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Meta-Lamarckian Learning in Memetic Algorithms

Yew Soon Ong and Andy J. Keane

Abstract—Qver the last decade, memetic algorithms (MAs) have
relied on the use of a variety of different methods as the local im-
provement procedure. Some recent studies on the choice of local
search method employed have shown that this choice significantly
affects the efficiency of problem searches. Given the restricted the-
oretical knowledge available in this area and the limited progress
made on mitigating the effects of incorrect local search method
choice, we present strategies for MA control that decide, at run-
time, which local method is chosen to locally improve the next chro-
mosome. The use of multiple local methods during a MA search in
the spirit of Lamarckian learning is here termed Meta-Lamarckian
learning.

Two adaptive strategies for Meta-Lamarckian learning are pro-
posed in this paper. Experimental studies with Meta-Lamarckian
learning strategies on continuous parametric benchmark problems
are also presented. Further, the best strategy proposed is applied
to a real-world aerodynamic wing design problem and encouraging
results are obtained. It is shown that the proposed approaches aid
designers working on complex engineering problems by reducing
the probability of employing inappropriate local search methods in
a MA, while at the same time, yielding robust and improved design
search performance.

Index Terms—Adaptive Meta-Lamarckian learning, continuous

parametric design optimization, hybrid genetic algorithm-local
search (GA-LS), memetic algorithm (MA).

I. INTRODUCTION

ENETIC algorithms (GAs) are a powerful set of global

search techniques that have been shown to produce very
good results on a wide class of problems. GAs are capable of
exploring and exploiting promising regions of the search space.
They can, however, take a relatively long time to locate the local
optimum in a region of convergence (and may sometimes not
find the optimum with sufficient precision).

Torn and Zilinskas [1], in the section entitled Global Search
Methods: Exploration and Exploitation, observe that two
competing goals govern the design of global search methods:
exploration is important to ensure global reliability, i.e., every
part of the domain is searched enough to provide a reliable
estimate of the global optimum; exploitation is also important
since it concentrates the search effort around the best solutions
found so far by searching their neighborhoods to produce better
solutions. Many search algorithms achieve these two goals
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using a combination of dedicated global and local searches.
These are commonly known as hybrid methods. Hybrid genetic
algorithm-local search (GA-LS) methods, which incorporate
local improvement procedures with traditional GAs may, thus,
be used to improve the performance of GAs in search. Such
hybrids have been used successfully to solve a wide variety of
engineering design problems and experimental studies show
that GA-LS hybrids not only often find better solutions than
simple GAs, but also that they may search more efficiently
[2]-[11]. In diverse contexts, hybrid GA-LSs are also known
as Lamarckian learning GAs, Baldwinian learning GAs, and
memetic algorithms (MAs). Since we are concerned here with
evolutionary algorithms where local search plays a significant
role throughout the search, the term MA [2] is used in this
paper.

Davis [3] argues that hybridizing GAs with the most suc-
cessful local search method for a particular problem gives one
the best of both worlds: correctly implemented, these algorithms
should do no worse than the traditional GA or LS!alone. Clearly,
what this implies is that unless one knows which local search
method most suits the problem in hand (along with its correct
parameters settings), a MA may not perform at its optimum or
worse, it may perform less well than using the GA alone. The in-
fluence of the local search method employed has been shown in
[4] and [10] to have a major impact on the search performance
of MAs. These experiments conducted on two different local
methods, demonstrated that the performance obtained by MAs
can indeed be worse than that obtained by the GA or LS alone.
The varied suitability of LSs to different problems also helps
explain why a variety of MAs have emerged in the literature.

The significance of local search method choice on the perfor-
mance of MAs is, therefore, not a new observation. However,
little work has been done to mitigate this problem. The greatest
barrier to further progress is that, with so many local search
methods available in the literature, it is almost impossible to
know which is most relevant to a problem when one has only
limited knowledge of its cost surface before one starts. More-
over, L3(s) by themselves are known to work very differently
with different design problems, even among problems from the
same design domain [12]. Depending on the complexity of a
design problem, local search methods that may have proven to
be successful in the past might not work so well, or at all, on
others—an outcome that is often referred to as the “no free lunch
theorem for search” [13].

With the restricted amount of theory currently available for
choosing the LS that best matches a black box problem in MA
search, it is reasonable to ask whether the effects of this choice
on performance might be reduced via some intelligent means

IThe term local search and the abbreviation LS are used interchangeably in
the paper.
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while the search is progressing. Many adaptive search systems
already exist [14]-[18] and have been shown to solve some
problems very effectively. The adaptation of GA crossover and
mutation operators has been attempted in [14] and [15]. General
surveys of various adaptive systems in evolutionary computa-
tions and their influences can be found in [16] and [17]. Never-
theless, the operator that has perhaps the greatest influence on
MA performance, but one that has yet to be thoroughly explored
for adaptation is the choice of LS(s) that best matches a design
problem.

In this paper, we focus on investigations into the adaptive
choice of local search methods to ensure robustness in MA
search. In particular, we consider the general nonlinear pro-
gramming problem of the form

Minimize : f(z)
subject to: ¢;{z) <0, i=1,...,p

Z; ST < Ty

where 2 € R™ is the vector of continuous design variables, and
x; and z, are the lower and upper bounds, respectively. Two
adaptive strategies proposed for the selection of local method
from a pool of LS(s), while the design search progresses are pre-
sented. Note that here we present work based on Darwinian and
Lamarckian evolution. Lamarckian learning forces the genotype
to reflect the result of improvement through placing the locally
improved individual back into the population to compete for re-
productive opportunities [4], [7], [10]. The approach of using
multiple LSs during a MA search in the spirit of Lamarckian
learning is here termed Meta-Lamarckian learning.

The paper is organized in the following manner.
Section II presents traditional Lamarckian learning, a basic
Meta-Lamarckian learning scheme, and two potential adaptive
strategies inspired by social evolution. Section III summarizes
some empirical studies on continuous parametric benchmark
functions, analyzes the results, and recommends the more
competitive Meta-Lamarckian learning strategy. Section IV
considers a real-world aerodynamic design application. Finally,
Section V provides some brief conclusions.

II. META-LAMARCKIAN LEARNING

Traditionally, MAs with Lamarckian learning procedures are
based on the use of the evolutionary algorithm and a single
local search method for local improvements. Little published
work has dealt with MAs using multiple local search methods in
continuous parametric design optimization. Every search algo-
rithm, except for uniform random search, introduces some kind
of bias into its search. Different local search methods have dif-
ferent biases. It is these biases that make a method efficient for
some classes of problems but not for others. Therefore, the mo-
tivation for the use of multiple LSs and, thus, Meta-Lamarckian
learning in MA searches, is to achieve improved search perfor-
mance and to reduce the probability of utilizing an inappropriate
local method. This meta-learning approach is similar in spirit
to the work of Krasnogor et al. [10], {11], Hugo et al. [19],
and Cowling et al. [20], where several heuristic methods are

employed.

A. Basic Meta-Lamarckian Learning Scheme, MA-B

The most basic Meta-Lamarckian learning scheme for LS
selection is a simple random walk over the available methods
every time a chromosome is to be locally improved—this does
not adapt but has the advantage of at least giving all the available
local methods in the LS pool a chance to improve each chromo-
some throughout the MA run. It is purely stochastic in nature:
each local method has an equal probability of being chosen at
all GA iterations. This approach forms a baseline algorithm with
which other Meta-Lamarckian learning strategies may be com-
pared.

B. Adaptive Meta-Lamarckian Learning

Lamarckian learning in MA searches may be structured to
promote cooperative, competitive, or individualistic efforts. The
traditional approach in a MA where a single LS is used on the
problem throughout the search is an example of individualistic
effort. There has been a long history of research on these dif-
ferent kinds of effort in social evolution since the first study in
1898, where it was shown that cooperation and competition, as
compared with individualistic efforts, typically result in higher
achievement [21]. Inspired by these works, the adaptive strate-
gies proposed here for Meta-Lamarckian learning in MA are
structured to promote cooperation and competition among the
different LSs, working together to accomplish the shared opti-
mization goal.

The idea behind the adaptive strategies is that as the search
progresses, the effectiveness of each LS in dealing with the cur-
rent problem is learned. Knowledge about the current popula-
tion of solutions and each LS is, thus, built dynamically online,
so identifying the strengths and weaknesses of the LSs for the
problem currently being worked on, given its current state. To
promote competition among the LSs, the local methods with
higher fitness improvement measures are rewarded with greater
chances of being chosen for subsequent chromosome optimiza-
tions. We define cooperation as the act of operating together.
Optimization problems in science and engineering commonly
have large search spaces, which contains numerous local land-
scapes of diverse forms. The joint operation of diverse LSs to
cope with the large search space is facilitated via problem de-
composition or diversity in the LS selection.

Here, during Meta-Lamarckian learning, the reward 7 is mea-
sured using the improvements contributed by the LS to each
chromosome that has been searched using

n___ﬁlpf_cfl (1)
b

where pf is the initial function fitness of a parent chromosome
before local search, and cf is the final function fitness of the
child chromosome obtained after applying local search. y is
the number of LS function evaluation calls made to reach the
improved child chromosome or solution. Alternatively, the ac-
tual wall-clock time may be used in place of the number of LS
function calls made on the parent chromosome. Further, we dis-
tinguished between absolute and relative reward in the spirit of
Cowling et al. [20). The term (|pf — ¢f|/u) provides a simple
measure of the rate at which the local search improves a design
and is an obvious component of absolute reward measure; see
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[22] for such a model demonstrated on an artificial problem. 8
signifies the relative reward which scales the absolute reward in
proportion to the method’s ability to produce high quality geno-
types when compared with the best global solution obtained so
far. Here, 0 is set as (o/cf) or (cf/o), for minimization and
maximization problems, respectively. o is the best solution en-
countered so far in the global search. We have tried a number
of terms to provide this measure such as (1/(pf — o)), but find
that the ratio of o to cf gives the best performance in practice.
The reward obtained by each LS on the chromosomes then in-
fluences which method is selected from the pool of available
methods to proceed with the local improvement.

According to [17], adaptive systems can be classified as
deterministic, adaptive or self-adaptive. Here, two adaptive
Meta-Lamarckian learning strategies are studied: 1) a heuristic
approach, subproblem decomposition—MA-S1 and 2) a
stochastic approach, biased roulette wheel—MA-S2.

1) Heuristic Approach, Subproblem Decomposition—
MA-SI: Subproblem decomposition MA-S1 represents a
heuristic approach. At the start of the strategy, each LS is given
an equal probability of being chosen as the local search method
to be used. The reward of the chosen local method searching
on a chromosome is measured using (1). All parent chromo-
somes and selected LSs together with the rewards obtained
are archived in a database that is used later to guide future LS
choice. The set of parent chromosome vectors archived in the
database is denoted by P = {p; 71/, where m is the database
size at any instant of search.

Next, after some predefined number of generations g has been
completed, the mechanism of subproblem decomposition takes
over. For each unseen parent chromosome, denoted by p, in the
GA population to be searched, the strategy locates the & nearest
neighbors from the archived database P, here using a simple
Euclidean distance metric. Other metrics may be used of course.
This subset of £ chromosomes in P is denoted by Py. The local
search methods associated with Py then form the local subpool
of candidate LSs that will compete, based on their rewards, to
decide on which method proceeds with the local improvement
of p. After local search, all § and the chosen LS, together with
the reward obtained are updated into the database. See Fig. 1(a)
for a pictorial illustration and pseudocode of the strategy.

With the choice of LS involving only the rewards for candi-
date LSs that are applicable in the neighborhood of the chro-
mosome to be improved, the strategy decomposes the original
problem cost surface into many subpartitions dynamically, and
attempts to choose the most competitive local search method
for each subpartition. In the same manner, it creates opportu-
nities for joint operations between different LSs in solving the
problem as a whole, because the diverse LSs help improve the
overall population based on their areas of specialization. Hence,
the subproblem decomposition strategy promotes both cooper-
ation and competition among the LSs during MA searches.

2) A Stochastic Approach, Biased Roulette Wheel—
MA-52: The biased roulette wheel strategy MA-S2 is a
stochastic approach making use of knowledge gained online
to form biases. During the training stage, each local method
is first given a single opportunity to hybridize with the GA
in optimizing unseen parent chromosomes. After this, the
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For k=20, the local search method with the
mazimum. average fitness among the 20
nearest chromosomme in the dstabase will be
used for Lamarckian Leirning on the new
chrornosome.

MA-SI Pseido-Code

IF (GA Generadon < g)
1. Generate a random numb er between
1 and L'S pool'size;
2. Selectthe LS method that the

number indicates;

Chromosemes

N ti; 3. Create/Update Database,
o oLss ELSE
= t:z‘ 1. Locate k nearcst chromosomes to
ot < ise in-database P using Simple
& 2 tgg RuclideanMeasures; i.e.,
g K] N
=l o]
Q PN 2. Find the average fitness.of each
N E member of the reduced LS pool
2, Ak basedion B;
e e 3. Select the LS method with the

maximum avérage fitness;
4. Update Database.

Dimension 1

(@)

MA-S2 Pseudo-Code

IF (Lraining Stage)

1.Ensure ¢ach LS is given one chance to
participate; in arandom order;

2. Update LSs Global fitness.

ELSE

ﬂ L.Sum the fitness of cach member of the

Local search methods
“have =qual space on
roulette wheel initially;
~f  thus equal probability

LS pool;
2.Determine the normalized relative
fitness of cach member of the LS pool;
3.Assign spacc-on:roulette wheel
proportional to Jocal method’s fitness;
4.Generate a.random number between
zero and 1, select the LS method from
where the random number falls;
5, Updatc LSs Global fitness.

A singlespinofthe
roulette-wheel will
pick the local method.

Spaceallocatad according the L' s fitress

®)

Fig. 1. Pictorial illustration and pseudocode of (a) subproblem decomposition
strategy MA-S1. (b) Biased roulette wheel strategy MA-S2.

probability that a local method will be chosen to work on any
subsequent chromosome is biased according to its previous
performance, which now changes dynamically as the overall
search progresses. The measurement of a local method’s reward
on a chromosome is again based on (1), and a biased roulette
wheel is used to pick the subsequent local search methods,
based on the rewards taken over all previous local searches.
See Fig. 1(b) for a pictorial illustration and pseudocode of the
MA-S2 strategy.

Since the choice of LS is biased according to the reward of
each local search method, the biased roulette wheel strategy is
generally a competitive strategy. Likewise, the stochastic na-
ture of the strategy guarantees diversity in the LS selection,
hence restraining any LS from complete domination throughout
the search. By ensuring diverse LS methods participation in
the problem search, the strategy promotes joint operation and,
hence, cooperation between local search methods.

III. STUDY OF META-LAMARCKIAN LEARNING
ON BENCHMARK PROBLEMS

In this section, we present experimental studies on benchmark
problems obtained by implementing Meta-Lamarckian learning
within a standard GA. The basic steps of the MA search with
Meta-Lamarckian learning are outlined in Fig. 2.
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BEGIN
Initialize: Generate an initial GA population.
While (Stopping conditions are not satisfied)
Evaluation of All Individuals in the Population
For cach individual in the population
Pseudo-code to select local search methods. For example, Select LS using
the Meta-Lamarckian Learning Strategy employed.
Proceed with local improvement and replace the genotype in the
population with the improved solution.
End For
Apply standard GA operators to create a new population; i.e., Selection,
Mutation and Crossover.
End While
END

Fig. 2. Proposed framework for MA with Meta-Lamarkian learning.

In the first step, the GA population is initialized either ran-
domly or using design of experiments techniques such as Latin
hypercube sampling [23]. Subsequently, for each chromosome
in the population, a local search is selected from the pool of
multiple LSs, based on the Meta-Lamarckian learning strategy
in use, and used for local improvement. The reward given to the
local method is updated and this is followed by replacement of
the genotype in the population with the locally improved solu-
tion (in the spirit of Lamarckian learning). Standard GA opera-
tors are then used to form the next population.

For the purpose of reproducibility, the GAC package devel-
oped in C by Spears [24] is employed as the standard GA in the
results presented here. A variety of local search methods were
employed. These consist of various optimization methods from
the Schwefel libraries [25], some briefly described by Siddall
[26] with a few others available in the literature. These are both
constrained and unconstrained nonlinear local search methods
commonly used in engineering design optimization. Nine? hy-
brid MA-LSs are presented here: MA-BC, MA-CO, MA-DS,
MA-HO, MA-FL, MA-LA, MA-NM, MA-PD, and MA-PO.
These abbreviations have the following meanings:

GA standard GA, GAC by Spears [24];

MA-AV  expected convergence trace of a traditional MA,
given multiple LS methods;

MA-B baseline Meta-Lamarckian learning scheme for
multiple LS selection;

MA-BC  GA with bit climbing algorithm by Davis [27];

MA-CO  GA with complex method of M. J. Box as imple-
mented by Schwefel [25];

MA-DS  GA with Davies, Swann, and Campey search with
Gram—-Schmidt orthogonalization as implemented
by Schwefel [25];

MA-HO GA with Hooke and Jeeves direct search by Siddall
(261

MA-FL.  GA with Fletcher’s 1972 method by Siddall [26];

MA-LA  GA with repeated Lagrangian interpolation as im-
plemented by Schwefel [25];

MA-NM GA with simplex method by Nelder and Meade [28];

MA-PD  GA with Powell’s direct search method [29] as pro-
duced by AERE Harwell;

MA-PO  GA with Powell’s direct search method [29] as im-

plemented by Schwefel [25].

2This pool of nine local search methods was selected to be representative of
the over 30 used in the experimental studies. The local search methods that are
not presented in this paper have search performances that lie between the best
and worst performing MAs on these problems.

A. Continuous Parametric Benchmark Test Problems

Three commonly used continuous parametric benchmark test
problems already extensively discussed in the literature are used
in this work.> They represent classes of constrained, uncon-
strained, unimodal and multimodal test functions summarized
in Table I These functions make it possible to study the pro-
posed Meta-Lamarckian learning in comparison with other ap-
proaches.

The first benchmark problem is the unconstrained unimodal
sphere function [30]. It is a smooth, symmetric function and is
used here to provide a measure of the general efficiency of the
Meta-Lamarckian learning approach. It has a single minimum
located at (0, . .., 0). A 30-dimensional (n = 30) version of the
sphere function is used here.

The second problem is the Griewank unconstrained function
[1]. It is a high dimension multimodal function with many
local minima and a global minimum located at (0, .. .,0). This
function has interparameter linkage due to the presence of the
product term. However, the effect decreases as the number
of parameters increases. The Griewank function with ten
dimensions (n = 10) has more than 500 local minima in the
hybercube [~600, 600]10. It has a very rugged landscape and is
difficult to search for most optimizers.

The third is the Bump or Keane function [31], which is
subject to two constraints. It is the most difficult for search
methods/optimizers to deal with, among those considered here.
This function gives a highly bumpy surface where the true
global optimum is usually defined by the product constraint. It
is quite smooth but contains many peaks, all of similar heights
and has strong interparameter linkage. Its main purpose is to
test how methods cope with optima that occur hard up against
the constraint boundaries commonly found in engineering
design. These properties make it suitable for the study of MA
performance, as well as in adaptive control of evolutionary
optimization methods.

The surface for n = 2 on the Sphere and Bump functions are
shown in Fig. 3(a) and (c), respectively, while a one-dimensional
slice of the Griewank function for [-200,200]!° is shown in
Fig. 3(b).

B. Results for Benchmark Test Problems

To see how the choice of the local search method employed
affects the efficiency of problem searches, the nine different
local search methods used to form the traditional MAs were
used to search the benchmark problems. Note that traditional
MA implies that throughout the entire search, a fixed local
search method is used. The averaged convergence trends
obtained for the test problems as a function of the total number
of function evaluations are shown in Figs. 4-6. All results
presented are averages over 20 independent runs. Each run
continues until the global optimum was found or a maximum of
40000 trials (function evaluation calls) was reached, except for
the Bump function, where a maximum of up to 100 000 trials

3A number of other commonly used test problems from the literature were
employed in the investigation. However, due to limited space, only representa-
tives of each benchmark problem class are presented here.



ONG AND KEANE: META-LAMARCKIAN LEARNING IN MEMETIC ALGORITHMS

103

TABLE 1
CLASSES OF CONSTRAINED, UNCONSTRAINED, UNIMODAL, AND MULTIMODAL BENCHMARK TEST FUNCTIONS
Benchmark Test Range Characteristics Function
Functions ofx;  "Epi”’ | Mul® | Disc” | Con " Ml"Amum
t
R [-5.12,
Fogpone = ,Z:]. (x,. ) 512F° | none | none | none | no 0.0
2
"y ,, ' [-600,
F oo =172 3000 -H[COS(% / «/7)] 600]" | weak | high | none | no 0.0
i=1 i=l
abs (Z cos *(x,)= 2] ] cos 3():..)}
Foump = - = Maximum
> i} [0, 101 | high | high | none | yes at
= ~0.81
x >075 and Sy < 15n
];;I X, > 0.75 ‘Z_:' X, < A

*]: Epistasis, *2:Multimodality, *3:Discontinuity, *4:Constrained

)
5|
4
3
2
1
[

i
200 -1S0 -100 -50 0 S0 100 150 200

(b)

Fig. 3. (a) Two-dimensional sphere function. (b) One-dimensional slice of
Griewank function. (c) Two-dimensional bump constrained function.

was used.# In each run, the control parameters for the hybrid
MA-LS used in solving the benchmark problems were set as
follows: population size of 50, mutation rate of 0.1%, two-point
crossover with a rate of 60%, 10-bit binary encoding, maximum
local search lengths of 100 evaluations, and the probability of
applying local search on a parent chromosome is set to unity.
From the results of Figs. 4-6, it is clear that the effect of local
method choice on the efficiency of traditional MAs is signifi-
cant. For example, MA-FL is seen to perform best on the sphere
function but very poorly on both Griewank and Bump. More-
over, the majority of the nine traditional MA combinations do
not show any improvement over the standard GA on the diffi-
cult bump problem, with most having search capabilities closer

4The bump constrained problem is a very hard problem and, therefore, re-
quires greater effort.

SMaximum local search length refers to the maximum number of iterations
or function calls allocated for local learning.

Natural log {Function Fitness)

MA-DS
B :
-85 3% -
b,
-8} ’:“\
o
P
~i2i
T Function
"s ® - - - Optimum
' Found
o 05 1 s 2 25 3 35 4
Funiction Evaloation Calls TS

Fig. 4. Search traces (average of 20 runs) for minimizing 30-D sphere
function using GA and various traditional MAs with Lamarckian learning.
(Sphere function minimum at 0.0 and as log(0.0) = oo the search traces end.)

to the least efficient traditional MA. In addition, the two dif-
ferent implementations of Powell’s direct search (i.e., MA-PD
and MA-PO) included in the investigation illustrate that the ca-
pability of a given local search method may differ even among
different implementations of the same basic algorithm. These
characteristics make generalization in this field very difficult
and also the a priori selection of particular LS in a traditional
MA to suit a black box optimization problem almost impossible.

1) Results of Meta-Lamarckian Learning: To analyze the
new approaches proposed, the Meta-Lamarckian learning
strategies were tested on the benchmark problems. In these
experiments, the control parameters, stopping criteria, etc.,
were the same as in the previous experiments. The averaged
convergence trends obtained for the strategies are shown in
Figs. 7-9. Note, in all cases, results are plotted against the total
number of function evaluations calls made by the combined
GA and LS searches.

The performance of the Meta-Lamarckian learning approach
may be established by comparison with some of the traditional
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Fig. 5. Search traces (average of 20 runs) for minimizing 10-D Griewank
function using GA and various traditional MAs with Lamarckian learning.
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Fig.7. Search traces (average of 20 runs) for minimizing 30-D sphere function
using strategies MA-B, MA — S1(; 1=1,61), and MA-S2. Shown also are the
search traces for GA, MA-PO, MA-AV, and MA-FL hybrids.
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Fig.6. Search traces (average of 20 runs) for maximizing 20-D Bump function
using GA and various traditional MAs with Lamarckian learning.

MAs and also with trace MA-AV. MA-AV represents the esti-
mated performance one might expect to get when a traditional
MA is randomly chosen for use. This is an average of the pre-
vious search traces in Figs. 4-6 for the entire pool of nine tradi-
tional MA on each problem and is obtained from: MA - AV; =
Zf’__.l(ﬁtnessji) /L, where L is the LS pool size used in the
experimental studies (here nine). fitness;; is the expected (av-
erage) objective function fitness obtained from the traditional
MAs, MA;, at function evaluation call/count j.

From Figs. 7-9, it is notable that although the baseline
Meta-Lamarckian learning scheme, represented by search trace
MA-B, performs generally better than MA-AYV, it still performs
poorly when compared with the best traditional MA on each
problem, i.e., MA-FL for sphere and MA-DS for Griewank and
Bump. On the other hand, the strategies MA-S1 and MA-S2,
display performances that are statistically significantly better

[) 05 1 m z 25 3 :):s 4
Function Evaluation Calls

Fig. 8. Search traces (average of 20 runs) for minimizing 10-D Griewank
function using strategies MA-B, MA — 81, x=1,21), and MA-S2. Shown also
are the search traces for GA, MA-PQ, MA-AV, and MA-DS hybrids.

than GA, MA-AV, and MA-B, and also close to that of the best
LS hybrid on each benchmark problem.

To gain a better understanding of the two proposed strate-
gies, MA-S1 and MA-S2, they have been further analyzed and
compared with the simple inheritance mechanism introduced re-
cently in [10] for discrete combinatorial search according to the
following aspects [see Fig. 10 for pseudocode of simple inher-
itance mechanism (SIM)].

* Search Quality and Efficiency—the capability of the
strategy to provide high search quality and efficiency over
different problems types.

+ Computational Cost—the amount of extra CPU effort in-
curred over and above traditional Lamarckian learning in
MA.
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Fig. 9. Search traces (average of 20 runs) for maximizing 20-D Bump function
using strategies MA-B, MA — Sl(g,k=3,3L), and MA-S2. Shown also are the
search traces for GA, MA-DS, MA-AV, and MA-NM hybrids.

BEGIN
Replace LS method of individual with randomly selected LS

according to specified Innovation Rate (IR). IR e [0,1], where
IR of value 0 implies zero diversity in the choice of LS, i.e., any
LS not in the population will not be re-introduced, and value 1
implies maximum diversity with every available LS utilized
equally.

Select 2 parent chromosomes;

IF (both parents have the same LS)
Inherit common LS to the offspring;

ELSE-IF (parentsl.fitness == parents2.fitness)
Random select one of the two attached LS to the offspring;

ELSE-IF (parents].fitness > parents2.fitness)
Inherit parentl LS to the offspring;

ELSE /* (parents2.fitness < parents].fitness) */
Inherit parent2 LS to the offspring;

END

END

Fig. 10. Pseudocode of simple inheritance mechanism.

* Robustness—the capability of the strategy to generate per-
formances that are close to the best traditional MA (from
among the pool tested), on different problems.

* Simplicity—ease of implementation. Simple strategies
should require minimum effort to develop, as well as a
minimum numbers of control parameters that need to be
managed.

a) Search quality and efficiency: The search quality and
efficiency performance of MA-S1 is dependent on the initial
period g allocated for learning before the mechanism of sub-
problem decomposition steps in. It is also strongly dependent
on the nearest neighbor parameter &, which defines the candi-
date LSs that will compete for selection. Shown in Table II(a),
is the mean search quality (i.e., function fitness value) and as-
sociated standard deviations for various values of g and & ap-
plied to the benchmark problems. Likewise, the SIM approach
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also requires a priori specification of the innovation rate (IR)
which controls the diversity for local search method selection.
The search performances of SIM using various innovation rates
(ie., 0.10 < IR < 0.35) are summarized in Table II(b). In con-
trast to both MA-S1 and SIM, MA-S2 has no extra parameters
to set. Its search performances on the test functions are shown
in Table II(c). For information on the behavior of MA-S2 on
further test problems, with various local search methods and LS
pool sizes, see Table V(a) and (b).

Note that it was possible to obtain performances of MA-S1
and SIM that are competitive or superior to MA-S2 after fine-
tuning of the control parameters and extensive empirical runs
on each individual test problem. However, no fixed values of
the parameters were always found to generate competitive per-
formances on all three benchmark problems. Besides, on av-
erage, the search quality of MA-S2 is found to be statistically
significantly better than both MA-S1 and SIM on the Sphere and
Griewank benchmark problems, when using the student-t test at
the confidence level of 0.05. On the Bump function, however,
the search qualities of three strategies do not differ significantly
statistically.

b) Computational cost: Of course, when searching across

‘a domain where the algorithm function evaluations are expen-

sive (order of minutes or more), such as aerodynamic wing de-
sign, all these adaptive strategies have negligible additional cost.
The total computational costs incurred by MA-S1, MA-S2, and
SIM over traditional MA are of the order of O(c?y+cr), O(cr),
and O(cfl), respectively. ¢ is the number of chromosomes eval-
uated so far (LS selections) made, - is the time taken to per-
form the Euclidean distance measure between any two chromo-
somes, 7 is the time required to evaluate (1) and choose a LS
from among the pool, while 6 is the time SIM requires for each
LS selection.

On a Pentium III processor, 7 (for a 20-D problem) and -y are
found to be around 2 ps and 7 ps, respectively. For a MA search
with stopping criteria of 100 000 maximum function evaluation
calls, c is around 1400. The total time incurred by the adaptive
strategies over traditional MA search at MA-S1: 14002*7 us +
1400*2 ps =~ 14 s and MA-S2: 1400*2 is = 2.8 ms, respec-
tively, is negligible. Likewise, the computational cost incurred
by SIM is also negligible. Nonetheless, among the three strate-
gies presented, MA-S1 is relatively more costly.

¢) Robustness and simplicity: Adopting the proposed
adaptive strategies in MA search improves the robustness of
the search performance greatly: this is one of the primary goals
in this study. All three strategies are able to select a LS that
matches the problem throughout the search, thus producing
search performances that are close to the best traditional
MA on the benchmark problems. However, MA-S2 is most
robust considering that it has no control parameters requiring
management, unlike the g and k£ parameters for MA-S1 and the
innovation rate for SIM. These control parameters can result in
very poor performance of the strategies if inappropriately set.
In addition, both MA-S2 and SIM are generally much simpler
to implement than MA-S1.

Based on these performance metrics, the biased roulette
wheel strategy MA-S2, is considered the most competitive
adaptive Meta-Lamarckian learning strategy for MA search,
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TABLE I
(a) EFFECTS OF ¢ AND k ON MA-S1, (b) EFFECTS OF IR ON SIM, AND (c) MEAN AND STANDARD
DEVIATION OF MA-S2 AND STANDARD GA, ON THE BENCHMARK PROBLEMS. GRIEWANK
FUNCTION FITNESSES ARE MULTIPLIED BY 10°¢, BUMP FUNCTION FITNESSES ARE
MULTIPLIED BY 10°2, RESULTS ARE TAKEN OVER 20 RUNS

Sphere Function | Griewank Function | Bump Function
(Minimum) (Minimum) (Maximum)
Global Optimum found{ Mean at | Standard | Meanat | Standard
at Eval. Count of 40,000 | Deviation 100,000 | Deviation
MA-S1
g k=1,2L 9833 5.08 5.58 73.8 5.00
MA-S1
g k=1,6L 10833 154 39.3 69.3 8.89
MA-S1
g k=3,3L 12297 55.3 21.8 722 6.46
@
SIM 17032 3.54 5.20 72.9 159
IR =0.10
SIM 12765 41.4 70.4 732 7.84
IR =0.15
SIM 13595 359 48.9 71.4 11.74
IR = 0.35
(b)
MA-S2 7198 2.80 8.28 73.4 2.22
Standard | Meanat | Standard
GA 40,000 = |Deviation = 15700 2400 66.7 7.33
63.7 8.19
(©)
TABLE Il

especially when strategy robustness is the main issue. Further
discussion is, thus, restricted to this method in the current
work. However, before demonstrating MA-S2 on a real-world
engineering design problem, we address some further issues.

2) Other Issues: The success of Meta-Lamarckian learning
in MAs for continuous parametric design optimization also in-
volves the following issues:

» What is the effect of LS pool size on design search perfor-
mance?

* What local search methods should be included in the LS
pool?

+ Can human expert knowledge be incorporated into the
Meta-Lamarckian learning approach proposed (for ex-
ample, by the choice of LS pool members)?

d) Effects of LS pool size: The chances of obtaining ro-
bust or better design search performance from a MA gener-
ally increase by using multiple LS during the search, especially
when adaptive strategies are used to control the choice of LS.
The effect of different sizes of LS pool (i.e., 2, 4, 9, and 25) on
MA-S2 is presented for the Griewank benchmark problem in
Table IIL

From Table III, it may be seen that the use of a smaller LS
pool size is often associated with quicker improvements during
earlier stages, as less evaluations are needed to acquire sufficient
knowledge about the LS before the learning strategy begins to
bite. So, although it is advantageous to include a large pool of LS
to maintain wide ranging robustness, one concern is the number
of evaluations required before the LS decision space is suffi-
ciently explored. From extensive studies conducted on a range
of test problems and LS methods, the MA-S2 strategy is found
to remain generally effective even with a pool size of up to 25

EFFECTS OF CHANGES IN LS POOL SiZE ON GRIEWANK FUNCTION, MEAN
FUNCTION FITNESSES ARE MULTIPLIED BY 10°%. WHEN THE PooL SIZE IS 25,
THE OTHER METHODS USED WERE FROM THE OPTIONS TOOLKIT [32]

LS Methods Mean Search Fitness at Function Evaluation Count of
within the Pool 1000 5000 10000 30000 40000
Pool Size = 2
DS, PO 536 593 23.9 6.74 534
Pool Size = 4
CO0, DS, NM, PO 973 62.0 232 7.05 581
Pool Size = 9 2770 165 41.1 5.17 2.80
Pool Size = 25 9140 287 96.6 209 8.40
Best Traditional
MA-DS 443 65.3 231 4.63 345

different local search methods. However, a pool size of around
ten local search methods would be more practical when working
with real-world design problems and is, thus, recommended.
e) Choice of local search methods in the pool: The choice
of which local search methods to include within the pool is yet
another issue that is important, especially when one has little
or no prior knowledge of which local method works best on a
problem. Nevertheless, as a rule of thumb, the recommended
LS pool should contain both derivative based and nonderiva-
tive local methods. Derivative based LS include quasi-Newton
methods [26], quadratic programming [33], and conjugate-gra-
dient. For nonderivatives methods, direct search methods [25],
linear approximation methods [25], [34], and local evolutionary
search [35] are all good choices. The best traditional MA on
the sphere function MA-FL, FL is an example of the quasi-
Newton methods, which have the ability to locate the local op-
timum rapidly. DS, local evolutionary strategy (ES), local evolu-
tionary programming (EP), and local simulated annealing (SA)
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Fig. 11. Search traces (average of 20 runs) for minimizing 10-D Griewank
function using MA-S2A. and MA-S2B with the incorporation of human expert
knowledge. Shown also are the search traces for GA, MA-PO, MA-DS, and
MA-S2 hybrids.
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Fig. 12. (a) Geometric view of streamlines over a transport aircraft.

(b) Two-dimensional transonic wing planform.

are direct search or local evolutionary methods that makes a
good combination with FL in the same pool as they can handle
problems where derivative-based LS may fare badly. Other con-
siderations on the choice of LS pool would include the abilities
of LS to handle constrained and nonlinear problems.

f) Incorporation of human expert knowledge: The pro-
posed Meta-Lamarckian learning approach also permits the in-
corporation of a designer’s intuition, experience, and knowledge
during design activities. For example, assume that a design spe-
cialist has knowledge about the Davies, Swann, and Campey
local search method (DS) [25], i.e., that it often performs rel-
atively well on most design problems of interest to him/her.
However, being not totally sure about its suitability for a new
problem, he/she may not wish to commit to a traditional MA
and instead incorporate this expert knowledge into the adaptive
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TABLE IV
DEFINITIONS OF THE WING DESIGN VARIABLE, NONLINEAR INEQUALITY
CONSTRAINTS AND OPTIMIZATION CONDITIONS CONSIDERED

11 Wing Design Variable Definitions

Lower Limit | Upper Limit | Quantity (units)
100 250 Wing Area (m?), S
6 12 Aspect Ratio, W./S
0.2 0.45 Kink position, 2W/W,
25 4 Sweep angle (degrees), «
0.4 0.7 Inboard taper ratio, Ci/C,
0.2 0.6 Outboard taper ratio, C/C,
0.1 0.18 Root thickness/chord, T/C,
0.06 0.14 Kink thickness/chord, T\/Cy
0.06 0.14 Tip thickness/chord, Ty C,
4.0 5.0 Tip wash, twist (degrees)
0.65 0.85 Kink washout fraction
Four Design Constraints
2.5 Under-Carriage bay length
135000 Wing weight (N)
40.0 Wing volume (m?3)
5.4 Pitch-up margin
Aerodynamic Drag

xZ] T T T

X 16‘

Drag Evaluatien Calls

Fig. 13. The design of a transonic civil transport aircraft wing using adaptive
Meta-Lamarckian learning hybrid MA-S2. MA-S2C differs from MA-S2 due to
the incorporation of human knowledge (see text). Shown also are the search
traces for GA, MA-BC, MA-FL, MA-DS, MA-AV, MA-B, and MA-CO.

strategies by biasing the DS local method with higher probabil-
ities of being selected. Trace MA-S2A of Fig. 11 illustrates the
case, where the DS method is biased with twice the chance of
being selected, as compared with the other local methods in the
same pool. Shown also in Fig. 11 is trace MA-S2B where the
designer chooses to use six local methods (PO, NM, CO, BC,
PD and DS) as the pool to perform a search on the Griewank
function. From these results, it is seen that superior search per-
formances are obtained when human expert knowledge is incor-
porated into the Meta-Lamarckian learning process. Improve-
ments can also be found for the other benchmark problems when
knowledge is incorporated in this way.

IV. HYBRID MA-LS WITH ADAPTIVE META-LAMARCKIAN
LEARNING APPLIED TO AERODYNAMIC WING DESIGN

In aerospace companies, designers/design teams are often
required to work on design problems that are new to them and
accompanied by tight deadlines. In this paper, the parametric
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TABLE V
(a) FURTHER BENCHMARK PROBLEMS USED FOR EXPERIMENTAL STUDIES. (b) STATISTICAL RESULTS FROM STUDIES

ON FURTHER TEST PROBLEMS WITH VARIOUS LS

COMBINATIONS AND POOL SIZES, USING THE BIASED

ROULETTE WHEEL STRATEGY MA-S2. THE LOCAL SEARCH METHOD POOL FOR EACH BENCHMARK
FUNCTION WAS RANDOMLY SELECTED FROM A GENERAL LS POOL OF OVER 30 TAKEN FrROM
THE OPTIONS TOOLKIT [32). RESULTS OF GENERALIZED ROSENBROCK FUNCTION ARE
MULTIPLE BY 10*, WHILE ALL OTHER FUNCTIONS ARE MULTIPLE BY 10!

Benchmark Problems Range Characteristics Function
of x; Epi’' | Mul” | Disc® | Con” | Minimum At
po = 12088,
I Rosenpract = Z]OO(X:H -x) +(1-x,) 2.048)*% | high | none none no 0.0
1=l
P [5.12,
Eg,ep = 6n+ Zl_x,» _J 512 none | none | medium no 0.0
=1
-1
2 . [-65.536,
Frnee =1 0.002 4y ——— 65.536]° | none | low | high no 1.0
ey (x-a)®
i=l
L -5.12, none | hi none no 0.0
F ragn = (1o*n)+>" (,\,z -10¢os(2ny, )) 212]20 gh
i=1
N < . [-500,
Foomos = 418.9829%n +Z—x,. sm( tx,. D 5001 none | high none no 0.0
=l

*1: Epistasis, *2:Multimodality, *3:Discontinuity, *4:Constrainted

All the other benchmark problems noted here are commonly used in the literature. n Is the parameter or dimension
size for the respective problems used in the experiments. All benchmark functions were searched using the biased
roulette wheel strategy MA-S2, over 20 independent runs. Each run continued until the global optimum was found
or a maximum of 40000 function evaluations was reached. The local search methods and pool size used were
selected randomly. the local search methods not presented previously include: successive linear approximation
(AP), dynamic hill climbing (DH), ES, EP, SA, and Rosenbrock’s rotating coordinate search (RO). The search
results are tabulated in TableV(b), where the MA-S2 strategy is shown to perform well, using a variety of local

search methods, pool sizes, and benchmark problems.

(@
Best Traditional Poorest Adaptive Meta-
Benchmark | Local search Standard GA MA of Random Traditional MA of Lamarckian
Functions Method (LS) LS Pool Random LS Pool Learning
Pool MA-S2
Mean Std. Mean Std. Mean Std. Mean Std.
Dey. Dey. Dey. Dey,
Generalized BC,DG,EP, 20720 hits 20/20 hits
Rosenbrock FLMN 9.01 7.37 | found Global | NA 5320 1840 | found Global | NA
[-2.048, Min. by Eval. Min. by Eval.
2.048)% 2217 4177
Shekel’s DS.EP.ES,FL, 20720 hits 20/20 hits 20/20 hits 20720 hits
FoxHole HO.NM,PD found NA | found Global | NA | found Global | NA | found Global | Na
[-65.536, Global Min. Min. by Eval. Min. by Eval. Min. by Eval.
65,536 by Eval. 6819 28248 9634
29179
Schwefel CO,DS,DP, 16/20 hits 16/20 hits
[-300, 5007"* LA.PD,RO 15.6 4.08 | found Global { NA 221 12.3 | (ound Global
and 4/20 and 4/20 NA
found 2™ found 2™
Minimum Minmimum
Generalized BC.DG,EP,
Rosenbrock FL.MN 203 2.61 2.69 0.10 355 54.5 2.57 0.06
[-2.048,
2.048 ¢
Step AP,BC,DH,
[-5.12,5.12]" | DP,FL.SA 8.55 2.02 1.56 0.24 1.7 0.88 1.63 031
Rastrigin BC,CO,DS,HO,
[-5.12,5.12P" | LAMN,PD,PO 2.99 0.79 1.62 051 12.8 1.65 1.55 0.71
®)

design of a civil transport aircraft wing for operation at Mach
0.785 and a Reynolds number of 7.3 million using strategy
MA-S2 is considered [36]. The objective is to design a wing
with minimal drag D/q meters® as calculated by using tools
with variety of levels of complexity, with target lift, wing
weight, volume, pitch-up margin, and root triangle layout
chosen to be representative of a 220 seat wide body airliner.

Fig. 12 shows a geometric view of streamlines over the tran-
sonic civil transport aircraft. The planform geometry is also
shown in Fig. 12, while the definitions of the wing design vari-
able, nonlinear inequality constraints, and optimization condi-
tions considered are given in Table IV. The parameters used to
describe the wing design problem considered here consist of
the free-stream velocity and viscosity and coefficient of lift of
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the wing together with a small number of overall wing geom-
etry variables. The wing geometry is characterized by the plan-
form shape of the wing together with several span-wise func-
tions. Here, a wing design is represented by eleven parameters
(i.e., eleven optimization design variables). In order to prevent
the optimizer from driving the designs to unworkable extremes,
several constraints are placed on the wings designed. These are
the under-carriage bay length (which must be accommodated
within the root to kink section of the wing), the fuel tank volume
(which must be accommodated between the main spars within
the wing), the wing weight and the pitch-up margin. Here, one
of the tools developed by BAE systems in this area, the TAD-
POLE program, which is based on empirical models by Cousin
and Metcalfe [37] is used to predict drag. TADPOLE returns
the total drag coefficient defined by the wave drag due to the
presence of shocks, viscous wake, or profile drag due to the
boundary layer and vortex or induced drag due to the tip vortex
of the 3-D wing.

On this aerodynamic wing design problem, the worst and
best traditional MA were found to be MA-BC and MA-CO,
respectively (see Fig. 13). In addition, both MA-FL and
MA-DS fare very poorly compared with others in the LS pool
of nine. Once again, MA-S2 was able to generate design search
performance that is as good as the best traditional MA on this
realistic problem (MA-CO). With the incorporation of human
expert knowledge, superior design search performance may
be attained, as shown by the search trace MA-S2C of Fig. 13,
where the CO local method is biased with greater probability
of being selected. Such results encourage the use of multiple
local methods, rather than relying simply on one fixed, and
possibly poor choice. Meta-Lamarckian learning clearly offers
a high quality and robust approach for engineers working on
continuous parametric design problems, regardless of whether
a priori knowledge of the best LS is available.

V. CONCLUSION

Every search algorithm, except for uniform random search,
introduces some unique form of bias, suitable for some classes
of problems but not for others. Therefore, any traditional MA
using a fixed LS will include biases. Since a priori knowledge
about problem cost surfaces is often scarce this makes selection
of the appropriate LS for use in such fixed schemes difficult.
The great advantage of Meta-Lamarckian learning in a MA is
that it is able to address this fundamental problem by allowing
a range of local searches to cooperate and compete in finding
good solutions.

Several strategies of Meta-Lamarckian learning have been
described and analyzed here for continuous parametric design
search. Empirical studies on three representative classes of
benchmark problems have shown that the strategies presented
are effective in producing search performances that are close
to the best traditional MA with a LS chosen to suit the
problem in hand. Given that such knowledge is often not
available a priori, this ability to tackle new problems in a robust
way is of significant value. Overall, the biased roulette wheel
approach to method selection is the most competitive strategy
considered here. It is shown to be capable of attaining robust,

high quality, and efficient performance on benchmark problems
and a real-world aerodynamic design problem.
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