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Evolving Symmetry for Modular System Design
Vinod K. Valsalam and Risto Miikkulainen

Abstract—Symmetry is useful as a constraint in designing
complex systems such as distributed controllers for multilegged
robots. However, it is often difficult to determine which sym-
metries are appropriate. It is therefore desirable to design such
systems automatically, e.g. by utilizing evolutionary algorithms
that produce symmetry through developmental mechanisms. The
success of these algorithms depends on how well they explore
the space of valid symmetries. This paper presents an approach
called Evolution of Network Symmetry and mOdularity (ENSO)
that utilizes group theory to search the space of symmetries
effectively. This approach was evaluated by evolving neural
network controllers for a quadruped robot in physically realistic
simulations. On flat ground, the resulting controllers are as
fast as those having hand-designed symmetry, and significantly
faster than those without symmetry. On inclined ground, where
the appropriate symmetries are difficult to determine manually,
ENSO produced significantly faster gaits that also generalize
better than those of other approaches. On robots with a more
complicated structure including knee joints, ENSO resulted in
more regular gaits than the other approaches. These results
suggest that ENSO is a promising approach for evolving complex
systems with modularity and symmetry.

Index Terms—Development, Modularity, Symmetry, Group
theory, Multilegged robots.

I. INTRODUCTION

Developmental systems can represent complex structures
with regularities compactly through gene reuse [52]. They are
useful for evolving solutions to large-scale problems for two
reasons. First, their compact genotype representation makes
the evolutionary search space smaller. The fitness landscapes
of such smaller search spaces are likely to be less rugged [22],
making them easier to search. Second, known regularities in
the phenotype can sometimes be encoded into the genotype
representation, into the evolutionary operators, and into the
genotype-phenotype mapping, making it possible for evolution
to find solutions efficiently.

A common type of regularity that appears in the solution
to many complex problems is the repetition of interconnected
substructures called modules. For example, the controller for
a multilegged robot can be decomposed into modules, each
controlling a different leg [3, 57, 58]. The constraints specify-
ing which modules and interconnections are identical can be
expressed formally in terms of symmetries, i.e. permutations
of modules that leave the solution invariant. These symmetries
are crucial for solving many problems; for instance they
determine the type of gaits that a multilegged robot controller
can produce [11, 57, 58].

Therefore, the ability to search for symmetries effectively
is useful when evolving solutions to such problems. While
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developmental systems can produce modular phenotypes with
symmetries [19, 24, 49], how effectively they can explore
different symmetries depends on the abstraction of devel-
opment they use. Traditionally, these abstractions simulate
the developmental growth process, e.g. by modeling cellular
interactions or by using grammatical rewrite rules [52]. The
resulting complexity in the mapping of genotype to phenotype
makes it difficult to evolve the desired phenotypic symmetries
through genetic variations. Other abstractions that bypass an
explicit developmental process are also possible. For example,
HyperNEAT uses function composition to capture the essential
characteristics of the developmental process [50, 51]. As a
result, phenotypic symmetries can be encoded more directly
in the genotype as symmetric functions, and therefore can be
evolved more easily.

This paper presents an approach that is designed specifically
to evolve the symmetry of modular phenotypes. The main
insight is that essential characteristics of development such
as modularity, repetition of modules, and symmetry can be
expressed in a unified manner in terms of group theory, which
is the mathematical theory of symmetry. This approach, called
Evolution of Network Symmetry and mOdularity (ENSO),
utilizes a compact genotype, storing the parameters of identical
modules only once, while allowing variations between them
to evolve. It uses a simple genotype-phenotype mapping
that makes the entire space of phenotype symmetries easily
accessible to evolutionary search. Thus ENSO leverages the
properties of development for designing artificial systems.

ENSO also utilizes domain knowledge by initializing evolu-
tion with user-identified modules, making it possible to solve
complex problems such as the design of distributed controllers
and multiagent systems. For instance in this paper, ENSO
is used to evolve neural network controllers for quadruped
robots in physically realistic simulations. ENSO evolves robust
controllers that produce effective locomotive behaviors both
on flat and inclined ground. Moreover, on inclined ground
these controllers are significantly better than those evolved
with hand-designed symmetries, and with random symmetry
mutations. ENSO also produced more regular gaits than the
other approaches on a more challenging robot with knee
joints,. Since inclines, multi-jointed legs, and other similar
complexities are common in the real world, these results
suggest that ENSO is a promising approach for designing
distributed controllers in real-world applications.

This paper is organized as follows. The next section presents
the biological and mathematical background for ENSO, and re-
views related work. Section III describes the ENSO approach,
its genotype and phenotype representations, and its evolution-
ary operators. Section IV discusses the quadruped robot model,
the architecture of its modular controller, and the evolutionary
experiments designed to evaluate ENSO. Section V presents
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the results of these experiments, demonstrating the benefits of
ENSO. Section VI discusses the results and presents directions
for future work.

II. BACKGROUND AND RELATED WORK

This section begins by discussing the biological motivation
for ENSO and then reviews prior work on developmental
systems. This review is followed by a discussion of the group-
theoretical concepts that ENSO utilizes to represent symmetry.
These concepts are then applied to coupled cell systems, which
model controllers for multilegged robots.

A. Biological Motivation

Symmetry in nature expresses constraints between identi-
cal subsystems. For example, a bilaterally symmetric animal
has identical left and right legs that are constrained to be
equidistant from its plane of symmetry, and the symmet-
ric neural circuitry controlling its locomotion has identical
modules constrained by the nature of their interconnections
[11]. Symmetry in such systems can potentially provide two
benefits: (1) it allows encoding identical subsystems compactly
using a common set of genes [1, 32, 43] for easier evolutionary
search and (2) it can result in patterned oscillations in neural
circuits [11, 25, 47], e.g. for effective gaits.

How did organisms with different symmetries evolve in
nature? Evidence suggests that more symmetric organisms
evolved into less symmetric organisms [36, 43]. For example,
primitive, single-celled organisms like protozoans are highly
symmetric with spherical shapes. They evolved into less
symmetric organisms such as jelly fish, which have radial
symmetry. And radially symmetric organisms in turn evolved
into even less symmetric organisms, e.g. bilaterally symmetric
humans. Simply put, nature evolves the appropriate level of
symmetry through symmetry breaking.

Mutations that break symmetries produce novel phenotypic
variations [43]. For example, fiddler crabs, whose males are
asymmetric with an oversized claw, evolved from a bilater-
ally symmetric ancestor. Bilateral symmetry is the default in
such organisms, i.e. the same developmental program creates
paired, symmetric sides. Breaking this symmetry requires the
genome to specify additional information on how one side is
different from the other, thus increasing the complexity of the
genome.

In fact, symmetry is fundamentally related to complex-
ity, allowing complexity to be characterized as the lack of
symmetry [21]. Increase in complexity of organisms during
evolution is accompanied by symmetry breaking at different
levels of organization [16]. Moreover, complexification, i.e. in-
crementally increasing complexity, makes evolutionary search
more effective because it allows evolution to start with low-
dimensional genotypes, which are likely to be less rugged and
therefore easy to optimize, and gradually add more dimensions
while optimizing them further [22, 53]. Building complex
systems by incrementally elaborating solutions in this manner
is more likely to succeed than evolving solutions in the final
high-dimensional space directly. Therefore, evolving complex
systems from simple symmetric systems by breaking their

symmetry step-by-step might be a good way to design them.
This idea motivates the symmetry breaking approach of ENSO
discussed in Section III.

Nature utilizes a developmental process to construct the
phenotype and express the symmetries encoded in the geno-
type. ENSO bypasses this developmental process by utilizing a
genotype representation that encodes symmetries explicitly, as
described in Section III. The contributions of other researchers
in devising evolutionary algorithms based on computational
abstractions of development, called indirect encodings, are
discussed next.

B. Indirect Encodings

Most indirect encodings were developed for evolving ar-
tificial neural networks, and Kitano was one of its earliest
practitioners [28]. He evolved matrix rewrite rules that produce
the adjacency matrix of neural networks through a series of
rewrite steps. This method is based on L-systems, which are
grammatical string rewrite rules that were first developed by
Lindenmayer to model the biological growth of plants [34].
Such systems yield complex tree-like structures resembling
fractals. Kitano’s scheme produced similar matrix structures.
They are generated from an initial 2 × 2 matrix, whose
symbols are rewritten iteratively with other 2 × 2 matrices,
creating larger and larger matrices. Repeating the symbols in
the matrix creates regularities and symmetries. The rewriting
stops when the current matrix contains only numerical values,
which are produced by terminal symbols. The result is then
interpreted as a neural network’s adjacency matrix, specifying
its connectivity parameters. Kitano evolved such networks
to solve encoder/decoder problems. However, these networks
are typically very large because their size is exponential in
the number of rewrite steps. Evolving detailed connectivity
between network units is also difficult.

Boers and Kuiper used a different L-system to evolve the
topology of modular neural networks [5]. Their system was
based on context-sensitive graph rewriting to describe neural
network topologies. Repetition of rule strings and recursive
application of the rules result in modular network architec-
tures. They evolved only the architecture of the networks in
this manner; the connection weights were later determined
using the backpropagation algorithm [9]. Using this method,
they evolved solutions for problems such as XOR and shape
recognition. Because backpropagation was used for learning
connection weights, the networks were limited to feed-forward
architectures. Moreover, a different symbol was used for each
unit in the network, limiting the scalability of the approach.

Sims used another type of generative graph-based encoding
to evolve virtual creatures in simulated physical environments
[49]. He used directed graphs as genotypes to encode de-
velopmental instructions for constructing the morphology of
the creatures. The nodes of the graph contain information on
synthesizing body parts, while its edges specify the order
in which to synthesize them. Multiple edges to the same
child node result in reuse of body parts, which is useful for
creating multiple instances of limbs. Recursive edges are also
possible, producing repetitive, fractal-like morphologies. The
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neural network control circuitry of the creature was embedded
in the genotype graph and evolved along with its morphology.
Although the developmental mechanism in this method was
elementary, the resulting creatures were significantly regular
and capable of a variety of interesting locomotive behaviors.

Gruau also used graphs as genotypes in a method called
cellular encoding (CE), that was inspired by how biological
development occurs through cell division [19]. The genotype
encodes a program tree for constructing a neural network from
a single ancestral cell. These program trees are then evolved
using standard techniques for genetic programming [31]. The
nodes of the tree contain cellular developmental instructions,
such as for splitting a cell into two, deleting a connection
between two cells, or changing the weight of a connection.
A full neural network is built by executing these instructions
in the sequence specified by the edges of the program tree.
Gruau showed that networks with repeated structures can be
produced by using a recursion instruction that transfers control
of development back to the root of the program tree. He
evolved such networks to solve problems with regularity such
as finding the parity and symmetry of a set of binary digits.

Luke and Specter identified several weaknesses of CE and
proposed edge encoding (EE) as an alternative to address many
of those concerns [35]. For example, crossover in CE can
produce drastic changes in the phenotype of an offspring,
which may be problematic for evolution in many domains.
Moreover, the networks produced by CE tend be highly inter-
connected because they are grown by splitting cells into two or
more interconnected cells. Such networks are a disadvantage in
domains where such high connectivity is not required. CE also
does not provide a convenient mechanism to tune connection
weights because cells, not connections, are the target of its
development instructions. EE grows networks by modifying
edges rather than cells, thereby avoiding these problems of
CE and making it more suitable in some domains. However,
although both CE and EE are expressive enough to produce
all possible graphs, it is not clear how their particular biases
affect their performance in any given problem.

In a domain similar to Sims’ simulated 3D virtual creatures,
Hornby and Pollack combined the ideas of CE and EE with
L-systems to simultaneously evolve the body and brain of
such creatures [24]. They used strings of build commands for
constructing the neural network brains instead of the trees
of build commands that are used in CE. Moreover, these
build commands operate on connections in the network as in
EE. They defined a different set of commands for building
body parts of the creatures. The separate command languages
for building the body and brain were then combined using
an L-system and evolved. The resulting creatures were more
complex, having more parts and regularity, and faster than
similar creatures evolved using a non-developmental encoding.
They were also more complex than the creatures produced by
Sims.

Bongard and Pfeifer also evolved similar virtual creatures,
but by using an abstraction of genetic regulatory networks
(GRNs) for encoding bodies and neural networks [6]. GRNs
model gene expression inside biological cells, i.e. the interac-
tions between genes as they regulate each other through the

production of proteins [26]. In Bongard and Pfeifer’s work,
the creature begins development as a single spherical unit.
Depending on the concentrations of gene products inside this
unit, it grows in size and eventually divides into two child
units. These units are attached to each other by a joint. Each
unit contains a small neural network, which develops accord-
ing to a variant of the CE method. In this variant, different
gene products trigger different operations that modify the local
network. The development continues until a fixed number of
time steps is reached. Using this method, the authors produced
creatures with hierarchical repeated structures in the task of
pushing a block.

Dellaert and Beer had previously used an abstraction of
GRNs called random Boolean networks (RBNs) to evolve
simulated agents capable of following curved lines [12]. In
their method, cells representing the body of the agent develop
first. A neural network develops on top of the arrangement
of these cells when specialized cells send out axons, making
connections with other cells within its range. A similar neural
network developmental model was used by Cangelosi, Parisi
and Nolfi to create organisms that seek out food and water
[7]. Their networks grow in a two-dimensional space using
processes such as cell division and axon growth. Kodjabachian
and Meyer also used connection growth mechanisms in their
geometry-oriented version of CE called SGOCE [29]. Utilizing
similar ideas of development, Miller evolved developmental
programs that can construct the French flag (i.e. adjoining
rectangular regions of blue, white, and red colors) and repair
damages in it [38].

In the above methods, small changes in the genotype often
produce unpredictable changes in the phenotypes. Steiner et al.
proposed to reduce this effect by manipulating the phase space
of the dynamic system of the GRN directly [54]. Moreover,
GRN-based approaches abstract biological development at
levels lower than those of graph-based methods by modeling
biological growth processes in varying detail. However, de-
tailed simulation of biological processes are computationally
expensive, and may be unnecessary or even counterproductive
[12]. Therefore, determining the right level of developmental
abstraction for indirect encodings is an important research
topic.

Addressing this issue of abstraction, Stanley proposed an
indirect encoding called Compositional Pattern Producing
Networks (CPPNs) that eliminates the traditional local inter-
action and temporal unfolding mechanisms of developmental
systems [50]. Instead, he argued that the effects of such
mechanisms can be obtained by composing specific functions
in the appropriate order, i.e. by constructing a CPPN. The
patterns produced by a CPPN are interpreted as the spatial
connectivity patterns of a neural network using a method called
HyperNEAT. Stanley et al. applied this method to tasks having
a large number of inputs and regularities, such as robot food
gathering and visual object discrimination [51]. Clune et al.
also used HyperNEAT to evolve controllers for a quadruped
robot [10]. However, unlike the controllers evolved by ENSO,
they found it useful to utilize external oscillations to produce
gaits.
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All the above methods provide mechanisms for reuse of
genes and repetition of phenotypic substructures, thus encour-
aging modularity. The developmental process also sometimes
produces symmetries in the modular phenotypes, and they can
emerge if symmetric and periodic functions are used in the
encoding. In contrast, symmetry plays a central role in the
ENSO approach presented in this paper, i.e. other characteris-
tics of development such as modularity and repetition are also
expressed in terms of symmetry (Section III). ENSO makes
this unified treatment possible by utilizing group theory, which
is introduced next.

C. Symmetries and Group Theory

ENSO represents modules as the vertices and the relation-
ships between them as the edges of a complete graph G =
(V,E), where V is the vertex set and E = {(u, v) | u, v ∈
V ; u 6= v} is the edge set. Since G cannot have loops, it
is possible to represent a vertex v by the pair (v, v), and
thus represent both vertices and edges by the elements of
the set V × V . In order to represent the symmetries of G,
ENSO assigns every element of V × V a color, producing
a complete coloring [2] of the vertices and edges of G. In
practice, each color represents a particular combination of
parameters associated with a vertex or edge. A symmetry of
G is defined as any permutation of its vertices that preserves
the color of edges between them.

The symmetries of a graph can be represented mathemati-
cally as a group [4, 8]. A group is a set G of elements closed
under a binary operation ◦ satisfying the following axioms:

Associativity: For all g, h, k ∈ G, (g◦h)◦k = g◦(h◦k).
Identity element: There exists an element e ∈ G such that

for all g ∈ G, e ◦ g = g ◦ e = g.
Inverse element: For each g ∈ G, there is an element

g−1 ∈ G such that g◦g−1 = g−1◦g = e.
The operation g ◦ h is usually written more compactly as gh.

A subgroup H of a group G, denoted H ≤ G, is a subset
of the group elements of G satisfying the group axioms
under the same operation. If the subset is a proper subset
of G, then the subgroup is called a proper subgroup of G. A
maximal subgroup of G is any proper subgroup S such that no
other proper subgroup T contains S strictly. If G represents
the symmetries of a graph G, then its proper subgroup H
represents the symmetries of a less symmetric graph H . ENSO
uses this fact to compare graph symmetries.

Two subgroups S and T are said to be conjugate if
there exists an element g ∈ G such that T = gSg−1, i.e.
T = {gsg−1 | s ∈ S}. It can be shown that conjugacy is an
equivalence relation, partitioning the set of all subgroups of
a group G into equivalence classes called conjugacy classes.
The subgroups belonging to a given conjugacy class represent
graphs with similar symmetries. Therefore, conjugacy classes
are useful for characterizing the space of graph symmetries
that ENSO has to search.

Fig. 1 illustrates how the above definitions can be used to
represent the symmetries of a completely colored graph with
four vertices. Since all edges of graph GA have the same
color, any permutation of its vertices is a symmetry of the

GA GB

1 2

3 4

1 2

3 4

Fig. 1: Representing graph symmetries using groups. Each vertex and edge
has a color (indicated by both color and line style) representing a particular
combination of parameters. A graph symmetry is any permutation of vertices
under which the edge colors remain the same. Both graphs in this figure
have vertices of the same color. All edges of graph GA have the same color,
while edges of graph GB have different colors. Therefore, any permutation
of the vertices of graph GA is a symmetry. In contrast, only the permutations
g = (1 2)(3 4) and h = (1 3)(2 4), and their compositions are symmetries
of graph GB . The set of all symmetries of a graph form a group, with
composition as the group operation. Thus group theory is a natural way to
represent symmetries.

graph. In contrast, graph GB has fewer symmetries because its
edges have different colors. The permutation g = (1 2)(3 4),
which swaps vertices 1 and 2 as well as vertices 3 and 4, is a
symmetry of GB . Similarly, the permutation h = (1 3)(2 4)
is another symmetry, and their composition hg obtained by
performing the two permutations in sequence is yet another
symmetry. The trivial permutation e = (), which fixes each
vertex of the graph, is also a symmetry. The set of all such
symmetries of a graph G is closed under composition and
inverses, i.e. it forms a group with composition as the group
operation. This group is called the automorphism group of G,
denoted as Aut(G).

The automorphism group of graph GA, consisting of all 4!
permutations of its vertex set V = {1, 2, 3, 4}, is called the
symmetric group of degree four, denoted as S4. The automor-
phism group of the less symmetric graph GB is a subgroup
of S4 called the dihedral group D2 (and is isomorphic to the
symmetries of a regular polygon with two sides, i.e. a line
segment). More generally, the automorphism group of any
graph G with vertex set V = {1, 2, 3, 4} is a subgroup of
S4, and is fully determined by the complete coloring of G.
ENSO utilizes this observation to manipulate the symmetries
of graphs by changing their coloring.

Changing the coloring of a graph G such that its new
automorphism group is a subgroup of its original automor-
phism group is said to break the symmetry of G. In order
to implement symmetry breaking, ENSO defines a canonical
complete coloring of G for any given automorphism group
G using the concept of group action. Formally, the action of
G on the vertex set V is a function G × V → V , denoted
(g, v) 7→ g · v for each g ∈ G and each v ∈ V , which satisfies
the following two conditions:

1) e·v = v for every v ∈ V , where e is the identity element
of G, and

2) (gh) · v = g · (h · v) for all g, h ∈ G and v ∈ V .
The set of all w ∈ V to which v is mapped by the elements
of G is called the orbit of v. Similarly, the coordinate-wise
action of G on V × V is defined as g · (v, w) = (g · v, g ·
w) for any (v, w) ∈ V × V . The orbits in this action are
called orbitals, and they form a partition of V × V called an
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orbital partition. Assigning a different color to each part of
this partition produces the desired canonical complete coloring
of G.

If a graph G′ is produced by breaking the symmetry of
G, then the orbital partition ρ′ under the action of Aut(G′)
is a refinement of the orbital partition ρ under the action
of Aut(G), i.e. each part of ρ′ is a subset of a part of
ρ. Therefore, the canonical complete coloring of G′ can be
obtained from that of G by assigning new colors to the parts
of ρ′ that are a proper subset of a part of ρ and retaining the
colors of parts of ρ′ that are also parts of ρ. ENSO represents
this hierarchical relationship between the colors of G and G′

by organizing the new colors of G′ as the children of colors
of G that they replace. This organization produces a tree of
colors when symmetry is broken repeatedly during evolution.

Breaking symmetry in the above manner induces an order-
ing of the graphs based on the subgroup relation between their
automorphism groups. More precisely, with subgroup as the
partial order relation, the set of all subgroups of a group form
a lattice. Fig. 2 illustrates this lattice for the subgroups of S4.
Nodes of this lattice represent conjugacy classes of subgroups.
A group Gi is placed above another group Gj and connected
by a line if and only if Gj is a maximal subgroup of Gi. This
lattice contains the automorphism groups of all completely
colored graphs with vertex set V = {1, 2, 3, 4}. The most
symmetric graphs with automorphism group S4 are at the top
of the lattice, while the least symmetric graphs with the trivial
automorphism group {e} are at the bottom.

Therefore, traversing the subgroup lattice from top to bot-
tom visits progressively less symmetric graphs, making it
possible for ENSO to search the space of graph symmetries
systematically by breaking symmetry incrementally. However,
the number of subgroups of S|V | grows combinatorially as |V |
increases [20], making exhaustive symmetry search intractable
for graphs with a large number of vertices. Moreover, ENSO
must search the parameter space of the modules for each
symmetry. Therefore, ENSO uses evolution to focus the search
on promising lattice regions and parameter combinations.

In this paper, ENSO is used to evolve locomotion controllers
for multilegged robots. These controllers are first modeled as
coupled cell systems by applying the above group-theoretic
concepts, as described in the following subsection.

D. Coupled Cell Systems

A coupled cell system consists of a set of dynamical
systems, called cells, and a specification of how the cells are
coupled, i.e. how the state of each cell affects the states of
the other cells [18]. Some or all of the cells and couplings
may be identical, resulting in symmetries that correspond to
permutations of the cells under which the behavior of the
system is invariant. Such symmetric, coupled cell systems
can exhibit synchronous and phase-related periodic patterns in
their state. Collins and Stewart [11] showed that this patterned
behavior can be used to model animal locomotion and to
explain gait symmetries.

Following their method, the modular controllers in this pa-
per are also modeled as symmetric coupled cell systems. The

D43 x 

Z43 x D23 x 

Z23 x Z26 x 

{e}

Z34 x 

D2

A4 S34 x 

S4

Fig. 2: Lattice of subgroups of S4. This lattice was computed using the
GAP [15] software for computational group theory and shows the subgroups
of the group S4, which is the symmetric group of degree four containing all 4!
permutations of the set V = {1, 2, 3, 4}. Each node of the lattice represents
an equivalence class of conjugate subgroups. For example, the node labeled
4 × S3 represents the four symmetric groups of degree three obtained by
fixing each of the four elements of V and permuting only the other three
elements. The lattice also contains the alternating group A4 of degree four,
formed by the permutations of V that can be expressed as the composition
of an even number of transpositions; the dihedral groups Dn, formed by the
permutations of V that are isomorphic to the symmetries of a regular polygon
with n sides; and the cyclic groups Zn, formed by the permutations of V
that are isomorphic to the group of integers under addition modulo n. The
automorphism groups of all graphs with vertex set V appear in this lattice,
inducing a partial order of the corresponding graphs. Thus, the most symmetric
graphs with automorphism group S4 appear at the top of the lattice, while
the least symmetric graphs with the trivial automorphism group {e} appear
at the bottom of the lattice. This order makes it possible for ENSO to search
the space of graph symmetries systematically by traversing the lattice from
top to bottom.

patterned oscillatory behavior produced by these symmetries
is independent of the model parameters, i.e. the details of
the internal dynamics of the cells do not matter. Therefore,
analyzing the symmetries of a coupled cell system can give
insights into the high-level qualitative behavior of the system.

This analysis is illustrated below for a coupled cell system
due to Pinto and Golubitsky [44]. While they used this
system to understand biped locomotion, it is adapted in this
review to model quadruped gaits. This system consists of four
identical cells, described by the following system of ordinary
differential equations (ODEs):

ẋ1 = F (x1,x2,x3,x4)

ẋ2 = F (x2,x1,x4,x3)

ẋ3 = F (x3,x4,x1,x2)

ẋ4 = F (x4,x3,x2,x1),

(1)

where xi ∈ Rk are the k state variables of cell i, and F :
(Rk)4 → Rk encapsulates the internal dynamics of each cell
and its coupling with other cells. Thus, this system of ODEs
describes how the state variables of each cell change in time
as a function of the cell’s own state and the state of the other
cells.
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Fig. 3: Graph corresponding to the coupled cell system in equation (1).
The vertices, numbered 1 through 4, represent cells and the edges represent
coupling between the cells. The different edge colors (also indicated with
different line styles) represent different couplings, corresponding to different
argument positions in the function F as shown in the legend. This graph helps
visualize the symmetries of the coupled cell system and shows how the cells
may be assigned to control the legs of a quadruped robot to produce different
gaits (Fig. 4). For example, these symmetries can constrain cells 1 and 2 to
oscillate synchronously with phase opposite to that of similarly synchronous
cells 3 and 4, producing the bound gait.

This system can be represented by the graph in Fig. 3,
which helps visualize its symmetries. The vertices of the
graph represent cells and the edges represent coupling between
the cells. Each edge color represents a different type of
coupling, corresponding to a different argument position in
the function F . This graph is the same as the graph GB of
Fig. 1 in Section II-C, where its symmetries were analyzed.
In particular, its automorphism group is D2, consisting of the
symmetric permutations g = (1 2)(3 4), h = (1 3)(2 4), and
their composition hg.

Each symmetry of the graph induces a symmetry of the
associated system of ODEs, i.e. a transformation γ such that
γx(t) is a solution whenever x(t) is a solution. For example,
suppose x(t) is a solution to (1). Applying the permutation g
to (1) produces an equivalent system of ODEs for which gx(t)
is a solution. Thus, the system of ODEs inherits the symmetry
g from the corresponding graph.

In particular, periodic solutions of the system are interesting
because they model gaits. Let x(t) be a T -periodic solution
to (1) and γ be a symmetry. Then γx(t) is also a solution.
Because solutions to the same initial conditions are unique, if
x(t) and γx(t) are the same trajectory, then their phases must
be different, i.e. γx(t) = x(t + θ) where θ ∈ [0, T ) for all
t. Since applying either g twice or h twice to a solution is
equivalent to applying the identity, 2θ ≡ 0 (mod T ) for both
symmetries. Therefore, the possible values of phase shift θ is
either 0 or T

2 for both symmetries.
Such phase shifts impose constraints on the components

of the solution x(t) = (x1(t),x2(t),x3(t),x4(t)), producing
specific patterned behavior for the system. For example, the
bound gait pattern results from the following constraints. The
symmetry g is first applied to x(t) with a phase shift of
θg = 0, resulting in the constraints x2(t) = x1(t) and
x4(t) = x3(t). Consequently, the solution has the form
x(t) = (x1(t),x1(t),x3(t),x3(t)), implying that cells 1 and
2 are synchronous and cells 3 and 4 are synchronous, but
their synchrony is independent, i.e. it does not yet produce
an interesting gait. However, applying the symmetry h to this
solution with a phase shift of θh = T

2 results in a further

0.0

0.0 0.0

0.0

(a) Pronk

0.0

0.0 0.5

0.5

(b) Pace

0.0

0.5 0.5

0.0

(c) Bound

0.0

0.5 0.0

0.5

(d) Trot

Fig. 4: Phase relations between legs in the pronk, pace, bound and trot
gaits of quadrupeds. The numbers as well as the colors indicate phase of
leg movement. In the pronk gait, all four legs move synchronously, while in
the other gaits pairs of legs are synchronous and a half-period out of phase
with the other pair.

TABLE I: Gaits corresponding to different combinations of phase shifts
θg and θh associated with two permutation symmetries g and h of the
coupled cell system in Fig. 3. Thus, this system can have solutions modeling
a variety of common quadruped gaits.

Pronk Pace Bound Trot

θg 0 T
2

0 T
2

θh 0 0 T
2

T
2

constraint x3(t) = x1(t+
T
2 ). Now, the solution has the form

x(t) = (x1(t),x1(t),x1(t +
T
2 ),x1(t +

T
2 )), implying that

cells 1 and 2 are synchronous, while cells 3 and 4 are also
synchronous with the same periodic trajectory as cells 1 and 2,
but half-period out of phase. Assigning these cells to control
the legs of a quadruped robot as illustrated in Fig. 3 produces
a bound gait (Fig. 4).

Other common quadruped gaits (such as those depicted
in Fig. 4) can be obtained similarly by selecting different
combinations of values for θg and θh as shown in Table I.
Although these gaits are possible solutions of the system,
whether any particular gait can be obtained in an instance
of the system depends on the details of the cell dynamics
and the couplings, i.e. on the function F in the ODEs. In
prior work [57], we showed that this function F can be
designed effectively by utilizing modular neuroevolution, i.e.
by representing each cell as a neural network module and
evolving its weights. The resulting controllers produced all
four gaits listed in Table I.

The above theoretical results make the gait-production
capabilities of such modular controller networks easy to
understand. Consequently, in contrast to other approaches,
these controllers are easy to design and scale well to robots
with more legs and more complex legs [57]. Moreover, neu-
roevolution is an effective alternative to manual design of
coupled cell system ODEs for producing desired behaviors
(such as [11, 27, 45, 46]). The ENSO approach in this paper
extends our prior work on modular neuroevolution [57] by
evolving the symmetries of the system simultaneously. As
a result, ENSO can evolve controllers that produce effective
gaits even when such gaits are unknown and manual design
of the required symmetries is difficult. This approach for
simultaneous evolution of modules and symmetry is described
next.

III. APPROACH

ENSO evolves neural network solutions for problems where
domain regularities make it possible to partition the inputs
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and outputs of the network into modules. It represents the
modules and the connections between them as the vertices and
edges of a completely colored graph (Section II-C). Evolving
this representation consists of two components: (1) evolving
the symmetry of the module interconnection graph and (2)
evolving the functionality of the modules and connections.
These components are described below.

A. Symmetry Evolution

In order to evolve a network with n modules, ENSO
initializes a population of maximally symmetric, completely
colored graphs with vertex set V = {1, 2, . . . , n}, i.e. these
graphs have automorphism group Sn. These graphs have only
two colors: All vertices are of one color while all edges
are of the other color. Vertices or edges with the same
color have the same set of neural network parameters and
are therefore considered identical. Therefore, each graph in
the initial population represents a modular neural network
having identical modules and identical connections between
the modules.

ENSO computes the subgroup lattice of Sn and the orbital
partitions for each subgroup in the lattice at the beginning
of evolution using the GAP [15] software. During evolution,
ENSO utilizes this lattice to mutate the coloring of graphs, thus
breaking their symmetry. Each such color mutation creates a
new graph coloring from the orbital partition of a randomly
chosen successor in the subgroup lattice; that is, the auto-
morphism group of the mutated graph is a random maximal
subgroup of the automorphism group of the original graph.

ENSO organizes the colors created by successive color
mutations as a tree. Each tree is a genotype for evolution.
The leaf colors of the tree specify the complete coloring of
a graph, which is the phenotype that is constructed from the
genotype. Each genotype tree of the initial population has two
leaf nodes, one representing the color of vertices and the other
representing the color of edges (Fig. 5a). These two leaf nodes
are the children of a root node that represents a dummy color.

Thus each node in the genotype tree represents a particular
color c. Second, it represents the set Q of elements of V × V
(i.e. the set of vertices or edges of the phenotype graph) that
have the color c. This representation is a bit string of length
n2, where the bit position (i−1)n+j is set to “1” if and only
if the pair (i, j) is in Q. Third, the node stores the neural
network parameters of these elements, i.e. the biases and
connection weights of the module network (for each vertex)
or the connection weights between modules (for each edge).

The effect of a color mutation on the genotype tree is to
partition the set of vertex or edge elements associated with
one or more leaf nodes and create a new child color for each
part of the partition (Fig. 5b). As a result, the colors of these
elements change correspondingly in the phenotype graph, i.e.
some of the elements that were identical before the mutation
are no longer identical: A new (initially random) set of neural
network parameters is associated with each new color. These
color changes break the symmetry of the phenotype graph, i.e.
it loses its color invariance under a subset of permutations that
were its symmetries prior to the mutation.

Since the automorphism group of the mutated graph is a
maximal subgroup of the automorphism group of the original
graph, color mutations break symmetry in minimal increments.
As a result, evolution searches the space of symmetries sys-
tematically by exploring more symmetric graphs before less
symmetric ones. Creating new colors and parameters in the
genotype tree during this process increases the complexity
of the genotype, i.e. evolution searches in a low-dimensional
space before it complexifies to a higher dimensional space.
This approach allows evolution to optimize solutions in a
small search space, and elaborate on them by adding more
dimensions. Such complexification has been demonstrated to
be useful in other methods for evolving neural networks
[48, 53]. Complexification also means that simpler solutions
are preferred over more complex solutions, thus conforming
to the principle of Occam’s razor, which often results in more
robust neural networks [14, 33].

For each phenotype graph that ENSO produces in the
above manner, it also evolves the neural network parameters
associated with its colors to optimize the functionality of the
network modules and their interconnections. The structure of
these modules and the evolution of network parameters is
described next.

B. Module Evolution

A fixed architecture is used for the neural network modules,
each module consisting of a layer of hidden nodes that are fully
connected to inputs and outputs (Fig. 5). Evolution optimizes
two kinds of network parameters: (1) the scalar parameters of
these modules, i.e. the connection weights and node biases,
which form the vertex parameters of the phenotype graph,
and (2) the weights of connections between modules, which
form the edge parameters of the phenotype graph. Module
interconnections are implemented by fully connecting the
input layer of one module to the hidden layer of the other
module (for instance, in a legged locomotion controller, such
interconnections allow the control module of one leg to receive
the state of another leg as input). If modules are not connected,
then the corresponding graph edges are disabled using special
binary edge parameters.

The vertex and edge parameters of the phenotype graph
are stored in the genotype leaf nodes. In the initial popu-
lation, these parameters are initialized with random values
in parameter-specific ranges specified by the experimenter.
During evolution, ENSO mutates each of these parameters
probabilistically by perturbing them with Gaussian noise.
When a parameter in a particular genotype node is mutated, it
affects all vertices and edges with that color. Thus, represent-
ing identical elements by a single node in the genotype tree
allows evolution to search the parameter space efficiently by
making coordinated changes to the phenotype.

Symmetry and modules must be evolved together to find
solution networks, making it necessary to mix parameter and
color mutations. However, color mutations produce severe
changes in the phenotype, resulting in sudden changes in
fitness that may cause the phenotype to be removed from
the population. It is possible to determine how effective such
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PhenotypeGenotype
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Nil
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Color
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(a)

(b)

Edges: 0111101111101110Vertices:1000010000100001
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Params:
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x1 x2 x3 x4

y1

Module 1

Network module

x1 x2 x3 x4

y1

Module 1

1 2

3 4

1 2

3 4

Fig. 5: Examples of genotype, phenotype, network module, and color mutation. ENSO uses a tree of colors as genotype (left). Each leaf of this tree has
a unique color, and represents a set of vertices or edges of the phenotype graph (middle) that have the same parameter values. The vertices and edges of the
phenotype graph represent the modules of a neural network and the connections between them (right). Their parameters (stored in the genotype) consist of
node biases and connection weights for each module network (vertex) and weights for each connection between modules (edge). Each module has a fixed
architecture with a layer of hidden nodes fully connected to its inputs and outputs. A connection from another module (not shown) is implemented by fully
connecting its input layer to the hidden layer of the target module. (a) At the beginning of evolution, each genotype in the population represents a maximally
symmetric phenotype graph with automorphism group S4. All vertices of this graph have the same color (solid black, represented by the leaf on the left)
and all its edges have the same color (orange with alternating dots and dashes, represented by the leaf on the right), implying that all modules are identical
and all connections between them are also identical. (b) A color mutation breaks the phenotype graph symmetry to D4, which is a maximal subgroup of
S4 (Fig. 2). As a result, two child nodes are created for the node representing the set of edges, i.e. the set of edges is partitioned into two and each part is
colored differently (dotted blue and dashed green). Since each color is associated with a different combination of parameter values, the mutated phenotype
graph represents two types of connections between network modules. Such color mutations, when combined with parameter mutations, make it possible to
evolve symmetric and modular neural networks efficiently.

structural changes are only after enough parameter muta-
tions have accumulated over evolutionary time. Therefore,
color mutations are given the opportunity to optimize by
creating population niches, similar in spirit to speciation in
the NEAT algorithm [53] and to the evolution of structure
and parameters at different time scales in the EANT/EANT2
algorithm [48]. Individuals occupying a niche have the same
phenotype symmetry and remain in the niche for a certain
number of generations before they compete with the rest of
the population. This number is a linear function of the size
of the genotype, allowing individuals with more parameters to
stay in their niches longer. As with NEAT and EANT/EANT2,
protecting symmetry mutations using this niching mechanism
was found empirically to improve evolutionary performance
significantly.

Evolving the symmetry of module interconnections while
optimizing module functionality in the above manner allows
ENSO to find solutions to modular problems effectively, as
demonstrated next by evolving controllers for multilegged
robots.

IV. EVOLVING ROBOT CONTROLLERS

Multilegged robots are inherently modular, making them
a useful real-world application for ENSO. Controllers were
evolved using ENSO for two different quadruped models by
simulating their locomotion with realistic physics. The base
quadruped model, its modular neural network controller, and
the experimental methods for evaluating the controllers are
described in the following subsections.

A. Robot Model

The robot model resembles a table with a rectangular body
supported by legs at the four corners (Fig. 6). The legs are
cylindrical with capped ends, and attached to the body by a
hinge joint having full 360◦ freedom of rotation. The axis of
rotation of the joint is tilted to the side, causing the rotating leg
to trace a cone. The leg makes contact with the ground when it
is at one edge of the cone. Forward and backward locomotion
is achieved by coordinating the circular movements of the
leg. The robot controller activates the simulated servo motor
attached to each joint by specifying the desired joint angular
velocity.

In prior work, experiments with more legs and more com-
plex legs were also run utilizing hand-designed symmetries for
the controllers [57]. However, this paper focuses on evolving
controller symmetries, first for the above robot model in
different environments, and then for an extended model with
knee joints as described in Section V-D.

B. Modular Controller

A neural network controller for the above quadruped robot
can be constructed using four modules, each controlling a
different leg. All modules have the same network architec-
ture shown in Fig. 7a. Although a variety of architectures
are possible, this simple two-layered architecture with two
hidden nodes was found to be sufficient for evolving effective
controllers. Each module’s input is the joint angle of the leg
it controls. It can be represented by the angle itself, or by the
sine and cosine of the angle; the sine and cosine are actually
more robust (because they are continuous), and will be used
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Fig. 6: The quadruped robot model. The legs are attached to the body by
hinge joints with axes of rotation tilted sideways, allowing the legs to make
full circular rotation. Locomotion is achieved by coordinating the circular
movements of the legs. Although more legs and complex legs can be used,
this model is a simple and physically realistic platform that has symmetric
and modular controllers, and is therefore suitable for evaluating ENSO on
challenging environments.

x1 x2 x3 x4

.x1

Module 1

1 2

3 4

(a) Network module and initial phenotype graph

x1 x2 x3 x4

.
x1

.
x2

.
x3

.
x4

(b) Full controller network consisting of four modules

Fig. 7: Modular controller network for the quadruped robot model.
The input to each module is the leg angle (or its sine and cosine) that it
controls, and the output is the desired angular velocity of that leg. The full
controller network consists of four such modules, each module receiving
input from all the other modules. The phenotype graph represents these
modules and their connectivity. At the beginning of evolution, this graph has
identical vertices (modules) and edges (interconnections), i.e. all vertices and
edges have the same combination of network parameters. Evolution discovers
effective controllers by breaking symmetry to create new types of vertices and
edges, and by optimizing the initially random vertex and edge parameters.

in the experiments on inclined ground. The module’s output
is the desired angular velocity of that leg. The hidden and
output units have sigmoidal activation functions with a bias
and slope as parameters; The input units do not perform any
computation. These parameters and the weights of the internal
connections of the module are the mutable vertex parameters
of the phenotype graph (Section III-B).

The phenotype graph represents the full controller network.
It is obtained by connecting the four modules to each other,
such that each module receives input from all the other
modules (Fig. 7b). The weights of these connections are the
edge parameters of the phenotype graph.

Such modular construction, in which the network computes
the time derivative of the joint angles as a function of the
joint angles, allows the controller to be modeled as a coupled
cell system (Section II-D). The modules correspond to cells,
and the input connections of modules correspond to couplings.
Thus, this coupled cell system has the same graphical repre-
sentation as the phenotype graph. As illustrated by the analysis
in Section II-D, such a graph with appropriate symmetries can
be used to produce gaits for robots. In prior work [57], we
utilized the graph determined by such an analysis (instead of
evolved) to determine the appropriate symmetries of modular
controllers so that their network parameters could then be
evolved. The resulting controllers produced all the regular,
animal-like gaits predicted by theory. In contrast, the ENSO
approach makes it possible to evolve the symmetries together
with the module parameters, producing effective controllers
even when the appropriate symmetry is difficult to determine
analytically. The experimental methods used in demonstrating
this result are described next.

C. Experimental Methods
In order to demonstrate the benefit of ENSO, five exper-

imental methods for evolving the above modular controller
were compared: (1) Evolving its symmetry systematically
using ENSO, (2) evolving its symmetry randomly without
using the group-theory mechanisms of ENSO, (3) using fixed
S4 symmetry during evolution (i.e. maximal symmetry), (4)
using fixed D2 symmetry during evolution (as was done in
our prior work [57]), and (5) using direct encoding without
symmetry constraints (which is equivalent to using fixed {e}
symmetry during evolution). Although these five methods
differ in how they determine controller symmetry, they all
evolve controller parameters in the same way as ENSO.

The first method (ENSO) initializes evolution with a popu-
lation of maximally symmetric phenotype graphs (graph GA in
Fig. 1, having S4 symmetry). Since they have identical vertices
and edges, their genotype trees have only two leaf colors, one
representing vertex parameters and the other representing edge
parameters. During evolution, color mutations break the initial
graph symmetry minimally to create new types of vertices and
edges, and parameter mutations optimize the initially random
vertex and edge parameters.

The second method (random symmetry) initializes evolution
in the same way as above, but color mutations change the
color of vertices and edges of the phenotype graph randomly.
Each such mutation chooses a random number of genotype
leaf colors with probability proportional to the size of the
set of vertex or edge elements associated with those colors.
Each of these colors is then split into a random number of
child colors corresponding to the subsets of elements produced
by recursively partitioning the original set of elements. Like
ENSO, these color mutations break graph symmetry, but unlike
ENSO, they do not use group theory and therefore do not
explore the subgroup lattice systematically (Fig. 2). Conse-
quently, the resulting symmetry break may not be minimal,
producing larger changes in symmetry than ENSO. Therefore,
this method is likely to be less evolvable and is likely to
perform worse than ENSO.
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The third method initializes evolution in the same way as the
above two methods, i.e. with graphs of S4 symmetry. However,
it does not break this initial symmetry during evolution, and
applies only parameter mutations to the phenotype graphs.
Therefore, it is a good baseline for comparing with the above
methods, making it possible to determine whether symmetry
evolution produces better controllers.

The fourth method also evolves only parameters, keeping
the symmetry of the phenotype graphs fixed, but these graphs
have D2 symmetry (graph GB in Fig. 1). This symmetry is
the same hand-designed symmetry (Fig. 3) utilized in our prior
work [57] to evolve effective quadruped controllers. Thus this
experiment provides a comparison baseline for determining
whether symmetry evolution can find more appropriate sym-
metries than those found through mathematical analysis.

The fifth method utilizes a direct encoding of controller
networks, without constraining them to be symmetric. The re-
sulting networks correspond to phenotype graphs with unique
nodes and edges, i.e. with the minimal symmetry group {e}
(located at the bottom of the subgroup lattice). This method
also does not apply symmetry mutations and evolves only pa-
rameters. Moreover, by evolving controllers without symmetry,
it provides a baseline to determine whether symmetry is in fact
useful for evolving effective controllers.

V. RESULTS

The results of the experiments evaluating the above meth-
ods are now described. Three experiments were performed,
utilizing realistic physical simulation of robot locomotion.
The first experiment evolved controllers for the quadruped
robot described in Section IV-A on flat ground. The sec-
ond and third experiments were made more challenging by
extending the first experiment in two orthogonal ways: The
second experiment included an inclined ground, while the
third experiment added knee joints to the robot. The source
code for these experiments is available from the website
http://nn.cs.utexas.edu/?enso-code.

A. Experimental Setup

The experiments were implemented utilizing a number of
open source tools. The ENSO code was implemented as a
library layer on top of the Open BEAGLE [42] evolutionary
computing framework, taking advantage of its generic pro-
gramming interface. The physics simulation was programmed
using OPAL [41], an abstraction library on top of the Open
Dynamics Engine (ODE) [39]. The Object-Oriented Graphics
Rendering Engine (OGRE) [40] library was used for 3D
visualization of the simulation.

In each experiment, the initial population of controllers
had connection weights set randomly from the range [−2, 2),
neuron biases set to 0, and neuron sigmoid slopes set to 1.
Parameter mutations were implemented as Gaussian perturba-
tions (with σ = 0.2) acting with a specified probability (0.5)
on each parameter. All edges were enabled in the phenotype
graphs of the initial controllers, and mutations toggled them
with a specified probability (0.1). In each generation, an
offspring was created by first selecting a parent in a two-way

tournament, and then applying either a parameter mutation,
an edge-toggle mutation, or a color mutation. Parameter mu-
tations were 100 times more likely, and edge-toggle mutations
were ten times more likely, than color mutations. Each color
mutation created five offspring, all having the same symmetry,
and the parameters in their newly created child colors were
initialized randomly. In addition to the offspring created by
mutations, the network with the best fitness was copied without
change to the next generation. A population size of 200 was
used in all experiments.

Each controller network was evaluated in a physically
realistic simulation in which the network controlled the loco-
motion of a robot. When the robot was initially placed in the
simulation environment, its longitudinal and lateral axes were
aligned with the coordinate directions of the ground plane. The
simulation was then carried out for one minute of simulated
time with step size 0.01s. At the end of the simulation, the
fitness of the controller network was calculated as a function
of how far the robot traveled normalized by its body length.
This function was different in each experiment (as explained
later). In addition to calculating performance in terms of
fitness, the gaits that champion controllers produce at the end
of evolution were also evaluated visually and graphically to
determine whether they have properties such as regularity and
smoothness that are important in the real world but are difficult
to express in terms of fitness.

For all three experiments, evolution was run for 500 gen-
erations and repeated ten times, each time with a different
random number seed. The following subsections discuss their
results in detail.

B. Flat Ground

In the first experiment, the five methods discussed in Sec-
tion IV-C were used to evolve modular controller networks for
the quadruped robot on flat ground. These experiments use the
Euclidean distance that the robot travels as the fitness measure.
As illustrated in Fig. 8, all four symmetry-based methods
perform significantly better than the direct encoding method
that does not utilize symmetry (according to the Student’s
t-test, with p < 10−8, df = 18). Therefore, symmetry is
indeed useful for evolving effective controllers. Moreover, all
four symmetry-based methods produce similar fitness through
all generations (their differences at the end of evolution are
not statistically significant with p > 0.23, df = 18). This
result implies that S4 symmetry is sufficient for controllers to
produce fast gaits on flat ground, i.e. breaking that symmetry
manually or through evolution does not improve performance.

However, differences between ENSO and random symmetry
evolution are evident in the symmetries of champion phe-
notype graphs they evolve. Although both methods mutate
symmetry at the same rate, champions in many runs of
random symmetry evolution have the same S4 symmetry
with which they were initialized, while ENSO evolved a
variety of effective symmetries. This result implies that the
unsystematic and large breaks in symmetry resulting from
random symmetry mutations often produce graphs with low
fitness that do not survive, and those that do survive have low

http://nn.cs.utexas.edu/?enso-code
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Fig. 8: Performance of quadruped controllers evolved using various
methods on flat ground. The curve for each method shows the average fitness
of champion controllers in ten trials of evolution. The direct encoding method
that does not utilize symmetry performs significantly worse than the other four
methods that utilize symmetry, demonstrating that symmetry is indeed useful
for evolving good controllers. The four symmetry-based methods perform
similarly and achieve the same high level of fitness because many symmetries
(including the hand-designed ones) can produce effective gaits in this case.
However, in the more challenging experiments discussed in Sections V-C
and V-D, ENSO’s symmetry evolution approach finds significantly better
controllers than the other methods.
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Fig. 9: Phenotype graphs of typical champion networks evolved by ENSO
and random symmetry evolution on flat ground. (a) The group theory
mechanisms used in ENSO for minimal symmetry breaking biases evolution
to produce phenotype graphs with high symmetry. Consequently, the robots
they control have well-coordinated legs and smooth gaits. (b) In contrast,
breaking symmetry randomly often produces large changes in symmetry that
are deleterious and therefore do not survive. As a result, the champions of
many evolutionary runs retain their initial S4 symmetry (left graph). Other
champions such as the middle and right graphs have low symmetry that
produce less coordinated, stumbling gaits.

symmetry (Fig. 9b). In contrast, ENSO produces graphs with
higher symmetry consistently because it uses group theory to
break symmetry minimally (Fig. 9a). While both approaches
are equally good on flat ground, they differ significantly on
more challenging conditions, as will be shown in Sections V-C
and V-D.

The evolved symmetries also impact the quality of gaits
the controllers produce, as observed in visualizations of the
locomotion of champion networks. The more symmetric cham-
pions evolved by ENSO produce smooth gaits with well-
coordinated legs, while the less symmetric champions from
random symmetry evolution produce stumbling gaits because
legs are less coordinated. Both fixed symmetry methods also
produce smooth and well-coordinated gaits, resembling com-
mon quadruped gaits such as pronk, bound, and trot seen
in animals. In contrast, the lack of symmetry in the direct
encoding method makes it difficult to coordinate all four legs,
producing ineffective gaits that utilize only a subset of the
legs. Visualization videos of such behaviors can be seen at
the website http://nn.cs.utexas.edu/?enso-robots.

The gaits of champion networks evolved by the different
methods can also be assessed by plotting the leg joint angles
of the robot as functions of time. Fig. 10 shows typical plots
for the first eight seconds of simulated time. Initially, all legs
are in the same angular position and they remain synchronous
when they start moving. For gaits such as bound and trot
that have pairs of legs moving half-period out of phase, this
phase difference emerges early on. Thereafter, the controllers
maintain synchronicity and phase relations between the legs.
Well-coordinated gaits result for ENSO and the two fixed
symmetry methods. However, random symmetry evolution
typically produce gaits that have the following two flaws:
(1) legs are not well synchronized (e.g. the two rear legs in
Fig. 10b) and (2) phase difference between legs does not divide
the period evenly (e.g. phase difference between the front and
rear leg pairs in Fig. 10b). The resulting weak coordination of
the legs produces the stumbling effect mentioned above, and
seen in the videos.

To sum up, controllers with symmetry produce significantly
more effective gaits than controllers without symmetry. Al-
though all symmetry-based methods produce gaits that are
equally effective, ENSO’s solutions are more symmetric and
more smooth. Such a bias is a major advantage in more
challenging problems, as demonstrated in the next two ex-
periments.

C. Inclined Ground

In the second experiment, the ground was rotated about the
longitudinal coordinate direction of the robot by 20◦ to make
the task of the controller more difficult. The fitness measure is
the distance the robot travels along the longitudinal coordinate
minus the distance it travels along the lateral coordinate. This
measure encourages evolution to find controllers that move
the robot forward in a straight line. Thus, the robot must walk
across the incline without climbing up or down, while avoiding
the risk of tipping over or slipping down the incline.

Since the robot is the same as before with no morphological
changes, the same hand-designed symmetries should apply.
However, when the robot is on inclined ground, the direction
of gravity is not aligned with its plane of symmetry, thus
breaking the symmetry of its dynamics in a way that is difficult
for a human designer to take into account. As a result, the
appropriate controller symmetries for this task are expected

http://nn.cs.utexas.edu/?enso-robots
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(a) ENSO (bound gait)
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(b) Random symmetry evolution (gait resembling bound)
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(c) Evolution with fixed S4 symmetry (pronk gait)
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(d) Evolution with fixed D2 symmetry (trot gait)
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(e) Direct encoding (gait utilizing only rear legs)

Fig. 10: Example gaits of champion networks evolved by the different methods on flat ground. The graphs show the joint angles of the four legs
of the robot in the first eight seconds of simulated time. The plot for ENSO was produced using the left phenotype graph in Fig. 9a and that for random
symmetry evolution was produced using the middle phenotype graph in Fig. 9b. When the controllers reach a steady state, they maintain synchronicity and
phase relations between the legs. The controllers evolved by the direct encoding method utilize only a subset of the legs, producing ineffective gaits. For
example, only the rear legs are utilized in the gait plotted in (e); the front legs just vibrate and remain non-functional. In contrast, the controllers evolved
by the symmetry-based methods utilize all four legs effectively. Moreover, ENSO and the two fixed symmetry methods evolve controllers that produce the
well-defined gaits illustrated in Fig. 4. However, random symmetry evolution typically evolves controllers that produce lesser-quality gaits. For example, in
the bound-like gait of (b), the rear legs are poorly synchronized and the phase difference between the front and rear leg pairs is less than half-period. As a
result, this gait is not as smooth as the gaits produced by ENSO and the fixed symmetry methods. Such smoothness is a major advantage in more challenging
environments, as seen in Fig. 13.



13

   0

   5

  10

  15

  20

  25

  30

  35

 0  100  200  300  400  500

Fi
tn

es
s

Generations

ENSO
Random symmetry
Fixed D2 symmetry
Fixed S4 symmetry

Fig. 11: Performance of quadruped controllers evolved using various
methods on inclined ground. The curve for each method shows the average
fitness of champion controllers in ten trials of evolution. Both symmetry
evolution methods perform better than the hand-designed symmetries because
the best symmetries for inclined ground are difficult for humans to conceive.
Moreover, the systematic group-theoretic search approach of ENSO finds
significantly better symmetries than the random search approach.

to be different from those needed for walking on flat ground.
Therefore, this task is a good test case to determine whether
the fixed symmetry methods can evolve effective controllers
when appropriate symmetries are difficult to design by hand.
Moreover, the task will evaluate whether ENSO is more
effective than random symmetry evolution at finding those
symmetries.

The results of these experiments are shown in Fig. 11.
ENSO produces significantly better fitness than random sym-
metry evolution (according to the Student’s t-test, with p <
0.002, df = 18), which in turn produces significantly better fit-
ness than evolution of fixed D2 symmetry (p < 0.04, df = 18).
The differences between the two fixed-symmetry methods are
not statistically significant (p > 0.13, df = 18). Since the only
algorithmic difference between ENSO and random symmetry
evolution is the way symmetries are broken, these results
demonstrate that the group-theoretic symmetry mutations of
ENSO are significantly better at evolving the appropriate
symmetries than random symmetry mutations. In addition, the
results demonstrate that finding these symmetries is crucial
for evolving effective controllers, since fixed symmetry evolu-
tion utilizing hand-designed symmetries performs significantly
worse.

In this more challenging task, the phenotype graphs that
ENSO evolves on inclined ground (Fig. 12a) are often less
symmetric than those it evolves on flat ground (Fig. 9a).
In particular, it evolves graphs that have two vertex colors,
and therefore the corresponding controllers have two types
of modules, making it possible for evolution to implement a
different control function in each module. Different modules
can implement different leg behaviors useful for walking
effectively on inclined ground. Typically, two (or three) legs
of the same module type remain nearly stationary to provide
the support necessary for maintaining the robot’s forward
orientation, while the other legs make a full circle, propelling
the robot forward without slipping.

The unsystematic symmetry mutations of random symmetry
evolution are typically detrimental on inclined ground as well,

1 2

3 4

1 2

3 4

1 2

3 4
S3 = {(), (124), (142),

     (12), (14), (24)}
Z3 = {(), (234), (243)}Z2 = {(), (14)(23)}

(a) ENSO (minimal symmetry breaking)

1 2

3 4

1 2

3 4

1 2

3 4
S4 Z2 = {(), (14)} {e}

(b) Evolution with random symmetry breaking

Fig. 12: Phenotype graphs of typical champion networks evolved by
ENSO and random symmetry evolution on inclined ground. (a) The graphs
that produce effective gaits on inclined ground are often less symmetric than
the graphs on flat ground (Fig. 9a). They typically have two vertex colors,
representing two types of controller modules that produce the different leg
behaviors of such gaits. (b) As on flat ground (Fig. 9b), random symmetry
evolution produces many graphs with the initial S4 symmetry, which produces
less effective gaits on inclined ground. Other graphs it produces can generate
faster gaits, but they are often slower than the gaits produced by ENSO. Thus,
the systematic symmetry search of ENSO is more effective when finding the
right symmetry is more important.

and as a result many of the champion phenotype graphs retain
their original S4 symmetry (Fig. 12b). However, occasion-
ally it manages to discover symmetries that generate faster
gaits than the fixed symmetry methods. The gaits the fixed
symmetry methods produce on inclined ground are similar to
those they produce on flat ground because the possible gaits
are constrained by symmetry. However, these gaits are not
as effective on inclined ground, and the gaits discovered by
ENSO are faster.

Fig. 13 illustrates the above observations by plotting leg
angles of typical evolved controllers. The controller evolved by
ENSO generates two types of waveforms, each corresponding
to a different type of module and representing a different leg
behavior. The first module type controls only the right rear leg,
which powers the robot’s forward motion. The second module
type controls all the other legs and helps maintain the robot’s
orientation. The controllers for the other three methods have
only one type of waveform because all legs are controlled by
the same type of module. As on flat ground, the gaits evolved
by random symmetry mutations are less regular than those
evolved by the other methods. The controller evolved with
fixed S4 symmetry implements a gait similar to the walk, i.e.
legs are quarter-period separated in phase, while that evolved
with fixed D2 symmetry implements a trot gait. Comparing
the periods of the plotted gaits indicates that the gait evolved
by ENSO is faster than the other gaits.

Thus ENSO evolves more effective gaits on inclined ground
than the other methods by finding symmetries that are better
suited to the incline. Since ENSO adapts the gaits better to
the environment, they should generalize better to changes in
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(a) ENSO
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(b) Random symmetry evolution
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(c) Evolution with fixed S4 symmetry
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(d) Evolution with fixed D2 symmetry (trot gait)

Fig. 13: Example gaits of champion networks evolved by the different methods on inclined ground. The graphs show the joint angles of the four legs
of the robot in the first twelve seconds of simulated time. (a) The plot for ENSO was produced using the middle phenotype graph in Fig. 12a, and it shows
the two waveforms corresponding to the two types of modules in the phenotype graph. (b) The plot for random symmetry evolution was produced using the
middle phenotype graph in Fig. 12b, and it shows that this gait is less regular than the gaits produced by the other methods. Plots (c) and (d) show that
evolving with fixed S4 and D2 produce the same gaits as on flat ground. Comparing the gait periods demonstrates that the gait evolved with ENSO is faster
than the other gaits.

the environment as well. Generalization of the champion con-
trollers evolved by the different methods on inclined ground
were tested by reducing the friction coefficient of the ground
by 25%; all other simulation parameters remained the same.
Making the ground slippery in this manner makes it harder
for the robots to maintain their balance and orientation as
they walk across the incline. However, controllers that evolved
effective gaits for the incline should be able to maintain
acceptable performance.

Since the controllers evolved with fixed S4 and D2 sym-
metries and random symmetry mutations are ill-suited for in-
clines, the robot often flipped over or moved downhill instead
of walking across the incline, i.e. such controllers generalize
poorly to slippery inclines. In contrast, the controllers that
ENSO evolved make the robot walk nearly straight across the
incline, slipping only a little. This behavior is possible because
ENSO optimizes controllers to perform well on inclines,
resulting in gaits that also generalize better. Generalizing in
this manner is crucial for transferring the controllers evolved
in simulation to physical robots since the real world cannot be
simulated with perfect accuracy.

Multilegged robots developed for real-world applications are
more complex than the quadruped model (Fig. 6) used in the
first two experiments. For example, they may have more than
one joint per leg to make it possible to produce more flexible
gaits. ENSO scales up to such larger problems and evolves
better controllers than the other symmetry-based methods, as
demonstrated in the next experiment.

D. Quadruped with Knees

In the third experiment, the quadruped robot used in the first
two experiments was extended with knee joints (Fig. 14). Each
hip joint now allowed the leg to swing only forward and back-
ward, up to 30◦ in each direction. Similarly, each knee joint
allowed the lower part of the leg to swing only forward up to
30◦ with respect to its upper part. Restricting joint movement
in this manner makes it possible to model the locomotion of
many quadruped animals with knees. The controllers for this
robot consist of eight interconnected modules, each controlling
the movement of a different joint to produce gaits. Fitness
was measured in the same way as in the previous experiment
on inclined ground, thus biasing evolution to produce straight
gaits.
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Fig. 14: The quadruped robot model with knees. This model extends the
quadruped in Fig. 6 by adding knee joints. The hip joints allow the legs to
swing forward and backward up to 30◦ in each direction. The knee joints
allow the lower part of the legs to swing only forward (up to 30◦) with
respect to the upper part. This model provides a more challenging platform
to evaluate how well ENSO scales up to larger problems with more modules.

Since the controllers have eight modules, ENSO and random
symmetry evolution are both initialized with the symmetry
group S8, corresponding to maximally symmetric phenotype
graphs (Fig. 15a). Therefore, the fixed-symmetry method that
utilized S4 symmetry in the first two experiments was modified
correspondingly to utilize S8 symmetry instead. In addition,
the hand-designed D2 symmetry used in those experiments
was extended by attaching a knee module to each hip module,
thus preserving the original D2 symmetry (Fig. 15b). The
resulting phenotype graph reflects the physical connectivity of
corresponding joints. Moreover, the knee and hip modules are
of different types, making it possible to evolve different hip
and knee control functions if necessary. Thus, this controller
symmetry is designed to make it possible to evolve effective
quadruped gaits similar to those in Section V-B.

However, as illustrated in Fig. 16, the controllers that
ENSO evolved perform significantly better than the controllers
evolved with hand-designed D2 symmetry (according to the
Student’s t-test, with p < 0.04, df = 18). This result demon-
strates that ENSO scales well to larger problems. Although
D2 symmetry produces controllers with slightly better average
fitness than D8 symmetry, their differences are not statistically
significant (p > 0.28, df = 18).

The differences in fitness between ENSO and random
symmetry evolution are not statistically significant in this
experiment (p > 0.40, df = 18). However, as in the previ-
ous experiments, ENSO evolves more symmetric phenotype
graphs than random symmetry evolution (Fig. 17), resulting in
smoother and more regular gaits. These differences in gaits can
be observed both in the simulation videos and in the example
plots of hip joint angles in Fig. 18. ENSO produces effective
trot gaits, which are likely to perform better in the real world
than the irregular gaits of random symmetry evolution. Fixed
D2 symmetry can also produce regular gaits, but they are
typically less effective and are produced less often. Similarly,
evolution with fixed S8 symmetry produces ineffective pronk
gaits that move only a small distance. Thus, ENSO evolves
significantly better controllers than the other methods in this
challenging experiment.
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(a) S8 symmetry
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Fig. 15: Phenotype graphs used in fixed-symmetry evolution of controllers
for the quadruped with knees. These controllers have eight modules, each
controlling a different leg joint. (a) The maximally symmetric controller has
identical connections between eight identical modules, i.e. it has S8 symmetry.
(b) The previous controller with hand-designed D2 symmetry was extended
by attaching a knee module to each hip module, preserving the original D2

symmetry. Controller evolution with these two fixed symmetries replaces the
corresponding control methods for the quadruped without knees, making it
possible to evaluate how ENSO scales up relative to hand-design.
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Fig. 16: Performance of quadruped controllers evolved using various
methods on flat ground for a quadruped with knees. The curve for each
method shows the average fitness of champion controllers in ten trials of
evolution. As in the experiment depicted in Fig. 11, the appropriate controller
symmetries are difficult to design by hand. As a result, both methods that
utilize fixed, hand-designed symmetries perform significantly worse than the
symmetry evolution methods that discover symmetries automatically. ENSO
and random symmetry evolution perform similarly in terms of average fitness.
However, ENSO’s gaits are significantly more regular (Fig. 18) and are
therefore likely to perform better in the real world.
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(a) ENSO (minimal symmetry breaking)
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(b) Evolution with random symmetry breaking

Fig. 17: Phenotype graphs of typical champion networks evolved by ENSO and random symmetry evolution for the quadruped with knees. (a) ENSO’s
group-theoretic symmetry mutations produce symmetric connections between modules. New types of modules that they create are also often symmetric. For
example, the diagonal hips 1 and 4 in both the left and middle graphs have matching modules, producing effective trot gaits as a result. (b) In contrast,
random symmetry evolution produces graphs with asymmetric connections between modules. Moreover, it creates new types of modules without symmetric
counterparts (e.g. middle graph). The resulting gaits are therefore less regular than those produced by ENSO, as illustrated in Fig. 18.

Together, these results demonstrate that utilizing the sys-
tematic symmetry search of ENSO focuses the search on
better solutions, making it possible to find significantly more
effective controllers than by utilizing random symmetry search
or by designing the symmetry by hand. ENSO is therefore
a promising approach for evolving distributed controllers for
complex tasks, and in general, for designing complex modular
systems with symmetries, as will be discussed next.

VI. DISCUSSION AND FUTURE WORK

In the above experiments, controller symmetries constrain
the type of module controlling each leg and the type of
connection between each pair of modules, producing good leg
coordination. It is difficult to evolve similarly good gaits with
direct encoding because it does not bias evolutionary search
with the appropriate symmetry constraints. Nevertheless, direct
encoding can be advantageous in special cases where the
appropriate symmetries for the task are close to the bottom
of the subgroup lattice and can be approximated easily by
evolving controllers without symmetry. For example, in sup-
plementary experiments direct encoding performed better than

ENSO for the task in Section V-C of evolving controllers for a
quadruped robot with hinge joints to walk on inclined ground.
However, ENSO regained its advantage over direct encoding
in the same task when the robot was made more complex
by replacing its hinge joints (which have only one degree
of freedom) with universal joints (which have two degrees
of freedom). The resulting controller has more parameters,
making it more difficult for direct encoding to optimize in
a way that approximates the appropriate symmetries. For
the same reason, ENSO also performed significantly better
than direct encoding for the task in Section V-D of evolving
controllers for a quadruped with knees to walk on flat ground.
Determining the appropriate level of symmetry is a main
advantage of ENSO that allows it to be applied robustly to
a variety of problems.

An alternative to evolving the appropriate controller symme-
tries with ENSO is to design them by hand. A human designer
can determine them analytically in simple cases such for as
a quadruped robot on flat ground, but cannot (at least not as
easily) do so for more complex robots and real-world environ-
ments with inclines and other complexities. Given the number
of modules, ENSO’s group-theory-based systematic symmetry
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(a) ENSO (trot gait)
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(b) Random symmetry evolution (irregular gait)
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(c) Evolution with fixed S8 symmetry (ineffective pronk gait)
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(d) Evolution with fixed D2 symmetry (trot gait)

Fig. 18: Example gaits of champion networks evolved by the different methods for the quadruped with knees. The graphs show the four hip joint
angles of the robot in the first twelve seconds of simulated time. (a) The plot for ENSO was produced using the left phenotype graph in Fig. 17a, and it
shows a regular trot gait. (b) The plot for random symmetry evolution was produced using the middle phenotype graph in Fig. 17b, and it shows a less regular
gait with uneven phase differences between the legs. (c) Evolving with a fixed S8 symmetry produces pronk gaits that are ineffective and move only a small
distance as a result. (d) Evolving with the hand-designed D2 symmetry also produces regular gaits, but they are typically less effective than ENSO’s gaits
and are produced less often, thus demonstrating the advantage of evolving symmetries with ENSO.

search makes it possible to evolve the appropriate symmetries
automatically. Demonstrating this capability, ENSO evolved
gaits similar to those based on hand-designed symmetries on
flat ground, and significantly faster gaits on inclined ground.
The gaits on the incline also generalized better when friction
was reduced to make the ground slippery.

In order to verify that ENSO’s symmetry-breaking approach
is indeed a useful way to evolve symmetry, it was com-
pared with the less principled, random-symmetry-evolution
approach. Random symmetry evolution produces significantly
worse gaits than ENSO because its unsystematic symmetry
mutations often result in large changes in symmetry. In con-
trast, the group-theoretic mutations of ENSO result in only
minimal changes in symmetry, making complexification pos-
sible (Section II-A): Evolution starts with a highly symmetric
controller and breaks the symmetry incrementally, produc-
ing gradual increases in complexity. As a result, evolution
optimizes simpler controllers before elaborating on them by
adding more parameters. Thus the complexification resulting
from symmetry breaking provides ENSO with a smoother
fitness gradient, making evolution easier.

In addition to these evolutionary advantages that group
theory provides, the theory of coupled cell systems provides
ENSO with theoretical guarantees on the behavior of evolved
controllers. For example, if the symmetries of a coupled cell
system admit a particular gait, then there exists an instance of
the system with an asymptotically stable periodic solution (i.e.
limit cycle) implementing that gait [18]. As a result, the gait
is robust to small perturbations. ENSO uses neuroevolution
to find such an instance of the control system. When the
dynamics of this system was perturbed manually (utilizing
a visualization interface to the physical simulation), the gait
it generates was indeed found to be robust in eight of the
ten controllers that we perturbed. Such robustness is useful
in controllers for real-world robots because their interactions
with environment are frequently perturbed.

As discussed in Section II-D, the theory of coupled cell
systems also predicts that the same controller can produce
multiple gaits. Each gait is a stable limit cycle of the coupled
cell system, and the system can transition from one limit cycle
to another when perturbed. Sometimes small perturbations
caused by physical interaction with the environment can
trigger such a transition. Fig. 10d shows an example of this
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phenomenon, where the robot changes from an initial pronk to
a trot at about three seconds into the simulation. If the robot is
prevented from interacting with the ground, then this change
does not occur and the robot continues executing the pronk
gait. The ability of controllers to generate such different gaits
makes it possible to use the most effective gait for a given
terrain, including going over obstacles [57]. Alternatively,
desired gaits can be evolved by utilizing an external sinusoidal
waveform [10] or by parameterizing the gaits [23, 30].

The above results suggest that ENSO is an effective ap-
proach for evolving locomotion controllers for multilegged
robots. In the future, ENSO will be tested with more complex
robots with more legs, more complex legs, and sensors that
receive more varied stimuli from the environment. Their
controllers can be modeled as coupled cell systems with more
cells and cells receiving additional inputs, as was done for
fixed symmetry controllers in prior work [57]. Using such
sophisticated models will allow ENSO to evolve controllers
that produce high-level behaviors such as path-following and
foraging, in addition to generating regular gaits. If ENSO can
successfully evolve controllers for a sufficiently detailed model
of a physical robot, then they can eventually be evaluated
on physical robots. ENSO is thus a promising approach
for developing efficient, robust, and flexible controllers for
multilegged robots in the real world.

ENSO can also be used to evolve solutions for other control
problems that are characterized by symmetry and modularity.
For example, it can be used to design multiagent systems
consisting of agents that interact with each other and with an
environment, like those in online auctions and robotic soccer
[55]. The behavior of these agents will be represented as
neural network modules and their interactions as (symmetric)
connections between the modules. Another application is in
designing distributed control systems for automating manu-
facturing processes [37]. Such systems consist of controller
modules interconnected by communication networks, which
can be implemented as modular neural networks. In both cases,
identical modules and connections between them produce
symmetries that ENSO can exploit to design effective control
systems.

Besides controllers for multilegged robots, coupled cell
systems can also model other dynamical systems in nature,
producing various types of symmetric networks that ENSO
can potentially optimize. For example, they have been used to
study the formation of new species in nature [18], the role of
structural symmetries of the visual cortex in inducing visual
hallucinations [17], and the properties of genetic regulatory
networks [13]. ENSO can potentially be used as a tool both for
understanding such biological phenomena and for engineering
artificial systems based on them.

In addition to using ENSO in various applications, the
ENSO approach itself can be extended in several ways to
improve its capabilities. First, the computationally hard group
theory computations can be approximated with fast graph
computations to improve the scalability of the approach.
Second, the current manual decomposition of a given problem
into modules can be automated using hierarchical clustering
algorithms. Third, instead of using a fixed architecture for the

modules, the architectures can be evolved using techniques
such as NEAT [53]. Fourth, crossover of genotype trees
can be implemented by swapping subtrees of parent trees if
those subtrees have the same structure and node colors. Fifth,
although only the leaf nodes of the genotype tree represent the
phenotype graph in the current implementation, an even more
compact representation is possible. The child nodes could
inherit one or more parameter values from their parent instead
of specifying those parameter values in each child node. This
feature is useful for representing variations of similar elements
compactly, a common theme in complex systems with regu-
larities [50, 52]. Such elements can be constructed from leaf
nodes that inherit some parameters from a common parent, but
specify different values for other parameters in the leaf nodes.
As a result, these elements have the same values for parameters
inherited from the parent, while they differ in the values for
parameters specified in the leaf nodes. These extensions would
improve evolutionary search, potentially making it possible for
ENSO to solve more difficult problems and a wider variety of
problems.

VII. CONCLUSION

Based on properties that make development effective, this
paper proposes a novel evolutionary algorithm, ENSO, to
design complex modular systems. ENSO utilizes group theory
to search for symmetry systematically. As a result, evolution
progresses from simple, highly symmetric phenotypes to more
complex, less symmetric phenotypes. This complexification
gradually increases the variety of modules and their intercon-
nections in the phenotype, making evolutionary search effec-
tive. In three experiments, symmetry was first shown to be an
effective principle in general, and ENSO then shown to result
in faster and more elegant solutions than alternative methods
of utilizing symmetry. The same approach can potentially be
used in other applications as well, suggesting that it is a useful
method for solving complex modular problems in the real
world.
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