DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo — Trento (ltaly), Via Sommarive 14
http://www.dit.unitn.it

QUANTUM GENETIC OPTIMIZATION

Andrea Malossini, Enrico Blanzieri and Tommaso Calarco

April 2007

Technical Report # DIT-07-019

IEEE TRANSACTION ON EVOLUTIONARY COMPUTATION, VOL. 0, NO, OMARCH 2007 1

Quantum Genetic Optimization

Andrea Malossiri3, Enrico Blanzied and Tommaso Calarés*

Abstract

The complexity of the selection procedure of a genetic dégar that requires reordering, if we restrict the class
of the possible fitness functions to varying fitness funatjaa O (N log N) where N is the size of the population.
The Quantum Genetic Optimization Algorith @GOA) exploits the power of quantum computation in order to speed
up genetic procedures. While the quantum and classicaltigesigorithms use the same number of generations, the
QGOA outperforms the classical one in identifying the high-fimeubpopulation at each generationQG0A the
classical fitness evaluation and selection proceduresemtaced by a single quantum procedure. We show that the
complexity of ourQGOA is O (1) in terms of number of oracle calls in the selection procedGuch theoretical

results are confirmed by the simulations of the algorithm.

Index Terms

Evolutionary computing and genetic algorithms, quanturmatation.

I. INTRODUCTION

Quantum algorithms exploit the laws of quantum mechanicsriter to perform efficient computation. Such
efficiency is granted when the algorithm is run on a quantumpger, whereas the simulation on a classical
computer can be very resource-consuming. It has been sh@atmgiaantum computation can dramatically improve
performance for solving problems like factoring [1] or sgd@ng in an unstructured database [2]. On the other hand,
genetic algorithms [3] can be described, basically, aschealgorithms. They work on a set of elements, called
population that evolves, by means of crossover and mutation, towamisbdmum of the fitness function. Since
their proposition, genetic algorithms have proved to becieffit and flexible algorithms for solving a wide range
of problems. Some attempts have been made in order to haveadabsvare implementation of genetic algorithms
[4]. In this perspective, having a quantum version of a geragorithm seems to be a relevant topic in the future,
when quantum computers will be available. Moreover, thegrdation between the two paradigms can be a way of

applying quantum computation to hard problems [5] for whicjuantum algorithm is not available yet.

LUniversity of Trento. Department of Information and Comriwzation Technology.
2Consiglio Nazionale delle Ricerche, BEC-INFM Trento

3ECT* - European Centre for Theoretical studies in nuclearsiais and related areas.
4ITAMP, Harward University.

2 IEEE TRANSACTION ON EVOLUTIONARY COMPUTATION, VOL. 0, NO, OMARCH 2007

The possible interplay between quantum and genetic algosithas been only partially explored. One of the first
attempts to analyze benefits and drawbacks of a quantum agpto genetic algorithm is presented by Rylander
et al. [6], where the elements of the population are quantudividuals (qubits). The qubit representation for
the elements of the population is a key point for the use ofghantum algorithm. For example by adopting a
gubit chromosome representation, a classical populattonbe generated by repeatedly measuring the quantum
population and then its best elements are used to updateuti@uom population [7]. Other interesting approaches
are to consider the elements of the population as quantunitsirand then to evolve them toward a target quantum
circuit [8] or to use a quantum neural network to measure kamaously the fitness values of all the possible
elements of the population [9]. A recent survey on quantumetie algorithms in general discussed some of the
drawbacks of existing quantum genetic algorithms and ptesesome genetic algorithms for quantum circuit design
[10]. Applications of quantum computation are wide-spiegdn many different areas, for example quantum genetic
algorithms for feature selection [11] or quantum algorighior handling probabilistic, interval and fuzzy uncertgin
[12].

A promising area in which the combination of quantum compioteand genetic algorithms can give advantages
is that of applications with varying fithess functions. Iresk applications the fithess function varies between
genetic steps depending on some external time-dependgsitphinput. A very relevant example is given by noise
in quantum control processes. In this scenario (alreadyl@mag, in its classical version, in quantum chemistry
experiments), genetic algorithms are used to select offyirslaaped fields to drive a desired physical process, for
instance a laser-assisted molecular reaction [13], [T¥puch a case, the oracle consists of the physical process
itself, rather than of a mathematical construction.

In this paper, we present a quantum genetic optimizatioardhlgn (QGOA), a quantum algorithm that exploits
the power of quantum computation in the fitness evaluatiah section procedures, and we show how to take
advantage of quantum phenomena to efficiently speed upicdas®mputation. In particular, we will see that the
QGOA outperforms a classical genetic algorithm when the fithasstfon is varying [15] between genetic steps.

We exploit the power of quantum computation not only to repre the population by means of qubits, but
also to perform fitness evaluation and selection. The dlyoris based on the Durr—Hgyer quantum algorithm for
finding the minimum in an unsorted table [16]. Our resulty r@h the observation that it is possible to stop the
quantum procedure of the Durr—Hgyer algorithm and to usepidutial result for the selectioQGOA uses the
whole population at each genetic step, and in this sensenibeaconsidered a “global search” algorithm.

A theoretical description 0QGOA is provided as well as a detailed analysis of the algorithmmexity. In
particular, we show that the complexity of the quantum g&lacprocedure (which includes the quantum fitness
evaluation) does not depend on the size of the populatioMMoreover, we show that the convergence speed, in
terms of genetic steps, of the quantum genetic optimizatlgarithm is comparable to the convergence speed of a
classical steady—state genetic algorithm with truncaglection. Finally, we provide a simulation of the algamith
which fully validates the theoretical results.

The remainder of the present section is devoted to introdutiie concepts related to genetic and quantum

MALOSSINI et al: QUANTUM GENETIC OPTIMIZATION 3

computation that are necessary for presenting the algorith Table | we present the notations used in the paper.
Section Il presents oUPGOA. Section Il presents the analysis of the complexity wher@action IV is devoted
to simulating the algorithm and to empirically validatirftettheoretical results. Finally, we draw some conclusions

in Section V.

A. Introduction to Genetic Algorithms

Genetic algorithms are adaptive search algorithms bas#teavolutionary ideas of natural selection and genetics.
They are based on the principle first laid down by Charles Daf survival of the most fit. First pioneered by
John Holland [17], genetic algorithms have been widely isidtested and applied in many fields. A generic
steady—state genetic algorithm is sketched in Fig. 1. Tisé step is the creation of a random population where
each element is coded using a specific representation tbhatles a set of features defined by the problem. Then
a fitness functions used to evaluate each individual, and the reproductieeess varies with the fitness value.
Two high—fitness elements are chosen for crossover and ioutdthe procedure generates two new offspring that
replace two random elements of the population. The prooassneies until the population’s total fitness reaches a
specified threshold or the number of genetic steps attainredefined value.

In genetic algorithms théitness functiorof the problem leads the population to converge toward a latipn
that fits the solution requirements. For complex problenesdéfinition of an exact fithess function that describes
perfectly the nature of the problem is often not possible and is forced to use approximate fithess functions.
This implies that during the selection procedure one cadisariminate between two individuals with almost the
same fitness value and a more fruitful approach is to seleaidn of high—fitness individuals and to use them
for generating new offspring. This selection procedureaited truncation selectiorj18], [19]. In thegenerational
approach a new population is generated at every geneticvstigh substitutes the old population. In tineremental
(or steady—stadeapproach only two new offspring are generated at everytgestep and inserted in the population.

The latter approach is needed when we are dealing with \@ffitimess functions.

B. Introduction to Quantum Search Algorithms
The basic unit of information in quantum computation is thubit A qubit is a two—level quantum system and
it can be represented by a unit vector of a two dimensiondidtiilspaced, 5 € C):

[v)=al0)+8|1), |a+[8 =1

where we denote with0) and| 1) the basis states, adopting tket notationfor quantum state vectors. A two—level
guantum system is described by a superposition of the btisss whereas a two—level classical system can be
just in one of the basis states 0 or 1.

The evolution of a quantum system is described by speciaatimperatorsynitary operator§ U which operate

1A linear operator is said to benitary if UUT = UTU =1, whereU denotes the adjoint of the operator.

4 IEEE TRANSACTION ON EVOLUTIONARY COMPUTATION, VOL. 0, NO, OMARCH 2007

on qubits.

Uly) =Ule|0) +5|1)] = aU[0) + BU[1).

An important consequence of the linearity of quantum ojpesas that the evolution of a two—level quantum system
is the linear combination of the evolution of the basis sthte and|1). This is known agjuantum parallelismOn

the contrary in a two—level classical system we are forcezltdve the two possible states 0 and 1 separately. When
we want to transfer information from the quantum system tdéaasical one, we have to performeasurementsf

the quantum state, whose result is probabilistic: we gesthU| 0) with probability |«|? and the staté/| 1) with
probability |3]2. The No cloning theoremsee [20], states that it is not possible to clone a quantate s) and
consequently to obtain full information on the coefficieatand 5 from a single copy of ¢). Another important
feature arising from the linearity of quantum mechanicsrisanglementThe state of a composite classical system
AB is completely determined by the state of its sub—systébmsthe contrary, the state of a composite quantum
system is theensor productz of the states of the component systems; so a state of a campysiem|))ap

could be like
1
V2

which is not of the form -)4 ®| -). Such aBell stateis said to beentangled Entanglement is a quantum resource

|Bell)ap = —=[|0)Aa®[0)s +]1)a ®|1)8],

that permits, for instance, quantum teleportation [21].

The two main quantum algorithms developed up to now are Quarfourier TransformQ@FT) [1], and the
Grover Search Algorithm [2IQFT can be used to solve problems like discrete logarithm, dideing and factoring
[22] and it lies out of the scope of this paper. The Grover algm has been used in tH@BHT algorithm [23]
(BBHT is the acronym of the authors’ names) and in the Dugyét algorithm [16]. We briefly review the three
algorithms below.

1) Grover algorithm: The algorithm solves the problem of searching in an unairect database. It has been
shown that the Grover algorithm '@(N/t) where IV is the number of entries in the database and the
number of possible solutions [2]. Classical algorithms golving this problem must, instead, look at each entry
of the database until a solution is found, i. e. , they @¢N/t). The basic idea of the Grover's algorithm is to
amplify the coefficients of the superposition of all elensgrthat correspond to the solutions of the given problem,
while reducing the others. This procedure is performed hylyépg a unitary operato© (\/N—/t) times. Then a
measurement of the quantum state obtained will yield, with hprobability, one of the possible solutions. The
non-structuredness requirement is essential for aclyehim speed—up stated above, otherwise classical binary tre
search would solve the problem @ (log N). It should be emphasized that a classical procedure alweysits to
collect all the solutions in the database (by seeking thnaalbthe entries); on the contrary the probabilistic nature
of quantum measurement allows to get one solution at randoong the solutions of the database. By repeating
the whole quantum procedure, however, it is possible toiolmther solutions.

2) BBHT algorithm:When the number of solutions is known in advance, one can ueee@s algorithm to look

for one of them. Without previous knowledge of the numberatisonst marked by the oracle, one cannot use

MALOSSINI et al: QUANTUM GENETIC OPTIMIZATION 5

the Grover algorithm. This impossibility arises becaus¢him amplitude amplification process we cannot compute
the number of iterations to be performed in order to maxintiiee coefficients of the solution. However, when the
number of solutiong is a priori unknown, it is still possible to use a remarkableugtum algorithm calle@BHT

[23] for finding a solution in a set of item§T; },—0.... x—1 given an oracle that recognizes a solution.

.

Here we give a brief summary of tH@BHT algorithm and report the main complexity result. We assuate,

first, thatl <t < 3N/4, whereN is the total number of elements.

1) Initializem = 1, setA = 6/5 (any value between 1 and 4/3 would do) and create the [stafé = H®"|0) =
T ;i)

2) Choosei uniformly at random among the non-negative integers sméii@nm.

3) Apply 7 iterations of Grover’s algorithm starting from the initistlate| ¥).

4) Measure the register: letbe the outcome.

5) If the selected elemerft, is a solution therexi t .

6) Otherwise, setn to min(\m, v/ N) and go back to step 2.

The case > 3N/4 can be treated in constant time by classical sampling.

Theorem 1.1:The BBHT algorithm finds a solution in an expected time(@f(\/]\f—/t).

Proof: See [23]. [|

Remark 1.2:As a step of the proof the authors showed that the number ofeoqaeries is bounded from above
by 4\/N/t = kgur+/N/t whent < N.

3) Durr—Hgyer algorithm:The Durr—Hgyer algorithm is a quantum algorithm for findthg minimum within an
unsorted table ofV items [16]. The core of the algorithm is a procedure whiclinret the index of an item smaller
than the item determined by a particular threshold, by ugieBBHT algorithm. This procedure is iterated until
the minimum is reached. Durr and Hgyer showed that suchgoritim requires an expected number(@‘(\/ﬁ)
iterations.

4) Quantum evaluation of function$n classical computation a small set of classical gates fA\NP OR NOT)
can be used to compute an arbitrary classical function; dasimesult is still true in quantum computation.

A set of gates is said to h#niversal for quantum computatiahany unitary operation may be approximated to
arbitrary accuracy by a quantum circuit involving only thagates. It has been shown that usit@damard, phase,
CNOT andn/8 gates, any arbitrary unitary operation can be approximaiearbitrary accuracy [22] Moreover,
any classical circuit can be made reversible by introdueirgpecial gate namembffoli gate The Toffoli gate has
three input bitsa, b, andc¢; ¢ andb are the first and the second “control bits”, whilds the “target bit”. The
gate does not change the control bits and flips the targetijtibboth control bits are set. The Toffoli gate can
be used to implememMIAND and FANOUT and it is reversible. Since a quantum version of the Toffalieghas
been developed (see e.g. [22]), a classical reversiblaitiftat computes a functiofi: {0,1}™ — {0,1}™ can be
converted to a quantum circuit that computes the same famchiote that if the function is not injective, one can

use ancilla qubit to make the circuit reversible.

6 IEEE TRANSACTION ON EVOLUTIONARY COMPUTATION, VOL. 0, NO, OMARCH 2007

II. QUANTUM GENETIC OPTIMIZATION ALGORITHM

The basic structure of our quantum genetic optimizatioorlgm is based on the classical structure of a steady—
state genetic algorithm. We present here the problem usifgjodal search” strategy, where we are considering
all the elements of the population. In particular we haveettgyed a quantum selection procedure that includes a
guantum fitness evaluation unit.

In Fig. 2 a comparison between the classical genetic algoréind the quantum genetic optimization algorithm
is shown. Notice that no external quantum evaluation prois needed since quantum fitness recalculation is
computed inside the quantum selection procedure. Thisepkge is based on the quantum algorithm for finding
the minimum proposed by [16], where it was shown that it issgae to find the minimum of a list by using a
variant of the Grover quantum search algorithnﬂr(\/ﬁ).

By reducing the number of iterations, we show that we cancselesub—population of optimal elements in
constant time and that the convergence speed, in terms etigexteps, of such an algorithm is comparable to the
convergence speed of a classical steady—state genetidgtlagavith truncation selection. The main difference is
that, in the quantum selection procedure, at each genefictlse choice of an optimal sub—population is performed

in constant time, whereas in a classical selection proeednrordering algorithm is needed.

A. Quantum fitness evaluation unit

As explained in the introduction, given a classical reydestircuit that computes a fitness functiét;j) = Fj,
wherej € {0,...,N — 1} are the elements of the population in binary representaiiaan be converted into a
guantum circuit yielding @uantum fitness evaluatimperatoiUz. Clearly there is no general recipe for constructing
Ur because its physical realization depends on the problerarat.h

If we use quantum binary encodirfgfor the elements, the superposition of all elements of theufadion is
denoted by
S}

7=0

ﬂ\

and the action of the quantum black box results in
Up|¥)[0) = Z 13 Fy),

Hence, using/r only once, we can compute all the fitness val§és | j = 0,..., N — 1} of the population,
whereas the classical procedure requikegitness evaluations. The process of measurement wouldoglesich a
superposition, giving us only one fitness value. So at tlagestwe could not gain any useful information on the
best elements of the population. The oracle of the quantlactsmn procedure includes this unit to “mark” all the

elements of the population that fulfill the conditidfy > F),, wherey is a threshold index.

2Givenj =bg * 20 4+ by * 21 + -+ + b1 %27~ whereb; € {0,1}, then|j) = |bo) @ |b1) ® - @ | bp_1)

MALOSSINI et al: QUANTUM GENETIC OPTIMIZATION 7

The oracle is always the same during the computation. Itstiigpa superposition of all th&/ elements of the
population at every genetic step (this is a "global searchi§nce, its capacity is N. The oracle is the same at
every genetic step; however, the fitness function can vanydsn steps depending on some external time-dependent

physical input, in addition to the logical input provided the qubits.

B. Quantum selection procedure

The quantum selection procedure is based on the algorithfor dihding the minimum of a list ofV items [16].
The authors showed that for finding the (absolute) minimumymber of iterationg) (\/N) is needed. Here, we
are not interested in finding the minimum, but in selectingila—population of near—optimal elements of the whole
population, namely elements with a relatively high valuditfess. The algorithm works as described in Fig. 3.

Definition 2.1: A DuUrr—Hgyer iterationis the sequence of operations defined in 2a, 2b, 2c of the Qumant
Selection Algorithm. We denote withy, the number of Durr—Hgyer iterations.

Remark 2.2:Whenn;, = 1, we obtain theBBHT algorithm. Durr and Hayer analyzed the cage= oc.

One might argue that a probabilistic algorithm could do dltbe same, by choosing (log R) elements, wheré?

is a fraction of the entire population, evaluating the fismesction for the chosen elements (and only for them), and
picking the best one. Such an assumption is not correct $ireceonvergence of the genetic algorithm is different
for the two selection procedures. Aftef, iterations we have a probability for choosing the best elenoé the
population equal taR/N; instead in this classical probabilistic algorithm the kpability would be onlylog R/N
(exponentially smaller). The main difference is that in @ase we choose among the best elements, in the other

we choose in a completely random way.

IIl. COMPLEXITY OF THE ALGORITHM

In this section we present a complexity analysis of the QuanGenetic Optimization Algorithm, in order to
compare it with a classical genetic algorithm. We do not @ersthe computational cost of crossover, mutation
and substitution of th€@ GOA because they are constant for each genetic step and cldssicmth algorithms,
and concentrate our analysis on the quantum selection guoeewhose time—complexity in terms of oracle calls
will be deeply investigated. The time required for a singtaate call will depend on the technology used for
implementing the oracle.

Let us consider the complexity of the quantum selection gdace step by step. Steps (1) and (3) of the Quantum
Selection Procedure do not enter in the complexity calmragince they are performed only once and in constant
time. Step (2a) initializes the quantum memory and it is quenkedn,, times. Step (2c) performs the measurement
process and it requires, classical computations of the fithess function. Step (2bjerms of number ofi-qubit
operators, is the most onerous and, from the point of vievhefdomplexity, it requires a deeper analysis. We will
analyze this step in terms of number afacle calls The oracle includes the quantum fitness evaluation unit and

inverts the amplitude of the elements with fitness greaten tr equal to a given threshold,. We will consider

8 IEEE TRANSACTION ON EVOLUTIONARY COMPUTATION, VOL. 0, NO, OMARCH 2007

an oracle call as théme step unifor our analysis of step (2b) without taking into accounpstél), (3), (2a) and
(2c), because their cost depends linearlyrgnand it does not depend on the number of quhits log N.

We are interested in the expected number of oracle callseimtiantum selection procedure; it is known that the
BBHT algorithm requires? (\/N—/t) oracle calls, where is the number of marked elements (see Theorem 1.1).
Durr and Hagyer found that the expected number of oracles adlitheir algorithm in order to find the minimum
is 22.5+/N. In our algorithm the number of Durr—Hgyer iterations isagmeter and we need to characterize its
relation with the expected number of oracle calls. We wilbwhn this section (Theorem 3.4) that the expected
number of oracle calls is bounded from aboverby2(2™» — 1) wherex is a constant andy, is the number of
Durr—Hgyer iterations. This is our main result becausdaites that the expected number of oracle calls does not
depend on the dimension of the populatiyn In order to show this result we will need a bound on the exgubct
number of oracle calls (Theorem 3.3). Moreover we will shbatt, is directly related to the selection pressure
(Theorem 3.7).

In order to characterize the expected number of oracle of¢ep (2b) of theQuantum selection procedyree
need to prove a Lemma. We consider a list\dfelements and a fithess functignthat maps each element onto a
real positive value.

We define as theank of an element its positios € {1, N} in the list sorted in descending order of fitness
function values.

Lemma 3.1:The probabilityPr(s, m) of choosing an element of rankas threshold before the-th Durr—Hayer

iteration, is
Prs,my={ 3 Am =01 = gm) 62 = Ja) W
i Jm Jm—1---Js-J2- N
jnl*]:’17
ja=1

wheref(x) is the step functioh

Proof: We denote withPr(s,[) the probability that we choose an element of rankefore thel—th Durr—
Hayer iteration and wittPr(s|j,7) the conditional probability that we choose an element okrarbefore the
l—th Durr—Hgyer iteration, after an element of rankas been chosen in the previous iteration. We usddta

probability equation
N
Pr(s,l) = > Pr(s|j,1) - Pr(j,l = 1),
j=1

which holds because the set of possible events “choosindeameat of rank;” is a partition of the set of events.

During each Durr—Hgyer iteration we have that(s|j, 1) = % if s < j or zero otherwise, as ensured by step 3 of

3 1 z>0
0(x) = o
0 otherwise

MALOSSINI et al: QUANTUM GENETIC OPTIMIZATION 9

the algorithm:
06 —s)

Pr(s|j, 1) =

The first index is chosen uniformly at random from all elersesbPr(s, 1) = +;, whereN = 2. Using thetotal

probability equation recursively we finally obtain that

N
Pr(s,2) = Z Pr(s]j2,2) - Pr(j2,1)

XK (s — 5)0(js — js)
- Z Z Js-Jjo2- N

i 0(jm — $)0(im—1 — jm) -+ - 0(j2 — Js)
jm 'jmfl"'j3 '.j2 -N

Jm=1,
Jm—1=1,
ja=1
|
Definition 3.2: Let N, be the random variableumber of oracle calls during the:-th Durr—Hgyer iteration
Moreover, letN be the random variabl®tal number of oracle calls in the quantum selection praged
The following theorem uses the previous Lemma in order tondaihe expected number of oracle calls.

Theorem 3.3:The expectation of the total number of oracle calls in thentiua selection procedure is

N
K 1
< — — - Q(s), 2
vl
where
(Jm 1= jm)"'o(jZ—jB‘)
y=1+ —
2:: ng_:l Jm - Jm—1-""7J3 " J2
IJm—1=1,
ja=1

andx is a constant.

Proof: From the very definition of expectation and Theorem 1.1, tkgeeted number of oracle calls during

<3 prm

the m — th Durr—Hgyer iteration is

10 IEEE TRANSACTION ON EVOLUTIONARY COMPUTATION, VOL. 0, NO, OMARCH 2007

using Lemma 3.1 (Eq. 1) we show that

N
K 1
— — ifm=1
VN 2 N
E[Nm]< R i 9] ﬁejl l_Jl i (3)
\/N s=1, S =3 j2
Jmml_ll
szl
From the definition of\/ it is clear that
MNh
N=3" N,
m=1
whence we obtain
EN] < Y EN]
m=1

The bound of Theorem 3.3 depends on the number of elementseopdpulation. We now want to calculate
another upper bound for the expectationMf In particular, this upper bound is independent of the cemlity of

the population, as stated by the following theorem.

Theorem 3.4:The expected number of oracle calls in the quantum selegtiooedure is bounded by
EN]<k-2(2™ —1), (4)

wherex is a decreasing function ofy,.

Proof: First we show that for altn € {1, N}
E[Nm] < k-2 (5)

From calculus we have that

N N q
—<1+/ ——ds=2VN —1<2VN.
;\/5 1 Vs

Taking « = 1 for simplicity of notation, form = 1, from Eq. 3 it follows

ZNZI 1(2\/_1)
<o _

MALOSSINI et al: QUANTUM GENETIC OPTIMIZATION 11

For m > 1 we have

]m']mfl"']3'.]2'N

s=1 Jm=1,
jmflf]w
Ja2=1
1 N J2 Jm—1 Jm 1
sz:ljs:l Jm=1s= 1\/_ Jm - Jm—1-""J3 " J2
J2 Jm—1 1

N
1
< Z Z 2V Jm - = - —
N Jo=1793=1 Jm=1 Jm Jm—1"""]3"]J2

J2 Jm—1

1
Z\/Jm Jm—1"""J3 " Jo

Jj2=1j3=1 Jm=1

J2 Jm—2

<2_QZN: Y Vi

Gomlis=1 jm_1=1 s J2

m—1 N 1 2m 1
<= LT
VN = Vi~ VN

Now using Theorem 3.3 and the above results,

Th

EN] <k > 2M=r-2(2™ —1).
m=1

22/ N = 2™,

[]

Remark 3.5:It is important to emphasize that the bound depends:gronly and does not depend on the
dimension of the populatioV.

We have seen that the number of Durr—Hgyer iteratiopsletermines an upper bound to the number of oracle
calls during the quantum selection; it is an important patemof our algorithm and we want to understand deeply
its meaning.

Definition 3.6: We denote withZ,,, the random variablaumber of marked elements after theth Durr—Hgyer
iteration.

Theorem 3.7:Let N = 2"; the expected number of marked elements afteDurr—Hgyer iterations is
E[T.)=1+(2"-1)-27™. (6)

Proof: Form = 1, E[T1] = Zivzl s-Pr(s,1) = (N +1)/2. Form > 1, we change the order of summation

and obtain that

s=1
N N
Z Z 9 (Jm 1—Jm)"'9(32—33)
s—1 7m 1]m .]m 1° j3 'j2 - N

12 IEEE TRANSACTION ON EVOLUTIONARY COMPUTATION, VOL. 0, NO, OMARCH 2007

J2 Jm—1 Jm 1

_$8.898,

jo=1jsz=1 jm=1s=1

Jm - Jm—1---Js-j2 - N

J2 Jm—1 .

Z]m]m+1 ' 1

Jm - Jm—1---Js-ja- N

Jm—1

Jm +1
—\ Jm—1""J3 " J2

7.77172 . .
m—1(Jm-1+1 .
Z .(J 1(12 1)+]m1),

H.M u M“ ?

72 1j3=1jm—1= 1]m 27010302

N

1 o
:m2(12+2 -1

jo=1

1 N(N +1) B

- N-(@2m -1
o (g N2)
N2
=

[]
With m = ny,, Theorem 3.7 shows clearly howy, determines the expected number of marked elements, and thus
the selection pressure. The effect of Durr—Hgyer itertis shown in Fig. 4. The cardinality of the marked sub—
population approximatively halves for increasing. This implies thatn, grows logarithmically with the number

of marked elements.

IV. SIMULATION

In this section we present the results of a simulation ofQBOA in order to show the validity of Theorem 3.3 and
Theorem 3.7 which bound the expected number of oracle catlscharacterize the selection pressure respectively.
We used a particular fithess function in order to compare dmvergence speed of the total fithess of @8OA
with respect to a classical genetic algorithm with trurmatselection.

Simulations of the classical genetic algorithm and of thamjum genetic algorithm were performed using the
symbolic languageviathematica™. The quantum fitness evaluation unit was simulated as a agkwithout
modelling the quantum circuits. The maximum number of qubiged isn = 8, because beyond that value too
many computational resources were needed, since the cesoneeded to simulate a quantum computer on a

classical one increase exponentially with

MALOSSINI et al: QUANTUM GENETIC OPTIMIZATION 13

A. Fitness function

The fitness value of each element of the population refleetgyttality of the characteristics that it encodes. It
is quite common to have a noisy environment in which the mnobis being studied, which means that the fithess
function can vary at every genetic step. We refer to the abdigigness functions which can vary at every genetic
step asvarying fitness functiondVe have simulated a varying function by adding to the fitnedge of an element
a random quantity obtained from a Gaussian distribution of mean value O anthveeo. = 10 - u, wherey is

the mutation probability. The multi-peak varying fitness function used in the simalaiis
f(I) = Sin(ﬂ'I) ' (917 mod 1) + €Gaussian (0,0,)" (7)

This function is plotted in Fig. 5. Notice that, even if thenfdion in not injective, it is possible to build a reversible

circuit for computing such function (as discussed in theoidtiction).

B. Expected number of oracle calls

Eq. 2 gives a bound on the expected number of oracle calleigulntum selection procedure. We recall that we
need two elements of the population to cross over, so we leaustthe quantum selection algorithm twice (or more
if the elements coincide) to obtain two different elemengsduse the measurement process destroys the quantum
superposition. We can argue that for a large populationfitces to run it only twice. To verify Eq. 2 we considered
different population cardinalitie®y = 2™, with n = 2,3,4,5,6. We have generated 100 random populations for
each population cardinality and fer, = 1,2, 3,4, and we have run the quantum genetic optimization algorithm
to select two offspring. Results are shown in Tablé Ih order to verify the bound we need an estimate of the
constants appearing in Eqg. 2. Unfortunately an estimate is known oatyq#f, = 1 and¢t < N (BBHT algorithm).
Our strategy was to fit the bound against the data and to cantparvalues of the parameters. Then we ran a
regression on the experimental points using Eq. 2 and estitna as shown in Table Ill. Finally, Fig. 6 shows the
experimental plots (and error bars) and the regressiortibméor different numbers of Durr—Hgyer iterations.

When n;,, = 1, our quantum selection procedure coincides VBBBHT (Remark 2.2), so it is interesting to
compare the empirical value with the theoretical boundnFRemark 1.2 xgpuT =~ 4. In Table Il we obtain
Kreg = 3.79 2 0.08 for n, = 1. But since in the selection procedure we need two differtarhents to crossover,

we expect to use the quantum selection procedure at least.thiences < 3.79/2 = 1.895 < 4 = kppur.

C. Performance comparison

Here we show that the convergence speed, in terms of geteis, ®f the quantum genetic optimization algorithm
is comparable to a classical truncation selection algaeritthere two elements of the fraction of the population are

used to generate the new offspring. This means that the fibtaks function (the sum of all fitness values of the

4If the value ofc. is too small, the mutation procedure masks the noisy effetheonoisy fitness function.

5Some combinations of. and ny, are useless because the quantum genetic optimizationitafgoselects almost always the element with
maximum fitness, being it impossible to cross over two diffeérelements.

14 IEEE TRANSACTION ON EVOLUTIONARY COMPUTATION, VOL. 0, NO, OMARCH 2007

elements of the population) versus genetic steps shouldjb& &ithin the statistical errors. The real power of the
QGOA is exploited at each genetic step where the computatiomaplaxity of the fitness selection procedure is
O(1).

The number of genetic steps performed during the simulasi@amultiple of N/2. After N/2 genetic steps we
expect on average a complete change of the population (ganmew generation). Hence aft&f genetic steps we
expect a number of generatiohsz 2M /N . The simulation has been performed using the same fithestidarof
Eq. 7 and with] = 10. The results of a simulation with a population of cardinatitt = 26 andn;, = 3 (i.e. about
a fraction of1/8 of the population at each genetic step) are shown in Fig. 7tk confirm the analysis made.

Finally, the regressions for the mean number of marked isolis a function of., and for different values of

n are shown in Table 1V; the corresponding plot is shown in Big.

V. CONCLUSIONS

When the first quantum computers will start becoming avélédr applications, the need for quantum algorithms
exploiting the power of such hardware will be pressing araekisting quantum algorithms will be subject to test.
The number of quantum algorithms that fully exploit the powkequantum computation in order to gain significant
speed-up is rather limited. Hence, a general approach fiyiag quantum computation to a wide range of problems
is needed.

Our efforts in such direction have yielded a quantum germitamization algorithmQGOA that outperforms its
classical analogue in terms of number of oracle calls. Heweas explained above, starting from the complexity
of Grover’s algorithm we know that we can speed up the prooe$gs if no structure is defined on the problem
(hence the name “unstructured database search” used totoefbe Grover quantum search algorithinuch
requirement implies that, in order to achieve a quantumdpa® we must restrict the problem class to varying
fitness functions, where the structure created by the etiatuaf population elements is “broken” at every genetic
step. In other wordsn order to gain a significant advantage over a classical ayjgmh using a quantum algorithm
based on Grover search algorithm, we have to consider probleshere the fitness function is varying.

Under these conditions, o@GOA outperforms the classical one in terms of oracle calls. b, fwhereas the
classical selection procedure requit@$N log N) for reordering of the elements, we have shown that the quantu
selection procedure requires ondy (1) quantum oracle calls. Our results do not contradict the-wabwn fact
that in the black-box model the quantum speedup can be at pobgtomial in the number of qubits. In fact, our
algorithm does not search for a single marked element bua foaction of marked elements with high fitness.

The quantum fitness evaluation unit has to be implementadeartfe quantum selection procedure, which is

performed twice, and it computes the fitness in parallel on@eposition of elements at every genetic step. On

SWe have done other simulations by changing the number oftsjaiidn;,; we obtain that the two curves are the same within the errors.
See [24].

7If the fitness function is fixed a structure can be created bgrimg the initial results of fitness computationGh(N log N) and maintaining
the order inO (log N), exploiting such informations to speed up the computation.

MALOSSINI et al: QUANTUM GENETIC OPTIMIZATION 15

the contrary a classical fithess evaluation has to be pe€d¥htimes at every genetic step. We have to note that
the quantum selection procedure selects the best elemkttie population (the selection pressure depends on a
parameter of the quantum genetic optimization algorithg), and from them two elements are randomly chosen
for the mating pool.

Truncation selection is one of the selection procedured umselassical genetic algorithms. It computes the fitness
values of all the elements of the population, it orders theooadingly and it picks randomly two or more elements
among a fraction of the best ones.

The convergence speed of our algorithm, in terms of gentdfussis comparable to a classical genetic algorithm
with truncation selection, and the real power of quantum atation is exploited at every genetic step where the
fitness evaluation and selection procedure are performél(in. Moreover the selection pressure of the algorithm
can be controlled by a parameter of tQ&O0A, ny,.

QGOA is a quantum algorithm that combines the principles of genstmputation with the principles of
qguantum search. The result is that running on a quantum macGOA will provide a sensible speed—up from
O (NlogN) to O (1) on each genetic step whelé is the dimension of the population. This result permits te us
bigger populations as the number of qubitgs(V) used for the encoding will hopefully grow thanks to teclopl
The advantage will be far more useful for varying fitness fiom; for example in quantum control processes. In
this case each oracle interrogation is effected via annestaealization of the process involved, and therefore it is
affected by unavoidable imperfections and noise, as nolabalratory experiment can be performed with ideally
perfect conditions. Thus the physical "black box” embodyihe oracle remains the same and needs not be re-built
at every step; nevertheless, the value of the fithess funétioour example, the probability amplitude to reach a
desired final state as a result of the quantum chemical ;ggds subject to fluctuations from step to step. This is
relevant to quantum computation in general, beyond theifspexample outlined here, as in that context one can
never fully disregard the physical embodiment of the loagzerations.

In this sense, a genetic algorithm (liIKEGOA) that works in the presence of noise can be regarded as arpixam
of built-in algorithmic fault tolerance, and this is a mapmvantage with respect to its classical counterpart, as we
have demonstrated quantitatively in our work.

When and how a quantum machine will be available is an opestigue However, our proposal will permit to

apply the advantages of quantum computation to a broadef ggbblems related to genetic algorithms.

REFERENCES

[1] P. W. Shor, “Algorithms for quantum computation: diserdogarithms and factoring,” ifProceedings, 35th Annual Symposium on
Foundations of Computer ScienceLos Alamitos, CA: IEEE Press, 1994.

[2] L. K. Grover, “Quantum mechanics helps in searching foreadle in a haystackPhy. Rev. Lett.vol. 72, no. 2, pp. 325-328, 1997.

[3] D. E. Goldberg,Genetic algorithms in search, optimization, and machireriag. Addison-Wesley, 1989.

[4] C. Aporntewan and P. Chongstitvatana, “A hardware imatation of the compact genetic algorithm,” Rroceedings of the 2001
Congress on Evolutionary Computation CEC202001.

[5] K. A. De Jong and W. M. Spears, “Using genetic algorithmsolve np-complete problems,” In Proceedings of the Third International
Conference on Genetic Algorithins989, pp. 124-132.

16

(6]

(7]

(8]

El

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
(18]
[19]
[20]
[21]

[22]
(23]
[24]

IEEE TRANSACTION ON EVOLUTIONARY COMPUTATION, VOL. 0, NO, OMARCH 2007

B. Rylander, T. Soule, J. Foster, and J. Alves-Foss, f@ua evolutionary programming,” iRroceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2001Morgan Kaufmann, 2001, pp. 1005-1011.

K. H. Han and J. H. Kim, “Quantum-inspired evolutionarig@rithm for a class of combinatorial optimizationEEE Trans. on Evol.
Comp, vol. 6, no. 6, pp. 580-593, 2002.

M. Lukac and M. Perkowski, “Evolving quantum circuitsing genetic algorithm,” inProceedings of the 2002 NASA/DOD Conference
on Evolvable Hardware |EEE, 2002, pp. 177-185.

H. De Garis, A. Gaur, and R. Sriram, “Quantum versus eNmhary systems : Total versus sampled search.” 5th. Inaf.Gm Evolvable
Systems (ICES),Trondheim, Norway, March 2003.

G. A. Giraldi, R. Portugal, and R. N. Thess, “Genetic aglthms and quantum computation,” 2004. [Online]. Avaiéab
http://www.arxiv.org/pdf/cs.NE/0403003

G. Zhang, L. Hu, and W. Jin, “Resemblance coefficient anduantum genetic algorithm for feature selection,’Liecture Notes in
Computer Sciengelan 2004, vol. 3245, pp. 155-168.

M. Martinez, L. Longpre, V. Kreinovich, S. A. Starks,dfl. T. Nguyen, “Fast quantum algorithms for handling pralistie, interval, and
fuzzy uncertainty,” inFuzzy Information Processing Society, 2003. NAFIPS 2028d 2nternational Conference of the North American
2003, pp. 395-400.

T. C. Weinacht and P. H. Bucksbaum, “Using feedback fanezent control of quantum systemggurnal of Optics B pp. R35-R52,
2002.

G. Turinici, C. Le Bris, and H. Rabitz, “Efficient algthims for the laboratory discovery of optimal quantum cdsttoPhysical Review
E, vol. 40, no. 016704, 2004.

V. Petridis, S. Kazarlis, and A. Bakirtzis, “Varying riiéss functions in genetic algorithm constrained optinomatthe cutting stock and
unit commitment problemsEEE Trans. on Systems, Man and Cybernetics. 28, no. 5, pp. 629-639, 1998.

C. Durr and P. Hgyer, “A quantum algorithm for findingetminimum,” 1996. [Online]. Available: http://www.arxag/pdf/quant-
ph/9607014

J. H. Holland,Adaptation in natural and artificial systemsThe University of Michigan Press, 1975.

H. Muhlenbein and D. Schlierkamp-Voosen, “Predietimodels for the breeder genetic algorithigyol. Comput.vol. 1, pp. 25-49, 1993.
——, “The science of breeding and its application to tmednler genetic algorithmEvol. Comput.vol. 1, pp. 335-360, 1994.

A. Peres,Quantum theory: concepts and method®ordrecht: Kluwer Academic Publishers, 1998.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, AsParel W. Wootters, “Teleporting an unknown quantum stageduial classical
and epr channelsPhys. Rev. Lettvol. 70, pp. 1895-1899, 1993.

M. A. Nielsen and I. L. ChuangQuantum computation and quantum informatiorCambridge: Cambridge Univ. Press, 2000.

M. Boyer, G. Brassard, P. Hgyer, and A. Tapp, “Tight bdsion quantum searchingfortschr. Phys.vol. 4, no. 5, pp. 493-505, 1998.
A. Malossini, “Un algoritmo genetico di ricerca quasiita,” Master’s thesis, University of Padova (ltaly),yJ@002.

MALOSSINI et al: QUANTUM GENETIC OPTIMIZATION 17

N -

[e206) SN b}

LIST OF FIGURES

A typical steady—state genetic algorithm 18
Classical and Quantum Genetic Optimization Algorithm.téN¢that we need to run the quantum
selection procedure twice because the measurement pradesiseys the superposition of the elements. 19
The Quantum Selection Algorithm. e 20
Change in the cardinality of the sub—population whenis changed from to 3. 21
Main fitness function used in the simulation. A realizatafrthe added Gaussian noise is also shown. 22
Mean number of oracle calls for different values of the namiif elements of the populatioN and

with numbers of Durr—Hoyer iterations, = 1,2, 3, 4. Experimental data and fitted curves based on
Theorem 3.4. L e e e 23
Total fithess (mean and variance) of Quantum genetic opditioin algorithm (brighter line) and
classical genetic algorithm with truncation selection afuction of the number of genetic steps.

Each genetic step requir€s(N log N) in the classical selection procedure afd1) in the quantum
selection procedure. e e e 24
Mean number of marked elements for different values of tmalrer of Durr—Hgyer iterations. Exper-
imental data and regression fitted curves based on Theordm 3.. 25

18

Create initial population

Y

Evaluate fitness function on each elemen

of population

Select two elements

J

Perform crossover and mutation

J

Substitute two random elements of the
population with the new offspring

J

STOP?

NO

| YES

END

Fig. 1. A typical steady—state genetic algorithm

FIGURES

FIGURES

Given a representation of the population and the fitness furtoon
Repeat M times

Given a qubit representation of the population and a quantumevaluation unit
Repeat M times

CLASSICAL GENETIC ALGORITHM

Evaluate fitness Evaluate the fithess of every element of the population.

Select two elementsSelect a subpopulation usitigincation selectiorfa fractionp of the best element
of the population) and then choose randomly two elements fto

Crossover and mutation Perform crossover of the two elements by exchanging twdaansubstrings,
Then with probabilityP,; mutate each allele (i. e. bit) of the strings.

Substitution: Choose two random elements from the population and thelagepghem with the new
offspring.

QUANTUM GENETIC OPTIMIZATION ALGORITHM

Select two elements [Quantunm]Use thequantum selection procedufehich performs the creation o
a superposition of all elements of the population and thdiedn of the quantum fitness evaluatidg
unit) to choose one element. Run it again to choose anotberesit.
Crossover and mutation [Classical] As above.

19

f

Substitution [Classical]: As above.

Fig. 2. Classical and Quantum Genetic Optimization Aldont Note that we need to run the quantum selection procedtce because the
measurement process destroys the superposition of theriem

20 FIGURES

QUANTUM SELECTION PROCEDURE

1) Choose randomly an index € {0,1,...,N — 1} corresponding to the thresholH,. Compute
classicallyF,, = F(y).
2) Performn,, times:
a) Initialize memory to0)|y).
b) Perform the algorithmBBHT (the step 1 of BBHT transforms the statd0)|y) into
LN >_;17)1y)), where the oracle (that includes a quantum fitness evaluatnit) inverts the
amplitude of the elements that satisfy > F,.
c) Measure the first ket and get a new indéxCompute classically,, = F(y'). If F,, > F, then
set the index to 3.

3) Return the indey.

Fig. 3. The Quantum Selection Algorithm.

FIGURES

Fig. 4. Change in the cardinality of the sub—population whgnis changed from to 3.

21

22

Fig. 5.

0.8
0.6
0.4
0.2

0.2 0.4 0.6 0.8 1

Main fitness function used in the simulation. A reaiian of the added Gaussian noise is also shown.

FIGURES

FIGURES 23

10 20 30 40 50 60 70 80N

Fig. 6. Mean number of oracle calls for different values af trumber of elements of the populatidn and with numbers of Dirr—Hoyer
iterationsny, = 1, 2, 3, 4. Experimental data and fitted curves based on Theorem 3.4.

24 FIGURES

total fitness

50 100 150 200 250 300
genetic step

Fig. 7. Total fitness (mean and variance) of Quantum gengitonaation algorithm (brighter line) and classical geoetlgorithm with
truncation selection as a function of the number of gendépss Each genetic step requir@(NV log N) in the classical selection procedure
and O (1) in the quantum selection procedure.

25

FIGURES

Tth

00 el

10 12

Tth

6 8 10 12

Fig. 8. Mean number of marked elements for different valueth@ number of Dirr—Hgyer iterations. Experimental datd eegression fitted

curves based on Theorem 3.7.

26

[l
v

FIGURES
LIST OF TABLES
Notation used in this paper. e e e 27
Mean number of oracle calls and its standard deviatiorhan quantum selection procedure as results
of the simulations. e 28
Regression coefficients of the Eq. 2 datain Table Il. 29

Regression of simulation data. e 30

TABLES

TABLE |

NOTATION USED IN THIS PAPER

QGOA
C

KBBHT

Fy = F(i) = f(z1)

Quantum Genetic Optimization Algorithm
Complex space

A Hilbert space vector

A unitary operator

Unitary operator for fithess evaluation
Tensor product of Hilbert spaces
Number of elements of a population
Number of genetic steps

Number of qubits

n—qubit Hadamard-Walsh gate

Number of Durr-Hgyer iterations
Constant appearing in tH@BHT algorithm
Fitness function

Fitness function computed on the element
Number of marked solutions

Heaviside function

Expectation value

N—1
Zj:()

27

28

TABLE Il
MEAN NUMBER OF ORACLE CALLS AND ITS STANDARD DEVIATION IN THE QUANTUM SELECTION PROCEDURE AS RESULTS OF THE
SIMULATIONS.

n ny = ny = ny =3 ny =4
2 163£13] 109+1.6 - -
3164+09 | 106£1.3 | 134+£1.2 -

4|1 68+08 | 10.8+0.8 | 144+£0.8 | 182+1.0
5(166+04 | 11.2£04 | 156 £0.6 | 21.0+0.8
6 | 6.8£03 | 11.7+0.3 | 176 +0.4 | 25.1 £0.6

TABLES

TABLES

TABLE Il
REGRESSION COEFFICIENTS OF THEQ. 2 DATA IN TABLE II.

ny, | Coefficients.ey | Coefficient of determinationz2
1 3.79 £0.08 0.9984
2 2.52 £0.07 0.9965
3 2.00 + 0.03 0.9989
4 1.76 +0.02 0.9997

30

TABLE IV
REGRESSION OF SIMULATION DATA

n E [T,] R?

2| (1.01£002) + (281 £0.12)- 2" | 0.9816
3| (0.98+0.03) + (7.76 £ 0.19) -2~ "n | 0.9940
4| (0.95+0.03)+ (16.16 £0.17)-2—™» | 0.9989
5 | (1.0640.11) + (30.53 +0.69) - 2—"» | 0.9944
6 | (1.1940.13) + (64.46 +£0.78) - 2—™» | 0.9986
7 | (0.96 +0.52) + (125.81 +2.53) - 2—™» | 0.9976

TABLES

