the number of RSUs. The BS and
RSUs are connected via wired links for load balancing and
control coordination. Each of them is equipped with a server
comprising a data processing unit and a cache.

Let us assume that the vehicles have to complete
computation-intensive tasks. Due to their limited computing
resources, it is sensible to offload these tasks to the servers
at the BS and/or the RSUs. The offload requests are sent
via vehicle-to-infrastructure (V2I) communication, which is
supported by the Long-Term Evolution-Advanced (LTE-A)
protocol. We denote by I the set of requesting vehicles, and
assume a vehicle only requests to offload one task at a time. As
such, we refer to vehicle i ∈ I and task i ∈ I interchangeably.
Also, the number of tasks to be offloaded is equal to the
number of requesting vehicles.

If a vehicle i ∈ I traveling at a constant speed of vi is
still within the coverage range of an RSU r ∈ R, its offload
request is sent directly to the RSU r; otherwise, to the BS. In
either case, the server at the BS collects from all the RSUs
information about task sizes, server computing capabilities,
and current location and speed of vehicles. It then computes
and makes a task assignment decision as to where the tasks
are to be processed, i.e., at the BS or the RSUs; and in the
latter case, which RSU in R.

A. Background

To address the issue of inadequate provisioning of com-
putation resources for multiple users, [8] proposes an al-
gorithm that optimally distributes tasks from smart mobile
devices (SMDs) to MEC servers. By using a combination of
particle swarm optimization, simulated annealing and genetic
algorithms, this approach minimizes the energy consumed by
SMDs and servers while also optimizing the task offloading
ratio. In a related work by [9], tasks sent from the computers

ar
X

iv
:2

20
3.

05
28

1v
3

 [
ee

ss
.S

Y
]

 1
7

D
ec

 2
02

2

2

: V2I communication : moving direction

RSU’s coverage range

Road side unit

: requesting vehicle

Road side unit

RSU’s coverage range

: processing unit: cache

Base station

RSU’s coverage range

Road side unit

: task

LANE 1

LANE 2

LANE 3

LANE 4

LANE 5

LANE 6

Area uncovered
by any RSUs

Area uncovered
by any RSUs

Fig. 1: Task assignment in VEC-based ITS applications.

and iPads in the terminal layer are allocated to servers in
the edge computing layer and cloud data layer. In order to
maximize the total network profit (which is the net revenue
discounted by a cost), the authors propose a task allocation
strategy that utilises a swarm intelligence approach based on
simulated annealing. However, without taking the mobility of
SMD users into account in the problem formulation, these two
algorithms are only applicable to static environments, rather
than high-mobility environments (i.e. in ITS or vehicular
networks).

Unlike [8], [9], the work of [10] develops a task assignment
algorithm where tasks requested by vehicles are assigned
to either VEC servers or volunteer vehicles in a vehicular
network. The developed algorithm is based on a Stackel-
berg game where VEC servers and requesting vehicles are
respectively modelled as leaders and followers. To completely
process all the tasks, the servers recruit more volunteers
while setting and sending prices to the requesting vehicles.
The game strategy is to 1) maximize the income of VEC
servers and volunteer vehicles, 2) reduce the cost incurred
to the servers and volunteers, and 3) minimize the payment
made by the requesting vehicles for processing their tasks.
However, when the requesting vehicles and volunteer vehicles
move in different directions and at different speeds, their
connection time is limited to a brief amount due to the short
communication range of vehicles (about 300 m). As a result,
the requesting vehicles will be out-of-range of the volunteer
vehicles, while the latter have not completely processed the
tasks requested by the former.

The optimization methods for resource allocation in [8]–
[12] require accurate knowledge of channel conditions which
are typically time-varying and, oftentimes, unavailable in
high-mobility scenarios. These solutions are typically based
on a snapshot model of the vehicular networks, while ig-
noring the long-term influence of the current decision [3].
By contrast, without any prior knowledge of the operating
environment, reinforcement learning (RL) is able to make
decisions that maximize the long-term rewards for the net-

works according to [13] and [14]. It is arguably a promising
tool to tackle problems encountered in task offloading, and
communication and computation resource allocation in VEC-
based ITS with time varying and unknown channel conditions.

In [15], multiple in-car applications employ an RL-based
scheduling strategy to offload their tasks to MEC servers
located within road side units (RSUs). Here, the latency
and energy consumption for task processing are minimized.
Taking a step further, a joint management scheme of spectrum,
computing and storing resources in VEC is proposed in [16]
using deep reinforcement learning (DRL). Note that in [15]
and [16], vehicles potentially reside within the coverage range
of RSUs for a short time duration only, due to their high
mobility and the limited communication range of the serving
RSUs (about 600 m); hence, it is possible that a vehicle moves
out of the range of its serving RSU even before that RSU
processes its tasks completely.

The above issue can be overcome by allowing the vehicle
to migrate its tasks to the MEC servers of the next RSUs
that the vehicle is about to move into. For example, in [17],
there is an autonomous vehicle moving along a highway or
a city expressway, and its tasks are migrated between MEC
servers and processed. Assuming these MEC servers have
large computation resources, [17] use DRL to minimize the
energy consumption for task processing while meeting latency
requirements. In addition, only a single agent interacts with
the environment to determine an optimal task migration policy.
Also based on DRL, [18] not only develop a task migration
scheme but also find the best migration routes for vehicles
in urban areas. Here, a vehicle only migrates its tasks to
an MEC server if the time it takes that vehicle to reach
such a server is the shortest. Compared to [17], the work
of [18] could be applicable to multi-agent systems owing
to utilizing communication and cooperation between multiple
autonomous vehicles. However, this scheme might cause a
change in the original route of vehicles as the tasks are not
migrated with respect to the vehicles’ mobility pattern.

A major issue with the DRL approaches in [17] and

3

[18] is that a significant training time is required in large
environments, e.g. 100 or more vehicles/agents, and the
algorithm’s convergence is not guaranteed. To address this
issue, [19] and [20] employ regret matching (RM) learning
to design algorithms for multi-agent systems. The advantages
of RM learning-based algorithms in several applications, e.g.
seasonal forecasting and learning in matching markets without
incentives, have been demonstrated by [21]–[24]. In particular,
these algorithms can converge to correlated-equilibrium solu-
tions faster than RL-based algorithms as shown in [25] and
[26]. Additionally, it is unnecessary that the correlated equilib-
rium solutions must be the optimal solution. Their algorithms,
however, are not specifically designed for task migration in
VEC, and their solutions may be rendered inapplicable due
to the inherited characteristics of vehicle networks with high
mobility.

B. Contributions

In this paper, we propose a RM learning-based task as-
signment scheme that minimizes the total delay and cost
incurred by vehicles in a highway scenario like [17]. We
assume that once a vehicle leaves the coverage area of its
serving RSU, it will migrate its tasks to other suitable RSUs
or a macrocell base station according to its mobility pattern.
The contributions of this paper are summarized as follows.

1) To improve over [15] and [16], we formulate a task
assignment problem as a binary nonlinear programming
(BNLP) problem with specific constraints on the move-
ment of participating vehicles. Compared to [17] and
[18], this problem is formulated for migrating the tasks of
multiple autonomous vehicles between servers according
to these vehicles’ movement.

2) Unlike [17] and [18], we reformulate the BNLP prob-
lem as a standard repeated game. Then, we propose a
distributed RM algorithm that decomposes the state ob-
servations and actions of a monolithic centralized agent
into those of multiple agents. In particular, this iterative
game-based learning algorithm is able to guarantee an
equilibrium solution. We further propose a forgetting
method to speed up the convergence of the traditional RM
algorithms in [19], [20]. Doing so allows the algorithm
to effectively handle the high level of user mobility in
vehicle networks.

3) Our simulation results with practical parameter settings
demonstrate the advantages of our solution in terms
of delay and cost minimization, utility fairness among
agents, and convergence speed particularly in large-scale
network settings.

The remainder of the paper is organized as follows. Sec-
tion II presents the system model, including a wireless com-
munication model and a computation model, while Section III
describes the problem formulation for task assignment. Then,
Section IV proposes an RM-based solution to the task as-
signment problem. Here, the problem is reformulated as a
repeated game while the definition of a correlated equilibrium
is introduced. Section V conducts simulations to illustrate the

efficiency of the proposed approach. Finally, we summarize
the paper in Section VI.

II. SYSTEM MODEL

In our scenarios, once a requesting vehicle wants its task
to be processed by a server at an RSU or a BS, it must
send the task to the RSU/BS via a wireless link. In addition,
the task can be migrated from the RSU/BS to the others via
a wired connection. Thus, we first model wireless commu-
nication between the requesting vehicles and the RSUs/BS
in Section II-A. Then, to determine the amount of time and
cost needed for 1) uploading tasks through wireless links, 2)
migrating tasks between RSUs/BS through wired links, and
3) processing tasks completely, we develop a computation
model in Section II-B. The delay and cost will be used for
our problem formulation in Section III.

A. Communication Model

We consider that the received signal strength at the RSUs
and BS depends only on the positional shift of the vehicles,
where the effect of small-scale fading is averaged out. For
interference cancellation, we adopt the orthogonal frequency-
division multiplexing (OFDM) to assign orthogonal frequen-
cies to the link between an RSU/BS r ∈ R ∪ {BS} and a
vehicle i ∈ I. The data rate at which the tasks of the vehicle i
are uploaded to the RSU/BS r at a given time t is expressed
as:

Rr,i(t) = Br,i(t) log2

(
1 +

pi|hr,i(t)|2

Nr
2

)
∀i∈I,

∀r∈R∪{BS}, (1)

where Br,i(t) is the link’s bandwidth, pi is the transmit power
of the vehicle i, |hr,i(t)|2 is the link gain between the vehicle
i and the RSU/BS r, and Nr

2 is the received noise power.
Here, |hr,i(t)|2 = f(dr,i(t)) with f(.) a path-loss function,
and dr,i(t) the Euclidean distance between the vehicle i and
the RSU/BS r at the time t.

B. Computation Model

The amount of time needed for a task i ∈ I to be uploaded
to an RSU/BS r ∈ R ∪ {BS} is given by:

T u
r,i(t) =

si
Rr,i(t)

∀i∈I,
∀r∈R∪{BS}, (2)

where si is the size of the task i.
We use two binary variables xr,i(t) and xr,r̂,i(t) to decide

where the task i ∈ I is executed at the time t. If the task i is
to be processed at an RSU/BS r ∈ R∪{BS}, then xr,i(t) = 1;
otherwise, xr,i(t) = 0. If the task i is migrated and processed
at the other RSU/BS r̂ ∈ R ∪ {BS} \ {r}, then xr,r̂,i(t) = 1;
otherwise, xr,r̂,i(t) = 0. The task migration time is calculated
as [18]:

Tm
r,r̂,i(t) = xr,r̂,i(t)

(
si
BR

+ 2 · α · hr,r̂
)

∀i∈I,
∀r∈R∪{BS},
∀r̂∈R∪{BS}\{r}

, (3)

where BR is the bandwidth of the wired link between r and r̂,
α is the coefficient of migration delay, and hr,r̂ is the number
of hops between r and r̂.

4

The processing delay for the task i is calculated as:

T p
r,r̂,i(t) =

xr,i(t) · fi
Fr,i

+
xr,r̂,i(t) · fi

Fr̂,i

∀i∈I,
∀r∈R∪{BS},
∀r̂∈R∪{BS}\{r}

, (4)

where fi is the number of CPU cycles required to completely
process the task i, and Fr,i and Fr̂,i cycles/s are respectively
the computation capacity allocated to the task i by r and r̂.

From Eqs. (2), (3) and (4), the total delay to complete the
task i is calculated as:

Tr,r̂,i(t) =T u
r,i(t) + Tm

r,r̂,i(t) + T p
r,r̂,i(t). (5)

Similar to (5), the cost for processing task i is given by:

cr,r̂,i(t) = cu
r,i(t) + cm

r,r̂,i(t) + cp
r,r̂,i(t)

∀i∈I,
∀r∈R∪{BS},
∀r̂∈R∪{BS}\{r}

, (6)

where cu
r,i(t), c

m
r,r̂,i(t) and cp

r,r̂,i(t) are respectively the costs
of task uploading, task migrating and task processing.

Specifically,

cu
r,i(t) = δru ·Br,i(t)

∀i∈I,
∀r∈R∪{BS}, (7)

where δru > 0 is the communication cost.
After the task i is uploaded to r, a service entity hosted

at r will handle the task i. This entity is migrated from r to
r̂ ∈ R ∪ {BS} \ {r} if the task i is not completely processed
before the vehicle i leaves the coverage area of r. To migrate
the service entity from r to r̂, the vehicle i incurs the following
cost [18]:

cm
r,r̂,i(t) = xr,r̂,i(t) · δr,r̂m · θ

∀i∈I,
∀r∈R∪{BS},
∀r̂∈R∪{BS}\{r}

, (8)

where δr,r̂m > 0 is the migration cost and θ is the data size of
each service entity.

The computation cost for the task i at either RSU/BS r or
r̂ is expressed as:

cp
r,r̂,i = xr,i(t)·δrp ·Fr,i+xr,r̂,i(t)·δr̂p ·Fr̂,i

∀i∈I,
∀r∈R∪{BS},
∀r̂∈R∪{BS}\{r}

, (9)

where δrp > 0 and δr̂p > 0 are the unit computation costs.

III. PROBLEM FORMULATION

There are three constraints that describe the dependence of
task assignment on the vehicle mobility, different from [18].
When a task i ∈ I is completely executed by an RSU r ∈
R ∪ {BS}, the delay for completing the task i must not be
larger than the duration that the vehicle i resides within r’s
coverage area. As such,

xr,i(t)

[
Tr,r̂,i(t)−

d̃r,i(t)

vi

]
≤ 0

∀i∈I,
∀r∈R,
∀r̂∈R\{r}

, (10)

where d̃r,i(t) is the distance that the vehicle i travels before
leaving the coverage area of r.

If the task i is migrated from the RSU r ∈ R to another
RSU r̂ ∈ R \ {r}, the delay is instead constrained by:

xr,r̂,i(t)

[
Tr,r̂,i(t)−

d̃r,i(t) +DR · hr,r̂
vi

]
≤ 0

∀i∈I,
∀r∈R,
∀r̂∈R\{r}

. (11)

If the task i is migrated from the BS to an RSU r̂ ∈ R, the
delay is then constrained by:

xr,r̂,i(t)

[
Tr,r̂,i(t)−

d̃r,r̆,i(t) + 2RR +DR · hr̆,r̂
vi

]
≤ 0

∀i ∈ I, r ∈ {BS},∀r̆, r̂ ∈ R,

(12)

where d̃r,r̆,i is the distance that the vehicle i has traveled in
the area uncovered by any RSUs before it enters the coverage
area of the closest RSU r̆, and RR is the communication range
of an RSU.

We aim to minimize the total delay and cost for completing
all |I| tasks. The task assignment in vehicular edge computing
is thus formulated as the following BNLP problem.

min
xr,i(t)
xr,r̂,i(t)

∑
i∈I

∑
r,r̂∈R∪{BS}

r 6=r̂

[
β · Tr,r̂,i(t) + γ · cr,r̂,i(t)

]
(13a)

s.t. (5), (6), (10), (11), (12) (13b)∑
i∈I

xr,i(t) · Fr,i ≤ Fmax
r ∀r ∈ R, (13c)∑

i∈I

∑
r∈R

xr,r̂,i(t) · Fr̂,i ≤ Fmax
r̂

∀r̂ ∈ R ∪ {BS} \ {r},
(13d)

∑
i∈I

xr,i(t) · Fr,i +
∑

î∈I\{i}

∑
r̂∈R\{r}

xr̂,r,̂i(t)

× Fr,̂i ≤ F
max
r ∀r ∈ R,

(13e)

xr,i(t) +
∑

r̂∈R∪{BS}\{r}

xr,r̂,i(t) = 1

∀r ∈ R,∀i ∈ I,

(13f)

xr,i(t), xr,r̂,i(t) ∈ {0, 1} ∀i ∈ I,

∀r ∈ R ∪ {BS},∀r̂ ∈ R ∪ {BS} \ {r},
(13g)

where β > 0 and γ > 0 are the weights to prioritize the delay
and the cost, respectively. Constraints (13c), (13d) and (13e)
show that the computation capacity assigned to a task i is
upper-bounded by the maximum computation capacities Fmax

r

or Fmax
r̂ . Constraint (13f) enforces that an arbitrary task i must

be processed by one of the RSUs and the BS.

IV. PROPOSED MULTI-AGENT REGRET-MATCHING
LEARNING BASED TASK ASSIGNMENT SCHEME

The optimization problem in (13) is nonconvex and combi-
natorial with nonlinear constraints. Traditional optimization
methods may not be able to return a solution within an
acceptable time frame, which is an important requirement in
vehicular networks with a high degree of mobility. As such,
we propose an iterative game-based learning algorithm that
guarantees an equilibrium solution. The proposed algorithm
is based on the regret minimization procedure [27], [28]. This
procedure is well-known for its low complexity and provable
convergence when making decisions in a situation involving
multiple stakeholders.

In this paper, we consider that all tasks are homogeneous
(see Section I), and the number of tasks is predefined (see
Section III). The proposed solution is readily applicable to

5

Algorithm 1 Multi-Agent RM Learning-Based Task Assignment Algorithm

1: Initialization: Each player i initializes its action selection policy with a uniform strategy π(1)
i (j)← 1

|Ai| ∀j ∈ Ai
2: Main algorithm: Each player i ∈ I independently runs the following procedure to decide its action over time
3: for t = 1, 2, . . . do
4: Action selection: Player i samples an action a(t)

i = j ∈ Ai from its probability distribution of action selection π(t)
i . The

BS then updates the chosen action of player i to all other players.
5: Utility update: Player i receives a utility as a result of its chosen action u(t)

i

(
j, a

(t)
−i

)
computed by Eq. (14).

6: for k ∈ Ai \ {j}
7: Expected utilities: Using Eq. (14), player i calculates an expected utility u(t)

i

(
k, a

(t)
−i

)
if choosing an action k 6= j,

given the choices made by the other players.
8: Regret update: Using Eq. (17), player i computes the cumulative regret D̄(t)

i (j, k) for not choosing k.
9: Strategy update: Using Eq. (18), player i updates its next action probability π(t+1)

i (k).
10: end for
11: Player i plays the same action chosen in the previous round with the remaining probability

π
(t+1)
i (j) = 1−

∑
k 6=j

π
(t+1)
i (k).

12: end for

scenarios where tasks have different deadlines or different
sizes, or the number of tasks varies over time. We further in-
troduce a forgetting factor in the learning algorithm to enable
fast convergence—an essential requirement in a fast-changing
environment due to highly-mobile learning agents (i.e., vehi-
cles). Using simulations with realistic network settings, we
will later show that our solution adapts and converges much
faster than existing approaches, especially as the number of
participating vehicles (i.e., tasks) increases.

A. Game Reformulation for Task Assignment

We propose to reformulate problem (13) as a multi-agent
distributed learning problem. Here, each requesting vehicle is
an independent decision maker who learns to jointly reach
an optimal solution. To ensure convergence of the learning
solution at the optimum point for all the requesting vehicles,
we designate the BS as a central operator. After all the
requesting vehicles have played their respective actions, the
operator updates each vehicle with the actions chosen by the
others.

Specifically, we model the task assignment in vehicular
edge computing (13) as a repeated game G = (I,A,U),
where the players aim to minimize the long-run average delay
and the cost to process the tasks presented by the requesting
vehicles. In this model, the (finite) set of requesting vehicles
I = {1, 2, . . . , |I|} is regarded as the set of players. Each
player i ∈ I has its set of finite actions Ai = R ∪ {BS}
as it decides where to offload its task to. We denote by
A = A1 × A2 × · · · × A|I| the set of joint actions of all
players. Let U = {u1, u2, . . . , u|I|} denote the set of utility
functions of all the players.

To minimize the delay and cost for processing the tasks for
the vehicles, the utility function of a player i ∈ I at a time t
resulting from a given action a(t)

i = r ∈ Ai is designed as:

u
(t)
i

(
a

(t)
i , a

(t)
−i

)
= −

[
β · T

a
(t)
i |a

(t)
−i

(t) + γ · c
a
(t)
i |a

(t)
−i

(t)

]
,

(14)

where a(t)
−i denotes the vector of RSU/BS actions decided by

all the other |I| − 1 players at the time t. Here, if action
a

(t)
i of player i satisfies all constraints in problem (13), we

calculate the parameters T
a
(t)
i |a

(t)
−i

(t) and c
a
(t)
i |a

(t)
−i

(t) using

(5) and (6), respectively. Otherwise, T
a
(t)
i |a

(t)
−i

(t) = ∞ and

c
a
(t)
i |a

(t)
−i

(t) = ∞ where ∞ stands for a large positive value
pre-assigned. Under this utility model, each player i obtains
a player-specific payoff depending on the joint action profile(
a

(t)
i , a

(t)
−i

)
over all players. Here, maximizing the sum of all

the players’ utilities would result in minimizing the objective
function in problem (13).

B. Definition of Correlated Equilibrium

In most cases, a game-based solution guarantees conver-
gence to a set of equilibria, in which any vehicle does not
achieve any gain by unilaterally changing their decision. It
can be shown that the equilibrium of the reformulated game
G is a correlated equilibrium (CE) [29], [30]. A probability
distribution ψ defined on A is said to be a CE if for all player
i ∈ I, for all a−i ∈ A−i and for every pair of action j, k ∈ Ai,
it holds true that∑

a−i∈A−i

ψ(j, a−i)
[
ui(k, a−i)− ui(j, a−i)

]
≤ 0. (15)

When in a CE, each player does not benefit from choosing
any other probability distribution over its actions, provided
that all the other players do likewise.

C. RM-based Learning with a Forgetting Factor

An iterative algorithm that can be used to reach the CE set is
the regret matching procedure proposed in [28]. The key idea
is to adjust the player’s action probability to be proportional to
the “regrets” for not having played other actions. Specifically,
for any two actions j 6= k ∈ Ai at any time t, the cumulative

6

regret of a player i up to the time t for not playing action k
instead of its actually played action a(t)

i = j is

D̄
(t)
i (j, k) =

1

t

t∑
τ=1

I
{
a

(τ)
i = j

} [
u

(τ)
i (k, ·)− u(τ)

i (j, ·)
]
,

where I(.) denotes the indicator function. This is the change
in the average payoff that the player i would have if choosing
a different action k 6= j every time they played j in the past,
given that all other players did not change their decisions.
A positive value indicates a “regret” by the player i for not
having played action k instead of the chosen action j.

The regret can be recursively expressed as:

D̄
(t)
i (j, k) =

(
1− 1

t

)
D̄

(t−1)
i (j, k) +

1

t
D

(t)
i (j, k), (16)

where D
(t)
i (j, k) = I{a(t)

i = j}
[
u

(t)
i (k, a

(t)
−i)− ui(j, a

(t)
−i)
]

denotes the instantaneous regret by the player i for not playing
the action k instead of its played action j at the time t.
Equation (16) updates the cumulative regret at each time step
by adding a correction term based on the new instantaneous
regret. As a stochastic approximation method, (16), although
resulting in almost surely convergence, can be quite slow. This
is especially true in a dynamic environment, where player’s
utility changes with time. This is likely to become a major
issue in our considered vehicular networking scenario with a
high degree of mobility.

To this end, we will now introduce a forgetting factor for
updating D̄(t)

i (j, k) as:

D̄
(t)
i (j, k) = λ D̄

(t−1)
i (j, k) + (1− λ) D

(t)
i (j, k), (17)

where 0 ≤ λ ≤ 1 is a forgetting factor used to regulate the
influence of outdated values of regret over the instantaneous
regret. Each player then independently chooses its next action
according to the following probabilities:1

π
(t+1)
i (k) =

1

µ
|D̄(t)

i (j, k)|+ , (18)

for all k 6= j, and µ is chosen such that the probability of
playing the same action in the next iteration is positive. The
pseudo-code of our proposed distributed algorithm, which runs
independently by each agent, is shown in Algorithm 1. Our
main theorem is as follows.

Theorem 1. If every player chooses their actions according
to Algorithm 1, then the joint empirical distribution of action
profiles converges almost surely to the Correlated Equilibrium
set of the game G as t→∞.2

V. PERFORMANCE EVALUATION

A. Simulation Settings

We evaluate the performance of our proposed Algorithm 1
through numerical experiments in MATLAB (ver. 2021b). The
experiments are implemented on a PC with an AMD Ryzen
9 5900X@3.7GHz (24 CPUs) core and 32GB of RAM. We

1|x|+ = max{x, 0} for a real number x.
2The proof is given in the technical appendix.

2000 2200 2400
950

1000

1050

0 1000 2000 3000 4000 5000

x-coordinate (m)

400

600

800

1000

1200

1400

1600

y
-
c
o
o
r
d
i
n
a
t
e

(
m
)

RSU intergrated with a server

six-lane highway

BS intergrated with a server

D
R

R
R

RSU's coverage range

Fig. 2: Deployment of 1 BS and 2 RSUs along a six-lane highway in
Scenario 1.

0.5 1 1.5 2 2.5

x-coordinate (m) 104

200

400

600

800

1000

1200

1400

1600

1800

y
-
c
o
o
r
d
i
n
a
t
e

(
m
)

RSU intergrated with a server

RSU's coverage range

BS intergrated with a server

six-lane highway

D
R

R
R

Fig. 3: Deployment of 1 BS and 10 RSUs along a six-lane highway
in Scenario 2.

0 1000 2000 3000 4000 5000 6000

x-coordinate (m)

940

960

980

1000

1020

1040

y
-
c
o
o
r
d
i
n
a
t
e

(
m
) LANE 1
LANE 2
LANE 3

LANE 6
LANE 5
LANE 4

Area uncovered by RSUs

RSU's coverage range
requesting vehicle

Fig. 4: Snapshot of Scenario 1 (3 servers and 10 requesting vehicles).

0 0.5 1 1.5 2 2.5
x-coordinate (m) 104

940

960

980

1000

1020

1040

y
-
c
o
o
r
d
i
n
a
t
e

(
m
)

LANE 1
LANE 2

LANE 5
LANE 4

LANE 3

LANE 6

requesting vehicle

Area uncovered by RSUs

RSU's coverage range

Fig. 5: Snapshot of Scenario 2 (11 servers and 100 requesting vehicles).

consider a six-lane highway with three lanes in each direction,
as depicted in Figs. 2 and 3. Similar to [1], [3], [18], we
set |R| ∈ {2, 10}, |I| ∈ [25; 100], DR ∈ {3, 6, 9} km, RR ∈
[500; 600] m, si = 200 MB, θ = 500 MB, fi ∈ [0.5; 1.2] Gcy-
cles, BR = 100 MHz, α = 0.02 s/hop, δr,r̂m = 0.002 unit/MB,
pi = 20 dBm and Fr,i ∈ [1; 3] GHz. If r ∈ {BS}, then we
set Br,i = 0.25 MHz, δru = 20 units/MHz, Fmax

r = 30 GHz
and δrp = 100 units/GHz. Otherwise, we set Br,i = 1 MHz,
δru = 2 units/MHz, Fmax

r = 20 GHz and δrp = 10 units/GHz.
We use β = γ = 1 and λ ∈ {0.5, 0.99, 0.9999}. In addition,
the time step t is set as 1 s. Similar to [7] and [31], the vehicle
speeds in lanes {1, 4}, {2, 5} and {3, 6} are set as 40 or 90,

7

TABLE I: Performance comparison of the four algorithms in the two scenarios considered.

ES TRM RLNF Algorithm 1

Scenario 1
Forgetting factor (λ) N/A N/A N/A 0.5
Minimum sum of delay and cost ≈ 1.64× 103 ≈ 1.64× 103 ≈ 5.71× 103 ≈ 1.64× 103

Computation time (s) ≈ 2.47× 104 ≈ 1 ≈ 4.97 ≈ 0.19

Scenario 2
Forgetting factor (λ) N/A N/A N/A 0.5
Minimum sum of delay and cost N/A ≈ 1.71× 104 ≈ 5.3× 104 ≈ 1.71× 104

Computation time (s) N/A ≈ 147.78 ≈ 145.8 ≈ 68.58

0 500 1000 1500 2000
Time step (s)

1

2

3

4

5

6

Su
m

 o
f

de
la

y
an

d
co

st

104

=0.5
=0.99
=0.9999

Fig. 6: Convergence performance of the proposed scheme when
varying the values of forgetting factor λ (DR = 3 km, 11 servers,
100 requesting vehicles (agents), and vehicles’ speed of 90, 100 and
120 km/h in lanes {1, 4}, {2, 5} and {3, 6}, respectively).

0 500 1000 1500 2000
Time step (s)

0

0.5

1

1.5

2

Su
m

 o
f

co
st

104

=0.5
=0.99
=0.9999

Fig. 7: Total cost of the proposed scheme when varying the values of
forgetting factor λ (DR = 3 km, 11 servers, 100 requesting vehicles
(agents), and vehicles’ speed of 90, 100 and 120 km/h in lanes {1, 4},
{2, 5} and {3, 6}, respectively).

50 or 100, and 60 or 120 km/h, respectively.
For a comprehensive comparison, we have to benchmark

Algorithm 1 against the most relevant related works in the
literature. Different from [17] and [18], those works must
design task assignment algorithms for multi-agent environ-
ments while allocating autonomous vehicles’ tasks to servers
according to their movement in highway scenarios. As a result,
we compare Algorithm 1 with the following three algorithms.

1) Exhaustive Search (ES): A centralized algorithm where
a central operator collects all network information and
finds the globally optimal solution using exhaustive
search, similar to [17].

2) Traditional Regret-Matching (TRM) scheme [20]: A

0 500 1000 1500 2000
Time step (s)

1.5

2

2.5

3

3.5

Su
m

 o
f

de
la

y

104

=0.5
=0.99
=0.9999

Fig. 8: Total delay of the proposed scheme when varying the values of
forgetting factor λ (DR = 3 km, 11 servers, 100 requesting vehicles
(agents), and vehicles’ speed of 90, 100 and 120 km/h in lanes {1, 4},
{2, 5} and {3, 6}, respectively).

distributed algorithm where each player selects an action
on the basis of its regret value, and the regret values are
not calculated with respect to changes in the vehicular
network.

3) Reinforcement Learning with Network-Assisted Feed-
back (RLNF) scheme [19]: A distributed algorithm
where each player selects its action without knowing
global network conditions.

To demonstrate that Algorithm 1 works effectively in not only
small-scale but also large-scale environments, we evaluate
all the four algorithms in two scenarios. Specifically, in
Scenario 1, there are 3 servers deployed along the highway
while 10 vehicles request to complete their tasks. In contrast to
Scenario 1, we increase the number of servers and requesting
vehicles to 11 and 100, respectively, in Scenario 2. On the
other hand, in both scenarios, the requesting vehicles in lanes
{1, 4}, {2, 5} and {3, 6} are moving at a speed of 90, 100 and
120 km/h, respectively. In addition, the inter-RSU distance is
set as 3 km.

B. Simulation Results

Table I compares the performance of Algorithm 1 with
the three benchmark schemes. According to the objective
function in (13), Algorithm 1 aims to minimize the total
delay and cost for task processing; thus, we select the sum
of delay and cost as a performance metric. Here, the total
delay plus cost and the computation time for task completion
are shown for two scenarios, as shown in Figs. 4 and 5. In
Scenario 1, by using 3 servers, Algorithm 1, ES and TRM
complete 10 tasks with the lowest total delay plus cost of

8

0 500 1000 1500 2000
Time step (s)

0

2

4

6

Su
m

 o
f

de
la

y
an

d
co

st

104

25 requesting vehicles
50 requesting vehicles
75 requesting vehicles
100 requesting vehicles

Fig. 9: Convergence performance of the proposed scheme when
varying the number of requesting vehicles (λ = 0.5, DR = 3 km,
11 servers, and requesting vehicles’ speed of 90, 100 and 120 km/h
in lanes {1,4}, {2,5} and {3,6}, respectively).

0.8 0.81 0.81 0.79

25 50 75 100
Number of autonomous vehicles

0

0.2

0.4

0.6

0.8

1

J F

Fig. 10: Utility fairness among agents (autonomous vehicles) when
varying the number of autonomous vehicles (λ = 0.5, DR = 3 km,
11 servers, and requesting vehicles’ speed of 90, 100 and 120 km/h
in lanes {1,4}, {2,5} and {3,6}, respectively).

1.64 × 103. Importantly, Algorithm 1 finds the best solution
with the smallest computation time of 0.19 s. This represents
a significant reduction of more than 80% in computation time
compared to the next best scheme TRM. Hereby, Algorithm 1
can be applicable to the real deployment scenarios as it
satisfies the latency requirement in vehicular applications, i.e.
from 0.1 s to 0.5 s [32], [33].

In Scenario 2, the number of servers and tasks is increased
up to 11 and 100, respectively. Given the specifications of a
typical PC, it is impossible for ES to iterate through (11100 ≈
1.38 × 10104) potential solutions. Of the remaining three
algorithms, Algorithm 1 converges to the CE solution within
the shortest computation time of 68.58 s, giving the lowest
total delay plus cost of 1.71× 104. In general, a CE solution
might not necessarily be the optimal solution for the BNLP
problem (13). Here, we show through experiment results that
in most realistic networks, the gap between CE and optimal
solution is small (almost negligible) — illustrating that Algo-
rithm 1 provides a good trade off between convergence speed
and optimality. It is noted that the TRM and RLNF schemes
are not able to perform as well, despite they are also based
on RM learning. The reason is that the regret values in the
TRM and RLNF schemes are not updated with respect to
changes in the operating vehicular environment. Furthermore,

0 500 1000 1500 2000
Time step (s)

1

2

3

4

5

6

Su
m

 o
f

de
la

y
an

d
co

st

104

Speeds of 40, 50 and 60 km/h
in lanes {1,4}, {2,5} and {3,6}, respectively
Speeds of 90, 100 and 120 km/h
in lanes {1,4}, {2,5} and {3,6}, respectively

Fig. 11: Convergence performance of the proposed scheme when
varying the speeds of requesting vehicles (11 servers, 100 requesting
vehicles (agents), λ = 0.5 and DR = 3 km).

3 6 9
Inter-RSU distance (D

R
) (km)

0

0.5

1

1.5

2

2.5

Su
m

 o
f

de
la

y
an

d
co

st

104

Fig. 12: Performance of the proposed scheme when varying the inter-
RSU distance DR (λ = 0.5, 11 servers, 100 requesting vehicles
(agents), and vehicles’ speed of 90, 100 and 120 km/h in lanes {1, 4},
{2, 5} and {3, 6}, respectively).

since the TRM scheme makes task assignment decisions based
on information about global network conditions, its total delay
plus cost is lower than that of RLNF.

The fast convergence behaviour of the proposed scheme is
essential for a dynamic environment in which ITS applications
operate. Figs. 6, 8 and 7 illustrate how the convergence of
Algorithm 1 depends on the forgetting factor λ. In addition,
Figs. 8 and 7 show the impact of λ on delay and cost,
respectively. As seen, the fastest convergence occurs when
λ decreases from 0.9999 to 0.5. At λ = 0.5, the cumulative
regret of an agent is updated with respect to their instanta-
neous regret rather than their outdated regret. Furthermore,
Fig. 9 shows that such fast convergence is always maintained
irrespective of the number of participating agents.

To quantify fairness in terms of utility among agents
(autonomous vehicles), we make use of Jain’s fairness index
proposed in [34] as follows:

JF =

[∑
i∈I

u
(t)
i

(
a

(t)
i , a

(t)
−i

)]2

|I|
∑
i∈I

u
(t)
i

(
a

(t)
i , a

(t)
−i

)2 . (19)

In addition, the utility fairness among the agents would be
maintained when the approximate value of JF is 1. As shown

9

in Fig. 10, Algorithm 1 achieves the fairness JF close to 1,
e.g. 0.79, even though the autonomous vehicle density is high.
Here, to calculate JF, we employ the value of agents’ utility
when Algorithm 1 converges at the correlated equilibrium.

Fig. 11 demonstrates that Algorithm 1 adapts quickly to the
environment changes caused by the agents’ mobility. Here,
when the agents move at high speeds, it causes a decrease in
the duration when they pass through an RSU, or they will enter
the next RSUs’ coverage range. Thus, the number of agents’
actions which are able to both minimize the sum of delay and
cost, and satisfy constraints in (13) is reduced significantly.
Certainly, it would be much less than that of the scenario
in which the agents traverse the highway with lower speeds.
As a result, the convergence speed of Algorithm 1 in the
former is quicker than that in the latter. In particular, Fig. 12
shows the influence of RSU deployment on the performance of
our proposed scheme. With the shortest distance between two
consecutive RSUs (i.e. DR = 3 km), the RSUs are distributed
densely along the six-lane highway. It leads to the lowest total
delay and cost achieved by Algorithm 1. Extending the inter-
RSU distance will cause an increase in the total delay and
cost.

VI. CONCLUSION

To address the issue of limited computation resources in
VEC, this paper proposes a task assignment scheme where
vehicles’ tasks are migrated across multiple servers according
to their mobility pattern. To this end, we have formulated
a BNLP problem that minimizes the total delay and cost
incurred by the participating vehicles. We then proposed a
multi-agent RM learning-based algorithm that is theoretically
proved to converge to the CE solution of the formulated
problem. The simulation results show the clear advantages
of our proposed algorithm over existing solutions.

APPENDIX

PROOF OF THEOREM 1

Proof. For notational convenience, let us drop the subscript i
and define the following Lyapunov function:3

P (D̄) =
1

2

(
dist[D̄,R−]

)2
=

1

2

∑
j,k

(
|D̄(j, k)|+

)2
, (20)

where R− represents the negative orthant. Taking the time-
derivative of (20) yields

d

dt
P (D̄) =

∑
j,k
|D̄(j, k)|+ × d

dt
D̄(j, k) . (21)

First, we find dD̄(j, k)/dt by rewriting (17) as:

D̄(t)(j, k)

= D̄(t−1)(j, k) + (1− λ)
{
D(t)(j, k)− D̄(t−1)(j, k)

}
= D̄(t−1)(j, k) + (1− λ)

{[
u(k, ·)− u(j, ·)

]
I{a(t)

i = j}

− D̄(t−1)(j, k)
}
. (22)

Let ε = 1 − λ be a constant step size. It can be seen
that (22) has the form of a constant step size stochastic

3dist(x,A) = min{‖x− a‖ : a ∈ A}, where ‖ · ‖ is the Euclidean norm.

approximation algorithm θk+1 = θk+εH(θk, xk) and satisfies
[35, Th. 17.1.1]. Thus, its dynamics can be characterised
by an ordinary differential equation (see [35, Ch. 17] for
further details). This means the system can be approximated
by replacing xk with its expected value. By applying [35,
Theorem 17.1.1], R̄t(j, k) converges weakly (in distribution)
to the averaged system corresponding to (22). As such,
d

dt
D̄(j, k) = E

{[
u(k, ·)− u(j, ·)

]
I{a(t)

i = j} − D̄(j, k)
}

=
[
u(k, ·)− u(j, ·)

]
π(j) − D̄(j, k) . (23)

Next, replacing dD̄(j, k)/dt from (23) into (21) gives:
d

dt
P (D̄) =

∑
j,k
|D̄(j, k)|+

[
u(k, `)− u(j, `)

]
π(j)

−
∑

j,k
|D̄(j, k)|+ × D̄(j, k)

≤ 2Gδ

|Ai|
∑

j,k
|D̄(j, k)|+ − 2P (D̄) , (24)

where G is an upper bound on |u(·)|, 0 ≤ δ ≤ 1, and |Ai|
is the cardinality of the set Ai (the set of actions of a player
i). Note that in the last equality of (24), we have used the
following two lemmas:4

(1)
∑
j,k

|D̄(j, k)|+D̄(j, k) = 2P (D̄) (immediate from Eq. (20))

(2)
∑
j,k

|D̄(j, k)|+
[
u(k, ·)−u(j, ·)

]
π(j) ≤ 2Gδ

|Ai|
∑
j,k

|D̄(j, k)|+.

Finally, it follows from (24) that by assuming |D̄(j, k)|+ ≥
κ > 0, one can choose a sufficiently small δ > 0 such that

d

dt
P (D̄) ≤ −P (D̄) .

This implies that P
(
D̄

(t)
i

)
goes to zero at an exponential rate.

Therefore, lim
t→∞

dist
[
D̄,R−

]
= 0.

Let φt be the empirical distribution of the joint action
(j, a

(t)
−i) by all players up to the time t. It can be defined

by a stochastic approximation recursion as:

φt

(
j, a

(t)
−i

)
= φt−1

(
j, a

(t−1)
−i

)
+ ε
[
I

{
a(t) =

(
j, a

(t)
−i

)}
− φt−1

(
j, a

(t−1)
−i

)]
= ε

∑
τ≤t

(1− ε)t−τ I

{
a(t) =

(
j, a

(t)
−i

)}
. (25)

The elements of the regret matrix in (16) can be rewritten as
follows

D̄
(t)
i (j, k) = ε

∑
τ≤t

(1− ε)t−τ
[
ui(k, ·)− ui(j, ·)

]
I

{
a

(τ)
i = j

}
=
∑
a−i

ε
∑
τ≤t

(1− ε)t−τ I

{
a

(τ)
i = j

}
π

(t)
−i

[
ui(k, ·)− ui(j, ·)

]
=
∑
a−i

ε
∑
τ≤t

(1− ε)t−τ I

{
a(t) =

(
j, a

(t)
−i

)}[
ui(k, ·)− ui(j, ·)

]
=
∑
a−i

φt

(
j, a

(t)
−i

) [
ui(k, ·)− ui(j, ·)

]
. (26)

4The proof of Lemma 2 is similar to the proof of Theorem 5.1 in [36], so
the proof is omitted here.

10

On the last line of (26), we have substituted φt

(
j, a

(t)
−i)
)

from (25). Finally, on any convergent subsequence lim
t→∞

φt →
ψ, we have:

lim
t→∞

D̄
(t)
i (j, k) =

∑
a−i

ψ(j, a−i)
[
ui(k, a−i)− ui(j, a−i)

]
≤ 0 .

(27)

Comparing (27) with the definition of Correlated Equilibrium
in Eq. (15) completes the proof.

REFERENCES

[1] L. T. Tan and R. Q. Hu, “Mobility-Aware Edge Caching and Computing
in Vehicle Networks: A Deep Reinforcement Learning,” IEEE Transac-
tions on Vehicular Technology, vol. 67, no. 11, pp. 10 190–10 203, Nov.
2018.

[2] L. Silva, N. Magaia, B. Sousa, A. Kobusińska, A. Casimiro, C. X.
Mavromoustakis, G. Mastorakis, and V. H. C. de Albuquerque, “Com-
puting Paradigms in Emerging Vehicular Environments: A Review,”
IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 3, pp. 491–511,
2021.

[3] Z. Ning, K. Zhang, X. Wang, M. S. Obaidat, L. Guo, X. Hu, B. Hu,
Y. Guo, B. Sadoun, and R. Y. K. Kwok, “Joint Computing and Caching
in 5G-Envisioned Internet of Vehicles: A Deep Reinforcement Learning-
Based Traffic Control System,” IEEE Transactions on Intelligent Trans-
portation Systems, pp. 1–12, 2020.

[4] A. Girma, N. Bahadori, M. Sarkar, T. G. Tadewos, M. R. Behnia, M. N.
Mahmoud, A. Karimoddini, and A. Homaifar, “IoT-enabled autonomous
system collaboration for disaster-area management,” IEEE/CAA Journal
of Automatica Sinica, vol. 7, no. 5, pp. 1249–1262, 2020.

[5] H. Chang, Y. Chen, B. Zhang, and D. Doermann, “Multi-UAV Mobile
Edge Computing and Path Planning Platform Based on Reinforcement
Learning,” IEEE Transactions on Emerging Topics in Computational
Intelligence, vol. 6, no. 3, pp. 489–498, 2022.

[6] M. Yi, P. Yang, M. Chen, and N. T. Loc, “A DRL-Driven Intelligent
Joint Optimization Strategy for Computation Offloading and Resource
Allocation in Ubiquitous Edge IoT Systems,” IEEE Transactions on
Emerging Topics in Computational Intelligence, pp. 1–16, 2022.

[7] Transport for NSW, “Traffic Statistics.” [Online]. Available: https://
www.rms.nsw.gov.au/about/corporate-publications/statistics/index.html

[8] J. Bi, H. Yuan, S. Duanmu, M. Zhou, and A. Abusorrah, “Energy-
Optimized Partial Computation Offloading in Mobile-Edge Computing
With Genetic Simulated-Annealing-Based Particle Swarm Optimiza-
tion,” IEEE Internet of Things Journal, vol. 8, no. 5, pp. 3774–3785,
2021.

[9] H. Yuan and M. Zhou, “Profit-Maximized Collaborative Computation
Offloading and Resource Allocation in Distributed Cloud and Edge
Computing Systems,” IEEE Transactions on Automation Science and
Engineering, vol. 18, no. 3, pp. 1277–1287, 2021.

[10] F. Zeng, Q. Chen, L. Meng, and J. Wu, “Volunteer Assisted Collabora-
tive Offloading and Resource Allocation in Vehicular Edge Computing,”
IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 6,
pp. 3247–3257, 2021.

[11] X. Bai, W. Yan, and S. S. Ge, “Efficient Task Assignment for Multiple
Vehicles With Partially Unreachable Target Locations,” IEEE Internet
of Things Journal, vol. 8, no. 5, pp. 3730–3742, 2021.

[12] Z. Zhang, M. Zhou, and J. Wang, “Construction-Based Optimization
Approaches to Airline Crew Rostering Problem,” IEEE Transactions
on Automation Science and Engineering, vol. 17, no. 3, pp. 1399–1409,
2020.

[13] Z. Zong, M. Zheng, Y. Li, and D. Jin, “MAPDP: Cooperative Multi-
Agent Reinforcement Learning to Solve Pickup and Delivery Problems,”
AAAI Conference on Artificial Intelligence, vol. 36, no. 9, pp. 9980–
9988, 2022.

[14] S. Sarkar, V. Gundecha, A. Shmakov, S. Ghorbanpour, A. R. Babu,
P. Faraboschi, M. Cocho, A. Pichard, and J. Fievez, “Multi-Agent
Reinforcement Learning Controller to Maximize Energy Efficiency for
Multi-Generator Industrial Wave Energy Converter,” AAAI Conference
on Artificial Intelligence, vol. 36, no. 11, pp. 12 135–12 144, 2022.

[15] W. Zhan, C. Luo, J. Wang, C. Wang, G. Min, H. Duan, and Q. Zhu,
“Deep-Reinforcement-Learning-Based Offloading Scheduling for Vehic-
ular Edge Computing,” IEEE Internet Things J., vol. 7, no. 6, pp. 5449–
5465, 2020.

[16] H. Peng and X. S. Shen, “Deep Reinforcement Learning based Resource
Management for Multi-Access Edge Computing in Vehicular Networks,”
IEEE Transactions on Network Science and Engineering, pp. 1–1, 2020.

[17] H. Wang, H. Ke, G. Liu, and W. Sun, “Computation Migration and
Resource Allocation in Heterogeneous Vehicular Networks: A Deep
Reinforcement Learning Approach,” IEEE Access, vol. 8, pp. 171 140–
171 153, 2020.

[18] Q. Yuan, J. Li, H. Zhou, T. Lin, G. Luo, and X. Shen, “A Joint
Service Migration and Mobility Optimization Approach for Vehicular
Edge Computing,” IEEE Transactions on Vehicular Technology, vol. 69,
no. 8, pp. 9041–9052, 2020.

[19] D. D. Nguyen, H. X. Nguyen, and L. B. White, “Reinforcement
Learning With Network-Assisted Feedback for Heterogeneous RAT
Selection,” IEEE Transactions on Wireless Communications, vol. 16,
no. 9, pp. 6062–6076, 2017.

[20] C. Fan, B. Li, C. Zhao, and Y. Liang, “Regret Matching Learning
Based Spectrum Reuse in Small Cell Networks,” IEEE Transactions
on Vehicular Technology, vol. 69, no. 1, pp. 1060–1064, 2020.

[21] X. Xu and Q. Zhao, “Distributed No-Regret Learning in Multiagent Sys-
tems: Challenges and Recent Developments,” IEEE Signal Processing
Magazine, vol. 37, no. 3, pp. 84–91, 2020.

[22] F. Sentenac, E. Boursier, and V. Perchet, “Decentralized Learning in On-
line Queuing Systems,” in Advances in Neural Information Processing
Systems, vol. 34. Curran Associates, Inc., 2021.

[23] G. E. Flaspohler, F. Orabona, J. Cohen, S. Mouatadid, M. Oprescu,
P. Orenstein, and L. Mackey, “Online Learning with Optimism and
Delay,” in 38th International Conference on Machine Learning, ser.
Proceedings of Machine Learning Research, vol. 139, 18–24 Jul 2021,
pp. 3363–3373.

[24] I. Bistritz and N. Bambos, “Cooperative Multi-player Bandit Opti-
mization,” in Advances in Neural Information Processing Systems,
H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds.,
vol. 33. Curran Associates, Inc., 2020, pp. 2016–2027.

[25] C. Daskalakis and N. Golowich, “Fast Rates for Nonparametric Online
Learning: From Realizability to Learning in Games,” ser. STOC 2022.
Association for Computing Machinery, 2022, p. 846–859.

[26] I. Anagnostides, C. Daskalakis, G. Farina, M. Fishelson, N. Golowich,
and T. Sandholm, “Near-Optimal No-Regret Learning for Correlated
Equilibria in Multi-Player General-Sum Games,” in 54th Annual ACM
SIGACT Symposium on Theory of Computing, 2022, p. 736–749.

[27] S. Hart and A. Mas-Colell, “A Simple Adaptive Procedure Leading to
Correlated Equilibrium,” Econometrica, vol. 68, no. 5, pp. 1127–1150,
2000.

[28] ——, “A Reinforcement Procedure Leading to Correlated Equilibrium,”
in Economics Essays. Berlin: Springer, 2001, pp. 181–200.

[29] R. J. Aumann, “Correlated Equilibrium as an Expression of Bayesian
Rationality,” Econometrica: Journal of the Econometric Society, vol. 55,
no. 1, pp. 1–18, Jan 1987.

[30] S. Hart and D. Schmeidler, “Existence of Correlated Equilibria,” Math-
ematics of Operations Research, vol. 14, no. 1, pp. 18–25, Feb 1989.

[31] B. L. Nguyen, D. T. Ngo, M. N. Dao, V. N. Q. Bao, and H. L.
Vu, “Scheduling and Power Control for Connectivity Enhancement
in Multi-Hop I2V/V2V Networks,” IEEE Transactions on Intelligent
Transportation Systems, pp. 1–11, 2021.

[32] S. Raza, S. Wang, M. Ahmed, and M. R. Anwar, “An Initial Investi-
gation of the Effects of a Fully Automated Vehicle Fleet on Geometric
Design,” Wireless Communications and Mobile Computing, vol. 2019,
pp. 1–19, 2019.

[33] S.-C. Lin, Y. Zhang, C.-H. Hsu, M. Skach, M. E. Haque, L. Tang, and
J. Mars, “The Architectural Implications of Autonomous Driving: Con-
straints and Acceleration,” in Twenty-Third International Conference
on Architectural Support for Programming Languages and Operating
Systems, vol. 53, no. 2, 2018, p. 751–766.

[34] R. Jain, D. M. Chiu, and W. R. Hawe, “A Quantitative Measure
Of Fairness And Discrimination For Resource Allocation In Shared
Computer Systems,” ArXiv, vol. cs.NI/9809099, 1998.

[35] V. Krishnamurthy, Partially Observed Markov Decision Processes From
Filtering to Controlled Sensing. Cambridge University Press, 2016.

[36] D. D. Nguyen, “Adaptive Reinforcement Learning for Heterogeneous
Network Selection,” Ph.D. dissertation, The University of Adelaide,
2018.

https://www.rms.nsw.gov.au/about/corporate-publications/statistics/index.html
https://www.rms.nsw.gov.au/about/corporate-publications/statistics/index.html

	I Introduction
	I-A Background
	I-B Contributions

	II System Model
	II-A Communication Model
	II-B Computation Model

	III Problem Formulation
	IV Proposed Multi-Agent Regret-Matching Learning based Task Assignment Scheme
	IV-A Game Reformulation for Task Assignment
	IV-B Definition of Correlated Equilibrium
	IV-C RM-based Learning with a Forgetting Factor

	V Performance Evaluation
	V-A Simulation Settings
	V-B Simulation Results

	VI Conclusion
	Appendix
	References

