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Ant Colony Optimization for Resource-Constrained
Project Scheduling

Daniel Merkle, Martin Middendorf, and Hartmut Schmeck

Abstract—An ant colony optimization (ACO) approach for the
resource-constrained project scheduling problem (RCPSP) is pre-
sented. Several new features that are interesting for ACO in general
are proposed and evaluated. In particular, the use of a combination
of two pheromone evaluation methods by the ants to find new so-
lutions, a change of the influence of the heuristic on the decisions
of the ants during the run of the algorithm, and the option that
an elitist ant forgets the best-found solution are studied. We tested
the ACO algorithm on a set of large benchmark problems from the
Project Scheduling Library. Compared to several other heuristics
for the RCPSP, including genetic algorithms, simulated annealing,
tabu search, and different sampling methods our algorithm per-
formed best on average. For nearly one-third of all benchmark
problems, which were not known to be solved optimally before, the
algorithm was able to find new best solutions.

Index Terms—Ant algorithms, ant colony optimization, meta-
heuristics, project scheduling, RCPSP, summation evaluation.

I. INTRODUCTION

T HE RESOURCE-constrained project scheduling problem
(RCPSP) is a general scheduling problem that contains

the job-shop, flow-shop, and open-shop problems as special
cases. The RCPSP has attracted many researchers during the
last years (see [4], [17] for recent overviews). Since it is an
NP-hard problem, different kinds of heuristics have been pro-
posed. A comparison of various heuristics on a set of bench-
mark problems is given in [16]. The compared heuristics include
priority-based methods (e.g., multipriority rules, forward-back-
ward scheduling, sampling methods) that use different serial
schemes or parallel schedule generation schemes (PSGSs) and
allow iterative searches by biasing the selection of the priority
rule through a random device. Moreover, several metaheuristics
as genetic algorithms, simulated annealing, and tabu search have
been tested.

In this paper, we propose an ant colony optimization (ACO)
approach for the RCPSP (see [9] for an introduction to ACO).
The ACO approach has been applied recently to scheduling
problems, as job-shop, flow-shop, and single machine tardiness
problems (see [1], [5], [7], [18], [28], [29], [35], [39]). In ACO,
several generations of artificial ants search for good solutions.
Every ant of a generation builds a solution step by step going
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through several probabilistic decisions. In general, ants that find
a good solution mark their paths through the decision space by
putting some amount of pheromone on the edges of the path.
The following ants of the next generations are attracted by the
pheromone so that they search in the solution space near pre-
vious good solutions. In addition to the pheromone values, the
ants will usually be guided by some problem-specific heuristic
for evaluating the possible decisions.

The algorithms proposed in [1] and [35] for the single ma-
chine total tardiness problem and the flow-shop problem, re-
spectively, use a pheromone matrix () where pheromone is
added to an element of the pheromone matrix when a good
solution was found where job is the th job on the machine.
The following ants of the next generation directly use the value
of to estimate the desirability of placing jobas the th job
on the machine when computing a new solution. We call this
use of the pheromone values direct or local evaluation (of the
values in the pheromone matrix).

A different way to evaluate the pheromone matrix was
proposed in [28]. Instead of using only the (local) value of
to derive the probability for placing jobas the th on the ma-
chine it was proposed to give the ants a more global view of the
pheromone values. In the particular form of global pheromone
evaluation used in [28] for the single machine total tardiness
problem, the ants evaluate the pheromone matrix by using

to compute the probability of placing job as the
th on the machine. We call this evaluation method summation

evaluation (of the values in the pheromone matrix). A difficulty
when using direct evaluation occurs if an ant does not choose
job as the th job in the schedule even if has a high value.
When in this case the values are small, job
is scheduled with high probability much behind place. This
is bad for many scheduling problems and, in particular, when
the tardiness of jobs is to be minimized or when precedence
constraints might hinder other jobs to be scheduled. With the
summation evaluation method, this will usually not happen,
since it is unlikely that a job is placed much behind places in
the schedule that have corresponding high pheromone values.

We propose a combination of direct and summation evalua-
tion for solving the RCPSP. We use, respectively, ,
to compute the probability that activityis the th activity that
is scheduled by a serial schedule generation scheme (SSGS).
Moreover, we propose several new features that are interesting
for ACO algorithms in general and show that they are impor-
tant to obtain a rather competitive algorithm for the RCPSP.
One such feature is the changing influence of a deterministic
heuristic on the decisions of the ants. During the initial genera-
tions, a high influence of the heuristic is important to guide the
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ants while in later generations the deterministic heuristic should
not hinder the ants to find better solutions. Another feature con-
cerns the use of an elitist ant. Usually in ACO, an elitist ant is
an ant that stores the best solution found so far and is allowed to
increase the corresponding pheromone values in every genera-
tion. This will lead the ants to search in the neighborhood to the
best-so-far solution. Here, we propose to limit the influence of
each elitist solution by replacing it with the best-found solution
in the current generation after a certain number of generations.

The paper is organized as follows. The RCPSP is defined in
Section II. In Section III, we describe the SSGSs. Our basic
ACO algorithm is described in Section IV. The different deter-
ministic heuristics we use in the ACO algorithm are described
in Section V. Additional features of the ACO algorithm are pre-
sented in Section VI. The benchmark problems that were used
for our tests and the parameter settings of the algorithms are
described in Section VII. Experimental results are reported in
Section VIII. Conclusions are given in Section IX.

II. RESOURCE-CONSTRAINEDSCHEDULING PROBLEM

The RCPSP is the optimization problem to schedule the ac-
tivities of a project such that the makespan of the schedule is
minimized while given precedence constraints between the ac-
tivities are satisfied and resource requirements of the scheduled
activities per time unit do not exceed given capacity constraints
for the different types of resources.

Formally, denotes the set of activities of a
project. We assume that a precedence relation is given between
the activities. An activity list is a permutation of the activities
such that every activity comes in the list before all activities
that are its successors in the precedence relation.is a set of
resource types. is the resource capacity for resources of
type . Every activity has a duration and resource
requirements , where is the requirement for a
resource of type per time unit when activity is scheduled.

Let be the set of direct predecessors (respectively suc-
cessors) of activity . is the set of all predecessors (re-
spectively successors) of activity. Activity 0 is the only start
activity that has no predecessor and activity is the only end
activity that has no successor. We assume that the start activity
and the end activity have no resource requirements and have du-
ration zero.

A schedule for the project is represented by the vector
( ), where is the start time of activity .
If is the start time of activity, then is its finish
time. For a schedule, the start time is the minimum start time

of all activities, and the finish time is the
maximum finish time of all activities.
The makespan of a schedule is the difference between its finish
time and start time. Observe that the start time of a schedule
equals and the finish time equals .

A schedule is feasible if it satisfies the following constraints:
1) activity must not be started before all its predeces-
sors are finished, i.e., for every , and
2) the resource constraints have to be satisfied, i.e., for every
time unit , the sum of the resource requirements of all sched-
uled activities does not exceed the resource capacities. Formally,

Fig. 1. Precedence graph for an RCPSP instance with activities0; . . . ; 7, one
resource with capacity 4 and a corresponding feasible schedule.

for every time unit and every resource of type, it holds that
.

The RCPSP problem is the following: given a project with
resource constraints, find a feasible schedule with minimal
makespan. See Fig. 1 for an example of an RCPSP instance
with a corresponding feasible schedule.

A latest start time and a latest finish time can be
computed for an activity by backward recursion from an upper
bound of the finish time of the project (cf. [13]). Starting with

, define and
for . An earliest start time

and an earliest finish time can be computed for every job
in a forward pass as follows. Starting with ,

define and , for
. Note, that the earliest start time of

job is a trivial lower bound on the minimal makespan of
a feasible schedule.

In the following, we list some notations that are used in this
paper (and are defined in the following sections).

RCPSP:
Set of activities.
Set of resource types.
Capacitiy of resource type.
Requirement of activity for resource type.
Duration of activity .
Set of direct predecessors (respectively successors)
of activity .
Set of all predecessors (respectively successors) of
activity .

Schedule:
Start time of activity .
Finish time of activity .
Maximum finish time of immediate predecessors
of activity .
Latest (earliest) start time of activity.
Latest (earliest) finish time of activity.

ACO Algorithm:
Pheromone information.
Heuristic information.
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Relative influence of direct evaluation.
Influence of pheromone (heuristic) information.
Influence of earlier decisions.
Evaporation rate.
Maximal number of generations to hold an elitist
solution.
Set of eligible activities.
Makespan of best-found schedule.

III. SCHEDULE GENERATION SCHEME

We used two different serial scheduling schemes for the gen-
eration of a schedule. Both schedule generation schemes, SSGS
and PSGS, are standard heuristic methods for the RCPSP (cf.
[24]).

The SSGS starts with a partial schedule that contains only the
start activity 0 at time 0. Then, SSGS constructs the complete
schedule in stages, where at each stage one activity is added
to the partial schedule constructed so far. In every stage, one
activity is selected from the set of available activities ,
i.e., activities that have not been scheduled so far and where
each predecessor has already been scheduled. The SSGS can be
supplied with an activity list, i.e., an ordered list of all activities.
In this case, SSGS always chooses the first activity in the list that
is feasible.

The start time of the activities are determined by SSGS as
follows. For every eligible activity , let be the max-
imum finish time of all its immediate predecessors. Then, the
start time of activity is the earliest time in [ , ] such
that all resource constraints are satisfied (see Procedure 1).

Procedure 1 Serial Schedule Generation Scheme

E(g): all activities which can be started prece-

dence-feasible in stage g

1: for g = 0 to n + 1 do

2: Calculate the eligible set E(g)

3: Select one j 2 E(g)

4: Schedule j at the earliest precedence- and re-

source-feasible start time t 2 [F ;LS ]

5: end for

The PSGS proceeds by time incrementation (see Procedure
II). It starts with a partial schedule that contains only the start ac-
tivity 0 at time 0. In every stage, a start time for the next ac-
tivities is determined before these activities are actually chosen.
The set of all eligible activities , which are precedence-
and resource-feasible when scheduled at time, is computed.
The following selection steps are done until is empty. An
activity is selected from and scheduled at time. Then,

is recomputed. At the end of the stage, a new start time
for the next activities is chosen. Similarly as for the SSGS,

the PSGS can be supplied with an activity list. In this case, PSGS
choses from always the activity that comes first in the ac-
tivity list.

Procedure 2 Parallel Schedule Generation Scheme

E(t ): all activities which are precedence- and re-

source-feasible when started at t ,

C: set of already scheduled activities,

active set A = fj 2 Cjs � t < f g

1: g := 0, t := 0, C := f0g

2: while jJ � Cj > 0 do

3: Calculate the eligible set E(t )

4: while E(t ) 6= ; do

5: Select one j 2 E(t )

6: Schedule j at t

7: C := C [ fjg

8: Recalculate E(t )

9: end while

10: Calculate A

11: g := g + 1

12: Calculate the minimal finish time t of all ac-

tivities in A

13: end while

It is known that for every RCPSP instance, it is possible to ob-
tain an optimal solution by using the SSGS. That means there
exists a sequence of choices that can be made by the SSGS
and leads to an optimal schedule (e.g., [24]). The PSGS always
yields nondelay schedules, i.e., schedules where idle times are
introduced only when no feasible activity is available, but these
do not necessarily include an optimal solution.

IV. ACO ALGORITHM

The general idea of our ACO approach is to use the ant algo-
rithm for finding an activity list that gives a good schedule when
used by SSGS or PSGS. The principle of our ACO algorithm is
similar to an ACO algorithm called Ant System Traveling Sales-
person Problem (AS-TSP) for the TSP of [8] and [11]. In every
generation, each of ants constructs one solution. An ant se-
lects the activities in the order in which they will be used by
the SSGS or PSGS. For the selection of an activity the ant uses
heuristic information as well as pheromone information. The
heuristic information, denoted by , and the pheromone in-
formation, denoted by , are indicators of how good it seems
to put activity at place of the activity list for the SSGS or
PSGS. The heuristic value is generated by some problem-de-
pendent heuristic and the pheromone information stems from
former ants that have found good solutions.

The next activity is chosen according to the probability dis-
tribution over the set of eligible activities determined either
by direct evaluation [8], [11] according to

(1)

or by summation evaluation [28] according to

(2)

where parameter determines the relative influence of
pheromone values corresponding to earlier decisions, i.e.,
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preceding places in the permutation. A value results
in unweighted summation evaluation, i.e., every,
is given the same influence. A value ( ) gives
pheromone values corresponding to earlier decisions less
(respectively more) influence. Parametersand determine
the relative influence of the pheromone values and the heuristic
values on the decision of the ant. The different heuristics that
have been used in this paper are described in the next section.

The best solution found so far and the best solution found
in the current generation are used to update the pheromone in-
formation. However, before that, some portion of pheromone is
evaporated according to

where is the evaporation rate. The reason for this is that old
pheromone should not have too strong an influence on the fu-
ture. Then, for every activity , some amount of pheromone
is added to element of the pheromone matrix, whereis the
place of activity in the activity list of the best solution found
so far. This is an elitist strategy that leads ants to search near the
best-found solution. The amount of pheromone added is ,
where is the makespan of the best-found schedule, i.e.,

The same is done also for the best solution found in the cur-
rent generation, i.e., for every activity , pheromone is
added to when is the place of activity in the activity list
of the best solution found in the current generation. The algo-
rithm runs until some stopping criterion is met, e.g., a certain
number of generations has been done or the average quality of
the solutions found by the ants of a generation has not changed
for several generations.

V. HEURISTICS

As heuristics, we use adaptations of well-known priority
heuristics for the RCPSP (see [19] for an overview). The reason
to use adaptations is that for the decisions of the ants, the
relative heuristic values are important and not just their ranks.
The importance of this aspect has been pointed out before in
[28].

The latest finish time (LFT) heuristic [6] schedules activities
according to growing values of . The relative differences be-
tween the latest finish times are usually small for activities that
become eligible late. Therefore, we use the absolute differences
to the maximum latest finish time of an eligible activity as a
heuristic value. In particular, for the normalized LFT (nLFT)
heuristic, the values are computed for the eligible activities
according to

The normalized version of the latest start time (LST) called
normalized LST (nLST) heuristic is defined similarly to the
nLFT heuristic, but uses values instead of values. There-
fore, for the nLST heuristic, we define

For the normalized version of the minimum slack time
(MSL), called normalized MSL (nMSL) heuristic, we define

The most total successors (MTS) heuristic always prefers the
activity with the largest number of (not only direct) successor
activities. For the normalized MTS (nMTS), we define

The greatest rank positional weight all (GRPWA) heuristic al-
ways prefers the activity with the largest sum of durations of all
(not only direct) successor activities plus the duration of the ac-
tivity itself. For the normalized GRPWA (nGRPWA), we define

The weighted resource utilization and precedence (WRUP)
heuristic [37] considers the resource utilization and the number
of direct successors of an activity. For the normalized version,
called normalized WRUP (nWRUP) heuristic, we define

where is a parameter of the heuristic.

VI. A DDITIONAL FEATURES

In this section, we describe several additional features of our
ACO algorithm.

A. Combination of Direct and Summation Evaluation

Summation evaluation was introduced in [28] and applied to
the single machine total weighted tardiness problem. For this
problem it is important to schedule jobs not too late, i.e., not later
than their tardiness value, which is exactly what the summa-
tion evaluation enforces. For the RCPSP the situation is some-
what different. The precedence relation requires that some activ-
ities should be scheduled not too late, but it is also important to
schedule groups of activities at the same time that have resource
requirements fitting to the resource constraints of the problem.
Therefore, for some activities, there might be several places in
the activity list used by SSGS or PSGS that are good, while other
places in between might be worse. Such a behavior can be mod-
eled with direct evaluation rather than using summation evalua-
tion. Therefore, instead of using either pure direct evaluation or
pure summation evaluation we propose a combination of both
evaluation strategies for the RCPSP. Such a combination is ob-
tained as follows. A parameter, determines the
relative influence of direct evaluation and summation evalua-
tion. The probability distribution used by an ant for choosing
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the next activity is computed as in formula (1) but the values
are replaced by the following “new” values

where and are
factors to adjust the relative influence of direct and summation
evaluation. Observe that for , we obtain pure direct evalu-
ation and for pure summation evaluation.

B. Changing Parameter Values

Usually the main parameters of an ACO algorithm, i.e.,,
, , are assigned fixed values during the whole run of the al-

gorithm. Several authors discussed the problem of finding good
parameter values and have studied the influence of the problem
instance on the optimal parameter values. For example, in [2], a
genetic algorithm was used to find good values for parameters

and . For an approach to use ant algorithms for multiobjec-
tive optimization, it was shown in [30] that the use of different
parameter values for the ants in the same generation can be ad-
vantageous. In all these works, no variation of parameter values
over the generations is considered.

Here, we propose to change the values of parametersand
in a certain way during a run of the algorithm. Parameter

controls the relative influence of the heuristic values. Usually,
the heuristic values will help the first generations of ants finding
good solutions but later on they might hinder the ants to follow
the good pheromone trails and therefore make it difficult for the
algorithm to further improve the solution quality it has found
so far. This is especially a problem when a static heuristic is
used, i.e., a heuristic where the values remain the same during
the run of the algorithm. Therefore, we reduce the value of
from generation to generation until it becomes zero and only
the pheromone values guide the decisions of the ants.

Parameter determines the convergence speed of the algo-
rithm. In general, when the algorithm has time to generate a
large number of solutions, a low value ofis profitable since the
algorithm will explore different regions of the search space and
does not focus the search too early on a small region. However,
when the maximal number of solutions is restricted, a higher
value of usually performs better. For this reason, we propose
to use two different values for during the run of an ant algo-
rithm. A low should be used from the start of the algorithm
during most of the running time. Only for the last few genera-
tions, a high should be used to make a final intensive search
near the best solution that has been found so far.

C. Discarding the Elitist Solution

Usually, using an elitist strategy has the advantage that the
ants explore the search region around the best-so-far solution
intensively. A best-so-far solution that was stable for many
generations has a great influence on the pheromone values
since pheromone is added after every generation according
to the best-so-far solution, but then, during long runs, it can
happen that the algorithm converges too early to the best-found
solution. Especially, if the elitist solution is a single good

solution that has no other good solutions in its neighborhood,
it is a problem when the search concentrates too much on this
region.

We, therefore, set a maximal number of generations
during which an elitist solution is allowed not to change. When
an elitist solution has exceeded its maximal number of genera-
tions it is exchanged with the best solution in that genera-
tion, even if this solution is worse than the (old) elitist solution.
When the old elitist solution has good solutions in its neighbor-
hood it is likely that one of these good solutions is found soon by
the ants and might become the new elitist solution. Otherwise,
it does not matter that the old elitist solution has been forgotten.

A somewhat similar strategy in [36] was to switch between
generations where the elitist ant updates pheromone according
to the best solution found so far with generations where the up-
date is done according to the best solution in that generation.

D. Local Optimization Strategy

It has been shown that local search applied to the solutions
that the ants have found can improve the optimization behavior
of an ACO algorithm [7], [10]. Here, we study the influence of
two different local optimization strategies.

A local search strategy that was used in [15] in connection
with a genetic algorithm for the RCPSP performs right moves of
activities in the activity list. The activity list is used by the SSGS
to build a schedule. Several criteria are identified in [15] under
which a right move will not change the schedule. Only when
all these criteria are not satisfied is the right move evaluated by
creating the corresponding schedule.

A problem with the right-move strategy might be that solu-
tions that can be obtained by a right move are likely to be found
by the ants anyway. Therefore, we propose a 2-opt strategy that
considers swaps between pairs of activities in a solution. For a
pair , , of activities, it is checked whether or not the
schedule derived by SSGS using the sequence, whereand
are exchanged is feasible and better than the schedule derived
from the old sequence. If this is the case, the new sequence is
fixed for testing the remaining swaps between pairs of activities.

E. Bidirectional Planning

The use of forward and backward ants that solve a problem
instance from different directions was employed in [30] for
the shortest common supersequence problem. In this paper,
the same pheromone matrix was used by both kinds of ants
concurrently. It was shown that the ACO algorithm could profit
from the two types of ants, but to an extent, that depends on
the type of the problem instance. A large profit was obtained
for types of problem instances, where it is likely that the good
solutions obtained by the forward ants are similar to the good
solutions that were found by the backward ants.

For the RCPSP problem, such a property will usually not
hold—at least this is unlikely when the construction of a so-
lution is based on a SSGS. However, this does not necessarily
mean that backward ants are useless for the RCPSP. The method
to build up schedules from both sides of an instance is called
bidirectional planning. It has been used before in connection
with different heuristics for the RCPSP. In [12], bidirectional
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planning was used in connection with a genetic algorithm. A
special kind of tabu search algorithm for the RCPSP that swaps
between phases where the tail of a solution is improved with
phases where the head of a solution is improved has been in-
vestigated in [38]. The advantage of bidirectional planning in
connection with deterministic priority rules was studied in [19].

In this paper, we use two colonies of ants—one colony con-
sists of forward ants and the other of backward ants. Backward
ants work on the reversed problem instances, i.e., the arcs of the
precedence graph are reversed. Both colonies work separately
on their own pheromone matrices. After a number of genera-
tions, both colonies compare their results, e.g., the average over
the best solutions found during the last generations (to use the
average instead of simply the best-so-far solution is proposed
because it seems reasonable to base the decision in an early
stage of the algorithm not only on a single solution). Then, only
the colony with the better result continues with the optimization
process.

VII. B ENCHMARK PROBLEMS AND PARAMETERS

As benchmark problems, we used a set of test instances which
is available in the Project Scheduling Library (PSPLIB) [25],
[26]. From this library, we used the test set j120.sm, which con-
tains the largest problem instances in the PSPLIB.

The benchmark problems in the set j120.sm were generated
by varying the following three problem parameters: network
complexity (NC), resource factor (RF), and resource strength
(RS). NC defines the average number of predecessors per ac-
tivity. RF determines the average percentage of different re-
source types for which each activity (besides the start and the
end activity) has a nonzero-demand. RS defines how scarce the
resources are. A value of 0 defines the capacity of each resource
to be no more than the maximum demand of all activities while
a value of 1 defines the capacity of each resource to be equal to
the demand imposed by the earliest start time schedule.

The set j120.sm contains 600 problem instances, each having
120 activities and four resource types. The set contains ten in-
stances for each combination of the following parameter values:

, , and
.

When not mentioned explicitly, the parameter values of the
ACO algorithm used for the test runs are chosen as follows.
The number of ants per generation is . The number of
ant generations per run of the algorithm is at most 850, during
the first 100 generations we use two colonies of five ants (one
with forward ants and one with backward ants, as described in
Section VI-E). After the first 100 generations, the algorithm pro-
ceeds only with the colony that achieved on the average over the
last 25 generations better best solutions. After 850 ant genera-
tions or when the average solution quality per generation did
not change for ten generations, a local search phase is initiated.
Local search is applied only to the best solution found (so far)
by the algorithm until a total number of 5000 schedules (in-
cluding all schedules found by the ants) have been evaluated
(see Section VI-D). Thus, 250 local search steps are performed
when all 850 generations of ants were carried out.

We set , , and (unless stated other-
wise). Recall that , means that local evalua-
tion and summation evaluation have the same influence and for
summation evaluation all pheromone values corresponding to
the former decisions have the same influence. Parameterwas
set to 2 in the first generation and is decreased linearly so that
it becomes zero after 50% of the (maximal) number of genera-
tions, i.e., at generation 425. We used and switched
to a higher value of for the last 200 generations
of the algorithm. The elitist solution was discarded after every

generations. The standard heuristic used by the ants
was the nLST heuristic.

In the following, Ant System RCPSP (AS-RCPSP) denotes
the algorithm with the parameters as described above (unless
stated otherwise). We also tested a simpler version of the ACO
algorithm that has none of the additional features as described
in Section VI. In contrast to AS-RCPSP, this algorithm—simple
AS-RCPSP (s-AS-RCPSP)—uses only forward ants, has con-
stant values and , and uses always 1000 gen-
erations of ants without local optimization at the end.

All tests have been performed on a Pentium III 500-MHz pro-
cessor. One run of AS-RCPSP takes about 25 s for one problem
instance.

The results for the test instances are compared to lower
bounds (LB), which were obtained by a critical path heuristic
[34]. Every test result given in the following section is an
average over all 600 problem instances and over four runs for
each instance (unless stated otherwise).

VIII. E XPERIMENTAL RESULTS

A. s-AS-RCPSP

We studied the s-AS-RCPSP for different and
values using the SSGS and the PSGS. The combination
between local evaluation and summation evaluation were
tested with values and

. The results are
given in Figs. 2 and 3. The results show that a combination of
local evaluation and summation evaluation performed best for
both SSGS and PSGS. The smallest deviations from the lower
bounds were obtained for SSGS with 36.7% for and

and for PSGS with 37.6% for and . In
both cases, summation evaluation has slightly more influence
than local evaluation and all weights are close to 1 for summa-
tion evaluation. Nearly the worst performance was obtained in
both cases by pure local evaluation ( or ) with a
deviation of 40.3% for SSGS and 38.5% for PSGS. For PSGS,
the worst results were obtained for and with a
deviation of 38.6%. Compared to that, summation evaluation
performed much better whenvalues were neither too large nor
too small—for SSGS and the average deviation was
only 37.1% and for PSGS and the average
deviation was only 38.0%. While for s-AS-RCPSP with SSGS
the best results were obtained, it seems that s-AS-RCPSP
with PSGS is much more robust against changes of the
and parameters. The fact that with SSGS the best results
were obtained for s-AS-RCPSP is in slight contrast to results
given in [15] and [19]. The authors of these studies found
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Fig. 2. Results for s-AS-RCPSP with SSGS with different values ofc and
. Shown is the deviation from the critical path lower bound.

Fig. 3. Results for s-AS-RCPSP with PSGS with different values ofc and
.

that at least for large problem instances (as j120.sm) PSGS
in combination with a GA or various deterministic heuristics
found on the average better solutions. Since our best results
were obtained with SSGS, we made the further investigations
using s-AS-RCPSP with SSGS.

To study the influence of direct and summation evaluation
on s-AS-RCPSP in more detail, we computed the entropy of
the probability distributions over all eligible activities that are
considered by the ants for choosing the next activity. That is,
for every th decision, , of an ant during the process
of constructing a solution we computed the entropy

The entropy values show how much the algorithm has converged
with respect to the different decisions of the ants.

Note that, in contrast to most other results in this paper, where
only 5000 evaluations were allowed, we run the ant algorithm
for 2000 generations (corresponding to 10 000 evaluations) to
observe convergence of the algorithm. Figs. 4 and 5 show en-
tropy curves for different generations of ants during a run. Each
point of the curve is averaged over 300 values obtained from the
five ants in the generation for 60 problem instances (we took the
first instance of every problem type contained in j120.sm). One
observation is that the entropy values corresponding to decisions
in the middle of the construction process of a solution are larger
than at the end or at the beginning of the process. A reason for
this is that decisions in the middle have a larger set of eligible
activities. Another observation is that for direct evaluation, the
entropy values are much smaller than for the combination of di-
rect and summation evaluation.

It is interesting that for pure direct evaluation , the en-
tropy for the first decisions of an ant shrinks very fast, e.g., all
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Fig. 4. Entropy of the probability distribution used by the ants for s-AS-RCPSP withc = 1. Results are averaged over five ants per generation for 60 problem
instances. Note that the scales of Figs. 4 and 5 are different.

Fig. 5. Entropy of the probability distribution used by the ants for s-AS-RCPSP withc = 0:5. Results are averaged over five ants per generation for 60 problem
instances. Note that the scales of Figs. 4 and 5 are different.

entropy values are below 0.2 for the first 60 decisions after gen-
eration 750. In contrast to that, the combination of direct and
summation evaluation shows for all generations nearly
symmetrical curves, i.e., decisions at the beginning and at the
end have similar entropy values. Also in this case, the entropy
values are higher in later generations than for pure direct eval-
uation. This indicates an advantage of the combined evaluation
method: it prevents the algorithm from nonuniform convergence
and from too early convergence.

B. AS-RCPSP

The results of the enhanced AS-RCPSP algorithm with SSGS
are shown in Fig. 6 and Table I. The general behavior is similar
to the simple s-AS-RCPSP with SSGS. The best result was ob-
tained for and with a deviation of 35.43% from

the critical path lower bound. The worst performance was ob-
tained by pure local evaluation ( or ) with a devi-
ation of 38.24%.

We compared AS-RCPSP to other heuristics for RCPSP. Sev-
eral heuristics are included in an extensive experimental study
by [16]. This study considers the following heuristics:

1) three deterministic single/pass heuristics with regret
based random sampling from [21] and [22];

2) two single/pass heuristics with adaptive regret-based
random sampling [23], [33];

3) four genetic algorithms of [14] and [27];
4) a simulated annealing algorithm of [3].

These heuristics were also compared with two pure random
sampling methods using two different heuristics for building up
a schedule. The random sampling 2 heuristic in Table II is a
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Fig. 6. Results for AS-RCPSP with different values ofc and
.

TABLE I
RESULTS FORAS-RCPSP WITH DIFFERENTVALUES OFc AND 


Best results in every column are bold. The best result of the table is underlined.

pure random sampling using SSGS for schedule generation. Re-
cently, a self-adaptive genetic algorithm was proposed in [15],
where the proportion of individuals that construct schedules by
applying the SSGS or the PSGS changes during the run of the
algorithm. In this algorithm, local search is done when the best
solution found by the GA has improved for several generations.

In [15] and [16], all heuristics were allowed to generate and
evaluate at most 5000 schedules for each problem instance. The
results mentioned in these studies are compared in Table II with
AS-RCPSP. The table also contains results of the following two
studies, which are based on computations that did not generate
exactly 5000 schedules for each instance, but should roughly be
comparable with respect to computational effort. The approach

TABLE II
COMPARISON OFAS-RCPSP WITH DIFFERENTRANDOMIZED HEURISTICS

Every heuristic was allowed to construct and evaluate 5000 solutions. “”
indicates that the ranking between following heuristics with “” is significant
and round brackets indicate results that are only roughly comparable.

studied in [31] is based on a list scheduling heuristic that uses
solutions obtained by Lagrangian relaxation of a time-indexed
integer programming formulation. With this approach, for the
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600 problem instances in j120.sm, a deviation from the lower
bound of 36.2% was obtained when on the average 3675 so-
lutions were generated per instance using an average time of
65 seconds per instance on a Sun Ultra 2 with a 200-MHz pro-
cessor. A time-oriented branch-and-bound approach of [12] ob-
tained for j120.sm an average deviation from the lower bound
of 37.5% (37.1%) when using at most 60 s (respectively, 300 s)
per instance on an Pentium Pro/200 PC. A “” in the table indi-
cates that the corresponding heuristic is significantly better than
the next heuristic below it that is marked with a “” (the test for
significance was the Wilcoxon signed-rank test at level of sig-
nificance of 5%; the tests for heuristics other than AS-RCPSP
were done in [15]). Note that a lack of a “” for the results of a
heuristic means only that no significance test was done, i.e., it
does not necessarily mean that there is no significant difference
to the next heuristic below it.

Table II shows that AS-RCPSP with an average deviation of
35.43% performed better than all other heuristics. This average
was obtained over ten runs for each of the 600 instances. The
standard deviation is 0.046, the minimum value is 35.35%, and
the maximum value of 35.50% is still better than the second best
algorithm in table [15] (which achieved a deviation of 35.60%).

The results of two other heuristics for the RCPSP that were
recently proposed in the literature are not included in Table II
since the results for j120.sm are not directly comparable with
respect to computational effort. The approach of [38] uses con-
cepts of tabu search together with probabilistic fan search that
is applied alternately to improve the head and the tail of a solu-
tion. Using a maximum computation time of 44 s per instance
of j120.sm on a PC with AMD 400–MHz processor without
restriction on the number of evaluated schedules, an average
deviation from the lower bound of 34.53% was obtained. An-
other tabu search algorithm for the RCPSP was proposed in [32].
This algorithm found in 30 000 iteration steps for each of the in-
stances in j120.sm solutions with an average deviation from the
lower bound of 34.99% [38]. For 219 problems in j120.sm, a
solution was found that was at least as good as the best-known
solution at that time (June 1999) and for 50 instances, a new best
solutions was found. One run of the algorithm took about 10 min
on a Sun Ultra 2 (300 MHz, 1-GB memory). Compared to this,
AS-RCPSP behaves very well. It found 186 best solutions (but
compared to the improved bounds from January 2001) in about
25 s for one run on a Pentium III 500-MHz processor. It must be
mentioned that AS-RCPSP was not designed specifically to ob-
tain a fast processing time, but instead to give a good optimiza-
tion behavior with respect to the number of generated solutions.
With respect to running time, it might be advantageous to use
methods that allow obtaining the new schedules very quickly
by reusing parts of older schedules.

In the following, we study in more detail the various features
of AS-RCPSP. The standard AS-RCPSP begins with a decision
phase where one colony of forward ants and one colony of back-
ward ants work for 100 generations (see Section VI-E). Using
only forward ants results in an average deviation from the lower
bounds of 35.94%, while using only backward ants (which is
equivalent to using instances with reverse precedences) gives an
average deviation of 35.77%. Since both results are significantly
worse than the deviation of 35.43% for the standard AS-RCPSP,

this shows that the algorithm can successfully decide after 100
generations which instance seems more profitable. On the av-
erage, the forward colonies in AS-RCPSP found in 38.6% of
the cases the better result in the first 100 generations (with re-
spect to the criterion described in Section VII). In 51.6% of the
cases, the results of the backward ants were better and in the
remaining 9.9% forward and backward ants were equally good.
In general, the set of reversed instances from j120.sm seem to
be slightly easier for the ant algorithm. This can be seen also
in several figures shown in the rest of this section, but we do
not discuss this fact again in the following. It should be men-
tioned that, in accordance to our speculation in Section VI-E,
tests have shown that the criterion we proposed to decide which
of the two colonies is allowed to proceed performed better than
simply proceeding with the colony that has the best best-found
solution.

Another feature of AS-RCPSP is the changing value ofthat
controls the influence of the heuristic (see Section VI-A). In
AS-RCPSP, the value of decreases linearly from 2 in the first
generation to zero after 50% of all generations. Fig. 7 shows the
behavior of AS-RCPSP when the value ofremains constant
over the generations. The best average result with a deviation
of 35.71% from the lower bounds was obtained for constant

. This is significantly worse than the average deviation
of 35.43% obtained with our strategy to change thevalue.

Another parameter of AS-RCPSP that changes during a run is
(see Section VI-A). The value of remains constant

during the first generations and then switched to a larger value
of for the last 200 generations. Fig. 8 shows the
behavior of AS-RCPSP when the value ofremains constant
over all generations. The best average result with a deviation
of 35.58% from the lower bounds was obtained for constant

. This is significantly worse than the average deviation
of 35.43% obtained with the changingvalue.

AS-RCPSP uses a mechanism to restrict the influence
of an elitist solution. Each elitist solution is discarded after

generations in order to give an elitist solution
not too much influence (see Section VI-C). Fig. 9 shows the
behavior of AS-RCPSP for different values of . The results
show that has a clear effect on the optimization behavior.
A high value of leads to an average deviation from the
lower bounds of more than 36.0%, but also too small values
are not good, e.g., for gives an average deviation of
35.77%.

The influence of the final local optimization steps in
AS-RCPSP is depicted in Fig. 10. The figure shows that the
local optimization steps have a small positive influence on the
optimization behavior. Without local optimization, AS-RCPSP
obtained an average deviation from the lower bounds of 35.51%
compared to a deviation of 35.43% for 250 local optimization
steps. Since only 5000 schedule evaluations were allowed in
each run of our tests a growing number of local steps reduces
the allowed number of iterations of the ants. Hence, too much
local optimization steps lead to a worse behavior, e.g., for 1000
local optimization steps the average deviation was 35.56%.

We also computed results for AS-RCPSP when the local op-
timization heuristic of [15] was used instead of our standard
heuristic that swaps two activities (see Section VI-D). With 250
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Fig. 7. AS-RCPSP with constant values of� (bars indicate the standard deviation).

Fig. 8. AS-RCPSP with constant values of� (bars indicate the standard deviation).

steps of the heuristics from [15] at the end of a run, the average
deviation over four runs of AS-RCPSP from the lower bounds
was 35.46% with a standard deviation of 0.088. Thus, the results
when using our heuristics are only slightly better.

The results of AS-RCPSP for different deterministic heuris-
tics are shown in Table III. With an average deviation of
35.64%, the nLFT heuristic performs slightly worse than the
similar nLST heuristic that is used in the standard AS-RCPSP
algorithm. Also, nGRPWA performs well with an average
deviation of 35.79%. Heuristic nMTS gives only moderate
performance while the nWRUP is worse for all values of
parameter ( ). All these results fit well to the
results in [19], where a similar ranking between the heuristics
according to their optimization behavior in connection with the
SSGS was obtained.

To further investigate the potential of our ACO algorithm,
we tested s-AS-RCPSP with additional local search steps after
every generation of ants on the benchmark set j120.sm. The
parameters used for these tests were ants, ,
a maximum of 20 000 iterations, and an application of the
local search on the best solution in every generation. For these
values, we found an average deviation from the critical path
lower bounds of 32.97%. For 278 of the 600 test instances, a
solution was found that is at least as good as the known best
solution.

A further proof of the strength of the algorithm is that it was
able to find new best solutions for 130 problem instances of
the j120.sm problem set when no restriction on the number of
evaluated schedules was set. These are nearly 1/3 of all problem
instances that were not known to be solved optimally before.
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Fig. 9. AS-RCPSP with different values ofg (bars indicate the standard deviation).

Fig. 10. AS-RCPSP with different number of maximal final local optimization steps (bars indicate the standard deviation).

Finally, it should be noted that some parameters of our al-
gorithm are only of importance when the number of genera-
tions is restricted. For example, instead of using two colonies
(one with forward ants and one with backward ants) for the
first generations, it is possible to run the algorithm twice when
there is enough time (once with forward ants and once with
backward ants). The parametercan be set constant instead
of switching it to a greater value after several generations. In
general, the smaller is, the longer it will take the algorithm
to converge and the better will be the quality of the obtained
solution. The number of local search steps at the end should
not be too small (after a few hundred steps the probability of
finding better solutions with more steps becomes quite small).
The larger the number of ants per generation, the better will usu-
ally be the best-found solution, but a few dozen of ants per gen-
eration should be enough in most cases. Summation evaluation

should have a signficant influence ( is a good value)
and the elitist ant should be forgotten after every small number
of generations. During the first generations, the heuristic should
have at least the same influence as the pheromone (e.g.,,

), but in later stages of a run, the influence of the heuristic
should be much less than the influence of the pheromone. It has
to be investigated whether forgetting the elitist ant after every
few generations and shrinking the influence ofduring a run is
good for ACO in general or only for specific problems like the
RCPSP.

IX. CONCLUSION

We have introduced an ACO approach for RCPSP. The ap-
proach has several new features that are intersting for ACO in
general. A combination of direct (or local) and summation (or
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TABLE III
AS-RCPSP WITH DIFFERENTHEURISTICS

Average deviation from lower bound.

global) pheromone evaluation methods is used by the ants for
the construction of a new solution. Additional features of the
algorithm are the changing strength of heuristic influence, the
changing rate of pheromone evaporation over the ant genera-
tions, and the restricted influence of the elitist solution by for-
getting it at regular intervals. The value of all new features has
been shown through extensive experiments. We compared our
approach with the results of various other randomized heuristics
for the RCPSP including genetic algorithms and simulated an-
nealing on the set of largest instances in the benchmark library
PSPLIB. Under the constraint that every algorithm is allowed to
compute and evaluate the same restricted number of solutions,
our algorithm performed best. Moreover, allowing more eval-
uations, our algorithm was able to find 130 new best solutions.
That means that nearly 1/3 of the 396 instances in the benchmark
set that were not known to be solved optimally have been im-
proved. The fact that the algorithm behaves very well (compared
to several other heuristics) in both cases—with and without re-
strictions to the number of evaluated schedules—shows the flex-
ibility of the approach.
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