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Approximating the Set of Pareto Optimal Solutions
in Both the Decision and Objective Spaces by an

Estimation of Distribution Algorithm
Aimin Zhou, Qingfu Zhang and Yaochu Jin

Abstract—Most existing multiobjective evolutionary algorithms
aim at approximating the Pareto front (PF), the distribution of
the Pareto optimal solutions in the objective space. In many real-
life applications, however, a good approximation to the Pareto
set (PS), the distribution of the Pareto optimal solutions in
the decision space, is also required by a decision maker. This
paper considers a class of multiobjective optimization problems
(MOPs), in which the dimensionalities of the PS and the PF
manifolds are different so that a good approximation to the PF
might not approximate the PS very well. It proposes a proba-
bilistic model based multiobjective evolutionary algorithm, called
MMEA, for approximating the PS and the PF simultaneously
for an MOP in this class. In the modeling phase of MMEA, the
population is clustered into a number of subpopulations based
on their distribution in the objective space, the PCA technique
is used to estimate the dimensionality of the PS manifold in
each subpopulation, and then a probabilistic model is built for
modeling the distribution of the Pareto optimal solutions in the
decision space. Such a modeling procedure could promote the
population diversity in both the decision and objective spaces.
MMEA is compared with three other methods, KP1, Omni-
Optimizer and RM-MEDA on a set of test instances, five of
which are proposed in this paper. The experimental results clearly
suggest that overall, MMEA performs significantly better than
the three compared algorithms in approximating both the PS
and the PF.

Index Terms—Multiobjective optimization, Pareto optimality,
estimation of distribution algorithm, principal component anal-
ysis.

I. INTRODUCTION

This paper considers the following continuous multiobjec-
tive optimization problem (continuous MOP):

minimize F (x) = (f1(x), . . . , fm(x))T (1)

subject to x ∈
n∏

i=1

[ai, bi]

where −∞ < ai < bi < +∞ for all i = 1, . . . , n.
n∏

i=1

[ai, bi] ⊂
Rn is the decision space and x = (x1, . . . , xn)T ∈ Rn is

the decision variable vector. F :
n∏

i=1

[ai, bi] → Rm consists

of m real-valued continuous objective functions fi(x), i =
1, . . . ,m. Rm is the objective space.
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Let u = (u1, . . . , um)T , v = (v1, . . . , vm)T ∈ Rm be two
vectors, u is said to dominate v, if u 6= v and ui ≤ vi for
all i = 1, . . . , m. x? is called (globally) Pareto optimal if
there is no other x such that F (x) dominates F (x?). The
set of all the Pareto optimal points, denoted by PS, is called
the Pareto set. The image of the PS on the objective space,
PF = {y ∈ Rm|y = F (x), x ∈ PS}, is called the Pareto front
[1], [2].

Most existing multiobjective evolutionary algorithms
(MOEAs) aim at approximating PFs [2]–[16]. However, in
some real-world applications, particularly when the preference
(i.e. utility function) of a decision maker is not clearly defined,
a good approximation to both the PF and the PS should be
required by the decision maker for facilitating their decision
making as argued in [17]–[20]. For example, if two objectives
f1 and f2 are much more important than objective v in
engineering design, one often needs to first optimize f1 and f2

and obtain a good approximation to both the PF and the PS,
then finds from the approximate PS a solution that optimizes
v subject to certain constraints as their final solution. In some
cases, a good approximation to the PF might not approximate
the PS well. Two typical classes of continuous MOPs, in which
the approximation of their PSs should be carefully addressed,
are as follows:

• Class I: A finite number of different points in the PS may
have the same image in the PF under the mapping F from
the PS to the PF, but the PS and the PF are of the same
dimensionality. ZDT6 [21], Jin1 [22] and the SYM-PART
instances [23] are test instances in this class. In all these
instances, the PS consists of a number of disconnected
continuous (m− 1)-D manifolds.

• Class II: The PF is an (m−1)-D continuous manifold and
the PS is a continuous manifold of a higher dimension-
ality. All the inverse images of a point in the PF could
constitute a non-zero dimensional continuous manifold.
Some WFG test instances [24] belong to this class. For
example, in WFG6, the PF is a 1-D continuous curve in
the objective space, while the PS is a 2-D rectangle. The
inverse image of a point in the PF is a 1-D curve in the
decision space.

To generate a good approximation to both the PS and the
PF of an MOP, an MOEA should arguably have an effective
mechanism to encourage and maintain the population diversity,
not only in the objective space as most MOEAs do, but
also in the decision space. For this reason, Deb and Tiwari
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[25] introduced the crowding distance in the decision space
into the nondominated sorting scheme in Omni-Optimizer, a
generalization of NSGA-II [26], for promoting the population
diversity in the decision space. Chan and Ray [27] suggested
using two selection operators in MOEAs, one encourages the
diversity in the objective space and the other does so in
the decision space. They implemented KP1 and KP2, two
algorithms using these two selection operators. It should be
pointed out that the MOPs that KP1, KP2 and Omni-Optimizer
attempt to deal with are of Class I. Preuss et al [28] and
Rudolph et al [23] also proposed to use a restart strategy for
finding a good approximation to the PS of an MOP of Class
I. To the best of our knowledge, no effort has been made for
dealing with problems of Class II. The major purpose of this
paper is to study how to approximate both the PS and the PF
of an MOP of Class II.

In [14], we studied a “regular” continuous MOP in which
both the PF and the FS are piecewise (m − 1)-D continuous
manifolds, and proposed RM-MEDA, an estimation of distri-
bution algorithm (EDA) for approximating its PF. In this paper,
we generalize the idea of RM-MEDA and propose a prob-
abilistic model based multiobjective evolutionary algorithm,
called MMEA, for approximating the PS and the PF of an
MOP of Class II simultaneously. MMEA has the following
features:

• The population diversity in the decision space is promoted
in its reproduction generator, instead of in the selection
operators as in Omni-Optimizer, KP1 and KP2. The NDS-
selection, which is used in RM-MEDA, is employed in
MMEA.

• To build a probabilistic model of promising solutions,
the population is divided, based on their distribution in
the objective space, into a number of subpopulations.
Therefore, the population diversity in the objective space
can be promoted. To ease the burden of tuning the number
of subpopulations, a random strategy is used for setting
it.

• The principal component analysis (PCA) technique is
used to estimate the dimensionality of the PS manifold in
each subpopulation, and then a probabilistic model can be
built for modeling the distribution of promising solutions
in the decision space. In such a way, the population
diversity in the decision space can be encouraged.

The rest of the paper is organized as follows: Section II
gives the details of the algorithm. Section III presents the
performance metrics and the test instances, some of which are
proposed in this paper for the first time. Section IV compares
MMEA with KP1, Omni-Optimizer and RM-MEDA on these
test instances. More discussions on the ability of MMEA are
provided in Section V. Section VI concludes this paper and
suggests some future research topics.

II. ALGORITHM

A. Framework

At each generation, the proposed algorithm, MMEA, main-
tains:

• A population of N solutions (i.e. points in
n∏

i=1

[ai, bi]):

x1, . . . , xN .

• Their function values: F (x1), . . . , F (xN ).
MMEA adopts the following widely used EDA framework:
Phase 1 Initialization: Generate an initial population P and

compute the F -values of these solutions in P .
Phase 2 Modeling: Build a model for modeling the distri-

bution of the individuals in P .
Phase 3 Reproduction: Generate a set of new solutions Q

by sampling from the model built in Phase 2 and
compute the function values of these solutions in Q.

Phase 4 Selection: Select N solutions from P
⋃

Q and
replace all the solutions in P by them.

Phase 5 Stopping Condition: If a stopping condition is
met, stop and return all the solutions in P and their
corresponding F -values. Otherwise, go to Phase 2.

In the following, we give and discuss the details of modeling,
reproduction and selection.

B. Modeling

In a successful algorithm for approximating both the PS
and the PF of (1), the individuals in its population should
approximate the PS in the decision space and their images
should converge to the PF in the objective space as the search
goes on. Therefore, one could model the PS and the PF based
on information extracted from the population. Such models can
be further used for sampling new good solutions. This idea
has been used to some extent in RM-MEDA. The problem
that RM-MEDA was designed for is a “regular” continuous
MOP, in which both the PS and the PF are of the same
dimensionality. In this paper, the same idea is used in the
modeling phase of MMEA for dealing with an MOP of Class
II.

The modeling phase in MMEA works as follows:
Step 1 Building a Utopian PF: Based on information from

the current population P , build an (m−1)-D simplex
in the objective space as a Utopian PF.

Step 2 Determining the Number of Subpopulations: De-
termine K, the number of subpopulations used in
modeling the PS.

Step 3 Selecting Reference Points: Set Y 1, . . . , Y K , K
points which are uniformly spread on the Utopian
PF in the objective space, to be K reference points.

Step 4 Clustering: Cluster the population P into K sub-
populations P 1, . . . , PK .

Step 5 Principal Component Analysis and Modeling:
Perform PCA on each subpopulation P k, k =
1, . . . , K and build a model for it.

In the following, we give the details of the major steps in
the above modeling phase.

1) Building a Utopian PF: We assume that the PF of the
MOP in question is of (m− 1)-D. Therefore, it is reasonable
to use an (m− 1)-D simplex as a Utopian PF. The following
procedure is used to construct such a simplex S:



Fig. 1. Illustration of building a Utopian PF in the case of two objectives. (a) Find the extreme points and initialize simplex S. (b) Move S along its normal
direction. (c) Enlarge S.

Step 1.1 For i = 1, . . . , m, find the individual solution zi

in P such that zi is a nondominated solution in P
and it has the largest fi function value among all the
nondominated solutions in P .

Step 1.2 Initialize S as the (m−1)-D simplex with vertexes
F (z1), . . . , F (zm) in the objective space. Move S
along its normal direction to a position such that (a)
no point in S can be dominated by any solutions in
P , and (b) the moved distance should be as short as
possible.

Step 1.3 Let A1, . . . , Am be the vertexes of the moved
simplex S. Compute the center of S

O =
1
m

m∑

i=1

Ai.

Then enlarge S by moving its vertexes

Ai := Ai + [(1 + α)
1

m−1 − 1](Ai −O)

for i = 1, . . . , m.

α > 0 is a control parameter. It is easy to work out that
the volume of the simplex S is increased by 100α% in Step
1.3. The major reason why we enlarge S is to guide the
algorithm to extend its search in the objective space. When
m, the number of the objectives is 2, S is a 1-D line segment
in the objective space. Fig. 1 illustrates how S is generated in
this case.

2) Determining the Number of Subpopulations: To reduce
the problem-dependence of K, the value of K is uniformly
randomly chosen from the set {1, 2, . . . ,Kmax}. Kmax is a
control parameter.

3) Selecting Reference Points: It is desirable that reference
points uniformly spread on the Utopian PF. Note that the
Utopian PF is a simplex, in our implementation, we use the
simplex point picking method [29] for selecting reference
points.

4) Clustering: For each reference point Y k obtained in
Step 3, we select a number of points from P closer to it
for forming P k as follows:

Step 4.1 Compute, in the objective space, the Euclidian
distances between Y k to all the individual solutions
in P .

Step 4.2 Select the min{N, [ 2N
K ]} closest solutions to Y k

and let them constitute subpopulation P k.

In clustering, different subpopulations may overlap, which
could improve the search performance in between different
reference points.

5) PCA and Modeling: The individual solutions in subpop-
ulation P k, k = 1, . . . , K should, hopefully, scatter around the
PS in the decision space as the search goes on. For simplicity,
we can model the subpopulation P k as a hyper-cuboid Φk

in the decision space and regard each individual in P k as an
observation of the following random vector:

ξ = ζ + ε,

where ζ is uniformly randomly distributed on Φk, ε ∼
N(0, σkI) is an n-dimensional zero-mean Gaussian vector,
I is the n× n identity matrix and σk > 0.

Now the task is how to estimate Φk and σk. We do it as
follows:

Step 5.1 Compute the sample mean and the sample covari-
ance matrix of the individual solutions in P k:

x̄k =
1
|P k|

∑

x∈P k

x

and

Covk =
1

|P k| − 1

∑

x∈P k

(x− x̄k)(x− x̄k)T

where |P k| is the cardinality of P k.
Step 5.2 Compute the eigenvalues of Covk:

λk
1 ≥ λk

2 ≥ . . . ≥ λk
n

and their corresponding unity eigenvectors:

V k
1 , V k

2 , . . . , V k
n .



Step 5.3 Set nk, the dimensionality of the hyper-cuboid Φk

to be the smallest integer such that

nk∑

j=1

λk
j ≥ θ

n∑

j=1

λk
j ,

where the threshold 0 ≤ θ ≤ 1 is an algorithm
parameter.

Step 5.4 Compute the range of the projections of the points
in P k onto the first nk principal component direc-
tions:

lkj = min
x∈P k

{(x− x̄k)T V k
j }

and
uk

j = max
x∈P k

{(x− x̄k)T V k
j }

for j = 1, . . . , nk.
Step 5.5 Set

Φk = {x ∈ Rn|x = x̄k +
∑nk

j=1 cjV
k
j ,

lkj − (1+β)
1

nk −1
2 (uk

j − lkj ) ≤ cj

≤ uk
j + (1+β)

1
nk −1

2 (uk
j − lkj ),

j = 1, . . . , nk}
where β is a control parameter.

Step 5.6 Set

σk =
1

n− nk

n∑

j=nk+1

λk
j .

The dimensionality of the PS is unknown, neither is that
of Φk. In Step 5.3, the dimensionality of Φk is set such that
Φk holds at least 100θ% of the variation in the solutions in
P k. In Step 5.5, Φk is enlarged along each of the first nk

principal component directions such that its volume is 100β%
larger than that the smallest nk-D hyper-cuboid containing the
projections of all the solutions of P k on the space spanned by
V k

1 , . . . , V k
nk from x̄k. The motivation behind this extension

is to extrapolate the points in P k for searching unexplored
promising areas in the decision space. ε is modeled as a
Gaussian noise vector and all its components are i.i.d., which
facilitates the sampling procedure.

The reference points in the objective space used in clustering
are hopefully uniformly distributed along the PF, therefore they
could guide the search to generate a good approximation to
the PF in the objective space. The modeling in the decision
space attempts to model the PS, which enables the algorithm
to generate a set of points for approximating the PS in the
decision space.

The three major differences in the modeling phase between
RM-MEDA and MMEA are:
• RM-MEDA uses the local PCA [30] technique to partition

the population into several clusters. In contrast, MMEA
in this paper selects the subpopulation centers from
the Utopian PF and performs clustering based on the
distances in the objective space, which is computationally
cheaper. Moreover, the local PCA could not be applied in
MMEA since the dimensionality of the PS manifold must

be predetermined in the local PCA and it is unknown in
the problems MMEA aims to solve.

• The number of clusters is preset in RM-MEDA, while
MMEA in this paper chooses the number of subpopula-
tions randomly, which lightens the burden of tuning this
control parameter.

• In modeling each subpopulation, RM-MEDA sets the
dimensionality of the PS manifold to be (m− 1), while
MMEA needs to estimate it. This difference is due to the
fact that these two algorithms are for different MOPs.

C. Sampling

A new solution x is generated in Phase 4 of MMEA as
follows:

Step 1 Uniformly randomly generate an integer k from
{1, 2, . . . , K}.

Step 2 Uniformly randomly generate a point x′ from Φk.
Generate a noise vector ε′ from N(0, σkI).

Step 3 Set y = x′ + ε′, and let the new solution x as

xj =





yj if aj ≤ yj ≤ bj

1
2 (zj + aj) if yj < aj

1
2 (zj + bj) if yj > bj

,

where j = 1, · · · , n, and z is a randomly selected
solution from the subpopulation P k.

In our implementation, the above procedure is repeated N
times for generating N solutions in Phase 4.

D. Selection

The selection operator used in the experimental studies
is the NDS-selection, a variant of non-dominated sorting
scheme [26] proposed in [14]. It works as follows:

Step 1 Set Q = P ∪Q and P = ∅.
Step 2 Partition Q into different fronts F1, . . . , Fl by using

the fast non-dominated sorting approach [26]. Set
k = 0.

Do
k = k + 1,
P = P ∪ Fk,

Until |P | ≥ N .
Step 3 While |P | > N , Do

For all the individual members in Fk ∩ P ,
compute their crowding distances in Fk∩P .
Remove the element in Fk ∩ P with the
smallest crowding distance from P . In the
case when there is more than one member
with the smallest crowding distance, ran-
domly choose one and remove it.

In Step 2, the NDS-selection partitions Q into different
fronts F1, . . . , Fl such that the j-th front Fj contains all the
non-dominated solutions in {P ∪ Q}\(∪j−1

i=1Fi). Therefore,
there is no solution in {P ∪Q}\(∪j−1

i=1Fi) that could dominate
a solution in Fj .

The crowding distance, used in Step 3, of point x is defined
as the average side length of the largest m-D rectangle in the



objective space subject to two constraints: (a) each of its sides
is parallel to a coordinate axis, and (b) F (x) is the only interior
point of the rectangle among all the points in {F (y)|y ∈ Fk∩
P}. A solution with a larger crowding distance is given priority
to be selected since it could increase the population diversity
in the objective space.

III. TEST INSTANCES AND PERFORMANCE METRICS

A. Test Instances

MMEA is for approximating both the PS and the PF of
an MOP of Class II. WFG instances are the only Class II
instances that we have found in the literature. Two WFG in-
stances: WFG6 and WFG7, have been used in our experiments.
Based on the experiments in [24], the PFs of WFG7 could
be “easily” and “quickly” found by NSGA-II, while WFG6 is
“hard” for NSGA-II. It can be because the objectives in WFG7
are separable while it is not the case in WFG6. The PSs of
these two test instances are a 2-D rectangle in the decision
space when their control parameters are set as in Table I. To
study the behaviors of MOEAs on nonlinear PSs, we have
designed several new MOP test instances of Class II with
nonlinear PSs. All these test instances are listed in Table I.
Figs. 2 and 3 plot their PFs and the projections of their PSs
onto lower-dimensional spaces.

B. Performance Metrics

The Inverted Generational Distance (IGD) metric [14], [31]
and hypervolume difference (I−H ) metric [32] are used to assess
the algorithm performances in our experimental studies.

Let P ∗ be a set of uniformly distributed Pareto optimal
points in the PF (or PS). Let P be an approximation to the
PF (or the PS). The IGD metric is defined as follows,

IGD(P ∗, P ) =
∑

v∈P∗ d(v, P )
|P ∗|

where d(v, P ) is a distance between v and P and |P ∗| is the
cardinality of P ∗.

We denote IGD metric as IGDF when P ∗ is a set of
points in the PF and d(v, P ) is the Euclidian distance in the
objective space, and as IGDX when P ∗ is a set of points in
the PS and d(v, P ) is the Euclidian distance in the decision
space.

The I−H metric is defined as

I−H(P ∗, P ) = IH(P ∗)− IH(P )

where IH(P ) is the hypervolume between the set P and a
bounded reference point [33].

Both the IGD metric and the I−H metric measure conver-
gence and diversity. To have low IGD and I−H values, P must
be close to the PF (or PS) and cannot miss any part of the
whole PF (or PS).

In our experiments, 1,000 points, in which f1 or t taking
1,000 equidistant values from their lower bounds to their upper
bounds, are selected from the respective PFs of F1-F6 to be P ?

for computing the IGDF metrics. 50× 50 = 2, 500 points in
the PF of F7 with s, t = 0

49× π
2 , 1

49× π
2 , . . . , 49

49× π
2 , are taken

to form P ? for computing the IGDF metric for experiments

on F7. 50×50 = 2, 500 points in the respective PSs of F1-F5,
in which x1 and x2 take 50 equidistant values from their lower
bounds to their upper bounds respectively, are taken to form
P ? for computing the IGDX metrics. 25×25×25 = 15, 625
points in the respective PSs of F6 and F7, in which x1, x2 and
x3 take 25 equidistant values from their lower bounds to their
upper bounds respectively, are taken to be P ? for computing
the IGDX metrics. In calculating the I−H values, the bounded
reference point is chosen to be (2.4, 4.5)T for F1 and F2,
(1.2, 1.2)T for F3-F6 and (1.2, 1.2, 1.2)T for F7.

IV. EXPERIMENTAL RESULTS

A. Experimental Settings and Algorithms in Comparison

TABLE II
EXPERIMENTAL SETTINGS FOR F1-F7

number of variables n = 20
population size for each algorithm N = 250 (F1-F5)

N = 500 (F6-F7)
number of generations 500
number of runs for each algorithm 20

crossover parameter in SBX ηc = 20
Omni crossover rate Pc = 0.8
KP1 parameter in polynomial mutation ηm = 20

mutation rate Pm = 1/n

RM-MEDA number of clusters K = 10

α in building a Utopian PF (Step 1.3) α = 1.0
MMEA β in PCA and modeling (Step 5.5) β = 1.0

θ in PCA and modeling (Step 5.3) θ = 0.8
Kmax in selecting reference points Kmax = 30

The studies in [23], [27], [28] have shown that popular
MOEAs, such as PAES [34], NSGA-II [26] and SPEA2 [35],
cannot approximate both the PF and the PS simultaneously
since these methods could not maintain the population diver-
sity in the decision space. MOEA/D, a recent MOEA based
on aggregation proposed in [14], can not do so either for
the same reason. In our experiments, we compare MMEA
with KP1 [27]1 and Omni-Optimizer [25]2. As mentioned
in Introduction, both KP1 and Omni-Optimizer try to approx-
imate both the PF and the PS of an MOP by promoting the
population diversity in the decision space in their selection
operators. The simulated binary crossover (SBX) [36] and
the polynomial mutation [37] are used in these two methods
for generating offspring. Since MMEA is based on RM-
MEDA [14], we also compare MMEA with RM-MEDA on
these problems.

Table II lists all the parameter settings in our experiments.
The population in each algorithm is initialized uniformly and
randomly in the decision space. All the following results are
based on 20 independent runs of each algorithm on each test
instance.

1We use KP1 in this paper because the experimental results in [27] have
shown that KP1 is slightly better than KP2.

2The C++ source codes of KP1 was obtained from its authors and Omni-
Optimizer was implemented by ourselves.



TABLE I
TEST INSTANCES USED IN OUR EXPERIMENTS: F1-F2 ARE WFG INSTANCES, F3-F7 ARE NEW DESIGNED TEST INSTANCES. x = (x1, . . . , xn). ALL

THESE INSTANCES BELONG TO CLASS II.

Instance Range of xi Objectives, PS and PF Remarks
F1 [0, 2i] WFG6 (M = 2, k = 2) [24] PS is a 2-D rectangle.

PS: xi = 0.7i, for i = 3, . . . , n, 0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 4. PF is concave.
PF: f1 = 2 sin(t), f2 = 4 cos(t), 0 ≤ t ≤ 0.5π. two objectives.

F2 [0, 2i] WFG7 (M = 2, k = 2) [24] PS is a 2-D rectangle.
PS: xi = 0.7i, for i = 3, . . . , n, 0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 4. PF is concave.
PF: f1 = 2 sin(t), f2 = 4 cos(t), 0 ≤ t ≤ 0.5π. two objectives.

F3 [0, 1] f1(x) = (x1 + x2)/2, PS is a 2-D nonlinear surface.

f2(x) = g(x)(1−
√

f1
g

), PF is convex.

where g(x) = 1 + 5
n−2

n∑
i=3

h(xi)
2 and two objectives.

h(xi) =

{
2xi − sin(0.5f1π) cos(2πf1 + iπ/n)− 1, i is even,
2xi − cos(0.5f1π) sin( 1

3
(2πf1 + iπ/n))− 1, i is odd.

PS: xi =

{
0.5 + 0.5 sin(0.5f1π) cos(2πf1 + iπ/n), i is even,
0.5 + 0.5 cos(0.5f1π) sin( 1

3
(2πf1 + iπ/n)), i is odd.

for i = 3, . . . , n, and 0 ≤ x1, x2 ≤ 1.
PF: f2 = 1−√f1, 0 ≤ f1 ≤ 1.

F4 [0, 1] f1(x) = (x1 + x2)/2, PS is a 2-D nonlinear surface.
f2(x) = g(x)− f2

1 , PF is concave.

where g(x) = 1 + 5
n−2

n∑
i=3

h(xi)
2, and two objectives.

h(xi) =

{
2xi − f1 cos(2πf1 + iπ/n)− 1, i is even,
2xi − f1 sin(2πf1 + iπ/n)− 1, i is odd.

PS: xi =

{
0.5 + 0.5f1 cos(2πf1 + iπ/n), i is even,
0.5 + 0.5f1 sin(2πx1 + iπ/n), i is odd,

for i = 3, . . . , n, and 0 ≤ x1, x2 ≤ 1.
PF: f2 = 1− f2

1 , 0 ≤ f1 ≤ 1.

F5 [0, 1] f1(x) = (x1 + x2)/2, PS is a 2-D nonlinear surface.
f2(x) = g(x)− f1 + sin(2πf1)/(2π), PF is neither concave or convex.

where g(x) = 1 + 5
n−2

n∑
i=3

h(xi)
2, and two objectives.

h(xi) =

{
2xi − f1 cos(2πf1 + iπ/n)− 1, i is even,
2xi − f1 sin( 1

3
(2πf1 + iπ/n))− 1, i is odd.

PS: xi =

{
0.5 + 0.5f1 cos(2πf1 + iπ/n), i is even,
0.5 + 0.5f1 sin( 1

3
(2πx1 + iπ/n)), i is odd,

for i = 3, . . . , n, and 0 ≤ x1, x2 ≤ 1.
PF: f2 = 1− f1 + sin(2πf1)/(2π), 0 ≤ f1 ≤ 1.

F6 [0, 1] f1(x) = (x1 + x2 + x3)/3, PS is a 3-D continuous
f2(x) = g(x)− f2

1 , nonlinear manifold.

where g(x) = 1 + 5
n−3

n∑
i=4

h(xi)
2, and PF is concave.

h(xi) =

{
2xi − sin(0.5f1π) cos(2πf1 + iπ/n)− 1, i is even,
2xi − cos(0.5f1π) sin( 1

3
(2πf1 + iπ/n))− 1 i is odd. two objectives.

PS: xi =

{
0.5 + 0.5sin(0.5f1π) cos(2πf1 + iπ/n), i is even,
0.5 + 0.5 cos(0.5f1π) sin( 1

3
(2πf1 + iπ/n)), i is odd,

for i = 4, . . . , n, and 0 ≤ x1, x2, x3 ≤ 1.
PF: f2 = 1− f2

1 , 0 ≤ f1 ≤ 1.

F7 [0, 1] f1(x) = g(x) cos(0.25π(x1 + x2)) sin(0.5πx3), PS is a 3-D continuous
f2(x) = g(x) cos(0.25π(x1 + x2)) cos(0.5πx3), nonlinear manifold.
f3(x) = g(x) sin(0.25π(x1 + x2)), PF is concave.

where g(x) = 1 + 5
n−3

n∑
i=4

h(xi)
2, three objectives.

h(xi) =

{
2xi − sin(0.5πy) cos(2πy + iπ/n)− 1, i is even,
2xi − cos(0.5πy) sin( 1

3
(2πy + iπ/n))− 1, i is odd,

and y = (x1 + x2 + x3)/3.

PS: xi =

{
0.5 + 0.5 sin(0.5f1π) cos(2πf1 + iπ/n), i is even,
0.5 + 0.5 cos(0.5f1π) sin( 1

3
(2πf1 + iπ/n)), i is odd,

for i = 4, . . . , n, and 0 ≤ x1, x2, x3 ≤ 1.
PF: f1 = cos(s) sin(t), f2 = cos(s) cos(t), f3 = sin(s), 0 ≤ s, t ≤ π/2.
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Fig. 2. The PFs and the PSs for F1-F4. (a): F1. (b): F2. (c): F3. (d): F4. Left: the PFs in the objective space. Middle: the projections of the PSs onto the
x1-x2 space. Right: the projections of the PSs onto the x1-x3 space for F1 and F2, and onto the x1+x2

2
-x3 space for F3 and F4.
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Fig. 3. The PFs and the PSs for F5-F7. (a): F5. (b): F6. (c): F7. Left: PFs in the objective space. Middle: the projections of the PSs onto the x1-x2 space
for F5, and onto the x1-x2-x3 space for F6 and F7. Right: the projections of the PSs onto the x1+x2

2
− x3 space for F5, and onto the x1+x2+x3

3
-x4 space

for F6 and F7.

B. F1-F2

F1 and F2 have the same PS, which is a 2-D rectangle
parallel to the x1-x2 space. The objectives are nonseparable in
F1 but separable in F2 [24]. The means and standard deviations
can be found in Table III of the I−H , IGDF and IGDX
values of the 20 final populations obtained by each algorithm
for F1 and F2. Figs. 4 and 5 show, in the objective and
decision spaces, the distribution of the final solutions obtained
in the runs with the lowest IGDF and IGDX values of each
algorithm for these two test instances, respectively.

It is clear from Table III that in terms of the IGDF metric,
MMEA is significantly better than the three other algorithms
on these two test instances, and in terms of I−H metric, MMEA

performs better than the three other competitors on F1 but
slightly worse than KP1 on F2. The plots in Figs. 4 and 5
show that all the four algorithms can approximate the PF very
well and the final populations with the lowest IGDF values
obtained by MMEA approximate the PFs slightly better than
those obtained Omni-optimizer and KP1. It should be pointed
out that Figs. 4 and 5 do not contradict with Table III. Figs. 4
and 5 give the distributions of the final populations with the
lowest IGD values while Table III shows the mean/std of the
IGD and I−H values.

In terms of the IGDX metric, Table III shows that MMEA
significantly outperforms the three other algorithms. Actually,
one could visually distinguish from Fig. 4 the differences in
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(c) RM-MEDA
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Fig. 4. The best approximations obtained by four algorithms for F1: (a) Omni-Optimizer, (b) KP1, (c) RM-MEDA, and (d) MMEA. Left: the distributions
of the final solutions in the objective space obtained in the runs with the lowest IGDF values by four respective algorithms. Middle: the distributions of
the final solutions in the x1-x2 space obtained in the runs with the lowest IGDX values. Right: the distributions of the final solutions in the x1-x3 space
obtained in the runs with the lowest IGDX values.
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Fig. 5. The best approximations obtained by four algorithms for F2: (a) Omni-Optimizer, (b) KP1, (c) RM-MEDA, and (d) MMEA. Left: the distributions
of the final solutions in the objective space obtained in the runs with the lowest IGDF values by four respective algorithms. Middle: the distributions of
the final solutions in the x1-x2 space obtained in the runs with the lowest IGDX values. Right: the distributions of the final solutions in the x1-x3 space
obtained in the runs with the lowest IGDX values.



TABLE III
STATISTICAL RESULTS ON F1-F7 (mean± std.) “+” IN PARENTHESIS: THE ONE-SIDE T-TEST INDICATES THAT THE METRIC VALUE IS LARGER THAN

THAT OBTAINED BY MMEA AT THE 95% SIGNIFICANCE LEVEL. “-” IN PARENTHESIS MEANS A FAILURE IN THE T-TEST TO REJECT THE NULL
HYPOTHESIS. IN THE ONE-SIDE T-TEST, THE NULL HYPOTHESIS IS THAT BOTH METRICS VALUES IN TEST ARE FROM THE SAME NORMAL DISTRIBUTION ,

AND THE ALTERNATIVE HYPOTHESIS IS THAT THE METRIC VALUE IN MMEA IS SMALLER THAN THAT OBTAINED BY ANOTHER ALGORITHM.

OMNI KP1 RM-MEDA MMEA

IH− 0.4653 ± 0.0867 (+) 0.3364 ± 0.0699 (+) 0.0598 ± 0.0048 (+) 0.0452± 0.0127
F1 IGDF 0.0719 ± 0.0150 (+) 0.0606 ± 0.0119 (+) 0.0110 ± 0.0008 (+) 0.0079± 0.0016

IGDX 26.7926 ± 4.6930 (+) 23.9950 ± 7.4775 (+) 0.4967 ± 0.0984 (+) 0.2321± 0.0683

IH− 0.2760 ± 0.0931 (+) 0.0288±0.0012 (-) 0.0557 ± 0.0041 (+) 0.0298 ± 0.0044
F2 IGDF 0.0356 ± 0.0139 (+) 0.0108 ± 0.0009 (+) 0.0101 ± 0.0005 (+) 0.0065± 0.0004

IGDX 0.3174 ± 0.0336 (+) 0.2759 ± 0.0325 (+) 0.4293 ± 0.0415 (+) 0.2159± 0.0430

IH− 0.5412 ± 0.0095 (+) 0.0842 ± 0.0241 (+) 0.0055± 0.0039 (-) 0.0059 ± 0.0042
F3 IGDF 0.5609 ± 0.0154 (+) 0.0776 ± 0.0290 (+) 0.0026± 0.0018 (-) 0.0029 ± 0.0019

IGDX 1.0458 ± 0.0134 (+) 0.4078 ± 0.0752 (+) 0.2497 ± 0.0195 (+) 0.1073± 0.0100

IH− 0.4220 ± 0.0708 (+) 0.1920 ± 0.1213 (+) 0.0760 ± 0.0631 (+) 0.0408± 0.0685
F4 IGDF 0.3310 ± 0.1038 (+) 0.1146 ± 0.1040 (+) 0.0304 ± 0.0319 (-) 0.0179± 0.0392

IGDX 0.8415 ± 0.1613 (+) 0.4421 ± 0.2019 (+) 0.2795 ± 0.0544 (+) 0.1293± 0.0892

IH− 0.3661 ± 0.1045 (+) 0.0297 ± 0.0042 (+) 0.0122 ± 0.0084 (+) 0.0080± 0.0043
F5 IGDF 0.2677 ± 0.0973 (+) 0.0300 ± 0.0032 (+) 0.0145 ± 0.0072 (+) 0.0097± 0.0045

IGDX 0.6291 ± 0.1176 (+) 0.2512 ± 0.0278 (+) 0.2149 ± 0.0322 (+) 0.0918± 0.0105

IH− 0.2381 ± 0.0891 (+) 0.1757 ± 0.0291 (+) 0.0025± 0.0003 (-) 0.0068 ± 0.0016
F6 IGDF 0.1366 ± 0.0707 (+) 0.0887 ± 0.0217 (+) 0.0012± 0.0001 (-) 0.0039 ± 0.0009

IGDX 0.5760 ± 0.1501 (+) 0.4484 ± 0.0512 (+) 0.3405 ± 0.0240 (+) 0.1616± 0.0275

IH− 0.6055 ± 0.0816 (+) 0.9028 ± 0.0000 (+) 0.0866± 0.0046 (-) 0.1055 ± 0.0056
F7 IGDF 0.6073 ± 0.0869 (+) 0.7451 ± 0.0000 (+) 0.0476± 0.0022 (-) 0.0620 ± 0.0028

IGDX 1.0669 ± 0.0361 (+) 1.3061 ± 0.0223 (+) 0.2138± 0.0059 (-) 0.2387 ± 0.0092

approximation quality in the x1-x2 and x1-x3 spaces between
MMEA and the three other methods on F1 and F2: the
distributions of the final population found by MMEA are more
diverse and uniform that those obtained by the three others.
These results indicate that MMEA could tackle MOPs with
linear PSs like F1 and F2.

C. F3-F7

All these test instances have nonlinear PSs in the decision
space. The dimensionality of the PSs of F3-F5 is 2 while that
of F6 and F7 is 3.

IGDF and IH− are for measuring the approximation
quality in the decision space. The t-test results in Table III
suggest that on F3-F7, in terms of these two metrics, MMEA
performs significantly better than KP1 and Omni-Optimizer,
but does not always outperform RM-MEDA. It is confirmed
to a certain extent by plots in Figs. 6-10: on F3-F6, the
final solutions with the lowest IGDF values obtained by
MMEA and RM-MEDA approximate the PFs very well while
Omni-Optimizer and KP1 always miss part of the PFs; on
F7, it is clear that MMEA and RM-MEDA provide better
approximations than Omni-Optimizer and KP1, although none
could approximate the PF very well. In terms of the IGDX
metric, it is evident from Table III that MMEA outperforms
the three other algorithms on F3-F7, except RM-MEDA on F7.
Figs 6-9 also reveal that the solutions generated by MMEA,
are distributed more uniformly in the decision space than
those obtained by the three other ones. Table III shows that
RM-MEDA slightly outperforms MMEA in terms of all the

performance metrics on F7. One cannot tell, however, any
big difference in approximation quality between RM-MEDA
and MMEA from Fig 10. The reason why MMEA could not
outperform RM-MEDA on F7 might be that neither of these
two algorithms converges and has not yet started refining their
solutions within the given number of function evaluations.

KP1 and Omni-Optimizer promote the population diversity
in their selection operators and mainly use the SBX, which
was originally proposed for single objective optimization,
to generate new solutions. RM-MEDA assumes that the PS
dimensionality is m− 1. MMEA estimates the dimensionality
and the shape of the PS and attempts to make the new
solutions uniformly distribute around the estimated PS. Our
experiments have suggested that reproduction operators are
of crucial importance in MOEAs for approximating both the
PS and the PF and one should use their problem-specific
knowledge in designing reproduction operators in MOEAs.
The major reason that KP1 and Omni-Optimizer fail in F3-
F7 might be that the SBX is not suitable for an MOP with
nonlinear PSs. Actually, if two parent solutions are Pareto
optimal (i.e. in the PS), it is very likely that their offspring
under the SBX are far away from the PS. Since RM-MEDA
tries to use an (m−1)-D manifold to approximate the PS, the
final solutions obtained by it for biobjective test instances, as
shown in Figs 6-9, are distributed along 1-D manifolds in the
decision space.
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Fig. 6. The best approximations obtained by four algorithms for F3: (a) Omni-Optimizer, (b) KP1, (c) RM-MEDA, and (d) MMEA. Left: the distributions
of the final solutions in the objective space obtained in the runs with the lowest IGDF values by three respective algorithms. Middle: the distributions of the
final solutions in the x1-x2 space obtained in the runs with the lowest IGDX values. Right: the distributions of the final solutions in the x1+x2

2
-x3 space

obtained in the runs with the lowest IGDX values.
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Fig. 7. The best approximations obtained by four algorithms for F4: (a) Omni-Optimizer, (b) KP1, (c) RM-MEDA, and (d) MMEA. Left: the distributions
of the final solutions in the objective space obtained in the runs with the lowest IGDF values by three respective algorithms. Middle: the distributions of the
final solutions in the x1-x2 space obtained in the runs with the lowest IGDX values. Right: the distributions of the final solutions in the x1+x2

2
-x3 space

obtained in the runs with the lowest IGDX values.
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Fig. 8. The best approximations obtained by four algorithms for F5: (a) Omni-Optimizer, (b) KP1, (c) RM-MEDA, and (d) MMEA. Left: the distributions
of the final solutions in the objective space obtained in the runs with the lowest IGDF values by three respective algorithms. Middle: the distributions of the
final solutions in the x1-x2 space obtained in the runs with the lowest IGDX values. Right: the distributions of the final solutions in the x1+x2

2
-x3 space

obtained in the runs with the lowest IGDX values.
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Fig. 9. The best approximations obtained by four algorithms for F6: (a) Omni-Optimizer, (b) KP1, (c) RM-MEDA, and (d) MMEA. Left: the distributions
of the final solutions in the objective space obtained in the runs with the lowest IGDF values by three respective algorithms. Middle: the distributions of the
final solutions in the x1-x2-x3 space obtained in the runs with the lowest IGDX values. Right: the distributions of the final solutions in the x1+x2+x3

3
-x4

space obtained in the runs with the lowest IGDX values.
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Fig. 10. The best approximations obtained by four algorithms for F7: (a) Omni-Optimizer, (b) KP1, (c) RM-MEDA, and (d) MMEA. Left: the distributions
of the final solutions in the objective space obtained in the runs with the lowest IGDF values by three respective algorithms. Middle: the distributions of the
final solutions in the x1-x2-x3 space obtained in the runs with the lowest IGDX values. Right: the distributions of the final solutions in the x1+x2+x3

3
-x4

space obtained in the runs with the lowest IGDX values.



TABLE IV
REGULAR TEST INSTANCES. THEIR PSS AND PFS ARE WITH THE SAME DIMENSIONALITY.

Instance Variables Objectives Remarks
ZZJ08− F1 [0, 1]n f1(x) = x1 convex PF

f2(x) = g(x)[1−
√

f1(x)/g(x)] linear variable linkage

g(x) = 1 + 9(
n∑

i=2
(xi − x1)2)/(n− 1)

ZZJ08− F2 [0, 1]n f1(x) = x1 concave PF
f2(x) = g(x)[1− (f1(x)/g(x))2] linear variable linkage

g(x) = 1 + 9(
n∑

i=2
(xi − x1)2)/(n− 1)

ZZJ08− F3 [0, 1]n f1(x) = 1− exp(−4x1)sin6(6πx1) concave PF
f2(x) = g(x)[1− (f1(x)/g(x))2] nonuniformly distributed

g(x) = 1 + 9[
n∑

i=2
(xi − x0)2/9]0.25 linear variable linkage

ZZJ08− F4 [0, 1]n f1(x) = cos(π
2
x1)cos(π

2
x2)(1 + g(x)) concave PF

f2(x) = cos(π
2
x1)sin(π

2
x2)(1 + g(x)) linear variable linkage

f3(x) = sin(π
2
x1)(1 + g(x)) 3 objectives

g(x) =
n∑

i=3
(xi − x1)2

ZZJ08− F5 [0, 1]n f1(x) = x1 convex PF
f2(x) = g(x)[1−

√
x1/g(x)] nonlinear variable linkage

g(x) = 1 + 9(
n∑

i=2
(x2

i − x1)2)/(n− 1)

ZZJ08− F6 [0, 1]n f1(x) =
√

x1 concave PF
f2(x) = g(x)[1− (f1(x)/g(x))2] nonlinear variable linkage

g(x) = 1 + 9(
n∑

i=2
(x2

i − x1)2)/(n− 1)

ZZJ08− F7 [0, 1]n f1(x) = 1− exp(−4x1)sin6(6πx1) concave PF
f2(x) = g(x)[1− (f1(x)/g(x))2] nonuniformly distributed

g(x) = 1 + 9[
n∑

i=2
(x2

i − x0)2/9]0.25 nonlinear variable linkage

ZZJ08− F8 [0, 1]n f1(x) = cos(π
2
x1)cos(π

2
x2)(1 + g(x)) concave PF

f2(x) = cos(π
2
x1)sin(π

2
x2)(1 + g(x)) nonlinear variable linkage

f3(x) = sin(π
2
x1)(1 + g(x)) 3 objectives

g(x) =
n∑

i=3
(x2

i − x1)2
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Fig. 11. The approximations with the lowest IGDF values obtained by RM-MEDA on regular MOPs.



TABLE V
STATISTICAL RESULTS ON REGULAR MOPS (mean± std.).“+” IN PARENTHESIS: THE ONE-SIDE T-TEST INDICATES THAT THE METRIC VALUE IN

RM-MEDA IS LARGER THAN THAT OBTAINED BY MMEA AT THE 95% SIGNIFICANCE LEVEL. “-” IN PARENTHESIS MEANS A FAILURE IN THE T-TEST TO
REJECT THE NULL HYPOTHESIS.

IGDF IH−
Instance RM-MEDA MMEA RM-MEDA MMEA

ZZJ08-F1 0.0049 ± 0.0001 (+) 0.0044 ± 0.0003 0.0116 ± 0.0011 (+) 0.0070 ± 0.0017

ZZJ08-F2 0.0056 ± 0.0002 (+) 0.0044 ± 0.0004 0.0190 ± 0.0029 (+) 0.0084 ± 0.0032

ZZJ08-F3 0.0094 ± 0.0037 (+) 0.0047 ± 0.0005 0.0382 ± 0.0593 (+) 0.0078 ± 0.0011

ZZJ08-F4 0.0723 ± 0.0036 (+) 0.0527 ± 0.0023 0.1596 ± 0.0113 (+) 0.0803 ± 0.0054

ZZJ08-F5 0.0079 ± 0.0036 (-) 0.0076 ± 0.0011 0.0234 ± 0.0130 (+) 0.0135 ± 0.0026

ZZJ08-F6 0.0136 ± 0.0183 (-) 0.0093 ± 0.0034 0.0644 ± 0.0708 (+) 0.0271 ± 0.0232

ZZJ08-F7 0.0981 ± 0.0137 (+) 0.0582 ± 0.0079 0.1019 ± 0.0138 (+) 0.0774 ± 0.0073

ZZJ08-F8 0.0694 ± 0.0029 (-) 0.0684 ± 0.0280 0.1211 ± 0.0096 (+) 0.1026 ± 0.0188
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Fig. 12. The approximations with the lowest IGDF values obtained by MMEA on regular MOPs.

V. MORE DISCUSSIONS

A. Can MMEA Solve Regular MOPs?
MMEA was designed for solving an MOP of Class II,

in which the dimensionality of its PS is not lower than the
number of the objectives and unknown. In fact, MMEA uses
the PCA technique to estimate the PS dimensionality before
modeling the PS. Now a question arises whether MMEA can
effectively solve a regular MOP in which the PS is an (m−1)-
D continuous manifold in the decision space. To address this
issue, we have compared MMEA with RM-MEDA on a set of
regular MOP test instances with linear and nonlinear variable
linkages introduced in [14], which are given in Table IV.

The experimental setting are the same as in [14]:
• the number of variables is n = 30;
• the population size for each algorithm is N = 100 for two

objective instances, and 200 for three objective instances;
• the number of generations is 100 for ZZJ08-F1, ZZJ08-

F2, ZZJ08-F5 and ZZJ08-F6, 1, 000 for ZZJ08-F3 and

ZZJ08-F7, and 200 for ZZJ08-F4 and ZZJ08-F8;
• the number of clusters in RM-MEDA K = 5;
• α, β, θ and Kmax in MMEA are the same as in Table II.

All the following results are based on 20 independent runs
of each algorithm on each test instance. In our experiments,
1,000 points, in which x1 taking 1,000 equidistant values from
their lower bounds to their upper bounds, are selected from
the respective PFs of ZZJ08-F1 - ZZJ08-F3 and ZZJ08-F5 -
ZZJ08-F7 to form P ?. 50 × 50 = 2, 500 points in the PF
of ZZJ08-F4 and ZZJ08-F8 with x1, x2 = 0

49 , 1
49 , . . . , 49

49 , are
taken to form P ? for experiments on ZZJ08-F4 and ZZJ08-
F8. The bounded reference point is chosen to be (1.5, 1.5)T

for F1-F3 and F5-F7, and (1.5, 1.5, 1.5)T for F4 and F8 in
calculating I−H values.

Table V gives the means and standard deviations of the I−H
and IGDF values of the 20 final populations obtained by RM-
MEDA and MMEA for all the eight test instances. Figs. 11
and 12 show, in the objective space, the distribution of the final



solutions obtained in the runs with the lowest IGDF values
of the two algorithms for these test instances, respectively.

It is clear from Table V that MMEA is significantly better
than RM-MEDA on all the instances in terms of the I−H
metric, and MMEA significantly outperforms or is not worse
than RM-MEDA in terms of IGDF metric on these eight
instances. The difference between the best approximations of
RM-MEDA and those of MMEA in Figs. 11 and 12 can hardly
be visually distinguished. These results imply that although
MMEA is designed for Class II problems, its performance is
not worse than RM-MEDA on regular MOPs.

B. Can MMEA Deal with an MOP of Class I?

An MOP of Class II has a continuous PS of dimensionality
larger than m − 1, while the PS of an MOP of Class I
consists of a number of disconnected continuous manifolds.
To investigate the ability of MMEA to tackle MOPs in Class
I, we have tested MMEA on DT05-F4.4 [25], in which the
two objectives to be minimized are as follows:

f1(x) =
∑n

i=1 sin(πxi),
f2(x) =

∑n
i=1 cos(πxi),

and the search space is [0, 6]n. The PF of DT05-F4.4 is:

f2 = −
√

25− f2
1 , f1 ∈ [−5, 0],

and its PS consists of 3n disconnected parts, each of which is
a line segment.

In our experiment on DT05-F4.4, n, the number of decision
variables is set to be 5, and N , the population size is 1, 000
as in [25] . All the other parameter settings are the same as in
Section IV. Fig. 13 presents the final population obtained in the
run with the lowest IGDF value among 20 independent runs.
Clearly, MMEA has not produced a satisfactory approximation
to the PS. This could be attributed to the fact that population
clustering in MMEA is based on the distance in the objective
space, which prevents it from distinguishing the different parts
of the DT05-F4.4 PS in the decision space and thus cannot
find a good approximation to its PS.

C. Sensitivity of Control Parameters

In the following, taking F3 as an example, we investigate
the sensitivity of the four control parameters in MMEA.

1) The Effect of α: We have tried different values of α: 0.0,
0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0 for MMEA
on F3. The settings of the other control parameters are the
same as in Section IV. Fig. 14 shows the average IGDF and
IGDX metrics v.s. the different values of α, respectively. It
is clear that MMEA works very well when 0.4 ≤ α ≤ 2.0. It
also indicates that MMEA performs poorly if α is too small.
This could be due to the fact that a small value of α might
reduce the exploration ability of MMEA.

2) The Effect of β: We have tried different values of β: 0.0,
0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0 for MMEA on
F3. The settings of the other control parameters are the same as
in Section IV. Fig. 15 shows the average IGDF and IGDX
metrics v.s. the different values of β, respectively. Clearly,

IGDX value is more sensitive to β than IGDF . This is not
a surprise since β is mainly for extending the search in the
decision space. It is also evident that MMEA works well in
terms of both IGDX and IGDF metrics if 0.8 ≤ β ≤ 2.

3) The Effect of θ: We have tried different values of θ:
0.5, 0.6, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, and 1.0 on F3. The
settings of the other parameters are the same as in Section IV.
Fig. 16 shows the average IGDF and IGDX metrics v.s. the
different values of θ, respectively. It is clear from this figure
that MMEA can approximate the PF of F3 if 0.5 ≤ θ ≤ 0.95
and it can approximate the PF of F3 if 0.75 ≤ θ ≤ 0.95. When
θ = 1.0, the performance of MMEA becomes very poor. The
reason might be that in such a case, MMEA implicitly assumes
that the dimensionality of the PS is n and set σk to be zero in
Step 5.6 in PCA and Modeling, as a result, the search ability
of MMEA has been reduced significantly.

4) The Effect of Kmax : In our experiment, we have tried
the different values of Kmax: 10, 15, 20, 25, 30, 35, 40,
45, and 50. It is evident from Fig. 17 that MMEA could
approximate the PF of F3 very well when Kmax ≥ 15.
However, when Kmax > 35, the approximation quality in
the decision space will decrease. It implies that with too many
subpopulations, MMEA could not be able to correctly estimate
the shape of the PS.

From the above experiments, we can also conclude that for
each of these four control parameters, there is a reasonably
large range such that MMEA works well.

D. CPU Time Cost

We have also recorded the CPU time used by each algorithm
on F1-F7. The average CPU time3 used by the four algorithms
are given in Table VI. Clearly, RM-MEDA needs much more
CPU time than the three others. KP1 is the fastest in terms
of CPU times. MMEA and Omni-Optimizer require about the
same CPU time. The reason why MMEA is faster than RM-
MEDA might be that the PCA used in MMEA requires much
less CPU time than the local PCA used in RM-MEDA.

VI. CONCLUSION

A good approximation to both the PS and the PF of an
MOP could be required in some real-world applications. A
good approximation to the PF of an MOP might not represent
a good approximation to the PS, for example, when the MOP
in question is of Class I or II. Some effort has been made to
approximate both the PS and the PF of an MOP of Class I.
This paper represents a first attempt to do so for an MOP of
Class II.

MMEA proposed in this paper generalizes the idea used
in RM-MEDA to an MOP of Class II for approximating its
PS and PF simultaneously. In the modeling phase of MMEA,
the population is clustered into a number of subpopulations
based on their distribution in the objective space, the PCA
technique is then used to estimate the dimensionality of the PS
manifold in each subpopulation, and then a probabilistic model

3The four algorithms are implemented in C++, and they are executed in
Thinkpad X60s with Intel Core Duo CPU L2400 1.66GHz, 2GB RAM, and
Windows Vista.



−5 −2.5 0
−5

−2.5

0

f1

f2

0 2 4 6
0

2

4

6

x1

x2

0 2 4 6
0

2

4

6

x3

x4

Fig. 13. The best approximation obtained in the 20 runs with the lowest IGDF value by MMEA for DT05-F4.4. Left: the distribution of the final solutions
in the objective space. Middle: the distribution of the final solutions in the x1-x2 space. Right: the distribution of the final solutions in the x3-x4 space.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0

0.02

0.04

0.06

0.08

0.1

0.12

α

IG
D

F

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0

0.1

0.2

0.3

0.4

0.5

α

IG
D

X

Fig. 14. The average IGD metrics of the 20 final approximations v.s. α in MMEA on F3.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0

0.02

0.04

0.06

0.08

0.1

0.12

β

IG
D

F

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0

0.1

0.2

0.3

0.4

0.5

β

IG
D

X

Fig. 15. The average IGD metrics of the 20 final approximations v.s. β in MMEA on F3.

0.5 0.6 0.7 0.75 0.8 0.85 0.9 0.95 1.0
0

0.02

0.04

0.06

0.08

0.1

0.12

θ

IG
D

F

0.5 0.6 0.7 0.75 0.8 0.85 0.9 0.95 1.0
0

0.1

0.2

0.3

0.4

0.5

θ

IG
D

X

Fig. 16. The average IGD metrics of the 20 final approximations v.s. θ in MMEA on F3.



10 15 20 25 30 35 40 45 50
0

0.02

0.04

0.06

0.08

0.1

0.12

K
max

IG
D

F

10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

K
max

IG
D

X

Fig. 17. The average IGD metrics of the 20 final approximations v.s. Kmax in MMEA on F3.

TABLE VI
THE AVERAGE CPU TIME (IN SECONDS) USED BY FOUR ALGORITHMS ON F1-F7

F1 F2 F3 F4 F5 F6 F7
KP1 33.88 50.48 18.76 16.43 21.45 62.81 153.37

Omni-Optimizer 113.21 134.33 101.56 79.06 86.64 311.14 458.74

RM-MEDA 1339.91 1168.92 973.18 952.44 904.29 2743.44 2675.40

MMEA 136.18 165.22 128.66 125.10 120.80 413.86 470.12

is built for modeling the distribution of promising solutions in
the decision space. We argue that such a modeling procedure
could promote the population diversity in both the decision and
objective spaces. New solutions are sampled from the model
thus built. The population for the next generation is selected by
the NDS-selection. The comparison between MMEA and the
three other algorithms, KP1, Omni-Optimizer and RM-MEDA
on seven test instances, five of which were proposed in this
paper, has been made in this paper. Our empirical results have
clearly indicated that MMEA has a big advantage over the
three other algorithms in approximating both the PS and the
PF of an MOP of Class II. We have investigated the ability of
MMEA to deal with a regular MOP and an MOP of Class I.
We have also studied the sensitivity of control parameters in
MMEA.

The future research topics along this line may include:

• extension of MMEA to constrained MOPs, and MOPs un-
der dynamic and/or noisy environment for approximating
both their PS and PF [38]–[40].

• study of the scalability of MMEA to the numbers of
decision variables and objectives [41]–[43].

• use of other machine learning methods in MMEA [44]–
[46].

• combination of other techniques, particularly, traditional
mathematical programming methods and new ideas in
MOEAs, with MMEA for improving the algorithm per-
formance.

The C++ code of MMEA can be downloaded from Q. Zhang’s
homepage: http://dces.essex.ac.uk/staff/qzhang/.
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Point by Point Reply to the Reviewers
A. Zhou, Q. Zhang and Y. Jin

First of all, we would like to thank all the three reviewers for your very helpful and constructive comments.
Following your comments and suggestions, we have revised this paper.

REPLY TO REVIEWER 1

• “The manuscript describes solid, serious research. It has considerably improved. Most of my points of criticism have been
addressed.”
Reply: Thanks.

• “One main point of criticism remains. Still it is hard for me to judge the relevance of the ”diverse pre-image”/”diverse
Pareto set” problem. I repeat my comment from the previous review: Are there real-world applications reported in the
literature where this problem has been identified as relevant by practitioners? I think just citing [17]-[19] and now [20]
is not enough. I have dealt with several applications - but a diverse pre-image was never an issue.”
Reply:

– This work was motivated by engineering design optimization. Suppose two objectives f1(x) and f2(x) are much
more important than objective v(x) where x is decision (control) variables. One should first consider the following
multiobjective optimization problem:

optimize (f1(x), f2(x))

The decision maker often hopes to obtain a concrete mathematical description of the PS and PF (i.e., all the Pareto
solutions) of the above problem for further analysis. But it is (nearly) impossible. Therefore, one should obtain a
good approximation to the PS and the PF, and then optimize v(x) in the PS subject to some other constraints.

– In micro heat exchanger optimization and blade optimization studied in Honda, f1 and f2 are pressure drop and heat
transfer rate, and pressure loss and the variation of outlet pressure, respectively. The designers would like to have a
good approximation to the PS so that they can choose solutions that are less costly, easier to manufacture and more
robust to changes in the design as well as in environment.

– Approximation of the PS has been received attention from traditional math programming community and evolutionary
computation.

– We have revised the second paragraph in RC in page 1 to explain our motivation.
• “When I asked the authors to comment on ”If diversity in the decision space is a goal not reflected in the objectives,

then the problem is casted wrongly”, I obviously did not make my point clear. If diversity in the pre-image is an issue,
then one might argue that this demand should be expressed by an additional objective.”
Reply: We think that it is very hard to express this demand by an additional objective for the following reasons:

– Consider

minimize F (x) = (f1(x), f2(x))

One might consider two computational tasks for the above MOP:
1) finding a set of solutions to approximate its PF as most popular MOEAs do.
2) finding a set of solutions to approximate both the PS and PF as some researchers including us have attempted to

do.
Suppose the size of the set is fixed to be 100. Let the set of solutions be:

S = {x1, . . . , x100}
where each xi is a point in the decision space. Suppose that we use div to measure the diversity of S, or how good
S approximates the PS. Therefore, one of our goals in task (2) is to optimize div(S).

– Since div(S) is the function of S, but not decision variable x, therefore, it is hard for us to consider div(S) and
f1(x), f2(x) at the same level. In other words, it is hard to set div(S) as the third objective.

• “Minor comments:
Footnote page 1: What does ”relatively uniformly distributed” (mathematically) mean?”
Reply: We deleted it and reworded Paragraph 2 in LC in page 1.

• “I still think that ”hyper-cuboid” is a better word, because it makes clear that the interior is considered.”
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Reply: Corrected.
• “When referring to particular statements in a book, the corresponding pages or chapters should be given in the citation

instead of just citing the book. ”
Reply: We used the IEEE latex style file. We have put the page number in the bib file, but it seems that IEEEstyle file
doesn’t support it.

• “ Typos: Ref. [11] ”evolutioanry” − > ”evolutionary” Ref. [23][38] ”,Japan” − > ”, Japan””
Reply: Corrected.

REPLY TO REVIEWER 2

• “The manuscript has been well revised on the basis of reviewer’s comments. Still, there are more comments that improve
its quality.”
Reply: Thanks.

• “- MMEA has mainly targeted on the problems of Class II, and thus further concrete descriptions on the Class II must
be presented in Section I.”
Reply: Bullet point 2 in RC in page 1 has been revised.

• “- In computational results, it is desirable to clearly state which test problem belongs to which class.”
Reply: In the caption of Table I, we have stated that all the test instances in this table belong to Class II.

• “- Why does MMEA well approximate PF as well as PS? In my understanding, clustering in the objective space and
using PCA for model building are key factors. It seems that such procedures transform a class-II problem into a class-I
problem within each cluster. If this investigation is not ture, please offer proper, intuitive reasons; but it does not mean
rigorous mathematical support.”
Reply: We have added a paragraph before bullet points in Page 4 to explain why our method can approximate the PS
and the PF.

• “- From Tables III and V, it is hard to say that MMEA significantly outperforms RM-MEDA. As such, my previous assertion
on statistical test on performances is still valid.”
Reply: The one side t-test has been made on results in table III and V in this version.

• “- In Section V. C, the effect of control parameters has been empirically investigated with F3. Do the results hold up for
other test problems such as F2, F5, and so forth?”
Reply: We have done experiments on F2 and F5. The results are similar. Due to the page limit, we decide not to include
these results in the paper. The figures attached to this reply show our results on F2 and F5.

REPLY TO REVIEWER 3

• “The revised version of the paper complies with most of my concerns of the first version. I have some minor comments:”
Reply: Thanks.

• “page 1, column 2: Class I ”...the same dimensionality. Therefore the PS could consist of a number of disconnected
continuous manifolds”
“I do not think that what you say in the second sentence can be deduced from what you say in the first sentence”.
Reply: It has been deleted.

• page 2, column 1: ”Chan and Ray suggested using two selection operators in MOEAs, one encourages the diversity in
the objective space and the other does so in the decision space [27].”
[27] should be after Chan and Ray
Reply: corrected.

• *page2, column 2: Phase 3 modeling
modeling should be ”Modeling”
Reply: corrected.

• *page3, column 1: ”...We require that reference points uniformly spread on the Utopian PF...”
I think this sentence should be written
Reply: It has been rewritten.

• ”*page3, column 1: ”..Utopian PF is a simplex, in our implementation, we use the simplex point picking method2..”
I would prefer a reference of a book more than a reference in wiki
Reply: corrected.

• * page4, column 1: Step 5.5 at the end of the formula there is an extra ”,”
Reply: corrected.

• * page4, column 2: ”...The crowding distance, used in Step 3, of point x in S is defined as the average side length of the
largest m-D rectangle in the objective space subject to two constraints: (a) each of its sides is parallel to a coordinate
axis, and..”
What is S?
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Reply Sorry for the typo. It has been corrected.
• * page18, column2: ”Can MMEA Deal...” D should be in lower case

Reply: It seems to us that in IEEE Trans papers, The first letter in a subsubsection title should be in capital.
• * page19, column2: ”...MMEA is faster than RM-MEDA is mainly because that the PCA used...” The sentence should

be corrected
Reply: It has been corrected.
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(a) The average IGD metrics of the 20 final approximations v.s. α in MMEA on F2.
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(b) The average IGD metrics of the 20 final approximations v.s. β in MMEA on F2.
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(c) The average IGD metrics of the 20 final approximations v.s. θ in MMEA on F2.
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(d) The average IGD metrics of the 20 final approximations v.s. Kmax in MMEA on F2.

Fig. 1. Sensitivity of Control Parameters on F2.
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(a) The average IGD metrics of the 20 final approximations v.s. α in MMEA on F5.
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(b) The average IGD metrics of the 20 final approximations v.s. β in MMEA on F5.
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(c) The average IGD metrics of the 20 final approximations v.s. θ in MMEA on F5.
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(d) The average IGD metrics of the 20 final approximations v.s. Kmax in MMEA on F5.

Fig. 2. Sensitivity of Control Parameters on F5.
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