
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 8, NO. 2, APRIL 2004 137

Systematic Integration of Parameterized Local Search
Into Evolutionary Algorithms

Neal K. Bambha, Student Member, IEEE, Shuvra S. Bhattacharyya, Senior Member, IEEE,
Jürgen Teich, Member, IEEE, and Eckart Zitzler, Member, IEEE

Abstract—Application-specific, parameterized local search
algorithms (PLSAs), in which optimization accuracy can be
traded off with run time, arise naturally in many optimization
contexts. We introduce a novel approach, called simulated heating,
for systematically integrating parameterized local search into
evolutionary algorithms (EAs). Using the framework of simulated
heating, we investigate both static and dynamic strategies for
systematically managing the tradeoff between PLSA accuracy
and optimization effort. Our goal is to achieve maximum solution
quality within a fixed optimization time budget. We show that the
simulated heating technique better utilizes the given optimization
time resources than standard hybrid methods that employ fixed
parameters, and that the technique is less sensitive to these
parameter settings. We apply this framework to three different
optimization problems, compare our results to the standard hy-
brid methods, and show quantitatively that careful management
of this tradeoff is necessary to achieve the full potential of an
EA/PLSA combination.

Index Terms—Evolutionary algorithm (EA), hybrid global/local
search.

I. INTRODUCTION

FOR MANY optimization problems, efficient algorithms
exist for refining arbitrary points in the search space

into better solutions. Such algorithms are called local search
algorithms because they define neighborhoods, typically based
on initial “coarse” solutions, in which to search for optima.
Many of these algorithms are parameterizable in nature. Based
on the values of one or more algorithm parameters, such a
parameterized local search algorithm (PLSA) can trade off time
or space complexity for optimization accuracy.

PLSAs and evolutionary algorithms (EAs) have complemen-
tary advantages. EAs are applicable to a wide range of problems,

Manuscript received January 20, 2002; revised May 10, 2003. This work was
supported in part by the U.S. National Science Foundation under Grant 9734275
and in part by the Defense Advanced Research Projects Agency (DARPA) under
Contract MDA972-00-1-0023 through Brown University.

N. K. Bambha is with the Department of Electrical and Computer Engi-
neering, University of Maryland, College Park, MD 20742 USA and also with
the U.S. Army Research Laboratory, Adelphi, MD 20783-1197 USA (e-mail:
nbambha@eng.umd.edu).

S. S. Bhattacharyya is with the Department of Electrical and Computer
Engineering and the Institute for Advanced Computer Studies (UMIACS),
University of Maryland, College Park, MD 20742 USA (e-mail: ssb@eng.
umd.edu).

J. Teich is with the Computer Science Institute, Friedrich-Alexander Univer-
sity, Erlangen-Nuremberg D-91058, Germany (e-mail: teich@informatik.uni-
erlangen.de).

E. Zitzler is with the Computer Engineering and Networks Laboratory,
Department of Information Technology and Electrical Engineering, Swiss
Federal Institute of Technology (ETH), Zürich CH-8092, Switzerland (e-mail:
zitzler@tik.ee.ethz.ch).

Digital Object Identifier 10.1109/TEVC.2004.823471

they are robust, and are designed to sample a large search space
without getting stuck at local optima. Problem-specific PLSAs
are often able to converge rapidly toward local minima. The term
“local search” generally applies to methods that cannot escape
these minima. For these reasons, PLSAs can be incorporated
into EAs in order to increase the efficiency of the optimization.

Several techniques for incorporating local search havebeen re-
ported. These include genetic local search [1], genetic hybrids
[2], random multistart [3], greedy randomized adaptive search
procedures (GRASP) [4], and others. These techniques are often
demonstrated on well-known problem instances where either op-
timal or near-optimal solutions are known. The optimization goal
of these techniques is then toobtainasolutionveryclose to theop-
timum with acceptable run time. In this regard, the incorporation
of local search has been quite successful. For example, Vasquez
and Whitley [5] demonstrated results within 0.75% of the best
known results for the quadratic assignment problem using a hy-
bridapproach, with all run times under five hours. Inmostof these
hybrid techniques the local search is run with fixed parameter
values (i.e., at the highest accuracy setting). In this paper, we con-
sider a different optimization goal, which has not been addressed
sofar.Here,weareinterestedingeneratingasolutionofmaximum
quality within a specified optimization time, where the optimiza-
tion run time is an important constraint that must be obeyed. Such
a fixed optimization time budget is a realistic assumption in prac-
tical optimization scenarios. Many such scenarios arise in the de-
signofembeddedsystems.Later, inthispaper,wegiveanexample
of a problem involving optimizing power in embedded systems.
In a typical design process, the designer begins with only a rough
ideaof thesystemarchitecture, and firstneeds to assess theeffects
of a large number of design choices—different component parts,
memory sizes, different software implementations, etc. Since the
time to market is very critical in the embedded system business,
the design process is on a strict schedule. In the first phases of the
design process, it is essential to get good estimates quickly so that
these initial choicescanbemade.Later, as thedesignprocesscon-
verges on a specific hardware/software solution, it is important
to get more accurate solutions. In these cases, the designer really
needs to have the run time asan input to the optimization problem.

In order to accomplish this goal, we vary the parameters of the
local search during the optimization process in order to trade off
accuracy for reduced complexity. Our optimization approach is
general enough to hold for any kind of global search algorithm
(GSA); however, in this paper, we test hybrid solutions that
solely use an EA as the GSA. Existing hybrid techniques fix
the local search at a single point, typically at the highest accu-
racy. In the following discussion and experiments, we refer to

1089-778X/04$20.00 © 2004 IEEE

138 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 8, NO. 2, APRIL 2004

this method as a fixed parameter method. We will compare our
results against this method.

One of the central issues we examine is how the computa-
tion time for the PLSA should be allocated during the course of
the optimization. More time allotted to each PLSA invocation
implies more thorough local optimization at the expense of a
smaller number of achievable function evaluations (e.g., smaller
numbers of generations explored with evolutionary methods),
and vice versa. Arbitrary management of this tradeoff between
accuracy and run time of the PLSA is not likely to generate op-
timal results. Furthermore, the proportion of time that should
be allocated to each call of the local search procedure is likely
to be highly problem-specific and even instance-specific. Thus,
dynamic adaptive approaches may be more desirable than static
approaches.

In this paper, we describe a technique called simulated
heating [6], which systematically incorporates parameterized
local search into the framework of global search. The idea is to
increase the time allotted to each PLSA invocation during the
optimization process—low accuracy of the PLSA at the begin-
ning and high accuracy at the end.1 This is in contrast to most
existing hybrid techniques, which consider a fixed local search
function, usually operating at the highest accuracy. Within the
context of simulated heating optimization, we consider both
static and dynamic strategies for systematically increasing the
PLSA accuracy and the corresponding optimization effort. Our
goals are to show that careful management of this tradeoff
is necessary to achieve the full potential of an EA/PLSA
combination and to develop an efficient strategy for achieving
this tradeoff management. We show that, in the context of a
fixed optimization time budget, the simulated heating technique
performs better than using a fixed local search.

In most heuristic optimization techniques, there are some pa-
rameters that must be set by the user. In many cases, there are no
clear guidelines on how to set these parameters. Moreover, the
optimal parameters are often dependent on the exact problem
specification. We show that the simulated heating technique,
while still requiring parameters to be set by the user, is less sen-
sitive to the parameter settings.

We demonstrate our techniques on the well-known binary
knapsack problem and on two optimization problems for em-
bedded systems which have quite different structures.

II. RELATED WORK

In the field of evolutionary computation, hybridization
seems to be common for real-world applications [7] and many
evolutionary algorithm/local search method combinations can
be found in the literature, e.g., [1], [8]–[11]. Local search tech-
niques can often be incorporated naturally into EAs in order to
increase the effectiveness of optimization. This has the potential
to exploit the complementary advantages of EAs (generality,
robustness, global search efficiency), and problem-specific
PLSAs (exploiting application-specific problem structure,
rapid convergence toward local minima). We list some hybrid

1In contrast to [6], the time budget here refers to the overall GSA/PLSA hy-
brid, not only the time resources needed by the PLSA.

methods in the literature and suggest how they could potentially
be adapted to use our simulated heating technique.

One problem to which hybrid approaches have been success-
fully applied is the quadratic assignment problem (QAP), which
is an important combinatorial problem. Several groups have
used hybrid genetic algorithms that are effective is solving the
QAP. The QAP concerns facilities, which must be assigned
to locations at minimum cost. The problem is to minimize
the cost

where is a set of all permutations of , are
elements of a distance matrix, and are elements of a flow ma-
trix representing the flow of materials from facility to facility .

Merz and Freisleben [1] presented a genetic local search
(GLS) technique, which applies a variant of the two-opt
heuristic as a local search technique. For the QAP, the two-opt
neighborhood is defined as the set of all solutions that can be
reached from the current solution by swapping two elements
of the permutation . The size of this neighborhood increases
quadratically with . The two-opt local search employed by
Merz takes the first swap that reduces the total cost . This
is done to increase efficiency.

Fleurent and Ferland [2] combined a genetic algorithm with a
local Tabu search (TS) method. In contrast to the simpler local
search of Merz, the idea of the TS is to consider all possible
moves from the current solution to a neighboring solution. Their
method is called genetic hybrids. They improved the best solu-
tions known at the time for most large scale QAP problems.

By comparison, simulated heating for QAP might be formu-
lated as a combination of the above two methods. One could
consider the best of moves found that reduce , where
is the PLSA parameter.

Vasquez and Whitley [5] also presented a technique, which
combines a genetic algorithm with TS, where the genetic algo-
rithm is used to explore in parallel several regions of the search
space and uses a fixed Tabu local search to improve the search
around some selected regions. They demonstrated near optimal
performance, within 0.75% of the best known solutions. They
did not investigate their technique in the context of a fixed opti-
mization time budget.

Random multistart local search has been one of the most com-
monly used techniques for combinatorial optimization problems
[3], [12]. In this technique, a number of solutions are generated
randomly at each step, local search is repeated on these solu-
tions, and the best solution found during the entire optimization
is output. Several improvements over random multistart have
been described. GRASP combine the power of greedy heuris-
tics, randomization, and conventional local search procedures
[4]. Each GRASP iteration consists of two phases—a construc-
tion phase and a local search phase. During the construction
phase, each element is selected at random from a list of candi-
dates determined by an adaptive greedy algorithm. The size of
this list is restricted by parameters and , where is a value
restriction and is a cardinality restriction. Feo et al. demon-
strate the GRASP technique on a single machine scheduling

BAMBHA et al.: SYSTEMATIC INTEGRATION OF PARAMETERIZED LOCAL SEARCH INTO EVOLUTIONARY ALGORITHMS 139

problem [13], a set covering problem, and a maximum inde-
pendent set problem [4]. They run the GRASP for several fixed
values of and , and show that the optimal parameter values
are problem dependent. In simulated heating, and would
be candidates for parameter adaptation. In the second phase of
GRASP, a local search is applied to the constructed solution to
find a local optimum. For the set covering problem, Feo et al.
define a exchange local search where all -tuples in a cover
are exchanged with a -tuple. Here, was fixed during opti-
mization. In a simulated heating optimization, might be used
as the PLSA parameter, with smaller tuples being exchanged at
the beginning of the optimization and larger tuples examined at
the end. A similar -exchange local search procedure was used
for the maximum independent set problem.

Kazarlis et al. [14] demonstrate a microgenetic algorithm
(MGA) as a generalized hill-climbing operator. The MGA is a
GA with a small population and a short evolution. The main GA
performs global search while the MGA explores a neighborhood
of the current solution provided by the main GA, looking for
better solutions. The main advantage of the MGA is its ability to
identify and follow narrow ridges of arbitrary direction leading to
the global optimum. Applied to simulated heating, MGA could
be used as the local search function with the population size and
number of generations used as PLSA parameters.

He et al. [15] describe three hybrid genetic algorithms for
solving linear and partial differential equations. The hybrid
algorithms integrate the classical successive over relaxation
(SOR) with evolutionary computation techniques. The recom-
bination operator in the hybrid algorithm mixes two parents,
while the mutation operator is equivalent to one iteration of the
SOR method. A relaxation parameter for the SOR is adapted
during the optimization. He et al. observe that is very difficult
to estimate the optimal , and that the SOR is very sensitive
to this parameter. Their hybrid algorithm does not require the
user to estimate the parameter; rather, it is evolved during the
optimization. Different relaxation factors are used for different
individuals in a given population. The relaxation factors are
adapted based on the fitness of the individuals. By contrast,
in simulated heating all members of a given population are
assigned the same local search parameter at a given point in the
optimization.

When employing PLSAs in the context of many optimiza-
tion scenarios, however, a critical issue is how to use compu-
tational resources most efficiently under a given optimization
time budget (e.g., a minute, an hour, a day, etc.). Goldberg and
Voessner [16] study this issue in the context of a fixed local
search time. They idealize the hybrid as consisting of steps per-
formed by a global solver , followed by steps performed by a
local solver , and a search space as consisting of basins of at-
traction that lead to acceptable targets. Using this, they are able
to decompose the problem of hybrid search, and to characterize
the optimum local search time that maximizes the probability of
achieving a solution of a specified accuracy.

Here, we consider both fixed and variable local search time.
The issue of how to best manage computational resources under
a fixed time budget translates into a problem of appropriately re-
configuring successive PLSA invocations to achieve appropriate
accuracy/run time tradeoffs as optimization progresses.

III. SIMULATED HEATING

From the discussion of prior work, we see that one weak-
ness of many existing approaches is their sensitivity to param-
eter settings. Also, excellent results have been achieved through
hybrid global/local optimization techniques, but they have not
been examined carefully for a fixed optimization time budget.
In the context of a limited time budget, we are especially inter-
ested in minimizing wasted time. One obvious place to focus is
at the beginning of the optimization, where many of the candi-
date solutions generated by the global search are of poor quality.
Intuitively, one would want to evaluate these initial solutions
quickly and not spend too much time on the local search. Also,
it is desirable to reduce the number of trial runs required to find
an optimal parameter setting. One way to do this is to require
only that a good range for the parameter be given. These con-
siderations lead to the idea of simulated heating.

A. Basic Principles

A general single objective optimization problem can be de-
scribed as an objective function that maps a tuple of pa-
rameters (decision variables) to a single objective . Formally,
we wish to either minimize or maximize subject to

, where is called the decision
vector, is the parameter space or search space, and is the
objective. A solution candidate consists of a particular (),
where .

We will approach the optimization problem by using an iter-
ative search process. Given a set , and a function , which
maps onto itself, we define an iterative search process as a
sequence of successive approximations to , starting with an

from , with for . One
iteration is defined as a consecutive determination of one can-
didate from another candidate set using some . For an evolu-
tionary algorithm, one iteration consists of the determination of
one generation from the previous generation, with consisting
of the selection, crossover, and mutation rules.

The basic idea behind simulated heating is to vary the local
search parameter during the optimization process. This is in
contrast to the more commonly employed technique of choosing
a single value for [typically that value producing highest ac-
curacy of the local search] and keeping it constant during
the entire optimization. Here, we start with a low value for ,
which implies a low cost , and accuracy for the local
search, and increase at certain points in time during the op-
timization, which increases and . This is depicted in
Fig. 1, where the dotted line corresponds to simulated heating,
and the dashed line corresponds to the traditional approach. The
goal is to focus on the global search at the beginning and to find
promising regions of the search space first; for this phase,
runs with low accuracy, which in turn allows a greater number
of optimization steps of the global search . Afterward, more
time is spent by in order to improve the solutions found or
to assess them more accurately. As a consequence, fewer global
search operations are possible during this phase of optimiza-
tion. Since is systematically increased during the process,
we use the term simulated heating for this approach by analogy

140 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 8, NO. 2, APRIL 2004

Fig. 1. Simulated heating versus traditional approach to utilizing local search.

to simulated annealing where the “temperature” is continuously
decreased according to a given cooling scheme.

B. Optimization Scenario

We assume that we have a GSA2 operating on a set of
solution candidates and a PLSA , where is the parameter
of the local search procedure.3 Let:

• define the maximum (worst case) time needed by to
generate a new solution that is inserted in the next solution
candidate set;

• denote the complexity (worst case run time) of for
the parameter choice ;

• be the accuracy (effectiveness) of with regard to .
• denotes the set of permissible values for param-

eter ; typically, may be described by an interval
, where denotes the set of reals and

.
Furthermore, suppose that for any pair () of parameter

values, we have

and (1)

That is, increasing parameter values in general result in in-
creased consumption of compile-time, as well as increased
optimization effectiveness.

Generally, it is very difficult, if not impossible, to analyti-
cally determine the functions and , but these func-
tions are useful conceptual tools in discussing the problem of de-
signing cooperating GSA/PLSA combinations. The techniques
that we explore in this paper do not require these functions to be
known. The only requirement we make is that the monotonicity
property 1 be obeyed at least in an approximate sense (fluc-
tuations about relatively small variations in parameter values
are admissible, but significant increases in the PLSA param-
eter value should correspond to increasing cost and accuracy).
Consequently, a tunable tradeoff emerges: when is low,
refinement is generally low as well, but not much time is con-
sumed [is also low]. Conversely, higher requires

2In this paper, we focus on an evolutionary algorithm as the GSA, although
the approach is general enough to hold for any GSA.

3For simplicity it is assumed here that p is a scalar rather than a vector of
parameters.

higher computational cost . We define simulated heating
as follows.

Definition 1: (Heating Scheme): A heating scheme is a
triple where:

• is a vector of PLSA parameter values with
, , and

;
• is a Boolean function, which yields true if the number

of iterations performed for parameter does not exceed
the maximum number of iterations allowed for ;

• is a boolean function, which yields true if the size of
the solution candidate set does not exceed the maximum
size for and iteration of the overall GSA/PLSA hybrid.

The meanings of the functions and will become
clear in the global/local hybrid algorithm of Fig. 2, which is
taken as the basis for the optimization scenario considered in
this paper.

The GSA considered here is an evolutionary algorithm (EA).

1) Generational, i.e., at each evolution step an entirely new
population is created. This is in contrast to a nongenera-
tional or steady-state EA that only considers a single so-
lution candidate per evolution step.

2) Baldwinian, i.e., the solutions improved by the PLSA are
not reinserted in the population. This is in contrast to a
Lamarckian EA, in which solutions would be updated
after PLSA refinement.

IV. SIMULATED HEATING SCHEMES

We are interested in exploring optimization techniques in
which the overall optimization time is fixed and specified
in advance (fixed time budget). During the optimization and
within this time budget, we allow a heating scheme to adjust
three optimization parameters per PLSA parameter value:

1) number of GSA iterations ;
2) size of the solution candidate set ;
3) maximum optimization time using this parameter value

.
We distinguish between static and dynamic heating based on

how many of the parameters are fixed and how many are allowed
to vary during the optimization. This is illustrated in Fig. 3. In
our experiments, we keep the size of the solution candidate (GA
population) fixed and, thus, only consider the FIS, FTS, and VIT
strategies. For the sake of completeness, however, we outline all
these strategies below.

A. Static Heating

Static heating means that at least two of the above three pa-
rameters are fixed and identical for all PLSA parameter values
considered during the optimization process. As a consequence,
the third parameter is either given as well or can be calculated
before runtime for each PLSA parameter value separately. As
illustrated in Fig. 3 on the left, there are four possible static
heating schemes.

1) PLSA Parameter Fixed—Standard Hybrid Approach:
Fixing all three parameters is identical to keeping constant.

Thus, only a single PLSA parameter value is used during the
optimization process. This scheme represents the common way

BAMBHA et al.: SYSTEMATIC INTEGRATION OF PARAMETERIZED LOCAL SEARCH INTO EVOLUTIONARY ALGORITHMS 141

Fig. 2. Global/local search hybrid.

Fig. 3. Illustration of the different types of (i) static heating and (ii) dynamic
heating. For static heating, at least two of the three attributes are fixed. (FIS
refers to fixed iterations and population size per parameter; FTS refers to
fixed time and population size per parameter; FIT refers to fixed iterations
and fixed time per parameter.) For dynamic heating, at least two attributes
are variable. (VIT refers to variable iterations and time per parameter; VIS
refers to variable iterations and population size; VTS refers to variable time
and population size. In our experiments, we will only consider the FIS, FTS,
and VIT strategies.

to incorporate PLSAs into GSAs and is taken as the reference
for the other schemes as actually no heating is performed.

2) Number of Iterations and Size of Solution Candidate Set
Fixed per PLSA Parameter (FIS): In this strategy (FIS), the pa-
rameter is constant for exactly iterations. The ques-
tion is, therefore, how many iterations may be performed per
parameter within the time budget . Having the constraint

(2)

we obtain with

(3)

as the number of iterations assigned to each .
3) Amount of Time and Size of Solution Candidate Set Fixed

per PLSA Parameter (FTS): For the FTS strategy, the points
in time where is increased are equidistant and may be simply
computed as follows. Obviously, the time budget, when equally
split between parameters, becomes per param-
eter. Hence, the number of iterations that may be performed
using parameter , is restricted by

Thus, we obtain

(4)

as the maximum number of iterations that may be computed
using parameter in order to stay within the given time budget.

4) Number of Iterations and Amount of Time Fixed per PLSA
Parameter (FIT): With the FIT scheme the size of the solu-
tion candidate set is different for each PLSA parameter con-
sidered. The time per iteration for parameter is given by

and is the same for all with .
This relation together with the constraint

yields

(5)

as the maximum size of the solution candidate set for .

B. Dynamic Heating

In contrast to static heating, dynamic heating refers to the case
in which at least two of the three optimization parameters are
not fixed and may vary for different PLSA parameters. The four
potential types of dynamic heating are shown in Fig. 3. How-
ever, the scenario where all three optimization parameters are
variable and may be different for each PLSA parameter is more
hypothetical than realistic. This approach is not investigated in
this paper and only listed for reasons of completeness. Hence,
we consider three dynamic heating schemes where only one pa-
rameter is fixed. One of the variable parameters is determined
dynamically during runtime according to a predefined criterion.
Here, the criterion is whether an improvement with regard to
the solutions generated can be observed during a certain time
interval (measured in seconds, number of solutions generated,
or number of iterations performed). The time constraint is de-
fined in terms of the remaining variable parameter.

1) Number of Iterations and Size of Solution Candidate Set
Variable per PLSA Parameter (VIS): With the VIS strategy, the
time per PLSA parameter value is fixed (and iden-
tical for all). If the time constraint is defined on the basis
of the number of solutions generated, the hybrid works as fol-
lows. As long as the time is not exceeded, new solutions are
generated using and copied to the next solution candidate
set—otherwise, the next GSA iteration with is performed.

142 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 8, NO. 2, APRIL 2004

If, however, the time elapsed for the current iteration is less than
and none of the recently generated solutions achieves

an improvement in fitness, the next iteration with is started.
It is not practical to consider a certain number of iterations as

the time constraint—since the time per iteration is not known,
there is no condition that determines when the filling of the next
solution candidate set can be stopped.

2) Amount of Time and Size of Solution Candidate Set
Variable per PLSA Parameter (VTS): There are two heating
schemes possible when the number of iterations per PLSA
parameter is a constant value . One scheme we call
VTS-S, in which the next solution candidate set is filled with
new solution candidates until, for solutions, no improve-
ment in fitness is observed. In this case, the same procedure is
applied to the next iteration using the same parameter . If
iterations have been performed for , the next PLSA parameter

is taken.
In the other heating scheme, which we call VTS-T, the filling

of the next solution candidate set is stopped if, for s, the
quality of the best solution in the solution candidate set has stag-
nated (i.e., has not improved).

3) Number of Iterations and Amount of Time Variable per
PLSA Parameter (VIT): Here again there are two possible vari-
ations. The first, called VIT-I, considers the number of itera-
tions as the time constraint. The next PLSA parameter value is
taken when for a number of iterations the quality of the
best solution in the solution candidate set has not improved. As
a consequence, for each parameter a different amount of time
may be considered until the stagnation condition is fulfilled.

The alternative VIT-T is to define the time constraint in sec-
onds. In this case, the next PLSA parameter value is taken when,
for s, no improvement in fitness was achieved. As a conse-
quence, for each parameter a different number of iterations may
be considered until the stagnation condition is fulfilled.

V. SIMULATED HEATING APPLIED TO

BINARY KNAPSACK PROBLEM (KP)

In order to further illuminate simulated heating, we begin by
demonstrating the techniqueonawidelyknownproblem,namely
the binary (0–1) knapsack problem (KP). This problem has been
studied extensively, and good exact solution methods for it have
been developed (e.g., see [17]). The exact solutions are based on
either branch-and-bound or dynamic programming techniques.
In this problem, we are given a set of items, each with profit
and weight , which must be packed in a knapsack with weight
capacity . The problem consists of selecting a subset of the
items whose total weight does not exceed and whose total profit
is a maximum. This can be expressed formally as

maximize (6)

subject to

(7)

(8)

where if item is selected, and , otherwise.

Balas and Zemel [18] first introduced the “core problem” as
an efficient way of solving KP, and most of the exact algorithms
have been based on this idea. Pisinger [19] has modeled the
hardness of the core problem and noted that is is important to
test at a variety of weight capacities. He proposed a series of
randomly generated test instances for KP. In our experiments,
we generate test instances using this test generator function, as
described in [19, Appendix B]. We compare our results with the
exact solution described in [17], for which the -code can be
found in [20].

A. Implementation

To solve the KP, we use a GSA/PLSA hybrid as discussed in
Section III, where an evolutionary algorithm is the GSA and a
simple pairwise exchange is the PLSA. The evolutionary algo-
rithm and local search are explained below.

1) GSA: Evolutionary Algorithm: Each candidate solution
is encoded as a binary vector , where are the binary decision
variables from (8). The weight of a given solution candidate
is , and the profit of is .
The sum of the profits of all items is defined as .
We define a fitness function which we would like to minimize

if

if
(9)

Thus, we penalize solution candidates whose weight exceeds
the capacity and seek to maximize the profit. The term was
added so that is never negative. For the KP experiments,
we used a standard simple genetic algorithm described in [7]
with one point crossover, crossover probability 0.9, nonoverlap-
ping populations of size , and elitism.

2) Parameterized Local Search for KP: At the beginning of
the optimization algorithm, the items are sorted by increasing
profit, so that for all . Given an input solu-
tion candidate , the local search first computes its weight .
If , items are removed (set to zero) starting at
until . For local search parameter , this is the
only operation performed. For , pair swap operations are
also performed as explained in Fig. 4, where we attempt to re-
place an item from the solution candidate with a more profitable
item not included in the solution candidate. The number of such
pair swap operations is . Thus, the local search algorithm re-
quires more computation time and searches the local area more
thoroughly for higher . These are the monotonicity require-
ments expressed in (1). We define parameter as no local
search—i.e., the optimization is an evolutionary algorithm only,
and no local search is performed.

B. Influence of on the PLSA Run Time and Accuracy

To test the binary KP, we generated 1000 pseudorandom
test instances for each technique as suggested in [19]. The
weights and profits in these instances were strongly corre-
lated. The weight capacity of the th instance is given by

, where is the sum of the weights of all
items. For each test instance, we compared the hybrid solution
with an exact solution to the problem using the method given

BAMBHA et al.: SYSTEMATIC INTEGRATION OF PARAMETERIZED LOCAL SEARCH INTO EVOLUTIONARY ALGORITHMS 143

Fig. 4. Pseudocode for pair swap local search for binary KP.

in [17]. We defined an error sum over all the problem instances
as a figure of merit for the hybrid solution technique

(10)

where is the profit given by the exact solution, and is the
profit given by the hybrid solution.

Fig. 5 shows how the run time of the pair swap PLSA in-
creases with . Fig. 6 depicts the sum of errors (10) for the bi-
nary KP for different values of with the number of generations
fixed at 10. We can see that higher values of produce smaller
error, at the expense of increased run time. Thus, the pair swap
PLSA satisfies the monotonicity requirement from (1).

C. Standard Hybrid Approach (Fixed PLSA Parameter)

The standard hybrid approach to hybrid global/local searches
is to run the local search at a fixed parameter. This is shown in
Fig. 7 for different values of and for two different run times.
Here, the axis corresponds to the sum of errors over all test
cases (10). We see that, for a fixed optimization run time, the
optimal value of local search parameter using the standard
hybrid approach can depend on the run time and data input—for
a run time of 2 s, the best value of is 2, while for a run time
of 5 s, the best value of is 5. We note here and with the other
applications studied that this value of cannot be predicted in
advance.

D. Static Heating Schemes

The static heating schemes FIS and FTS were performed for
the binary KP. Results are shown in Fig. 8 for run times of 1 and
5 s, and compared with the standard hybrid approach for dif-
ferent values of . It can be seen that the static heating scheme

Fig. 5. Local search run times versus p for binary KP.

Fig. 6. Standard hybrid approach for binary knapsack (fixed p, no heating)
using a fixed number of generations and not fixing overall hybrid run time.
Cumulative error shown for hybrids utilizing different p. Higher p is more
accurate but requires longer run times.

outperformed the standard hybrid approach, and that this im-
provement is greater for the shorter run times.

VI. DYNAMIC HEATING SCHEMES

The dynamic heating schemes VIT.I and VIT.T were per-
formed for the binary knapsack application. Recall that VIT
stands for variable iterations and time per parameter; during the
optimization the next PLSA parameter is taken when, for a given
number of iterations (VIT.I) or a given time (VIT.T), the quality
of the solution candidate has not improved. Fig. 9 shows results
for these dynamic schemes. Results for static heating schemes
are shown on the right for comparison. We observe that the dy-
namic heating schemes outperform the static heating schemes
significantly, and that the amount of improvement is greater for
shorter run times.

VII. EMBEDDED SYSTEM APPLICATIONS

Next, we will demonstrate our simulated heating technique
on two problems in the design of embedded systems. For many

144 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 8, NO. 2, APRIL 2004

Fig. 7. Standard hybrid approach applied to binary knapsack for different values of p, where p is fixed throughout. Y axis is sum of errors. Run time is 2 s
in (a) and 5 s in (b).

Fig. 8. Static heating (two bars on right) applied to binary knapsack compared with the standard hybrid approach (4four bars on left). Y axis is sum of
errors over all 1000 problem instances. The four bars on left correspond to the standard hybrid approach. Run time is 1 s in (a) and 5 s in (b).

problems in system design, the user wishes to first quickly eval-
uate many tradeoffs in the system, often in an interactive envi-
ronment, and then to refine a few of the best design points as
thoroughly as possible. Often, an exact system simulation may
take days or weeks. In this context, it is quite useful to have op-
timization techniques where the run time can be controlled, and
which will generate a solution of maximum quality in the al-
lotted time.

Hybrid global/local search techniques are most effective
in problems with complicated search spaces, and problems
for which local search techniques have been developed that
make maximum use of problem-specific information. We
investigate the effectiveness of the simulated heating approach
on two such applications in electronic design, namely software
optimization in embedded systems and voltage scaling for
embedded multiprocessors. These problems are very different

in structure, but both have vast and complicated solution spaces.
In addition, the PLSAs for these applications exhibit a wide
range of accuracy/complexity tradeoffs.

A. Multiprocessor Voltage Scaling Application

1) Background: Dynamic voltage scaling [21] in micro-
processors is an important advancing technology. It allows
the average power consumption in a device to be reduced by
slowing down (by lowering the voltage) some tasks in the
application. Here, we will assume that the application is spec-
ified as a dataflow graph. We are given a schedule (ordering
of tasks on the processors) and a constraint on the throughput
of the system. We wish to find a set of voltages for all the
tasks that will minimize the average power of the system while
satisfying the throughput constraint. The only way to compute
the throughput exactly in these systems is via a full system

BAMBHA et al.: SYSTEMATIC INTEGRATION OF PARAMETERIZED LOCAL SEARCH INTO EVOLUTIONARY ALGORITHMS 145

Fig. 9. Dynamic heating for binary knapsack (two bars on right) compared to static heating (two bars on left). VIT refers to variable iterations and time per
parameter, with the next parameter taken if, for a given number of iterations (VIT.I) or a given time (VIT.T), the solution has not improved. Run time is 1 s in (a)
and 5 s in (b). Y axis is cumulative error over all problem instances (note the different y scales for the two plots).

simulation. However, simulation is computationally intensive
and we would like to minimize the number of simulations
required during synthesis. We have previously demonstrated
that a data structure, called the period graph, can be used as
an efficient estimator for the system throughput [22] and, thus,
reduce the number of simulations required.

2) Using the Period Graph for Local Search: As explained
in [22], we can estimate the throughput of the system as voltage
levels are changed by calculating the maximum cycle mean
(MCM)4 [23] of the period graph. In order to construct the pe-
riod graph, we must perform one full system simulation at an
initial point—after the period graph is constructed, we may use
the MCM estimate without resimulating the system. It is shown
in [22] that the MCM of the period graph is an accurate estimate
for the throughput if the task execution times are varied around
a limited region (local search), and that the quality of the esti-
mate increases as the size of this region decreases. A variety of
efficient, low polynomial-time algorithms have been developed
for computing the MCM (e.g., see [24]).

We can use the size of the local search neighborhood as the
parameter in a PLSA. We call this parameter the resimula-
tion threshold (), and define it as the vector distance between
a candidate point (vector of voltages) and the voltage vector
from which the period graph was constructed. To search around
a given point in the design space, we must simulate once and
build the period graph. Then, as long as the local search points
are within a distance from , we can use the (efficient) pe-
riod graph estimate. For points outside , we must resimulate
and rebuild the period graph. Consequently, there is a tradeoff
between speed and accuracy for —as decreases, the period
graph estimate is more accurate, but the local search is slower
since simulation is performed more often.

3) Voltage Scaling Problem Statement: We assume that a
schedule has been computed beforehand so that the ordering

4Here, the MCM is the maximum, over all directed cycles of the period graph,
of the sum of the task execution times on a cycle divided by the sum of the edge
delays (initial tokens) on a cycle.

of the tasks on the processors is known. The optimization
problem we address consists of finding the voltage vector

for the tasks in the application graph,
such that the energy per computation period (average power)
is minimized and the throughput satisfies some prespecified
constraint [e.g., as determined by the sample period in a digital
signal processing (DSP) application]. For each task, as its
voltage is decreased, its energy is decreased and its execution
time is increased, as described in [22]. The computation period
is determined from the period graph. A simple example is
shown in Fig. 10. Here, we can see that by decreasing the
voltage on task , the average power is reduced, while the
execution time is unchanged. There is a potentially vast search
space for many practical applications. For example, if we
consider discrete voltage steps of 0.1 V over a range of 5 V,
there are possible voltage vectors from which to search.
The number of tasks in an application may be in the hundreds.

B. Memory Cost Minimization Application

1) Background: DSP applications can be specified as
dataflow graphs [25]. In dataflow, a computational specifica-
tion is represented as a directed graph in which vertices (actors)
specify computational functions of arbitrary complexity, and
edges specify first-in–first-out (FIFO) communication between
functions. A schedule for a dataflow graph is simply a speci-
fication of the order in which the functions should execute. A
given DSP application can be accomplished with a variety of
different schedules—we would like to find a schedule which
minimizes the memory requirement. A periodic schedule for
a dataflow graph is a schedule that invokes each actor at least
once and produces no net change in the number of data items
queued on each edge. A software synthesis tool generates
application programs from a given schedule by piecing together
(inlining) code modules from a predefined library of software
building blocks associated with each actor. The sequence of
code modules and subroutine calls that is generated from a
dataflow graph is processed by a buffer management phase that

146 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 8, NO. 2, APRIL 2004

Fig. 10. (a) Period graph before voltage scaling. The numbers represent
execution times (t) and energies (e) of the tasks. The execution period is
determined by the longest cycle, A ! B ! C , whose sum of execution
times is 4 units. The energy of each task is 4 units. The average power is 4
units (16 total energy divided by period of 4). (b) After voltage scaling. The
voltage on task B has been reduced, increasing its execution time from 1 unit
to 2 units and decreasing its energy consumption from 4 units to 2 units. The
overall execution period is still 4 units since both cycles A ! D ! C and
A ! B ! C now have execution time of 4. The average power is 3.5 units
(14 total energy divided by period of 4).

inserts the necessary target program statements to route data
appropriately between actors.

The scheduling phase has a large impact on the memory
requirement of the final implementations, and it is this memory
requirement we wish to minimize in our optimization. The key
components of this memory requirement are the code size cost
(the sum of the code sizes of all inlined modules, and of all
inter-actor data transfers). Even for a simple dataflow graph, the
underlying range of tradeoffs may be very complex We denote
a schedule loop with the notation (), which
specifies the successive repetition times of a subschedule

, where the are actors. A schedule that contains
zero or more schedule loops is called a looped schedule, and
a schedule that contains exactly zero schedule loops is called
a flat schedule (thus, a flat schedule is a looped schedule, but
not vice versa).

Consider two schedules and
which repeat for the actors , , and the same

number of times (1, 10, 10, respectively). The code size
for schedules and can be expressed, respectively, as

, where denotes the processor-de-
pendent, code size overhead of a software looping construct,
and denotes the program memory cost of the library code
module for an actor . The code size of schedule is larger
because it contains more “actor appearances” than schedule
(e.g., an actor appears twice in versus only once in),
and also contains more schedule loops (2 versus 1). The
buffering cost of a schedule is computed as the sum over all
edges of the maximum number of buffered (produced, but not
yet consumed) tokens that coexist on throughout execution
of the schedule. Thus, the buffering costs of and are 11
and 19, respectively. The memory cost of a schedule is the sum
of its code size and buffering costs. Thus, depending on the
relative magnitudes of , , , and , either or

may have lower memory cost.

2) Memory Cost Minimization Problem (MCMP) State-
ment: The MCMP is the problem of computing a looped
schedule that minimizes the memory cost for a given dataflow
graph, and a given set of actor and loop code sizes. It has been
shown that this problem is NP-complete [25]. A tractable algo-
rithm called code size dynamic programming post optimization
(CDPPO), which can be used as a local search for MCMP,
has also been described [11], [26], [27]. In this work, the
CDPPO was applied uniformly at “full strength” (maximum
accuracy/maximum run time), and as conventionally done
with local search techniques, did not explore application of its
PLSA form. As explained below, the CDPPO algorithm can be
formulated naturally as a PLSA with a single parameter such
that accuracy and run time both increase monotonically with
the parameter value.

C. Experiments

In this section, we present experiments designed to examine
several aspects of simulated heating for the two embedded
systems applications. We would like to know how simulated
heating compares to the standard hybrid technique of using a
fixed parameter (fixed). We summarize the fixed results
for all problems for different values of . We examine how the
optimal value of for the standard hybrid method depends on
the application.

Next, we compare both the static and dynamic heating
schemes to the standard approach, and to each other. For
the static heating experiments, we utilize the FIS and FTS
strategies. Recall that FIS refers to fixed number of iterations
and population size per parameter, and FTS refers to fixed
time and population size per parameter. For the dynamic
heating experiments, we utilize the two variants of the VIT
strategy (variable iterations and time per parameter). We also
examine the role of parameter range and population size on the
optimization results.

D. Results

1) Influence of on the PLSA Run Time and Accu-
racy: Recall that there is a tradeoff between accuracy and run
time for the PLSA. Lower values of local search parameter
mean the local search executes faster, but is not as accurate.
Fig. 11 shows how the run time of the PLSA varies with
for the two applications. It can be seen that the monotonicity
property (1) is satisfied for the PLSAs.

2) Standard Hybrid Approach (Fixed PLSA Param-
eter): The standard approach to hybrid global/local searches is
to run the local search at a fixed parameter. We present results for
this method below. It is important to note that, for a fixed opti-
mization run time, the optimal value of local search parameter
can depend on the run time and data input and cannot be predicted
in advance. Fig. 12 shows results for the MCMP optimization
using fixed values of (standard approach—no heating), for 11
different initial populations, for population sizes and

. The axis on these graphs corresponds to the memory
cost of the optimized schedule so that lower values are better.
The axis corresponds to the fixed value. For each value of ,
the hybrid search was run for a time budget of 5 h with a fixed
value of . The same set of initial populations was used. From

BAMBHA et al.: SYSTEMATIC INTEGRATION OF PARAMETERIZED LOCAL SEARCH INTO EVOLUTIONARY ALGORITHMS 147

Fig. 11. (a) Local search run times versus p for MCMP application and (b) voltage scaling application.

Fig. 12. Standard hybrid approach to MCMP application using fixed PLSA parameter p. Hybrid was run for 5 h at each value of p. Population size for GA was
N = 100 in (a) and N = 200 in (b). Median, lower quartile, and upper quartile of 11 different runs shown in the three curves for each p. (Lower memory cost
is better.)

these graphs, it can be seen that the local search performs best
for values of around 39. Fig. 13 shows the number of iterations
(generations in the GSA) performed for each value of . As

increases, fewer generations can be completed in the fixed
optimization run time.

Fig. 14 shows results for the voltage scaling application on
six different input dataflow graphs, for fixed values of (no
heating), for 11 different initial populations, using both hill climb
and Monte Carlo local search methods. For each value of , the
hybrid search was run for a time budget of 20 min with a fixed
value of . The axis on the graph corresponds to the ratio of
the optimized average power to the initial power, so that lower
values are better. For each , the same set of initial populations
was used. From these graphs, it can be seen that the best value of

may also depend on the specific problem instance.
3) Static Heating Schemes: For the MCMP application, the

run time limit for the hybrid was set to 5 h. Two sets
of PLSA parameters were used, and

. The value of corresponds
to the total number of actor invocations in the schedule for the
MCMP application and is thus the maximum (highest accuracy)
possible. The parameter set was chosen so that it is centered
around the best fixed values. Fig. 15 summarizes the results
for the MCMP application with GSA population size .
In Fig. 15, 11 runs were performed for each heating scheme and
for each parameter set. In Fig. 15, the box plot5 (i) corresponds
to FIS with parameter set . Box plot (ii) corresponds to FIS
with parameter set . Box plot (iii) corresponds to FTS with
parameter set . Box plot (iv) corresponds to FTS with param-
eter set . The solid curves in Fig. 15 are the results for fixed

. Table I summarizes the iterations performed for each param-
eter for both FIS and FTS with both parameter ranges.

5The “box” in the box plot stretches form the 25th percentile (“lower hinge”)
to the 75th percentile (“upper hinge”). The median is shown as a line across the
box. The “whisker” lines are drawn at the 10th and 90th percentiles. Outliers
are shown with a “+” character.

148 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 8, NO. 2, APRIL 2004

Fig. 13. Standard hybrid approach (fixed p, no heating), MCMP application,
using a fixed run time. Number of generations completed is shown for hybrids
utilizing different values of p. Fewer generations are completed for higher p.

For the voltage scaling application, we ran the static heating
optimization for a run time of 20 min. For FIS and FTS,
the parameter sets used were and

. The parameter set was chosen
by examining the fidelity of the period graph estimator. Re-
call that the PLSA parameter is related to the resimulation
threshold. It is observed that for the fidelity of the es-
timator is poor. For , with the voltage increments used,
the resimulation threshold is so small that simulation is done al-
most every time. This corresponds to the highest accuracy set-
ting. The parameter set was chosen to center around the best
fixed values. Results for FIS and FTS on the fft2 applica-
tion using the Monte Carlo local search are shown in Fig. 16.
In Fig. 16(a), the box plot (i) corresponds to FIS with param-
eter range . Box plot (ii) corresponds to FIS with parameter
range . Box plot (iii) corresponds to FTS with parameter set

. Box plot (iv) corresponds to FTS with parameter range .
The solid curves in the figure are the results for fixed .

4) Dynamic Heating Schemes: We performed the dynamic
heating schemes VIT.I and VIT.T for both the MCMP and
voltage scaling applications. Recall that VIT stands for variable
iterations and time per parameter; during the optimization the
next PLSA parameter is taken when, for a given number
of iterations (VIT.I) or a given time (VIT.T), the quality
of the solution candidate has not improved.

For the MCMP application, the run-time limit for the hybrid
was set to h and the same two sets of PLSA parame-
ters were used as in the static heating case. Eleven runs were per-
formed for all cases. Results for dynamic heating on the MCMP
application are shown in Fig. 17 For the voltage scaling appli-
cation, the run time was min. Results for voltage
scaling with VIT.I and VIT.T using the Monte Carlo local search
are shown in Fig. 18. For the dynamic heating schemes, the
search algorithm operates with a given PLSA parameter until
the quality of the best solution has not improved for either
iterations (VIT.I) or s (VIT.T). It is therefore interesting to

observe the amount of time spent on each parameter during the
optimization. This is illustrated in Fig. 19.

5) Comparison of Heating Schemes: The results indicate
that the choice of parameter does affect the outcome of the
optimization process. For the MCMP application, there is a
pronounced region for fixed values around where
the hybrid (with fixed) performs best. This is illustrated in
Fig. 12(a) (also shown as the solid curves in Figs. 15 and 17).
This is due to the tradeoffs in accuracy and complexity with .
For smaller values of , a larger number of iterations can be
performed. (cf. Fig. 13). It seems that there is a point beyond
which increasing decreases the performance of the hybrid
algorithm. As illustrated in Fig. 20, continuously increasing
starting from also increases the accuracy of the
PLSA and therefore the effectiveness of the overall algorithm.
However, when a certain run-time complexity of
the PLSA is reached, the benefit of higher accuracy may be
outweighed by the disadvantage that the number of iterations
that can be explored is smaller. As a consequence, values
greater than may reduce the overall performance as the
number of iterations is too low. Fig. 14 depicts the performance
of the hybrid with fixed for the voltage scaling application
on six different applications. It can be seen that the region
of best performance is not as pronounced as in the MCMP
application, and that this optimal value of is different for
different applications.

The observation that certain parameter ranges appear to be
more promising than the entire range of permissible values
leads to the question of whether the heating schemes can do
better when using the reduced range. One would expect that
the static heating schemes, for which the number of iterations
at each parameter is fixed beforehand, would benefit the most
from the reduced range, since the hybrid would not be “forced”
to run beyond . The dynamic heating schemes, by con-
trast, will continue to operate on a given parameter as long as
the quality of the solution is improving. For the MCMP appli-
cation, range is centered around the
best fixed values. Figs. 15 – 18 compare the performance
over the two parameter ranges. For the static heating optimiza-
tions in Figs. 15 and 16, the performance is improved by using
the reduced parameter ranges. The dynamic heating optimiza-
tion in Fig. 17 shows a smaller relative improvement. The dy-
namic heating optimization in Fig. 18 actually shows a benefit
to using the expanded parameter range. It is important to note
that in practice one would not know about the characteristics of
the different parameter ranges without first performing an opti-
mization at each value. This would take much longer than the
simulated heating optimization itself, so in practice the broader
parameter range would probably be used. The data for fixed
for the MCMP problem [Fig. 12(a) and (b)] demonstrate that
it can be difficult to find the optimal value and that this op-
timum may be isolated, i.e., values close (e.g., 100) to op-
timum yield much worse results. If we calculate the median
over all values tried, the mean performance of the constant

approach is worse than the median performance of the FTS
and VIT methods.

Fig. 21 compares the results of the different heating schemes
for the MCMP application with population size and

BAMBHA et al.: SYSTEMATIC INTEGRATION OF PARAMETERIZED LOCAL SEARCH INTO EVOLUTIONARY ALGORITHMS 149

Fig. 14. Standard hybrid approach using fixed PLSA parameters, voltage scaling application, with Monte Carlo local search in (a) and hill climb local search in
(b). Hybrid was run for 20 min at each value of p. Median of 11 runs for each p. Lower values of power are better. We see that the optimal value of p is different
for the six different input dataflow graphs.

Fig. 15. Static heating for MCMP with the local search parameter p varied in
two different ranges—the first range covers all possible values (1-612), while
the second range (1-153) is concentrated around the best fixed p value. (i) [FIS,
R], (ii) [FIS,R], (iii) [FTS,R], and (iv) [FTS, R]. The solid curve depicts
the standard hybrid approach for different values of p. Lower values of cost are
better. The box plots display the static heating results. The solid line across the
box represents the median over all calculations. The lowest cost is obtained for
the standard hybrid approach with p = 39. The best static heating scheme is (iv),
corresponding to FTS operating in the restricted parameter range which includes
p = 39. We note that this value of p could not be determined in advance, and
could only be found by running the standard hybrid solution for all values of p.

parameter range . Fig. 22 compares the heating schemes for
the voltage scaling application on different graphs for both types
of local search.

Comparing the heating schemes across all different cases,
we see that the dynamic heating schemes performed better in
general than the static heating schemes. For all cases, the best
heating scheme was dynamic. For the binary KP and the voltage
scaling problem, simulated heating always outperformed the
standard hybrid approach.

TABLE I
ITERATIONS PERFORMED PER PARAMETER VALUE FOR FOUR

DIFFERENT HEATING SCHEMES FOR MCMP. THE NUMBERS

CORRESPOND TO A SINGLE OPTIMIZATION RUN

For the MCMP problem, there was one PLSA parameter
where the standard hybrid approach slightly outperformed the
dynamic, simulated heating approach. We note that in practice,
one would need to scan the entire range of parameters to
find this optimal value of fixed , which is in fact equivalent
to allotting much more time to this method. Thus, we can say
that the simulated heating approach outperformed the standard
hybrid approach in the cases we studied.

6) Effect of Population Size: Fig. 23 shows the effect of
the population size for MCMP for the static heating schemes.
Fig. 24 shows the effect of population size on the dynamic
heating schemes for MCMP.

For FIS, smaller population sizes seem to be preferable. The
larger number of iterations that can be explored for
may be an explanation for the better performance. In contrast,
the heating scheme FTS achieves better results when a larger
population is used. For the dynamic heating schemes,
the results seem to be less sensitive to the population size.

7) Discussion: Several trends in the experimental data are
summarized below.

• The dynamic variants of the simulated heating technique
outperformed the standard hybrid global/local search
technique.

• When employing the standard hybrid method utilizing a
fixed parameter , an optimal value of may be isolated
and difficult to find in advance.

150 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 8, NO. 2, APRIL 2004

Fig. 16. Static heating for voltage scaling with different parameter ranges—(i) [FIS, R], (ii) [FIS, R], (iii) [FTS, R], and (iv) [FTS, R] (shown in the four
box plots) compared with the standard hybrid method results (fixed values of p shown in the solid line). Here, the static heating schemes all perform better than
the standard hybrid approach. The first parameter range includes all values of p, while the second range is centered around the best fixed p value. This is shown
in more detail in (b).

Fig. 17. Dynamic heating for MCMP with different parameter ranges depicted
by the four box plots—(i) [VIT.I,R], (ii) [VIT.I,R], (iii) [VIT.T,R], and (iv)
[VIT.T,R]. The solid line represents the standard hybrid technique with p fixed
at different values from 1 to 612. The solid lines across the boxes represents the
median over all calculations. The lowest cost is obtained for the standard hybrid
approach with p = 39. The best dynamic heating scheme is (iv), corresponding
to VIT.T operating in the restricted parameter range which includes p = 39.
We note that this value of p could not be determined in advance, and could only
be found by running the standard hybrid solution for all values of p.

• Such optimal values of depend on the application.
• When performing simulated heating, our experiments

show that choosing the parameter range to lie around the
best fixed values yields better results than using the
broadest range in most cases. However, using the broader
range still produces good results, and this is the method
most likely to be used in practice.

• The dynamic heating schemes show less sensitivity to this
parameter range.

Fig. 18. Dynamic heating for voltage scaling with different parameter
ranges depicted by the four box plots—(i) [VIT.I, R], (ii) [VIT.I, R], (iii)
[VIT.T, R], and (iv) [VIT.T, R]. VIT.T refers to variable iterations and
time per parameter, with the next parameter taken if, for a given time, the
solution has not improved. The solid curve depicts results for the standard
hybrid approach. All the dynamic schemes outperform the standard hybrid
(fixed p) approach, with the lowest average power obtained for (i) VIT.I,
which utilizes the broader parameter range.

• Overall, the dynamic heating schemes performed better
than the static heating schemes.

• The dynamic heating schemes were also less sensitive to
the population size of the GSA.

VIII. CONCLUSION

Efficient local search algorithms, which refine arbitrary
points in a search space into better solutions, exist in many
practical contexts. In many cases, these local search algo-
rithms can be parameterized so as to trade off time or space

BAMBHA et al.: SYSTEMATIC INTEGRATION OF PARAMETERIZED LOCAL SEARCH INTO EVOLUTIONARY ALGORITHMS 151

Fig. 19. Percent of time spent on each parameter in range R (a) and in range R (b) for VIT.T.

Fig. 20. Relationship between the value of p and the outcome of the
optimization process.

complexity for optimization accuracy. We call these PLSAs.
We have shown that a hybrid PLSA/EA (parameterized local
search/evolutionary algorithm) can be very effective for solving
complex optimization problems. We have demonstrated the
importance of carefully managing the run-time/accuracy trade-
offs associated with EA/PLSA hybrid algorithms, and have
introduced a novel framework of simulated heating for this
purpose. We have developed both static and dynamic tradeoff
management strategies for our simulated heating framework,
and have evaluated these techniques on the binary KP and two
complex, practical optimization problems with very different
structure. These problems have vast solution spaces, and under-
lying PLSAs that exhibit a wide range of accuracy/complexity
tradeoffs. We have shown that, in the context of a fixed opti-
mization time budget, simulated heating better utilizes the time
resources and outperforms the standard fixed parameter hybrid
methods. In addition, we have shown that the simulated heating
method is less sensitive to the parameter settings.

APPENDIX

A. Implementation Details for MCMP

To solve the MCMP we use a GSA/PLSA hybrid where an
evolutionary algorithm is the GSA and CDPPO is the PLSA.
The evolutionary algorithm and parameterized CDPPO are ex-
plained below.

Fig. 21. Comparison of heating schemes for MCMP withN = 100. The two
box plots on left correspond to the static heating schemes. The two box plots
on the right correspond to dynamic heating schemes. The best results (lowest
memory cost) are obtained for the VIT.T dynamic heating scheme. This refers to
variable iterations and time per parameter, where the parameter is incremented
if the overall solution does not improve after a predetermined time, called the
stagnation time. The solid curve represents the standard hybrid approach applied
at different values of fixed p. The point p = 39 slightly outperforms the VIT.T
scheme.

B. GSA: Evolutionary Algorithm for MCMP

Each solution is encoded by an integer vector, which rep-
resents the corresponding schedule, i.e., the order of actor ex-
ecutions (firings). The decoding process that takes place in the
local search/evaluation phase (step 5 in Fig. 2) is as follows.

• First, a repair procedure is invoked, which transforms the
encoded actor firing sequence into a valid flat schedule.

• Next the parameterized CDPPO is applied to the resulting
flat schedule in order to compute a (sub)optimal looping,
and afterward the data requirement (buffering cost)
and the program requirement (code size cost) of

152 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 8, NO. 2, APRIL 2004

Fig. 22. Comparison of heating schemes for voltage scaling with (a) Monte Carlo and (b) hill climb local search. The two box plots on left correspond to the
FIS and FTS static heating schemes, while the two box plots on the right correspond to dynamic heating schemes VIT.I and VIT.T. The line across the middle of
the boxes represents the median over the runs, while the “whisker lines” are drawn at the 10th and 90th percentiles. The solid curve represents the standard hybrid
approach applied at different values of fixed p. In this application, all the simulated heating schemes outperformed the standard hybrid approach. The best results
were obtained for the dynamic VIT.T scheme.

Fig. 23. Static heating with different population sizes. (a) FIS. (b) FTS.

the software implementation represented by the looped
schedule are calculated based on a certain processor
model.

Finally, both and are normalized (the minimum
values and and maximum values and
for the distinct objectives can be determined beforehand) and a
fitness is assigned to the solution according to the following
formula:

(11)

Note that the fitness values are to be minimized here.

C. PLSA: Parameterized CDPPO for MCMP

The “unparameterized” CDPPO algorithm was first pro-
posed in [26]. CDPPO computes an optimal parenthesization
in a bottom-up fashion, which is analogous to dynamic pro-
gramming techniques for matrix-chain multiplication [28].
Given a dataflow graph and an actor invocation
sequence (flat sequence) , where each ,
CDPPO first examines all two-invocation subchains

to determine an optimally-compact
looping structure (subschedule) for each of these subchains.
For a two-invocation subchain (), the most compact
subschedule is easily determined: if , then () is the

BAMBHA et al.: SYSTEMATIC INTEGRATION OF PARAMETERIZED LOCAL SEARCH INTO EVOLUTIONARY ALGORITHMS 153

Fig. 24. Dynamic heating with different population sizes. (a) VIT.I. (b) VIT.T.

most compact subschedule, otherwise, the original (unmodi-
fied) subschedule is the most compact. After the optimal
two-node subschedules are computed in this manner, these
subschedules are used to determine optimal three-node sub-
schedules (optimal looping structures for subschedules of the
form); and the two- and three-node subschedules
are then used to determine optimal four-node subschedules,
and so on until the node optimal subschedule is computed,
which gives a minimum code size implementation of the input
invocation sequence .

Due to its high complexity, CDPPO can require significant
computational resources for a single application—e.g., we have
commonly observed run times on the order of 30–40 s for prac-
tical applications. In the context of global search techniques,
such performance can greatly limit the number of neighbor-
hoods (flat schedules) in the search space that are sampled. To
address this limitation, however, a simple and effective param-
eterization emerges: we simply set a threshold on the max-
imum subchain (subschedule) size to which optimization is at-
tempted. This threshold becomes the parameter of the resulting
parameterized CDPPO (PCDPPO) algorithm.

In summary, PCDPPO is a parameterized adaptation of
CDPPO for addressing the schedule looping problem. The run
time and accuracy of PCDPPO are both monotonically nonde-
creasing functions of the algorithm “threshold” parameter .
In the context of the memory minimization problem, PCDPPO
is a genuine PLSA.

D. Voltage Scaling Implementation

To solve the dynamic voltage scaling optimization problem,
we use a GSA/PLSA hybrid where an evolutionary algorithm
is the GSA and the PLSA is either a hill climbing or Monte
Carlo search utilizing the period graph. Two different local
search strategies were implemented—hill climbing [29] and
Monte Carlo [30]. Pseudocode for both local search methods
is shown in Figs. 25 and 26. The benefit of using a local

Fig. 25. Pseudocode for hill climb local search for voltage scaling application.

search algorithm is that within a restricted voltage range we
can use the period graph estimator for the throughput, which
is much faster than performing a simulation. The local search
algorithms are explained further.

154 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 8, NO. 2, APRIL 2004

Fig. 26. Pseudocode for Monte Carlo local search for voltage scaling
application.

E. GSA: Evolutionary Algorithm for Voltage Scaling

Each solution is encoded by a vector of positive real num-
bers of size representing the voltage assigned to each of the

tasks in the application. The one-point crossover operator
randomly selects a crossover point within a vector then inter-
changes the two parent vectors at this point to produce two new
offspring. The mutation operator randomly changes one of the
elements of the vectors to a new (positive) value. At each gener-
ation of the EA, an entirely new population is created based on
the crossover and mutation operators. The crossover probability
was 0.9, the mutation probability was 0.1, and the population
size was 50.

F. Voltage Scaling PLSA 1: Hill Climb Local Search

For the hill climbing algorithm, we defined a parameter ,
which is the voltage step, and a resimulation threshold , which
is the maximum amount that the voltage vector can vary from
the point at which the period graph was calculated. We ran the
algorithm for iterations. So for this case, the PLSA had three
parameters , , and . One iteration of local search consisted of
changing the node voltages, one at a time, by , and choosing
the direction in which the objective function was minimized.
From this, the worst case cost for iterations would
correspond to evaluating the objective function times, and
resimulating () times. For our experiments, we fixed
and and defined the local search parameter as . Then,
for smaller (corresponding to larger resimulation threshold)

the voltage vector can move a greater distance before a new sim-
ulation is required. For a fixed number of iterations in the local
search, a smaller corresponds to a shorter running time
for . The accuracy is lower, since the accuracy of the
period graph estimate decreases as the voltage vector moves far-
ther away from the simulation point.

G. Voltage Scaling PLSA 2: Monte Carlo Local Search

In the Monte Carlo algorithm, we generated random
voltage vectors within a distance from the input vector. For
all points within a resimulation threshold , we used the period
graph to estimate performance. A greedy strategy was used to
evaluate the remaining points. Specifically, we selected one
of the remaining points at random, performed a simulation to
construct a new period graph, and used the resulting estimator
to evaluate all points within a distance from this point. If
there were points remaining after this, we chose one of these
and repeated the process. For the experiments, we fixed and

and defined local search parameter . As for the hill
climbing local search, smaller values of correspond to shorter
run times and less accuracy for the Monte Carlo local search.

REFERENCES

[1] P. Merz and B. Freisleben, “A comparison of memetic algorithms, Tabu
search, and ant colonies for the quadratic assignment problem,” in Proc.
Int. Conf. Evolutionary Computation (CEC ’99), 1999, pp. 2063–2070.

[2] C. Fleurent and J. Ferland, “Genetic hybrids for the quadratic assignment
problem,” DIMACS Series in Discrete Math. Theor. Comput. Sci., vol.
16, pp. 173–188, 1994.

[3] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for parti-
tioning graphs,” Bell Syst. Tech. J., vol. 49, pp. 291–307, 1970.

[4] T. Feo and M. Resende, “A probabilistic heuristic for a computationally
difficult set covering problem,” Oper. Res. Lett., vol. 8, pp. 67–71, 1989.

[5] M. Vazquez and D. Whitley, “A hybrid genetic algorithm for the
quadratic assignment problem,” in Proc. GECCO 2000, 2000, pp.
169–178.

[6] E. Zitzler, J. Teich, and S. S. Bhattacharyya, “Optimizing the efficiency
of parameterized local search within global search: A preliminary
study,” in Proc. Congr. Evolutionary Computation, July 2000, pp.
365–372.

[7] D. Goldberg, Genetic Algorithms in Search, Optimization and Machine
Learning. Reading, MA: Addison-Wesley, 1989.

[8] L. Davis, Handbook of Genetic Algorithms. New York: Van Nostrand,
1991.

[9] H. Ishibuchi and T. Murata, “Multi-objective genetic local search al-
gorithm,” in Proc. IEEE Conf. Evolutionary Computation (ICEC ’96),
1996, pp. 119–124.

[10] M. Ryan, J. Debuse, G. Smith, and I. Whittley, “A hybrid genetic algo-
rithm for the fixed channel assignment problem,” in Proc. GECCO ’99,
vol. 2, 1999, pp. 1707–1714.

[11] E. Zitzler, J. Teich, and S. S. Bhattacharyya, “Evolutionary algorithm
based exploration of software schedules for digital signal processors,”
in Proc. GECCO ’99, vol. 2, 1999, pp. 1762–1769.

[12] S. Reiter and G. Sherman, “Discrete optimizing,” J. Soc. Ind. Appl.
Math., vol. 13, pp. 864–889, 1965.

[13] T. Feo, K. Venkatraman, and J. Burd, “A GRASP for a difficult
single machine scheduling problem,” Comput. Oper. Res., vol. 18, pp.
635–643, 1991.

[14] S. Karzalis, S. Papadakis, and J. Theocharis, “Microgenetic algorithms
as generalized hill-climbing operators for GA optimization,” IEEE
Trans. Evol. Comput., vol. 5, pp. 204–217, June 2001.

[15] H. He, J. Xu, and X. Yao, “Solving equations by hybrid evolutionary
computation techniques,” IEEE Trans. Evol. Comput., vol. 4, pp.
295–304, Sept. 2000.

[16] D. E. Goldberg and S. Voessner, “Optimizing global-local search hy-
brids,” in Proc. GECCO ’99, vol. 1, 1999, pp. 220–228.

[17] D. Pisinger, “An expanding-core algorithm for the exact 0–1 knapsack
problem,” Eur. J. Oper. Res., vol. 87, pp. 175–177, 1995.

BAMBHA et al.: SYSTEMATIC INTEGRATION OF PARAMETERIZED LOCAL SEARCH INTO EVOLUTIONARY ALGORITHMS 155

[18] E. Balas and E. Zemel, “An algorithm for large zero-one knapsack prob-
lems,” Oper. Res., vol. 28, pp. 1130–1154, 1980.

[19] D. Pisinger, “Core problems in knapsack algorithms,” Univ. Copen-
hagen, Copenhagen, Denmark, Tech. Rep. 94/26, DIKU, 1994.

[20] [Online]. Available: http://www.diku.dk/pisinger/codes.html
[21] T. Pering, T. Burd, and R. Broderson, “The simulation and evaluation

of dynamic voltage scaling algorithms,” in Proc. Int. Symp. Low Power
Electronics Design, Aug. 1998, pp. 76–81.

[22] N. K. Bambha and S. S. Bhattacharyya, “A joint power/performance
optimization technique for multiprocessor systems using a period graph
construct,” in Proc. Int. Symp. System Synthesis, Madrid, Spain, Sept.
2000, pp. 91–97.

[23] E. L. Lawler, Combinatorial Optimization. New York: Holt, Rinehart
and Winston, 1976.

[24] A. Dasdan and R. K. Gupta, “Faster maximum and minimum mean cycle
algorithms for system-performance analysis,” IEEE Trans. Computer-
Aided Design, vol. 17, pp. 889–899, Oct. 1998.

[25] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, Software Synthesis
from Dataflow Graphs. Norwell, MA: Kluwer, 1996.

[26] , “Optimal parenthesization of lexical orderings for DSP block di-
agrams,” in Proc. Int. Workshop VLSI Signal Processing, Sakai, Osaka,
Japan, Oct. 1995, pp. 177–186.

[27] E. Zitzler, J. Teich, and S. S. Bhattacharyya, “Multidimensional explo-
ration of software implementations for DSP algorithms,” J. VLSI Signal
Processing, vol. 24, no. 1, pp. 83–98, Feb. 2000.

[28] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algo-
rithms. MA: MIT Press, 1992.

[29] D. Kreher and D. Stinson, Combinatorial Algorithms: Generation, Enu-
meration, and Search. Boca Raton, FL: CRC, 1999.

[30] M. Kalos and P. Whitlock, Monte Carlo Methods. New York: Wiley,
1986.

Neal K. Bambha (S’99) received the B.S. degrees
in physics and electrical engineering (honors) from
Iowa State University, Ames, the M.S. degree in
electrical engineering from Princeton University,
Princeton, NJ, and is working toward the Ph.D.
degree in electrical and computer engineering at the
University of Maryland, College Park.

He is a Member of the Technical Staff at the
U.S. Army Research Laboratory, Adelphi, MD.
His research interests include hardware/software
co-design, signal processing, optical interconnects

within digital systems, and evolutionary algorithms.

Shuvra S. Bhattacharyya (S’87–M’91–SM’01) re-
ceived the B.S. degree from the University of Wis-
consin, Madison, in 1987, and the Ph.D. degree from
the University of California at Berkeley, in 1994.

He is an Associate Professor in the Department
of Electrical and Computer Engineering, and the In-
stitute for Advanced Computer Studies (UMIACS),
University of Maryland, College Park. He is also an
Affiliate Associate Professor in the Department of
Computer Science. He has held industrial positions as
a Researcher at the Hitachi America Semiconductor

Research Laboratory, San Jose, CA, and as a Compiler Developer at Kuck & As-
sociates, Champaign, IL. He is coauthor of two books and the author or coauthor
of more than 60 refereed technical articles. His research interests include signal
processing, embedded software, and hardware/software co-design.

Jürgen Teich (S’89–M’95) received the Dipl.-Ing.
degree (honors) from the University of Kaiser-
slautern, Kaiserslautern, Germany, in 1989, and
the Ph.D. degree (summa cum laude) from the
University of Saarland, Saarbrücken, Germany, in
1993. His Ph.D. thesis entitled “A Compiler for
Application-Specific Processor Arrays” summarizes
his work on extending techniques for mapping
computation intensive algorithms onto dedicated
VLSI processor arrays.

In 1994, he joined the DSP design group of Prof.
E. A. Lee and D. G. Messerschmitt in the Department of Electrical Engineering
and Computer Sciences (EECS), University of California at Berkeley, where
he worked on the Ptolemy project (PostDoc). From 1995 to 1998, he held a
position at the Institute of Computer Engineering and Communications Net-
works Laboratory (TIK), Swiss Federal Institute of Technology (ETH), Zürich,
Switzerland, finishing his Habilitation entitled “Synthesis and Optimization of
Digital Hardware/Software Systems” in 1996. From 1998 to 2002, he was a
Full Professor in the Electrical Engineering and Information Technology De-
partment, University of Paderborn, Paderborn, Germany, holding a Chair in
computer engineering. Since 2003, he has been a Full Professor in the Com-
puter Science Institute, Friedrich-Alexander University, Erlangen, Nuremberg,
Germany, holding a Chair in hardware-software-co-design. He is the author of
Co-Design (Berlin, Germany: Springer-Verlag, 1997). His research interests are
massive parallelism, embedded systems, co-design, and computer architecture.

Dr. Teich has been a member of multiple program committees of well-known
conferences and workshops.

Eckart Zitzler (M’02) received the diploma degree
in computer science from the University of Dort-
mund, Dortmund, Germany, in 1996, and the Ph.D.
degree in technical sciences from the Swiss Federal
Institute of Technology (ETH), Zürich, Switzerland,
in 2000.

Since 2003, he has been an Assistant Professor for
Systems Optimization at the Computer Engineering
and Networks Laboratory, Department of Informa-
tion Technology and Electrical Engineering, ETH.
His research focuses on bio-inspired computation,

multiobjective optimization, computational biology, and computer engineering
applications.

Dr. Zitzler was General Co-Chairman of the first two international con-
ferences on Evolutionary Multicriterion Optimization (EMO 2001 and EMO
2003), held in Zürich, Switzerland, and Faro, Portugal, respectively.

