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Ant Colony Optimization for Resource-Constrained
Project Scheduling

Daniel Merkle, Martin Middendorf, and Hartmut Schmeck

Abstract—An ant colony optimization (ACO) approach for the through several probabilistic decisions. In general, ants that find
resource-constrained project scheduling problem (RCPSP) is pre- a good solution mark their paths through the decision space by
sented. Several new features that are interesting for ACO in general putting some amount of pheromone on the edges of the path.

are proposed and evaluated. In particular, the use of a combination . .
of two pheromone evaluation methods by the ants to find new so- The following ants of the next generations are attracted by the

lutions, a change of the influence of the heuristic on the decisions Pheromone so that they search in the solution space near pre-
of the ants during the run of the algorithm, and the option that  vious good solutions. In addition to the pheromone values, the
an elitist ant forgets the best-found solution are studied. We tested gnts will usually be guided by some problem-specific heuristic
the ACO algorithm on a set of large benchmark problems from the for evaluating the possible decisions.

Project Scheduling Library. Compared to several other heuristics . ) .
for the RCPSP, including genetic algorithms, simulated annealing, The algorithms proposed in [1] and [35] for the single ma-

tabu search, and different sampling methods our algorithm per- Chine total tardiness problem and the flow-shop problem, re-
formed best on average. For nearly one-third of all benchmark spectively, use a pheromone matrix;§ where pheromone is
problems, which were not known to be solved optimally before, the added to an element; of the pheromone matrix when a good
algorithm was able to find new best solutions. solution was found where jopis theith job on the machine.
Index Terms—Ant algorithms, ant colony optimization, meta- The following ants of the next generation directly use the value
heuristics, project scheduling, RCPSP, summation evaluation. of 7;; to estimate the desirability of placing jgbas theith job
on the machine when computing a new solution. We call this
I. INTRODUCTION use of Fhe pheromone values 'direct or local evaluation (of the
values in the pheromone matrix).
T HE RESOURCE-constrained project scheduling problem a gifferent way to evaluate the pheromone matrix was
(RCPSP) is a general scheduling problem that contaifgposed in [28]. Instead of using only the (local) valuergf
the job-shop, flow-shop, and open-shop problems as spegi@herive the probability for placing jopas theith on the ma-
cases. The RCPSP has attracted many researchers during-#¢e it was proposed to give the ants a more global view of the
last years (see [4], [17] for recent overviews). Since it is gSheromone values. In the particular form of global pheromone
NP-hard problem, different kinds of heuristics have been prggajuation used in [28] for the single machine total tardiness
posed. A comparison of various heuristics on a set of ben%mem, the ants evaluate the pheromone matrix by using
mark problems is given in [16]. The compared heuristicsinclucg;;_1 7; to compute the probability of placing jop as the
priority-based methods (e.g., multipriority rules, forward-backy on the machine. We call this evaluation method summation
ward scheduling, sampling methods) that use different seriglajyation (of the values in the pheromone matrix). A difficulty
schemes or parallel schedule generation schemes (PSGSs)@ih using direct evaluation occurs if an ant does not choose
allow iterative searches by biasing the selection of the priorifab j as theith job in the schedule evenif, has a high value.
rule through a random device. Moreover, several metaheurisigen in this case the values, . j, 7it2.; - - - are small, jobyj
as genetic algorithms, simulated annealing, and tabu search havgcheduled with high probabiylity much behind placd his
been tested. is bad for many scheduling problems and, in particular, when
In this paper, we propose an ant colony optimization (ACQpe tardiness of jobs is to be minimized or when precedence
approach for the RCPSP (see [9] for an introduction to ACOggnstraints might hinder other jobs to be scheduled. With the
The ACO approach has been applied recently to scheduliggmmation evaluation method, this will usually not happen,
problems, as job-shop, flow-shop, and single machine tardinggsce it is unlikely that a job is placed much behind places in
problems (see [1], [5], [7], [18], [28], [29], [35], [39]). In ACO, the schedule that have corresponding high pheromone values.
several generations of artificial ants search for good solutionsyse propose a combination of direct and summation evalua-
Every ant of a generation builds a solution step by step goiggn for solving the RCPSP. We usg, respectivelyEizl Thjs
to compute the probability that activiyis theith activity that
is scheduled by a serial schedule generation scheme (SSGS).
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ants while in later generations the deterministic heuristic should ~ Prec#sience eonsirainl_duration p, /rescurce demand ¢

not hinder the ants to find better solutions. Another feature con- a2 1i 23

cerns the use of an elitist ant. Usually in ACO, an elitist ant is !

an ant that stores the best solution found so far and is allowed to

increase the corresponding pheromone values in every genera-

tion. This will lead the ants to search in the neighborhood to the

best-so-far solution. Here, we propose to limit the influence of

each elitist solution by replacing it with the best-found solution

in the current generation after a certain number of generations.
The paper is organized as follows. The RCPSP is defined in

Section II. In Section Ill, we describe the SSGSs. Our basic 4 1 4

ACO algorithm is described in Section IV. The different deter- . L 3 5

ministic heuristics we use in the ACO algorithm are described P Lk e !

in Section V. Additional features of the ACO algorithm are pre- e 2 ! B

sented in Section VI. The benchmark problems that were used

for our tests and the parameter settings of the algorithms &f@ 1. Precedence graph for an RCPSP instance with actidities , 7, one

described in Section VII. Experimental results are reported figsource with capacity 4 and a corresponding feasible schedule.

Section VIII. Conclusions are given in Section IX.
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for every time unitt and every resource of typeit holds that

Il. RESOURCECONSTRAINED SCHEDULING PROBLEM Zjej si<t<s 4p; T < R;.
255> J 3 (A

The RCPSP is the optimization problem to schedule the ac-The RCPSP problem is the following: given a project with
tivities of a project such that the makespan of the schedulerésource constraints, find a feasible schedule with minimal
minimized while given precedence constraints between the agakespan. See Fig. 1 for an example of an RCPSP instance
tivities are satisfied and resource requirements of the schedwith a corresponding feasible schedule.
activities per time unit do not exceed given capacity constraintsA latest start timeL.S; and a latest finish timé F; can be
for the different types of resources. computed for an activity by backward recursion from an upper

Formally,.7 = {0, ...,n+1} denotes the set of activities of abound of the finish tim&” of the project (cf. [13]). Starting with
project. We assume that a precedence relation is given betwéeh), ., = LF,,.; = T, defineLF; = min{LS, | < € S;} and
the activities. An activity list is a permutation of the activitied.S; = LF; — p; for j = n,...,0. An earliest start timez3;
such that every activity comes in the list before all activitieand an earliest finish tim& F; can be computed for every job
that are its successors in the precedence relafiaa.a set oy  j in a forward pass as follows. Starting wifiSy = EF, = 0,
resource types; > 0 is the resource capacity for resources ddefine £S; = max{EF; | i € P;} andEF; = ES; + p;, for
typei € Q. Every activityj € 7 has a duratiop; and resource j; = 1,...,7n + 1. Note, that the earliest start tinf&S,, ;; of
requirements:; 1, ..., 7,4, Wherer;; is the requirement for a job » + 1 is a trivial lower bound on the minimal makespan of
resource of typé per time unit when activity is scheduled.  a feasible schedule.

LetP,(S;) be the set of direct predecessors (respectively suc-n the following, we list some notations that are used in this
cessors) of activity. P;(S}) is the set of all predecessors (repaper (and are defined in the following sections).
spectively successors) of activijy Activity O is the only start RCPSP:

activity that has no predecessor and actiwity1 is the onlyend .7 Set of activities.

activity that has no successor. We assume that the start actily Set of resource types.

and the end activity have no resource requirements and have By- Capacitiy of resource type

ration zero. T4 Requirement of activity for resource type.
A schedule for the project is represented by the vectpy Duration of activity;.

(s0,81,---,5,41), Wheres; is the start time of activity € 7. P;(S;)  Set of direct predecessors (respectively successors)

If s; is the start time of activity, thenf; = s; +p; is its finish of activity j.

time. For a schedule, the start time is the minimum start tinf&’(S7)  Set of all predecessors (respectively successors) of

min{s; | j € J} of all activities, and the finish time is the activity j.

maximum finish timemax{s; + p; | j € J} of all activities. Schedule:

The makespan of a schedule is the difference between its finish Start time of activity;.

time and start time. Observe that the start time of a schedyle Finish time of activity;.

equalssp and the finish time equalf,+1. L Maximum finish time of immediate predecessors
A schedule is feasible if it satisfies the following constraints: of activity j.

1) activity j € J must not be started before all its predeces:S,;(ES;)  Latest (earliest) start time of activigy
sors are finished, i.es; > s; + p; for everyi € P;, and LF;(EF;) Latest (earliest) finish time of activity.
2) the resource constraints have to be satisfied, i.e., for everyACO Algorithm:

time unitt, the sum of the resource requirements of all sched;; Pheromone information.

uled activities does not exceed the resource capacities. Formayly, Heuristic information.
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c Relative influence of direct evaluation. C: set of already scheduled activities,
a(f) Influence of pheromone (heuristic) information. active set A, = {j € Cls; <1, < f;}
~y Influence of earlier decisions. Lg:=0, t,:=0, C:={0}
p Evaporation rate. 2. while |7 —C| >0 do
Jmax Maximal number of generations to hold an elitisg: Calculate the eligible set E(ty)
solution. 4: while E£(t,) # 0 do
£ Set of eligible activities. 5. Select one  j € &(t,)
A Makespan of best-found schedule. 6: Schedule j at t,
7. C:=CU{j}
I1l. SCHEDULE GENERATION SCHEME 8: Recalculate E(ty)
9: end while

We used two different serial scheduling schemes for the gen-
eration of a schedule. Both schedule generation schemes, SS6

and PSGS, are standard heuristic methods for the RCPSP {¢f. ¢ =9+t
[24]). 12: Calculate the minimal finish time t, of all ac-

The SSGS starts with a partial schedule that contains only tH'é"t':d'n e As-t
wni

start activity 0 at time 0. Then, SSGS constructs the complelt3€
schedule im stages, where at each stage one activity is added
to the partial schedule constructed so far. In every stagee Itis known that for every RCPSP instance, it is possible to ob-
activity j is selected from the set of available activiti#), tain an optimal solution by using the SSGS. That means there
i.e., activities that have not been scheduled so far and whewsts a sequence of choices that can be made by the SSGS
each predecessor has already been scheduled. The SSGS candéeads to an optimal schedule (e.g., [24]). The PSGS always
supplied with an activity list, i.e., an ordered list of all activitiesyields nondelay schedules, i.e., schedules where idle times are
In this case, SSGS always chooses the first activity in the list thatroduced only when no feasible activity is available, but these

é:alculate A,

is feasible. do not necessarily include an optimal solution.
The start time of the activities are determined by SSGS as
follows. For every eligible activity € £(g), let F; be the max- IV. ACO ALGORITHM

imum finish time of all its immediate predecessors. Then, the 1o general idea of our ACO approach is to use the ant algo-

start time of activity; is th_e earliest time g, LE; = pi] SUCh o for finding an activity list that gives a good schedule when

that all resource constraints are satisfied (see Procedure 1). used by SSGS or PSGS. The principle of our ACO algorithm is
similar to an ACO algorithm called Ant System Traveling Sales-

Procedure 1  Serial Schedule Generation Scheme person Problem (AS-TSP) for the TSP of [8] and [11]. In every

£(g): all activities which can be started prece- generation, each ef. ants constructs one solution. An ant se-
dence-feasible in stage g lects the activities in the order in which they will be used by

1. for g=0to n+1 do the SSGS or PSGS. For the selection of an activity the ant uses

2: Calculate the eligible set £(g) heuristic information as well as pheromone information. The

3: Select one  j € £(9) heuristic information, denoted by;,;, and the pheromone in-

4: Schedule j at the earliest precedence- and re- formation, denoted by;;, are indicators of how good it seems
source-feasible start time t € [£}, LS)] to put activity j at placei of the activity list for the SSGS or

5. end for PSGS. The heuristic value is generated by some problem-de-

pendent heuristic and the pheromone information stems from
The PSGS proceeds by time incrementation (see Procedi@®ner ants that have found good solutions.
I1). It starts with a partial schedule that contains only the start ac-The next activity is chosen according to the probability dis-
tivity O at time 0. In every stage, a start timef, for the next ac- tribution over the set of eligible activitieS determined either
tivities is determined before these activities are actually chos®y. direct evaluation [8], [11] according to
The set of all eligible activitie€(t,), which are precedence- 1 ]
Tigl Mgl

and resource-feasible when scheduled at tignés computed. pij = - 1)
The following selection steps are done u#tt, ) is empty. An S [rin]” [min]’
activity j is selected frong (¢, ) and scheduled at timtg. Then, hes
&(ty) is recomputed. At the end of the stage, a new start ting@ py summation evaluation [28] according to
t,+1 for the next activities is chosen. Similarly as for the SSGS,
the PSGS can be supplied with an activity list. In this case, PSGS ik “ 8
choses fron (t,) always the activity that comes first in the ac- / <k§1 g ]> *[is]
tivity list. pij = & )
<E [y=* 'Tkh]> ; [Uih]'ﬁ
he& \k=1

Procedure 2  Parallel Schedule Generation Scheme
£(t,): all activities which are precedence- and re- where parametet > 0 determines the relative influence of
source-feasible when started at tg, pheromone values corresponding to earlier decisions, i.e.,
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preceding places in the permutation. A valye= 1 results For the normalized version of the minimum slack time
in unweighted summation evaluation, i.e., evegy, & < ¢ (MSL), called normalized MSL (nMSL) heuristic, we define

is given the same influence. A value < 1 (v > 1) gives

pheromone values corresponding to earlier decisions less  y,; = max(LSy — ESy) — (LS, — ES;) + 1.
(respectively more) influence. Parametersand 8 determine kce

the relative influence of the pheromone values and the heuristic]-he most total successors (MTS) heuristic always prefers the

values on the decision of the ant. The different heuristics thativ with the largest number of (not only direct) successor
have been used in this paper are described in the next secti tivities. For the normalized MTS (NMTS), we define
The best solution found so far and the best solution foun ' ’

in the current generation are used to update the pheromone in-
formation. However, before that, some portion of pheromone is
evaporated according to

Mij = |57 | = win |Sg] + 1.

The greatest rank positional weight all (GRPWA) heuristic al-
Ti; = (1 —p) -1y ways prefers the activity with the largest sum of durations of all

. . . not only direct) successor activities plus the duration of the ac-
wherep is the evaporation rate. The reason for this is that o ﬂ/ity itself. For the normalized GRPWA (nGRPWA), we define

pheromone should not have too strong an influence on the fu-

ture. Then, for every activity € .7, some amount of pheromone

is added to element;; of the pheromone matrix, whefés the Ny = Py + Z pi — gléél(pk + Z pi> + 1.

place of activityj in the activity list of the best solution found ies; i€S)

so far. This is an elitist strategy that leads ants to search near the

best-found solution. The amount of pheromone addeddg™, ~ The weighted resource utilization and precedence (WRUP)

whereT™ is the makespan of the best-found schedule, i.e., heuristic [37] considers the resource utilization and the number

1 of direct successors of an activity. For the normalized version,
Tii =Tij+p- STt called normalized WRUP (nWRUP) heuristic, we define
The same is d(_)ne also for the b_es_t‘solunon found in the_ Y= = w|S| + (1 — w) Z Tt

rent generation, i.e., for every activify € 7, pheromone is ico

added tor;; wheni is the place of activityj in the activity list

of the best solution found in the current generation. The algo- — min <

rithm runs until some stopping criterion is met, e.g., a certain ‘

number of generations has been done or the average quality of

the solutions found by the ants of a generation has not changé#terew € [0, 1] is a parameter of the heuristic.

for several generations.

w|$k|+(1—w)z%> +1

cQ t

VI. ADDITIONAL FEATURES

V. HEURISTICS . . . .
In this section, we describe several additional features of our

As heuristics, we use adaptations of well-known prioritaCcO algorithm.
heuristics for the RCPSP (see [19] for an overview). The reason

to use adaptations is that for the decisions of the ants, tRe combination of Direct and Summation Evaluation
relative heuristic values are important and not just their ranks.

The importance of this aspect has been pointed out before ir§u_mmation eyaluation was introduce_d in [28] and applied t(_)
[28] the single machine total weighted tardiness problem. For this

%:oblem itisimportant to schedule jobs nottoo late, i.e., not later
than their tardiness value, which is exactly what the summa-

H n evaluation enforces. For the RCPSP the situation is some-

become eligible late. Therefore, we use the absolute differen tdifferent. The precedence relation req_ui_res tha_t some activ-
to the maximum latest finish time of an eligible activity as Hies should be scheduled not too late, but it is also important to
heuristic value. In particular, for the normalized LFT (nLFT chedule groups of activities at the same time that have resource

requirements fitting to the resource constraints of the problem.
Therefore, for some activities, there might be several places in
the activity list used by SSGS or PSGS that are good, while other
mij = max LFy, — LF; + 1. places in between might be worse. Such a behavior can be mod-
kee eled with direct evaluation rather than using summation evalua-
The normalized version of the latest start time (LST) calletibn. Therefore, instead of using either pure direct evaluation or
normalized LST (nLST) heuristic is defined similarly to thepure summation evaluation we propose a combination of both
NLFT heuristic, but usekS valuesinstead af /" values. There- evaluation strategies for the RCPSP. Such a combination is ob-
fore, for the nLST heuristic, we define tained as follows. A parametef 0 < ¢ < 1 determines the
relative influence of direct evaluation and summation evalua-
tion. The probability distribution used by an ant for choosing

The latest finish time (LFT) heuristic [6] schedules activitie
according to growing values dfF'. The relative differences be-
tween the latest finish times are usually small for activities th

heuristic, the values;; are computed for the eligible activities
according to

Nij = ll?cangSk —LS; +1.
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the next activity is computed as in formula (1) but the valggs solution that has no other good solutions in its neighborhood,

are replaced by the following “new” values; it is a problem when the search concentrates too much on this
region.
, ‘ ik We, therefore, set a maximal numbegy.. of generations
Tigi=c @i T+ (L—c) -y Z’V Tkj during which an elitist solution is allowed not to change. When
k=1

an elitist solution has exceeded its maximal number of genera-
tions g, it is exchanged with the best solution in that genera-
tion, even if this solution is worse than the (old) elitist solution.
hen the old elitist solution has good solutions in its neighbor-
hood itis likely that one of these good solutions is found soon by
the ants and might become the new elitist solution. Otherwise,
it does not matter that the old elitist solution has been forgotten.
A somewhat similar strategy in [36] was to switch between
Usually the main parameters of an ACO algorithm, ie., generations where the elitist ant updates pheromone according
B, p, are assigned fixed values during the whole run of the ab the best solution found so far with generations where the up-

gorithm. Several authors discussed the problem of finding gogéte is done according to the best solution in that generation.
parameter values and have studied the influence of the problem

instan_ce on the optimal paramet_er values. For example, in [2[pa | gcgl Optimization Strategy
genetic algorithm was used to find good values for parameters ] )
« andg3. For an approach to use ant algorithms for multiobjec- 't has been shown that local search applied to the solutions
tive optimization, it was shown in [30] that the use of differenthat the ants have found can improve the optimization behavior
parameter values for the ants in the same generation can be®@n ACO algorithm [7], [10]. Here, we study the influence of
vantageous. In all these works, no variation of parameter valjg® different local optimization strategies.
over the generations is considered. A local search strategy that was used in [15] in connection
Here, we propose to change the values of paramgtarsd With g_genetic algo_ri'_[hm_ for the RC_P_SP_pe_rforms right moves of
p in a certain way during a run of the algorithm. Parameter activities in the activity list. The activity listis used by the SSGS
controls the relative influence of the heuristic values. Usuall{p build a schedule. Several criteria are identified in [15] under
the heuristic values will help the first generations of ants findingfhich @ right move will not change the schedule. Only when
good solutions but later on they might hinder the ants to follo@/! thgse criteria are not ;atlsfled is the right move evaluated by
the good pheromone trails and therefore make it difficult for tHg€ating the corresponding schedule.
algorithm to further improve the solution quality it has found A Problem with the right-move strategy might be that solu-
so far. This is especially a problem when a static heuristic #nSs that can be obtained by a right move are likely to be found
used, i.e., a heuristic where the values remain the same duf¥ghe ants anyway. Therefore, we propose a 2-opt strategy that
the run of the algorithm. Therefore, we reduce the valug ofconsiders swaps between pairs of activities in a solution. For a
from generation to generation until it becomes zero and orf§r @/, ¢ < j, of activities, it is checked whether or not the
the pheromone values guide the decisions of the ants. schedule derived by SSGS using the sequence, vihandj
Parametep determines the convergence speed of the alg®© exchanged is feasible and better than the schedule derived
rithm. In general, when the algorithm has time to generateff@m the old sequence. If this is the case, the new sequence is
large number of solutions, a low valueis profitable since the fixed for testing the remaining swaps between pairs of activities.
algorithm will explore different regions of the search space and
does not focus the search too early on a small region. However, Bidirectional Planning

when the maximal number of solutions is restricted, a higherthe yse of forward and backward ants that solve a problem
value ofp usually performs better. For this reason, we propoggsiance from different directions was employed in [30] for
to use two different values fqr during the run of an ant algo- the shortest common supersequence problem. In this paper,
rithm. A low p should be used from the start of the algorithiye same pheromone matrix was used by both kinds of ants
during most of the running time. Only for the last few genergsoncyrrently. It was shown that the ACO algorithm could profit
tions, a highp should be used to make a final intensive seargf,m the two types of ants, but to an extent, that depends on

wherez; = 3, e > po1 ¥ Fen @andy; = 3, o7 are
factors to adjust the relative influence of direct and summati
evaluation. Observe that far= 1, we obtain pure direct evalu-
ation and forc = 0 pure summation evaluation.

B. Changing Parameter Values

near the best solution that has been found so far. the type of the problem instance. A large profit was obtained
i ) . ) for types of problem instances, where it is likely that the good
C. Discarding the Elitist Solution solutions obtained by the forward ants are similar to the good

Usually, using an elitist strategy has the advantage that thalutions that were found by the backward ants.

ants explore the search region around the best-so-far solutiofror the RCPSP problem, such a property will usually not
intensively. A best-so-far solution that was stable for martyold—at least this is unlikely when the construction of a so-
generations has a great influence on the pheromone valig®n is based on a SSGS. However, this does not necessarily
since pheromone is added after every generation accordmgan that backward ants are useless for the RCPSP. The method
to the best-so-far solution, but then, during long runs, it cdo build up schedules from both sides of an instance is called
happen that the algorithm converges too early to the best-fousidirectional planning. It has been used before in connection
solution. Especially, if the elitist solution is a single goodvith different heuristics for the RCPSP. In [12], bidirectional
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planning was used in connection with a genetic algorithm. A We setae = 1, ¢ = 0.5, andy = 1.0 (unless stated other-
special kind of tabu search algorithm for the RCPSP that swapsse). Recall that = 0.5, v+ = 1.0 means that local evalua-
between phases where the tail of a solution is improved wition and summation evaluation have the same influence and for
phases where the head of a solution is improved has beendnmmation evaluation all pheromone values corresponding to
vestigated in [38]. The advantage of bidirectional planning ithe former decisions have the same influence. Pararfiatas
connection with deterministic priority rules was studied in [19ket to 2 in the first generation and is decreased linearly so that
In this paper, we use two colonies of ants—one colony coit-becomes zero after 50% of the (maximal) number of genera-
sists of forward ants and the other of backward ants. Backwadiohs, i.e., at generation 425. We usee-= 0.025 and switched
ants work on the reversed problem instances, i.e., the arcs ofthe higher value op = 0.075 for the last 200 generations
precedence graph are reversed. Both colonies work separatéithe algorithm. The elitist solution was discarded after every
on their own pheromone matrices. After a number of generg;... = 10 generations. The standard heuristic used by the ants
tions, both colonies compare their results, e.g., the average owess the nLST heuristic.
the best solutions found during the last generations (to use thén the following, Ant System RCPSP (AS-RCPSP) denotes
average instead of simply the best-so-far solution is proposisé algorithm with the parameters as described above (unless
because it seems reasonable to base the decision in an estdied otherwise). We also tested a simpler version of the ACO
stage of the algorithm not only on a single solution). Then, onbitgorithm that has none of the additional features as described
the colony with the better result continues with the optimizatian Section VI. In contrast to AS-RCPSP, this algorithm—simple
process. AS-RCPSP (s-AS-RCPSP)—uses only forward ants, has con-
stant valueg? = 1 andp = 0.025, and uses always 1000 gen-
erations of ants without local optimization at the end.
VII. BENCHMARK PROBLEMS AND PARAMETERS All tests have been performed on a Pentium Il 500-MHz pro-
cessor. One run of AS-RCPSP takes about 25 s for one problem
As benchmark problems, we used a set of test instances whircstance.
is available in the Project Scheduling Library (PSPLIB) [25], The results for the test instances are compared to lower
[26]. From this library, we used the test set j120.sm, which cobeunds (LB), which were obtained by a critical path heuristic
tains the largest problem instances in the PSPLIB. [34]. Every test result given in the following section is an
The benchmark problems in the set j120.sm were generassgrage over all 600 problem instances and over four runs for
by varying the following three problem parameters: networkach instance (unless stated otherwise).
complexity (NC), resource factor (RF), and resource strength
(RS). NC defines the average number of predecessors per ac- VIIl. EXPERIMENTAL RESULTS
tivity. RF determines the average percentage of different re-
source types for which each activity (besides the start and e S-AS-RCPSP
end activity) has a nonzero-demand. RS defines how scarce thee  studied the s-AS-RCPSP for different and ~
resources are. A value of 0 defines the capacity of each resoufgakies using the SSGS and the PSGS. The combination
to be no more than the maximum demand of all activities whilsetween local evaluation and summation evaluation were
a value of 1 defines the capacity of each resource to be equaldsted with valuesc € {0,0.2,0.4,0.5,0.6,0.8,1.0} and
the demand imposed by the earliest start time schedule.  ~ ¢ {0,0.2,0.4,0.6,0.8,0.9,1.0, 1.1, 1.2, 1.4}. The results are
The set j120.sm contains 600 problem instances, each hauiiigen in Figs. 2 and 3. The results show that a combination of
120 activities and four resource types. The set contains ten ioeal evaluation and summation evaluation performed best for
stances for each combination of the following parameter valuégith SSGS and PSGS. The smallest deviations from the lower
NC e {1.5,1.8,2.1}, RF € {0.25,0.5,0.75,1}, andRS € bounds were obtained for SSGS with 36.7% o= 0.6 and
{0.1,0.2,0.3,0.4,0.5}. ~ = 1 and for PSGS with 37.6% far = 0.8 andy = 1.1. In
When not mentioned explicitly, the parameter values of tHmth cases, summation evaluation has slightly more influence
ACO algorithm used for the test runs are chosen as followthan local evaluation and all weights are close to 1 for summa-
The number of ants per generationnis = 5. The number of tion evaluation. Nearly the worst performance was obtained in
ant generations per run of the algorithm is at most 850, duribgth cases by pure local evaluatian£ 1.0 or v = 0) with a
the first 100 generations we use two colonies of five ants (odeviation of 40.3% for SSGS and 38.5% for PSGS. For PSGS,
with forward ants and one with backward ants, as describedtive worst results were obtained for= 0 and~ > 1.0 with a
Section VI-E). After the first 100 generations, the algorithm pradeviation of 38.6%. Compared to that, summation evaluation
ceeds only with the colony that achieved on the average over fexformed much better whervalues were neither too large nor
last 25 generations better best solutions. After 850 ant genei@ small—for SSGS angd = 0.9 the average deviation was
tions or when the average solution quality per generation didily 37.1% and for PSGS and< {0.4,0.6, 0.8} the average
not change for ten generations, a local search phase is initiatdeliation was only 38.0%. While for s-AS-RCPSP with SSGS
Local search is applied only to the best solution found (so fah)e best results were obtained, it seems that s-AS-RCPSP
by the algorithm until a total number of 5000 schedules (iwith PSGS is much more robust against changes ofc¢he
cluding all schedules found by the ants) have been evaluatewl v parameters. The fact that with SSGS the best results
(see Section VI-D). Thus, 250 local search steps are performeere obtained for s-AS-RCPSP s in slight contrast to results
when all 850 generations of ants were carried out. given in [15] and [19]. The authors of these studies found
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Fig. 2. Results for s-AS-RCPSP with SSGS with different valuesaridy. Shown is the deviation from the critical path lower bound.

0.390
0.385
0.380
0.375

0.370

Fig. 3. Results for s-AS-RCPSP with PSGS with different valuesarid~.

that at least for large problem instances (as j120.sm) PSG3Note that, in contrast to most other results in this paper, where
in combination with a GA or various deterministic heuristicenly 5000 evaluations were allowed, we run the ant algorithm
found on the average better solutions. Since our best restitts 2000 generations (corresponding to 10 000 evaluations) to
were obtained with SSGS, we made the further investigatiooBserve convergence of the algorithm. Figs. 4 and 5 show en-
using s-AS-RCPSP with SSGS. tropy curves for different generations of ants during a run. Each
To study the influence of direct and summation evaluatigooint of the curve is averaged over 300 values obtained from the
on s-AS-RCPSP in more detail, we computed the entropy fofe ants in the generation for 60 problem instances (we took the
the probability distributions over all eligible activities that ardirst instance of every problem type contained in j120.sm). One
considered by the ants for choosing the next activity. That isbservation is that the entropy values corresponding to decisions
for everyith decision; € [1,120], of an ant during the processin the middle of the construction process of a solution are larger

of constructing a solution we computed the entropy than at the end or at the beginning of the process. A reason for
this is that decisions in the middle have a larger set of eligible

o . log D activities. Another observation is that for direct evaluation, the

=4 Dij logpij. . . .

ice entropy values are much smaller than for the combination of di-

rect and summation evaluation.
The entropy values show how much the algorithm has convergedt is interesting that for pure direct evaluatior= 1, the en-
with respect to the different decisions of the ants. tropy for the first decisions of an ant shrinks very fast, e.g., all
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Fig. 4. Entropy of the probability distribution used by the ants for s-AS-RCPSPawithl . Results are averaged over five ants per generation for 60 problem
instances. Note that the scales of Figs. 4 and 5 are different.

1.6 T T T T N T
generation 250 ———
500 -
1.4 + 750 oo e
1000
1250 ——-—-
1.2 - 1500 ----- E
00
1 - |
. -
o RN N
£ o8¢ :
c N o Vi
S . e \
0.6 |
04
0.2
0 27 1 1 1 1 1
0 20 40 60 80 100 120

decision number

Fig. 5. Entropy of the probability distribution used by the ants for s-AS-RCPSPawith).5. Results are averaged over five ants per generation for 60 problem
instances. Note that the scales of Figs. 4 and 5 are different.

entropy values are below 0.2 for the first 60 decisions after gethe critical path lower bound. The worst performance was ob-
eration 750. In contrast to that, the combination of direct artdined by pure local evaluation & 1.0 or v = 0) with a devi-
summation evaluation = 0.5 shows for all generations nearlyation of 38.24%.

symmetrical curves, i.e., decisions at the beginning and at théeVe compared AS-RCPSP to other heuristics for RCPSP. Sev-
end have similar entropy values. Also in this case, the entropsal heuristics are included in an extensive experimental study
values are higher in later generations than for pure direct evay [16]. This study considers the following heuristics:

uation. This indicates an advantage of the combined evaluation) three deterministic single/pass heuristics with regret
method: it prevents the algorithm from nonuniform convergence  pased random sampling from [21] and [22];

and from too early convergence. 2) two single/pass heuristics with adaptive regret-based
random sampling [23], [33];
B. AS-RCPSP 3) four genetic algorithms of [14] and [27];

The results of the enhanced AS-RCPSP algorithm with SSGS4) a simulated annealing algorithm of [3].
are shown in Fig. 6 and Table I. The general behavior is simil@hese heuristics were also compared with two pure random
to the simple s-AS-RCPSP with SSGS. The best result was @ampling methods using two different heuristics for building up
tained forc = 0.5 andy = 1 with a deviation of 35.43% from a schedule. The random sampling 2 heuristic in Table Il is a
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Fig. 6. Results for AS-RCPSP with different valuescaind~.

RESULTS FORAS-RCPSP WiH DIFFERENTVALUES OF ¢ AND v

TABLE |
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TABLE I
COMPARISON OFAS-RCPSP WrH DIFFERENTRANDOMIZED HEURISTICS

341

deviation from

0.0

0.2

0.4

0.6

0.8

0.9

1.0

1.1

1.2

14

38.2

38.4

38.2

37.8

36.4

36.0

36.1

36.6

37.1

37.9

38.2

38.4

38.4

38.2

36.2

35.9

35.9

36.2

36.7

37.6

38.2

38.4

38.3

38.4

37.3

35.6

35.6

35.9

36.2

37.3

38.2

38.2

38.3

384

38.1

36.0

37.0

38.2

38.3

38.4

38.5

38.4

37.4

35.5

35.6

36.0

37.0

38.2

38.2

38.8

38.8

38.8

38.6

38.0

37.6

37.9

384

38.2

38.2

38.2

38.2

38.2

38.2

38.2

38.2

38.2

38.2

Best results in every column are bold. The best result of the table is underlined.

pure random sampling using SSGS for schedule generation. Re-
cently, a self-adaptive genetic algorithm was proposed in [15],
where the proportion of individuals that construct schedules by
applying the SSGS or the PSGS changes during the run of the
algorithm. In this algorithm, local search is done when the best
solution found by the GA has improved for several generations.
In [15] and [16], all heuristics were allowed to generate and
evaluate at most 5000 schedules for each problem instance. The
results mentioned in these studies are compared in Table Il with
AS-RCPSP. The table also contains results of the following two

Algorithm Reference

IBin %
AS-RCPSP this paper 35.43*
Self-adapting GA [15] 35.60*
LS with LR-IP [31] (36.2)
GA1 [14] 36.74%
TO B&B 12] (37.1)
SA (3] 37.68*
GA 2 [14] 38.49
adaptive sampling 1 [33] 38.70
single pass/sampling 1 | [22] 38.75
single pass/sampling 2 | [21], [22] 38.77*
adaptive sampling 2 [23] 40.45%
GA3 [27] 40.69*
single pass/sampling 3 | [22] 41.84*
GA 4 [14] 42.95
random sampling 1 [20] 43.05*
random sampling 2 [20] 4761

Every heuristic was allowed to construct and evaluate 5000 solutieis. “
indicates that the ranking between following heuristics withis significant
and round brackets indicate results that are only roughly comparable.

studies, which are based on computations that did not genersttedied in [31] is based on a list scheduling heuristic that uses
exactly 5000 schedules for each instance, but should roughlydmdutions obtained by Lagrangian relaxation of a time-indexed
comparable with respect to computational effort. The approairtteger programming formulation. With this approach, for the
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600 problem instances in j120.sm, a deviation from the lowthis shows that the algorithm can successfully decide after 100
bound of 36.2% was obtained when on the average 3675 generations which instance seems more profitable. On the av-
lutions were generated per instance using an average timeerdge, the forward colonies in AS-RCPSP found in 38.6% of
65 seconds per instance on a Sun Ultra 2 with a 200-MHz prifre cases the better result in the first 100 generations (with re-
cessor. A time-oriented branch-and-bound approach of [12] adpect to the criterion described in Section VII). In 51.6% of the
tained for j120.sm an average deviation from the lower bourdses, the results of the backward ants were better and in the
of 37.5% (37.1%) when using at most 60 s (respectively, 300r@maining 9.9% forward and backward ants were equally good.
per instance on an Pentium Pro/200 PC#Aih the table indi- In general, the set of reversed instances from j120.sm seem to
cates that the corresponding heuristic is significantly better thha slightly easier for the ant algorithm. This can be seen also
the next heuristic below it that is marked with-& ‘(the test for in several figures shown in the rest of this section, but we do
significance was the Wilcoxon signed-rank test at level of sigiot discuss this fact again in the following. It should be men-
nificance of 5%; the tests for heuristics other than AS-RCPSiBned that, in accordance to our speculation in Section VI-E,
were done in [15]). Note that a lack of a™for the results of a tests have shown that the criterion we proposed to decide which
heuristic means only that no significance test was done, i.e.pftthe two colonies is allowed to proceed performed better than
does not necessarily mean that there is no significant differergimply proceeding with the colony that has the best best-found
to the next heuristic below it. solution.

Table 1l shows that AS-RCPSP with an average deviation of Another feature of AS-RCPSP is the changing valug tifat
35.43% performed better than all other heuristics. This averagmntrols the influence of the heuristic (see Section VI-A). In
was obtained over ten runs for each of the 600 instances. Tk®-RCPSP, the value ¢f decreases linearly from 2 in the first
standard deviation is 0.046, the minimum value is 35.35%, agdneration to zero after 50% of all generations. Fig. 7 shows the
the maximum value of 35.50% is still better than the second bésthavior of AS-RCPSP when the value/®femains constant
algorithm in table [15] (which achieved a deviation of 35.60%}pver the generations. The best average result with a deviation

The results of two other heuristics for the RCPSP that weoé 35.71% from the lower bounds was obtained for constant
recently proposed in the literature are not included in Table Ml = 1.25. This is significantly worse than the average deviation
since the results for j120.sm are not directly comparable witti 35.43% obtained with our strategy to changefhealue.
respect to computational effort. The approach of [38] uses con-Another parameter of AS-RCPSP that changes during arunis
cepts of tabu search together with probabilistic fan search thefsee Section VI-A). The value @f = 0.025 remains constant
is applied alternately to improve the head and the tail of a solddring the first generations and then switched to a larger value
tion. Using a maximum computation time of 44 s per instanad p = 0.075 for the last 200 generations. Fig. 8 shows the
of j120.sm on a PC with AMD 400-MHz processor withoubehavior of AS-RCPSP when the valuemfemains constant
restriction on the number of evaluated schedules, an averager all generations. The best average result with a deviation
deviation from the lower bound of 34.53% was obtained. Arof 35.58% from the lower bounds was obtained for constant
other tabu search algorithm for the RCPSP was proposed in [32}= 0.04. This is significantly worse than the average deviation
This algorithm found in 30 000 iteration steps for each of the imf 35.43% obtained with the changipgvalue.
stances in j120.sm solutions with an average deviation from theAS-RCPSP uses a mechanism to restrict the influence
lower bound of 34.99% [38]. For 219 problems in j120.sm, af an elitist solution. Each elitist solution is discarded after
solution was found that was at least as good as the best-kngyya, = 10 generations in order to give an elitist solution
solution at that time (June 1999) and for 50 instances, a new best too much influence (see Section VI-C). Fig. 9 shows the
solutions was found. One run of the algorithm took about 10 mirehavior of AS-RCPSP for different valuesg@f.,.. The results
on a Sun Ultra 2 (300 MHz, 1-GB memory). Compared to thishow thaty,,, has a clear effect on the optimization behavior.
AS-RCPSP behaves very well. It found 186 best solutions (bithigh value of ¢, leads to an average deviation from the
compared to the improved bounds from January 2001) in abdover bounds of more than 36.0%, but also too small values
25 s for one run on a Pentium Il 500-MHz processor. It must kse not good, e.g., fafmax = 3 gives an average deviation of
mentioned that AS-RCPSP was not designed specifically to &5.77%.
tain a fast processing time, but instead to give a good optimiza-The influence of the final local optimization steps in
tion behavior with respect to the number of generated solutiodsS-RCPSP is depicted in Fig. 10. The figure shows that the
With respect to running time, it might be advantageous to ukeal optimization steps have a small positive influence on the
methods that allow obtaining the new schedules very quickbptimization behavior. Without local optimization, AS-RCPSP
by reusing parts of older schedules. obtained an average deviation from the lower bounds of 35.51%

In the following, we study in more detail the various featuresompared to a deviation of 35.43% for 250 local optimization
of AS-RCPSP. The standard AS-RCPSP begins with a decis&taps. Since only 5000 schedule evaluations were allowed in
phase where one colony of forward ants and one colony of bagach run of our tests a growing number of local steps reduces
ward ants work for 100 generations (see Section VI-E). Usirilge allowed number of iterations of the ants. Hence, too much
only forward ants results in an average deviation from the lowkercal optimization steps lead to a worse behavior, e.g., for 1000
bounds of 35.94%, while using only backward ants (which Iscal optimization steps the average deviation was 35.56%.
equivalent to using instances with reverse precedences) gives aWWe also computed results for AS-RCPSP when the local op-
average deviation of 35.77%. Since both results are significantiyization heuristic of [15] was used instead of our standard
worse than the deviation of 35.43% for the standard AS-RCP®#uristic that swaps two activities (see Section VI-D). With 250
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Fig. 8. AS-RCPSP with constant valuesyofbars indicate the standard deviation).

steps of the heuristics from [15] at the end of a run, the averageTo further investigate the potential of our ACO algorithm,
deviation over four runs of AS-RCPSP from the lower boundse tested s-AS-RCPSP with additional local search steps after
was 35.46% with a standard deviation of 0.088. Thus, the resigigery generation of ants on the benchmark set j120.sm. The
when using our heuristics are only slightly better. parameters used for these tests ware= 20 ants,p = 0.005,

The results of AS-RCPSP for different deterministic heuri& maximum of 20000 iterations, and an application of the
tics are shown in Table Ill. With an average deviation dbcal search on the best solution in every generation. For these
35.64%, the nLFT heuristic performs slightly worse than thealues, we found an average deviation from the critical path
similar nLST heuristic that is used in the standard AS-RCP3&wver bounds of 32.97%. For 278 of the 600 test instances, a
algorithm. Also, nGRPWA performs well with an averageolution was found that is at least as good as the known best
deviation of 35.79%. Heuristic nMTS gives only moderatsolution.
performance while the nWRUP is worse for all values of A further proof of the strength of the algorithm is that it was
parameterg € {0,0.5,1}). All these results fit well to the able to find new best solutions for 130 problem instances of
results in [19], where a similar ranking between the heuristitise j120.sm problem set when no restriction on the number of
according to their optimization behavior in connection with thevaluated schedules was set. These are nearly 1/3 of all problem
SSGS was obtained. instances that were not known to be solved optimally before.
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Finally, it should be noted that some parameters of our ahould have a signficant influence & 0.5 is a good value)
gorithm are only of importance when the number of generand the elitist ant should be forgotten after every small number
tions is restricted. For example, instead of using two colonie§generations. During the first generations, the heuristic should
(one with forward ants and one with backward ants) for theave at least the same influence as the pheromonede=g1,
first generations, it is possible to run the algorithm twice whe > 1), but in later stages of a run, the influence of the heuristic
there is enough time (once with forward ants and once wigthould be much less than the influence of the pheromone. It has
backward ants). The parametercan be set constant insteado be investigated whether forgetting the elitist ant after every
of switching it to a greater value after several generations. few generations and shrinking the influencesaluring a run is
general, the smalles is, the longer it will take the algorithm good for ACO in general or only for specific problems like the
to converge and the better will be the quality of the obtaindRICPSP.
solution. The number of local search steps at the end should
not be too small (after a few hundred steps the probability of
finding better solutions with more steps becomes quite small).

The larger the number of ants per generation, the better will usu\We have introduced an ACO approach for RCPSP. The ap-
ally be the best-found solution, but a few dozen of ants per ggmoach has several new features that are intersting for ACO in
eration should be enough in most cases. Summation evaluatigmeral. A combination of direct (or local) and summation (or

IX. CONCLUSION
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TABLE 11l [7]
AS-RCPSP WrH DIFFERENTHEURISTICS
deviation from | standard
Heuristic 8]
LB in % deviation
nLST 35.43 0.046
[
nLFT 35.64 0.043
nGRPWA 35.79 0.049 [10]
nMTS 36.38 0.004 [11]
nWRUP (w = 0) 39.22 0.080
[12]
nWRUP (w = 0.5) 38.32 0.082
nWRUP (w =1) 38.70 0.037 [13]
Average deviation from lower bound. [14]
[15]

global) pheromone evaluation methods is used by the ants f([)fs]
the construction of a new solution. Additional features of the
algorithm are the changing strength of heuristic influence, the
changing rate of pheromone evaporation over the ant generﬁ}]
tions, and the restricted influence of the elitist solution by for-
getting it at regular intervals. The value of all new features has
been shown through extensive experiments. We compared olf!
approach with the results of various other randomized heuristics
for the RCPSP including genetic algorithms and simulated an-
nealing on the set of largest instances in the benchmark Iibra%]
PSPLIB. Under the constraint that every algorithm is allowed t&
compute and evaluate the same restricted number of solutions,
our algorithm performed best. Moreover, allowing more eval{2]
uations, our algorithm was able to find 130 new best solutionspy;
That means that nearly 1/3 of the 396 instances in the benchmark
set that were not known to be solved optimally have been im(22]
proved. The fact that the algorithm behaves very well (compared
to several other heuristics) in both cases—with and without ref23]
strictions to the number of evaluated schedules—shows the flex-
ibility of the approach. [24]
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