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Abstract— To solve dynamic optimization problems, multiple
population methods are used to enhance the population diversity
for an algorithm with the aim of maintaining multiple popula tions
in different sub-areas in the fitness landscape. Many experimental
studies have shown that locating and tracking multiple relatively
good optima rather than a single global optimum is an effective
idea in dynamic environments. However, several challengesneed
to be addressed when multi-population methods are applied,e.g.,
how to create multiple populations, how to maintain them in
different sub-areas, and how to deal with the situation where
changes can not be detected or predicted. To address these
issues, this paper investigates a hierarchical clusteringmethod
to locate and track multiple optima for dynamic optimization
problems. To deal with undetectable dynamic environments,this
paper applies the random immigrants method without change
detection based on a mechanism that can automatically reduce
redundant individuals in the search space throughout the run.
These methods are implemented into several research areas,
including particle swarm optimization, genetic algorithm, and
differential evolution. An experimental study is conducted based
on the moving peaks benchmark to test the performance with
several other algorithms from the literature. The experimental
results show the efficiency of the clustering method for locating
and tracking multiple optima in comparison with other algo-
rithms based on multi-population methods on the moving peaks
benchmark.

Index Terms— Clustering, dynamic optimization problem, un-
detectable dynamism, multiple population methods, particle
swarm optimization, genetic algorithm, differential evolution.

I. I NTRODUCTION

GENERALLY speaking, to solve dynamic optimization
problems (DOPs) where changes occur over time, it

requires the optimization algorithm to not only find the global
optimal solution under a specific environment but also contin-
uously track the changing optima over different environments
during the search process. Recently, investigating evolutionary
algorithms (EAs) for DOPs has attracted many researchers
because EAs are intrinsically inspired from natural or biolog-
ical evolution, which is always subject to an ever-changing
environment, and hence EAs, with proper enhancements, have
a potential to be good optimizers for DOPs. Over the years,
several approaches have been developed in traditional EAs to
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address DOPs, including diversity increasing and maintaining
schemes [18], [25], [77], memory schemes [9], [76], [82],
multi-population schemes [10], [81], adaptive schemes [45],
[52], [79], [80], multi-objective optimization methods [14],
hybrid approaches [46], [47], change prediction methods [63],
and problem change detection approaches [57].

Many experimental studies have shown that locating and
tracking a set of optima (the global optimal and near-global
optimal solutions) rather than a single global optimum is an
effective idea to solve DOPs [6], [44], [54], [78]. However,it
is difficult for an algorithm to accurately locate the globalop-
timum in a specific environment and it is even more difficult to
track the changing global optimum in different environments.
In order to effectively solve DOPs, one solution is to locate
and track a set of good optima. This will greatly increase the
chance of finding the global optimum by the assumption that
one of the near-global optima in the current environment has
a larger chance than those bad optima to be the new global
optimum in the next environment.

From the literature for DOPs, many algorithms have been
proposed to address DOPs using the multi-population method
[5], [6], [33], [43], [53], [78], [81], which seems an ideal tech-
nique to serve the purpose of locating and tracking multiple
optima in dynamic environments. The traditional approaches,
which use the multi-population method to find optima for
multi-modal functions, divide the whole search space into
different sub-spaces, each of which may cover one or a small
number of local optima, and then separately search within
these sub-spaces. However, one challenging issue of using the
multi-population method is that of how to create an appropriate
number of sub-populations with an appropriate number of
individuals to cover different sub-areas in the fitness landscape.
In order to answer this question, a clustering particle swarm
optimizer (CPSO) was proposed in [40], [78]. In CPSO, a
hierarchical clustering method is employed to automatically
create a proper number of sub-populations in different sub-
areas.

So far, most algorithms proposed for DOPs are informed
when a change occurs or use some techniques to detect
changes. However, it is difficult or impossible to detect
changes in some cases. For example, it will be very hard to
detect changes if only some random local sub-areas change
over time in the entire search space. In this case, we can not
always successfully detect the changes or predict the changes
because we do not know when or where the changes occur
in the search space. Therefore, it is important to develop
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algorithms that do not need to detect changes or are able to
be ready for changes in any time during the search progress.

In order to effectively use the multi-population method
in undetectable environments, this paper proposes a basic
framework that is not based on change detection. Several
issues are discussed in this paper, e.g., how to create sub-
populations, how to deal with the overcrowding problem, how
to make sub-populations ready for changes, and how to apply
this framework in general EAs for problems in different do-
mains. The basic framework is instantiated into three different
research areas, including particle swarm optimization (PSO)
[20], [34], genetic algorithm (GA), and differential evolution
(DE) [65]. The corresponding algorithms are called CPSOR,
CGAR, and CDER respectively. To indicate the clustering
algorithms without change detection, we put a suffix “R”
for each clustering algorithm without change detection. For
example, CPSOR and CPSO represent the clustering PSO
algorithm without change detection and the clustering PSO
algorithm with change detection, respectively.

This paper carries out a comprehensive experimental study
based on the moving peaks benchmark (MPB) problem [9]. In
order to test whether the clustering method benefits generalre-
search areas or not, we systemically compare the performance
of CPSO, CGA, CDE with the corresponding algorithms that
use traditional multi-population methods. We also comparethe
performance of CPSOR, CGAR, and CDER with CPSO, CGA,
and CDE, respectively, to investigate whether the strategythat
does not have change detection works or not. This paper also
compares the performance of CPSOR, CGAR, and CDER with
a set of algorithms that were developed for DOPs using multi-
population methods in the literature.

The rest of this paper is organized as follows. Sect. II
reviews some multi-population methods developed in both
stationary and dynamic environments. The basic framework
for multi-population methods with clustering is introduced in
Sect. III. Sect. IV instantiates the basic framework into par-
ticle swarm optimization, genetic algorithm, and differential
evolution. The experimental study regarding the configuration,
working mechanism, and comparison with other algorithms
is presented in Sect. V. Application domains of the proposed
framework in the real world are discussed in Sect. VI. Finally,
conclusions and discussions on the future work are given in
Sect. VII.

II. M ULTI -POPULATION METHODS

Many experimental studies have shown that multi-
population methods are effective approaches to enhancing the
diversity for EAs to solve multi-modal problems in both static
and dynamic environments.

A. Multi-population in Static Environments

Kennedy [33] proposed a PSO algorithm that uses a
k-means clustering algorithm to identify the centers of differ-
ent clusters of particles in the population, and then uses these
cluster centers to substitute the personal best or neighborhood
best positions. In order to allow cluster centers to be stabilized,
the k-means algorithm iterates three times. The limitation of

this clustering approach lies in that the number of clusters,
which is problem dependent, must be predefined.

Brits et al. [12] proposed anbest PSOalgorithm which
is designed for locating multiple solutions to a system of
equations. ThenbestPSO algorithm defines the “neighbor-
hood” of a particle as the closest particles in the population.
The neighborhood best for each particle is defined as the
average of the positions of these closest particles. In [11],
a niching PSO (NichePSO) was proposed by incorporating a
cognitive only PSO model and the guaranteed convergence
PSO (GCPSO) algorithm [72]. NichePSO maintains a main
swarm that can create a sub-swarm once a niche is identified.
The main swarm is trained by the cognition only model [32]. If
a particle’s fitness shows a little change over a small numberof
generations, then a new sub-swarm is created with the particle
and its closest neighbors. NichePSO uses some rules to decide
the absorption of particles into a sub-swarm and the merging
operation between two sub-swarms, which mainly depends on
the radius of the involved sub-swarms.

Parrott and Li developed a speciation based PSO (SPSO)
[43], [53], which dynamically adjusts the number and size of
swarms by constructing an ordered list of particles, ranked
according to their fitness, with spatially close particles joining
a particular species. At each generation, SPSO aims to identify
multiple species seeds within a swarm. Once a species seed
has been identified, all the particles within its radius are
assigned to that same species. Parrott and Li also proposed
an improved version with a mechanism to remove redundant
duplicate particles in species in [54]. In [3], Bird and Li
developed an adaptive niching PSO (ANPSO) algorithm which
adaptively determines the radius of a species by using the
population statistics. Based on their previous work, Bird and
Li introduced another improved version of SPSO using a
least squares regression (rSPSO) in [4]. Recently, in order
to determine niche boundaries, a vector-based PSO [62] was
proposed to locate and maintain niches by using additional
vector operations.

To specify the number of clusters within thek-means PSO
algorithm, Passaro and Starita [55] used the optimization of a
criterion function in a probabilistic mixture-model framework.
In this framework, the particles are assumed to be generated
by a mix of several probabilistic distributions. Each different
cluster corresponds to a different distribution. Then, finding
the optimum numberk is equivalent to fitting the model
with the observed data while optimizing some criterion. The
performance of their algorithm was reported better than SPSO
[43] and ANPSO [3] for static problems.

Recently, a new GA, called CardiffGA (CGA), was pro-
posed in [17]. In CGA, each individual is given a life-span and
an age, and the population size is also allowed to change. The
interesting work in CGA is that two populations, which are
named two-human populations, are designed to simulate the
competition in species in real life. The two-human populations
undergo the competition of a shared resource, called “water”.
An experimental study showed that the two-human CGA
found the solution in a shorter time compared with the single
population CGA, but with lower success rate than the single
population CGA.
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B. Multi-population in Dynamic Environments

Branke et al. proposed a self-organizing scouts (SOS) [10]
algorithm that has been shown to give promising results on
DOPs with many peaks. In SOS, the whole population is
composed of a parent population that searches through the
entire search space and child populations that track local
optima. The parent population is regularly analyzed to check
the condition for creating child populations, which are split
off from the parent population. Although the total number of
individuals is constant since no new individuals are introduced,
the size of each child population is adjusted regularly.

Another term of “multi-population”, called “multi-nation”,
was introduced in [71], where multi-national GAs were de-
scribed for multi-modal problems in dynamic environments.
The basic idea of multi-national GAs in dynamic environments
is to maintain multiple populations in different search areas in
the search space so that the algorithm can search for both local
and global optima. A valley detection method was introduced
in order to identify different “nations” in the fitness landscape.

The atomic swarm approach has been adapted to track mul-
tiple optima simultaneously with multiple swarms in dynamic
environments by Blackwell and Branke [5], [6]. In their ap-
proach, a charged swarm is used for maintaining the diversity
of the swarm, and an exclusion principle ensures that no more
than one swarm surrounds a single peak. In the algorithm,
called mQSO in [6], anti-convergence is introduced to detect
new peaks by sharing information among all sub-swarms. This
strategy was experimentally shown to be efficient for the MPB
function [9]. Borrowing the idea of exclusion from [5], Mendes
and Mohais developed a multi-population DE algorithm [49] to
solve the MPB problem. In their approach, a dynamic strategy
for the mutation factorF and probability factorCR in DE
was introduced. Recently, an enhanced version of mQSO was
proposed by applying two heuristic rules to further enhancethe
diversity of mQSO in [19]. One of the two rules is to increase
the number of quantum particles and to decrease the number
of trajectory particles when a change occurs. The other ruleis
to re-initialize or pause the swarms that have bad performance.

A collaborative evolutionary swarm optimization (CESO)
was proposed in [46]. In CESO, two swarms, which use
the crowding differential evolution (CDE) [68] and the PSO
model, respectively, cooperate with each other by a collabo-
rative mechanism. The swarm using CDE is responsible for
preserving diversity while the PSO swarm is used for tracking
the global optimum. The competitive results were reported
in [46]. Thereafter, a similar algorithm, called evolutionary
swarm cooperative algorithm (ESCA), was proposed in [47]
based on the collaboration between a PSO algorithm and
an EA. In ESCA, three populations using different EAs are
used. Two of them follow the rules of CDE [68] to maintain
the diversity. The third population uses the rules of PSO.
Three types of collaborative mechanism are also developed
to transmit information among the three populations.

Inspired by the SOS algorithm [10], a fast multi-swarm
optimization (FMSO) algorithm was proposed in [38] to locate
and track multiple optima in dynamic environments. In FMSO,
a parent swarm is used as a basic swarm to detect the most

promising area when the environment changes, and a group
of child swarms are used to search the local optimum in their
own sub-spaces. Each child swarm has a search radius, and
there is no overlap among all child swarms by excluding
them from each other. If the distance between two child
swarms is less than their radius, then the whole swarm of the
worse one is removed. This guarantees that no more than one
child swarm will cover a single peak. Another similar idea
of hibernation multi-swarm optimization algorithm (HmSO)
was introduced in [29], where a child swarm will hibernate
if it is not productive anymore and will be woken up if an
environmental change has been detected.

A clustering PSO (CPSO) has recently been proposed for
DOPs in [40], [78]. CPSO applies a hierarchical clustering
method to divide an initial swarm into sub-swarms that cover
different local regions. CPSO was proposed to attempt to
solve some challenging issues when applying multi-population
methods, e.g., how to guide particles to move toward different
promising sub-regions, how to define the area of each sub-
merging, and how to determine the number of sub-swarms
needed. CPSO has shown some promising results compared
with several state-of-the-art algorithms in [78].

III. G ENERAL FRAMEWORK OF MULTI -POPULATION

METHODS WITH CLUSTERING FORDOPS

So far, most EAs developed for DOPs either use some
change detection methods [6], [43], [40], [46], [47], [57],
[78] or predict changes by assuming that changes have a
pattern [63]. Once a change has been detected or predicted,
different kinds of strategies are applied to increase the diver-
sity, e.g., random immigrants strategies, or to re-use stored
useful information by assuming that the new environment
is closely related to the current environment, e.g., memory-
based strategies. However, to use those strategies, a condition
must be applied. That is, the environmental changes must be
successfully detected. So, here comes a common question:
What can these algorithms do if they fail to detect the changes?

Maintaining diversity without change detection throughout
the run is an interesting topic. In [25], random individuals
are created every iteration. Three different mutation strategies
were designed to control the diversity in [18]. Sharing or
crowding mechanisms in [16] were introduced to ensure
diversity. The thermodynamical genetic algorithm (TDGA)
[50] was proposed to control the diversity explicitly via a
measure, called “free energy”. However, these methods are not
effective because the continuous focus on diversity slows down
the optimization process as pointed out in [27] and hence little
research on maintaining diversity without change detection has
been carried out in the literature. Therefore, far more effective
algorithms are still needed.

A. Undetectable Dynamic Environments

It is important and meaningful to build effective mechanisms
into EAs for DOPs that do not need to detect changes. This is
because sometimes it is hard or impossible for algorithms to
detect changes. For example, if there are only some random
sub-areas in the whole search space that change, it will
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Fig. 1. Successful detection rate with different numbers ofchanging peaks
in the MPB problem with a total number of ten peaks.

become very difficult for algorithms to detect the changes.
If an algorithm fails to detect the changes, all the traditional
corresponding strategies will lose their functions.

In order to illustrate that such kind of dynamic environments
exist, we add a new feature into the MPB problem (it will
be described in detail in Sect. V-A.1): Only some random
peaks, rather than all peaks in the original MPB problem
[9], are allowed to change during one environmental change.
This feature will make the changes difficult to detect. To
show the difficulty of detecting changes in the modified MPB
problem, the following experiments were conducted, where
10000 uniformly distributed random points were sampled in
the fitness landscape with a total number of ten peaks in
five dimensions. We record the total number of points (suc)
that successfully detect the changes over 1000 changes. The
average rate of successfully detecting changes can be estimated
by suc/107. A detection by a point is successful if the fitness
of that point is different from its previous fitness. Fig. 1 shows
the rate of successful detection with different numbers of
changing peaks in the MPB problem with a total number of
ten peaks.

Fig. 1 clearly shows that the successful detection rate lin-
early decreases when the number of changing peaks decreases.
The smaller the number of changing peaks, the harder it will
be to detect the change. It can be seen that the successful
detection rate is less than 0.2 when only one out of ten peaks
changes in the search space. And the figure increases to 1 when
all peaks change, i.e., any one point in the fitness landscapecan
detect the changes. It means any single individual is enoughfor
an EA to successfully detect the changes in the MPB problem
when all peaks change, which is a default setting of the MPB
problem used by all EAs so far.

The dynamic knapsack problem [31], [39] is another exam-
ple for dynamic environments where changes are difficult to
detect. In the dynamic knapsack problem, detecting a change
is not always as straightforward as it may seem. Normally,
monitoring a possible change in fitness value is used to detect
the change but this does not always work. For example,
you will detect a change by monitoring the fitness of an
individual over two successive iterations, if the maximum
allowed capacity for a knapsack problem is reduced. But, on

the other hand, if the allowed capacity is increased, it willbe
likely to go undetected. This is because the capacity change
does not affect the current population, which is still in the
feasible areas in the search space.

The recurrent change with noise in [41] is one example
of dynamic environments where the changes are completely
undetectable. Because of noise, every evaluation for a similar
solution is different. Therefore, in this kind of dynamic envi-
ronment, the changes are never detected by checking whether
there is a change in the fitness of the same individual in the
fitness landscape.

In the real world, there are also many DOPs where the
changes are hard-to-detect or undetectable. For example, in
the design of the path planning system, it is difficult for
mobile robots to detect the environmental changes due to
moving obstacles with unknown trajectories. In the dynamic
scheduling problem, it will be hard to detect a constraint
change if the change does not affect current solutions. For
the multi-rover coordination problem in noisy environments,
the signals that rovers receive from the environment are not
reliable due to the noise generated by the rovers’ sensors.

The above cases show that the design of approaches without
change detection is very necessary to solve optimization
problems in dynamic environments where the changes are
difficult to detect. This is because traditional EAs based on
change detection will fail to work in such kind of dynamic
environments due to the difficulties of detecting the changes.
For example, change detection methods will not work in dy-
namic environments with noise due to the disturbance caused
by noise. As a result, the performance of these algorithms will
significantly deteriorate.

B. Clustering Methods to Create Multiple Populations

The methods of creating multiple populations can be
roughly classified into three different categories in termsof the
way to generate multiple populations. The first class of multi-
population methods simply uses a certain number of randomly
generated populations. Usually, all populations use the same
search strategy with the same number of individuals. However,
in some of these kinds of algorithms, the populations are
assigned into different groups where each group uses different
search methods (e.g., ESCA [47], CESO [46], and mQSO
[6]) to serve different purposes (e.g., exploring new promising
sub-areas or exploiting local optima). The second class of
multi-population methods starts from a main population and
maintains it to generate sub-populations by splitting off from
the main population (e.g., SOS [10], NichePSO [11], FMSO
[38], and HmSO [29]) if some predefined criteria are satisfied
(e.g., the best individual in the main population does not
improve for a certain number of iterations). The third classof
multi-population methods divides a large randomly generated
population into several small sub-populations to make them
cover different sub-areas in the search space (e.g., thek-means
PSO [33], SPSO [43],nbest PSO [12], and CPSO [40], [78]).

The major common problem of these multi-population
methods is that, although they benefit the algorithms, they also
bring new issues which are difficult to solve. For example,
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Algorithm 1 Clustering(pop)

1: Create a temporary cluster listG of size |pop|;
2: for each individuali in pop do
3: G[i] := pop[i]; {i.e., each individual forms one cluster

in G}
4: end for
5: Calculate the distance between all clusters (i.e., individ-

uals) in G and construct a distance matrixM of size
|G| × |G|;

6: while TRUE do
7: if !FindNearestPair(G, t, s) then
8: Break;
9: end if

10: t := t+ s; {i.e., merge clusterst ands into t}
11: Delete the clusters from G;
12: Re-calculate all distances inM which have been af-

fected by the merge oft ands;
13: if each cluster inG has more than one individualthen
14: Break;
15: end if
16: end while
17: Removepop;
18: plst := plst+G;

the optimal value ofk in the k-means PSO is unknown and
problem dependent; the optimal number of sub-populations is
unknown for the mQSO algorithm; there is no overlapping
control among populations in ESCA and CESO; it is difficult
to identify the proper representative individuals in SPSO,
NichePSO, SOS, FMSO, HmSO, andnbest PSO; and it is very
difficult to define an appropriate radius for each populationin
SPSO, mQSO, FMSO, and HmSO.

Among these methods, CPSO seems a competitive one as
it alleviates the common problems that other methods suffer.
Different from other methods, CPSO uses a single linkage
hierarchical clustering method [28], as shown in Algorithm1,
to create sub-populations. The clustering method can enable
CPSO to assign individuals to different promising sub-regions,
adaptively adjust the number of sub-populations needed,
and automatically calculate the search region for each sub-
population.

In the clustering method, the distanced(i, j) between two
individuals i and j in the D-dimensional space is defined as
the Euclidean distance between them as follows:

d(i, j) =

√

√

√

√

D
∑

d=1

(xd
i − xd

j )
2 (1)

The distance of two clusterst and s in the list of G, which
is an element inM in Algorithm 1 and is denotedM(t, s),
is defined as the distance of the two closest individualsi and
j that belong to clusterst ands, respectively.M(t, s) can be
formulated as:

M(t, s) = min
i∈t,j∈s

d(i, j) (2)

Given an initial populationpop, the clustering method works
as follows: It first creates a listG of clusters with each cluster

Algorithm 2 FindNearestPair(G, t, s)

1: found := FALSE;

2: min dist :=
√

∑D

i=1
(Ui − Li)2, whereUi and Li are

the upper and lower bounds of thei-th dimension of the
search space;

3: for i := 0 to |G| do
4: for j := i+ 1 to |G| do
5: if (|G[i]|+ |G[j]| > subSize) then
6: continue;
7: end if
8: if (min dist > M(G[i], G[j])) then
9: min dist := M(G[i], G[j]);

10: t := G[i];
11: s := G[j];
12: found := TRUE;
13: end if
14: end for
15: end for
16: Returnfound;

only containing one individual inpop. Then, in each iteration,
it uses Algorithm 2 to find a pair of clusterst ands such that
they are the closest among those pairs of clusters, of which the
total number of individuals in the two clusters is not greater
thansubSize (subSize is a prefixed maximum sub-population
size), and, if successful, combinest and s into one cluster.
This iteration continues until all clusters inG contain more
than one individual. Finally, the cluster listG is appended to
a global sub-population listplst.

From the above description, it can be seen that using
the above clustering method, sub-populations will be auto-
matically created with close individuals depending on the
distribution of initial individuals in the fitness landscape. The
number of sub-populations and the size of the search area of
each sub-population are also automatically determined by the
fitness landscape and the unique parametersubSize.

C. Redundancy Control

Redundancy is a very important factor that will affect the
performance of an algorithm. Here, redundancy control is to
remove redundant individuals, including the converged or near
converged individuals, the overcrowded individuals in a local
sub-area, and the individuals that are located in the overlapping
areas of two conjunction populations.

It is important to perform the operation of redundancy
control. First of all, redundant individuals normally do not
contribute much to the search progress. Taking the converged
or near converged individuals as an example, they are inactive
and almost dying so they hardly contribute to the search.
Secondly, we can save computing resources and give the
saved resources to theuseful individuals. Thirdly, removal
of redundant individuals is a preparation phase in order to
increase the diversity in this paper (the phase of maintaining
diversity will be discussed later in Sect. III-D).

Traditionally, the overlapping check between two popula-
tions is carried out using their search radius. The search radius
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of a sub-populations can be calculated as follows:

radius(s) =
1

|s|

∑

i∈s

d(i, scenter), (3)

wherescenter is the central position of the sub-populations
and |s| is the number of individuals ins. If any individual in
a sub-population is within the search radius of another sub-
population, then the overlapping search occurs. If the distance
of the best individuals of two sub-populations is less than
their search radius, then they are combined or one of them
is removed. The above checking mechanism assumes that
each sub-population just covers one peak. However, it is not
always true for the real situation. If a sub-population in a
sub-region covers more than one peak, other sub-populations
that are within its search area should not be removed or
combined together with this sub-population; otherwise, wewill
lose the peaks which are currently being searched due to the
combination. Therefore, we should take this issue into account
before combining two overlapping populations.

To address the above issues, when applying the merge op-
eration, we adopt the following overlapping checking scheme.
If two sub-populationst and s are within each other’s
search area, an overlapping ratio between them, denoted
roverlap(t, s), is calculated as follows: We first calculate the
percentage of individuals int which are within the search area
of s and the percentage of individuals ins which are within the
search area oft, and then setroverlap(t, s) to the smaller one
of these two percentages. The two sub-populationst ands are
combined only whenroverlap(t, s) is greater than a threshold
valueβ.

It should be noted that the radius ofs and t used in the
overlapping check operation is their initial radius whens and
t are first created by the clustering method rather than their
current radius. Usually, the radius of a sub-population will
decrease with the evolutionary process as the sub-population
will gradually converge. Therefore, the initial radius obtained
when a sub-population is formed is usually larger than its
current radius. Therefore, using the initial radius ratherthan
the current radius of sub-populations, we can identify an
overcrowded area as early as possible to save computational
resources.

In order to avoid too many individuals searching on a single
peak and hence save computing resources, an overcrowding
check is performed on each sub-population after the above
overlapping check. If the number of individuals in a sub-
population is greater thansubSize, then the worst individuals
are removed one by one until the size of the sub-population
is equal tosubSize.

Individuals that have already converged, are also redundant
and should be removed. If the radius of a sub-population is
less than a small threshold valueǫ, which is set to 0.01 in
this paper, the sub-population is regarded to be converged on
a peak. If a sub-population is converged, it will be removed
from the sub-population listplst. The convergence check is
carried out after the overcrowding check. The procedure of
redundancy control is as shown in Algorithm 3.

Algorithm 3 Remove(plst)

1: for each pair of sub-populations(t, s) in plst do
2: if roverlap(t, s) > β then
3: Merget ands into t;
4: Removes from plst;
5: end if
6: end for
7: for each sub-populationt ∈ plst do
8: if |t| > subSize then
9: Remove worst(|t| − subSize) individuals fromt;

10: end if
11: end for
12: for each sub-populations ∈ plst do
13: if radius(s) < ǫ then
14: Removes from plst;
15: end if
16: end for
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Initialization

α# Inidividuals < gSize* 

Νο

Yes

Νο

Yes

Fig. 2. Framework for multi-population methods with clustering in unde-
tectable dynamic environments.

D. Maintaining Diversity

Based on the above description, it is easy to figure out how
to maintain the diversity. We do not increase the diversity every
iteration as traditional methods do. Instead, we only increase
the diversity if the population diversity decreases to a certain
level. In this paper, we use a simple metric to measure the
population diversity:#s indis(t)/gSize, where#s indis(t)
is the number of survived individuals at iterationt andgSize
is the size of the initial population. If the population diversity
decreases to a constant threshold (α), then we apply a random
immigrants method where a temporal population of the size
gSize − #s indis(t) is randomly generated. Thereafter, we
cluster the temporal population by the above clustering method
and append the new sub-populations toplst.

Thanks to the clustering method and the redundancy control
mechanism, we can easily implement an algorithm for DOPs
using any population-based EA. Fig. 2 describes the whole
general framework for multi-population methods using the
clustering method in dynamic environments. The step of local
search in Fig. 2 is the optimization process which should be
replaced by a specific EA (e.g., PSO, GA, or DE).

Using this framework to solve DOPs has several advantages.
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Firstly, it can be used in dynamic environments with any
properties, e.g., mild change, severe change, cyclic change,
chaotic change, or even undetectable changes. From Fig. 2, it
can be seen that the whole process has nothing to do with
the environmental changes. When to increase the diversity
only depends on the information gathered from the current
populations. Secondly, it can be implemented by any EA.
Thirdly, it is simple to implement. Sect. IV will present some
instances implemented from this framework for DOPs in
several different research areas.

E. Complexity Analysis

In the framework, compared with a traditional EA, we need
to perform some extra operations, including the clustering
process and the overcrowding check among sub-populations.
From Algorithm 1, it can be seen that the time complexity of
the clustering operation isO(gSize3). We first compute all
distances among each pair of clusters inO(gSize2). For each
iteration of merging two clusterst ands from the cluster list
G, we find the nearest pair of clusters ofG in O(|G|2) (if
we use a dynamic programming method, it would be reduced
to O(|G|log(|G|))), then update the distance matrixM in
O(|G|). The number of clusters inG will decrease by one
every iteration until the stop criteria is met. Finally, we perform
the clustering operation inO(gSize3). It should be noted
that the clustering operation is not performed every iteration
during the search process, instead it is triggered only when
the total number of individuals is less thanα · gSize (see
Fig.2 for the framework). In addition, after the first clustering
operation, only(1−α) · gSize individuals will be involved in
the following clustering operations in the whole run.

The time complexity of the overcrowding check, which is
mainly on the calculation of the overlapping ratio between two
sub-populations (see Algorithm 3), depends on how many sub-
populations have survived. For each pair of sub-populations,
the calculation of the overlapping ratio is done inO(subSize),
which is a constant time (subSize = 7 is suggested in this
paper, see Sect. V-B.1 for details). Furthermore, the number
of sub-populations will decrease before the next clustering
operation is performed during the search process.

In total, according to the above component complexity
analysis, it can be seen that the extra computing time needed
for the framework is not so high.

IV. I NSTANTIATION OF THE FRAMEWORK

In this section, we instantiate the framework of multi-
population with clustering into three different research areas:
PSO, GA, and DE. For the convenience of description, the
corresponding algorithms are denoted CPSOR, CGAR, and
CDER, respectively, in this paper. We also discuss how to
apply this framework for DOPs in combinatorial space in the
end of this section.

A. Clustering with PSO

PSO was first introduced by Kennedy and Eberhart in [20],
[34]. Ever since PSO was first introduced, several major

Algorithm 4 gbestLearn(particle ~xi)

1: for each dimensiond of gbest do
2: ~xt gbest := ~xgbest {~xt gbest is a temporary particle};
3: xt gbest[d] := xi[d];
4: if ~xt gbest is better than~xgbest then
5: xgbest[d] := xt gbest[d];
6: end if
7: end for

versions of the PSO algorithm have been developed [56].
In PSO, each particlei, which is a candidate solution, is
represented by a position vector~xi and a velocity vector~vi,
which are updated in the version of PSO with an inertia weight
[75] as follows:

v′
d

i = ωvdi + η1r1(x
d
pbesti

− xd
i ) + η2r2(x

d
gbest − xd

i ) (4)

x′d

i = xd
i + v′

d

i , (5)

wherex′d
i andxd

i represent the current and previous position
in thed-th dimension of particlei, respectively,v′i andvi are
the current and previous velocity of particlei, respectively,
~xpbesti and~xgbest are the best position found by particlei so
far and the best position found by the whole swarm so far,
respectively,ω ∈ (0, 1), η1, and η2 are constant parameters,
and r1 and r2 are random numbers generated in the interval
[0.0, 1.0] uniformly.

In order to speed up the local search within the PSO
algorithm, we introduce a learning method for thegbest
particle used in CPSO [78]. This learning method tries to ex-
tract useful information relevant to those potentially improved
dimensions of an improved particle to updategbest, as shown
in Algorithm 4. When a particlei in a sub-population finds
a better position, we iteratively check each dimension of the
gbest particle: replace the dimension with the corresponding
dimensional value of particlei if the gbest particle is improved
by doing so. In this way, thegbest particle is able to learn
the useful information from those dimensions of a particle that
has been improved.

The PSO algorithm with thegbest model is used in the
CPSOR algorithm where each particle’s neighborhood is de-
fined as the whole swarm. The basic PSO algorithm in CPSOR
is shown in Algorithm 5, and the whole framework of the
CPSOR algorithm is described in Algorithm 6.

B. Clustering with GA

In the CGAR algorithm, we use a simple real-coded GA
as described in Algorithm 7. The crossover and mutation
operators used in CGAR are the arithmetic crossover and the
normal mutation operator, respectively. They are described as
follows.

For two individuals~xi and ~xj , the arithmetic crossover
operator is performed on thed-th dimension as follows:

xd
i = xd

i ∗ r + xd
j ∗ (1− r) (6)

xd
j = xd

j ∗ r + xd
i ∗ (1− r) (7)
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Algorithm 5 PSO
1: for each particle~xi do
2: ~xt:= ~xi; {~xt is a temporal particle}
3: Update particlei according to Eqs. (4) and (5);
4: if f(~xi) < f(~xpbesti ) then
5: ~xpbesti := ~xi;
6: if f(~xi) < f(~xgbest) then
7: ~xgbest := ~xi;
8: end if
9: if f(~xi) < f(~xt) then

10: gbestLearn(~xi);
11: end if
12: end if
13: end for

Algorithm 6 CPSOR
1: Create an initial populationpop with gSize particles by

randomly generating the position and velocity for each
particle;

2: Create an empty listplst to store sub-populations;
3: Clustering(pop);
4: while stop criteria is not satisfieddo
5: for each sub-populationplst[i] do
6: plst[i].PSO();
7: end for
8: Remove(plst);
9: Count the number of survived individualss indis;

10: if s indis < gSize · α then
11: Create a temporal populationt pop with

(gSize− s indis) random individuals;
12: Clustering(t pop);
13: end if
14: end while

Algorithm 7 GA
1: Select individuals into mating pool by the roulette wheel

selection mechanism;
2: for each pair of individuals~xi and~xi+1 do
3: if r < pc then
4: Perform arithmetic crossover;{pc is the crossover

probability}
5: end if
6: end for
7: for each individuals~xi do
8: Perform the mutation operation;
9: end for

where r is a random number uniformly distributed in the
interval (0.0, 1.0).

The mutation operation for thed-th dimension of individual
~xi is performed with a probability of1/D as follows:

xd
j = xd

j +N(0, 1) (8)

whereN(0, 1) is a normally distributed random number with
mean 0 and variance 1.

Algorithm 8 DE
1: for each individual~xi do
2: Generate a donor vector~v by:~v := ~xr1+F ·(~xr2−~xr3);

{F is mutation factor in [0,2] and~xr1, ~xr2, and~xr3 are
randomly selected individuals (indices ofi, r1, r2, and
r3 are distinct)}

3: Generate a trial vector~u as follows:

ud :=

{

vd, if r <= CR or d = Irand
xd, if r > CR andd! = Irand

where CR is a probability constant andIrand is a
random integer within [1,D].

4: if f(~u) < f(~xi) then
5: ~xi := ~u;
6: end if
7: end for

C. Clustering with DE

DE [65] is also a population-based optimization approach,
whose main strategy is to generate a new position for an
individual by calculating vector differences between other
randomly selected members of the population. A simple DE
algorithm used in CDER is described in Algorithm 8.

It should be noted that the CPSOR algorithm is different
from the CGAR and CDER algorithms where thepbest posi-
tion of each particle does not involve the evaluation process.
Therefore, there is an issue of outdated memory of thepbest
position that will mislead the future search for each particle.
In order to solve this problem for the CPSOR algorithm, we
re-evaluate a particle’spbest position before comparing with
its current position every iteration. Fortunately, the issue of
outdated memory in CGAR and CDER is not as serious as in
CPSOR as each individual will be evaluated every iteration.

So far, we have recognized that we do not need to de-
velop any complex techniques to deal with the dynamism or
even to detect the environmental changes. Furthermore, this
framework is easy to apply in any EA. The only differences
between two algorithms using this framework are the steps of
initialization and local search. Due to the similarities between
CGAR and CPSOR, the framework of CGAR is not provided
in this paper, and neither for the CDER algorithm.

D. The Clustering Framework for Combinatorial DOPs

From the description of the clustering method in Sect. III-B,
it is easy to apply the framework for DOPs in the combinato-
rial space. The only work that we need to do is to re-define a
proper distance metric for the particular problem to be solved,
i.e., re-calculation of the distance of two individuals in Eq. (1).
Then, we can directly use Algorithm 1 and Algorithm 2 to
generate multiple populations, Algorithm 3 to reduce the re-
dundancy, and the framework in Fig. 2 to adapt the clustering
method into dynamic environments.

The choice of the distance metric depends on the problem
to be solved. For example, a proper distance metric for two in-
dividuals in binary encoding would be the Hamming distance,
that is the number of genes at which the corresponding values
are different. For the travelling salesman problem (TSP), the
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distance between two individuals would be the number of
different edges. A proper distance metric would determine the
performance of this framework.

1) Discussion: As we know, poor offspring will be gen-
erated by recombination if two parents are in two different
peaks. This is because the offspring are highly likely to be in
the valley between the two peaks. Therefore, recombinationis
deleterious to the performance of EAs if the involved parents
are in different peaks [64]. We expect that this issue shouldbe
relieved with the clustering method. The aim of the clustering
method is to divide the whole search space into multiple
sub-areas. The result of the clustering method is that similar
individuals, which are close to each other and likely to be in
one peak in the fitness landscape, are assigned to one cluster.
The ideal result after using the clustering method is that each
sub-area only contains a single peak. In this ideal case, all
parents will be in the same peak, and, hence, recombination
will produce promising offspring other than bad ones.

However, regarding the framework for DOPs in the combi-
natorial space, our major concern is the effectiveness of the
clustering method to locate multiple sub-areas in the search
space. The original motivation of the clustering method is
for multi-modal problems in the continuous space. There is
clear understanding of the fitness landscape for most problems
in the continuous space, i.e., a typical fitness landscape is
composed of multiple peaks that are distributed in different
areas in the fitness landscape. Therefore, we can divide the
whole fitness landscape into multiple sub-areas, then search
and track them simultaneously. However, there is no such
clear indication for many combinatorial problems regarding
what the fitness landscape is, e.g., the TSP, and how to define
the distance between two individuals. Although we can easily
extend this framework for DOPs into combinatorial problems,
it lacks clear explanatory support from the motivation point
of view. Therefore, we will not implement this framework for
combinatorial problems in this paper.

2) Possible Combinatorial DOP Generator:Although we
do not test the performance of this framework for combinato-
rial problems in this paper, it is an interesting topic. If users
wish to extend this framework into the combinatorial space,
we suggest a possible combinatorial DOP generator that is
able to create multi-modal problems (it surely can be applied
in any combinatorial problem). To generate a fitness landscape
with P random peaks [64], we can randomly generateP
binary strings with lengthL, which represent the locations
of theP peaks in the fitness landscape. To evaluate the fitness
of an arbitrary individualx, we first locate the nearest peak
by the Hamming distance, then the fitness of individualx is
calculated as the number of bits that are in common with that
nearest peak, divided byL, as follows:

f(x) =
1

L
max

p=1,··· ,P
(L− d(x, Peakp)) (9)

whered(x, Peakp) is the Hamming distance between individ-
ual x and thep-th peakPeakp.

Interestingly, we can also easily extend this problem to
dynamic environments with characteristics as in the MPB
problem [9], where the fitness landscape has a certain number

of peaks, whose locations and heights are able to change
overtime. To achieve this, we first need to make the height
of each peak changeable. For the above expression, it implies
that all theP peaks have an equal height of 1. However, we
can assign a changing weight (Hp(t)) to each peak at timet,
which enables the peaks to have different heights over time.
Therefore, a DOP can be obtained as follows:

f(x, t) =
1

L
max

p=1,··· ,P
Hp(t)(L − d(x, Peakp(t))) (10)

It should be noted that the above problem generator is just
an example of the kind of problem the clustering framework is
capable of solving in the combinatorial space. If we are ableto
fully understand the fitness landscape for a given problem with
multiple optima, i.e., the distance metric is properly defined,
then, we believe, the framework will be applicable to that
problem.

V. EXPERIMENTAL STUDY

In this section, four groups of experiments are carried out
based on the MPB problem [9]. The objective of the first
group of experiments is to investigate the working mechanism
of the framework through the CPSOR algorithm, analyze the
sensitivity of key parameters, and suggest some methods to
set up the parameters, including the overlapping ratioβ, the
diversity degreeα, the global population sizegSize, and the
sub-population sizesubSize. The objective of the second
group of experiments is to investigate whether EAs benefit
or not from using the framework of multi-population with
clustering to solve DOPs. In the third group of experiments,
the performance of CPSOR, CGAR, and CDER is compared
with a set of EAs taken from the literature for DOPs. The
involved algorithms include mCPSO [6], mQSO [6], SPSO
[54], rSPSO [4], CESO [46], ESCA [47], CPSO [78], PSO-
CP [45], HmSO [29], and RVDEA [73].

The RVDEA [73] is a dynamic EA that uses variable
relocation to adapt already converged or currently evolving
individuals to the new environmental condition. In this paper,
we used the version of RVDEA with clusters [73], whose
performance is better than that of the version of RVDEA
with memory [73] on the MPB problem. In the version of
RVDEA with clusters, multiple clusters (populations) are used
to guide the selection and replacement procedures with the aim
of exploring different sub-areas in the search space.

All the results of the peer algorithms shown in this paper
are provided in the papers where they were proposed except
the CPSO algorithm, whose results are updated in this paper.
Finally, we present the comparison between CPSOR and
CPSO in dynamic environments where changes are difficult
to detect.

A. Experimental Setup

1) The Moving Peaks Benchmark (MPB) Problem:The
MPB problem, proposed by Branke [9], has been widely used
as dynamic benchmark problems in the literature. Within the
MPB problem, the optima can be varied by three features,
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i.e., the location, height, and width of peaks. For theD-
dimensional landscape, the problem is defined as follows:

F (~x, t) = max
i=1,...,p

Hi(t)

1 +Wi(t)
∑D

j=1
(xj(t)−Xij(t))2

, (11)

whereWi(t) and Hi(t) are the height and width of peaki
at time t, respectively, andXij(t) is the j-th element of the
location of peaki at time t. The p independently specified
peaks are blended together by themax function. The position
of each peak is shifted in a random direction by a vector~vi of a
distances (s is also called the shift length, which determines
the severity of the problem dynamics), and the move of a
single peak can be described as follows:

~vi(t) =
s

|~r + ~vi(t− 1)|
((1 − λ)~r + λ~vi(t− 1)), (12)

where the shift vector~vi(t) is a linear combination of a
random vector~r and the previous shift vector~vi(t − 1) and
is normalized to the shift lengths. The correlated parameter
λ is set to 0, which implies that the peak movements are
uncorrelated.

More formally, a change of a single peak can be described
as follows:

Hi(t) = Hi(t− 1) + height severity ∗ σ (13)

Wi(t) = Wi(t− 1) + width severity ∗ σ (14)

~Xi(t) = ~Xi(t)(t− 1) + ~vi(t) (15)

whereσ is a normal distributed random number with mean 0
and variation 1.

It should be noted that the same setup for the MPB problem
[9] – the second scenario – was used for all the involved peers
algorithms. i.e., the comparison of all the peer algorithmsis
under the same configuration of the MPB problem in this
paper.

It should also be noted that the choice of the MPB problem
does not favor our method. There are several other benchmarks
in the literature for DOPs, e.g., the DF1 [51] and the GDBG
[41]. The structures of the DF1 [51] problem and the GDBG
[41] problem are similar to the MPB problem, which are
able to create a user-defined number of peaks with changing
heights, widths, and locations. However, they are not as widely
used as the MPB problem in the literature. Although the
GDBG system is more complex than the MPB and DF1
problems, it is not familiar to many researchers since it was
just recently proposed (the experimental results in thesis[36]
shown that the clustering idea is also effective to solve the
GDBG system in comparison with several other algorithms).
The motivation of the design of the MPB problem is to bridge
the gap between very complex, hard to understand real-world
problems and all too simple toy problems [9]. Although it
is not the real-world problem, it has been put forward as
representative of real-world dynamic problems [5], [6], [9].

TABLE I

DEFAULT SETTINGS FOR THEMPB PROBLEM, WHERE THE TERM

“ CHANGE FREQUENCY(U )” MEANS THAT ENVIRONMENT CHANGES

EVERY U FITNESS EVALUATIONS,S DENOTES THE RANGE OF ALLELE

VALUES, AND I DENOTES THE INITIAL HEIGHT FOR ALL PEAKS. THE

HEIGHT OF PEAKS IS SHIFTED RANDOMLY IN THE RANGEH = [30, 70]

AND THE WIDTH OF PEAKS IS SHIFTED RANDOMLY IN THE RANGE

W = [1, 12]

Parameter Value

peaks (number of peaks) 10
change frequency (U ) 5000

height severity 7.0
width severity 1.0

peak shape cone
basic function no
shift lengths 1.0

number of dimensions D 5
correlation coefficientλ 0

percentages of changing peakscPeaks 1.0
S [0, 100]
H [30.0, 70.0]
W [1, 12]
I 50.0

2) Experimental Settings:The default settings and defini-
tion of the benchmark used in the experiments of this paper
can be found in Table I, which are the same as in all the
involved algorithms. It should be noted that different from
the traditional MPB problem, the percentages of changing
peaks (cPeaks), which is a new feature, is added in the
MPB problem in this paper. This feature will make the MPB
problem harder to solve because many techniques based on
change detection may lose their functions. The traditional
MPB problem is a special case of the MPB problem used
in this paper wherecPeaks = 1.0.

The performance measure used in this paper is the offline
error, which is defined as follows:

µ =
1

K

K
∑

k=1

(hk − fk), (16)

wherefk is the best solution obtained by an algorithm just
before thek-th environmental change,hk is the optimum value
of the k-th environment,µ is the average of all differences
betweenhk andfk over the environmental changes, andK is
the total number of environments, which is set toK = 100 in
this paper. All the results reported are based on the average
over 30 independent runs with different random seeds.

In CPSOR, the acceleration constantsη1 andη2 were both
set to 1.7. The inertia weightω was set to 0.6. For the CGAR
algorithm, the crossover probability (pc) was set to 0.6.F=0.5
and CR=0.1 were used in the CDER algorithm. It should
be noted that the values of the parameters used in the three
algorithms may not be the best choice. However, it is not the
main task in this paper to investigate the optimal values of
these parameters.

B. Experimental Investigation of CPSOR

To effectively apply the framework to solve DOPs, we first
investigate the effect of different configurations and suggest
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general settings for the four parameters: the overlapping ratio
β, the diversity degreeα, the global population sizegSize,
and the sub-population sizesubSize. Then, the working
mechanism of the CPSOR algorithm is illustrated based on
the MPB problem in two dimensions with different aspects.

Actually, how to setup the four parameters to get the
best performance of the framework is a difficult optimization
problem because the four parameters may depend on each
other, and there are many potential and unknown factors that
may affect the choice of the four parameters. Therefore, in
order to investigate whether there are general rules to setup
the four parameters and how to find out the guidance, we first
have an overview of the four parameters.

The overlapping ratioβ determines the moment to merge
two sub-populations when they overlap each other. The larger
the value ofβ, the longer the time it will take to start the
merging process, and vice versa. This combination process will
remove redundant individuals to save computational resources
and hence speed up the search. Performing this process a bit
late or early should not affect too much of the performance.
Intuitively, this parameter should not be crucial to the perfor-
mance of the framework. In addition, it will not depend on the
other parameters. Therefore, it can be separately analyzed.

For the global population sizegSize and the sub-population
sizesubSize, they are apparently two crucial parameters and
they directly determine how many sub-populations will be
generated in the fitness landscape, which is the most important
factor that will affect the performance of the framework. A too
small number of sub-populations generated will bring about
more than one peak contained in a single sub-population, so
the algorithm will not effectively track different optima.On
the contrary, if too many sub-populations are distributed in the
fitness landscape, too many isolated sub-populations will cover
a single peak, which is also not a good option. To effectively
locate and track the changing optimum in the fitness landscape
with a fixed number of peaks, the number of sub-populations
has to be optimized. Therefore, these two parameters will be
analyzed together in this section.

In order to solve DOPs without change detection, we need
to maintain the population diversity throughout the run by the
parameterα. Intuitively, the choice ofα would depend on how
much diversity is needed. Usually, the larger the number of
peaks in the fitness landscape, the larger diversity is needed
and hence the larger value ofα.

Based on the above analysis regarding the configuration of
the four parameters, we carried out the following experiments
based on the assumption thatβ, α, and the group ofgSize
andsubSize are independent of each other. It should be noted
that the assumption might not be exactly the fact of their real
relationship and there are many other factors related to the
problem that would affect the setup of the four parameters,
e.g., the number of peaks, the change severity, and the change
frequency, etc. The following section will find out how to setup
the framework to effectively solve DOPs.

1) Parameter Sensitivity Study:In this section, the four
parameters in the basic framework are investigated separately
except for gSize and subSize, which are bound together
to analyze the sensitivity. In order to test one particular

TABLE II

OFFLINE ERRORS AND± STANDARD ERROR FOR DIFFERENT VALUES OFβ

WITH DIFFERENT NUMBERS OF PEAKS, WHEREα = 0.3, gSize = 200,

AND subSize = 7, AND THE DEFAULT SETTINGS FOR THEMPB PROBLEM

IN TABLE I WERE USED

peaksβ=0.1 β=0.2 β=0.3 β=0.4 β=0.5 β=0.6 β=0.7 β=0.8 β=0.9

10 0.75 0.77 0.773 0.824 0.791 0.811 0.802 0.859 0.869
±0.05±0.05±0.06±0.05±0.05±0.08±0.05±0.07±0.08

20 0.866 0.916 0.859 0.925 0.938 0.887 0.931 0.894 0.913
±0.05±0.06±0.05±0.05±0.06±0.06±0.06±0.06±0.08

30
1.06 1.08 1.05 1.11 1.08 1.03 1.06 1.11 1.1
±0.06±0.05±0.06±0.06±0.05±0.06±0.06±0.06±0.06

50 0.93 0.918 0.94 0.94 0.947 0.972 0.978 0.979 1
±0.06±0.05±0.06±0.05±0.05±0.06±0.06±0.07±0.07

100
1.08 1.07 1.07 1.07 1.07 1.12 1.09 1.12 1.09
±0.06±0.04±0.05±0.05±0.04±0.05±0.04±0.05±0.05
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Fig. 3. Offline errors of varying the values ofβ with different numbers of
peaks, whereα = 0.3, gSize = 200, and subSize = 7, and the default
settings for the MPB problem in Table I were used.

parameter, we fix the values of the other three parameters. The
default values of the four parameters areβ = 0.1, α = 0.3,
gSize = 200, andsubSize = 7, respectively. Each parameter
was tested in a set of values. The four sets of values for the
corresponding parameters areβ in {0, 0.05, 0.1, 0.15, ... ,
0.9, 0.95}, α in {0.1, 0.3, 0.7, 0.9}, gSize in {30, 50, 70,
100, 150, 200, 250, 300}, andsubSize in {3, 5, 7, 10, 15},
respectively.

We first analyze the sensitivity of the parameterβ. Table II
and Fig. 3 present the effect of varying the values ofβ with
different numbers of peaks. According to the combination
process of two overlapping sub-populations in Algorithm 3,
the larger the value ofβ, the more strict the condition for
two overlapping sub-populations to merge together, vice versa.
The two extreme cases areβ = 1.0 andβ = 0.0. In the case
of β = 1.0, the two overlapping sub-populations merge only
if all individuals are within each other’s search radius. From
Table II and Fig. 3, it can be seen that the performance of
CPSOR is not affected too much by using different values of
β for all the cases. The results also validate our assumption
that the choice ofβ is not crucial to the performance of the
framework. Therefore, we can conclude that the performance
of CPSOR is not sensitive to the parameterβ. However, we
still suggest that the value of 0.1 forβ should be used in
the basic framework since CPSOR achieved relatively better
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Fig. 4. Offline error of CPSOR with different values ofgSize and subSize with different numbers of peaks, whereα = 0.3, β = 0.1, and the default
settings for the MPB problem in Table I were used.

TABLE III

OFFLINE ERRORS AND± STANDARD ERROR FORCPSORWITH

DIFFERENT CONFIGURATIONS OFgSzie AND subSize WITH 10 PEAKS,

WHEREα = 0.3, β = 0.1, AND THE DEFAULT SETTINGS FOR THEMPB

PROBLEM IN TABLE I WERE USED

subSize
gSize

30 50 70 100 150 200 250 300

3
2.45 1.85 1.73 2 2.74 3.26 3.73 3.98
±0.2 ±0.1 ±0.1 ±0.1 ±0.2 ±0.2 ±0.2 ±0.2

5 4.42 2.2 1.81 1.06 0.521 0.752 0.901 1.12
±0.5 ±0.2 ±0.1 ±0.1 ±0.08±0.06±0.04±0.08

7
5.1 2.99 2.38 2.06 1.48 0.44 0.607 0.764
±0.4 ±0.3 ±0.3 ±0.3 ±0.2 ±0.06±0.05±0.04

10 9.04 4.49 3.35 2.89 2.58 1.61 0.842 0.474
±1 ±0.6 ±0.4 ±0.4 ±0.3 ±0.1 ±0.1 ±0.07

15 9.63 6.03 5.55 4.73 4.12 2.65 2.2 1.78
±1 ±0.7 ±0.7 ±0.8 ±0.9 ±0.4 ±0.4 ±0.3

results by using 0.1 than other values for the parameterβ.
Fig. 4 shows the offline errors of CPSOR with different

values ofgSize andsubSize for different numbers of peaks.
Table III presents the offline errors of different combinations
of gSize and subSize on the MPB problem with 10 peaks.
From Algorithm 1, the number of sub-populations obtained is
determined by the value ofsubSize if gSize is fixed to a
specific value. The larger the value ofsubSize, the smaller
the number of sub-populations to be obtained. Hence, a too
large or too small value ofsubSize will cause too few or too
many sub-populations to be created, which may be far away
from the optimal number of sub-populations needed. Taking
gSize = 200 in Table III as an example, the offline error by
CPSOR is 3.26 whensubSize = 3, decreases to the smallest
value 0.44 with the value ofsubSize increased to 7, and then

increases to 2.65 whensubSize is further increased to 15.
By observing the top three graphs in Fig. 4, it can be

seen that the curve ofsubSize = 3 is much worse than
the other curves when the number of peaks is relatively
small, e.g., less than 5. One reason for this result is due
to the large value ofgSize, e.g., greater than 50, which
causes too many sub-populations to be generated. On the
other hand, too few individuals in each sub-population, e.g.,
at most three individuals because ofsubSize = 3, will result
in the slow search or premature problem. From Fig. 4 and
Table III, it can be seen that these two parameters greatly
affect the performance of CPSOR. In order to achieve the
best performance, CPSOR needs the optimal configurations in
terms of the parametersgSize andsubSize.

Generally speaking, the larger the number of peaks in the
search space, the larger the number of sub-populations needed
to achieve the best performance. This trend can be easily
observed in the graphs when the number of peaks increases.
For example, the best performance of CPSOR with a single
peak was obtained by settinggSize = 30, which is the
smallest value we tested. However, when the number of peaks
increases to 100, the largest valuegSize = 300 helps CPSOR
get the best performance even for different values ofsubSize.
The suggested configurations regarding the parametersgSize
andsubSize will be introduced at the end of this section.

In order to investigate what factors may affect the best
choice ofα, we carried out experiments on the MPB prob-
lem with different numbers of peaks and different change
frequencies. Generally speaking, the more peaks in the fitness
landscape, the higher diversity needed. The diversity regaining
in the basic framework can only be achieved by increasing the
number of random individuals. Hence, the larger the value of
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TABLE IV

OFFLINE ERRORS AND± STANDARD ERROR FOR DIFFERENT VALUES OFα

WITH DIFFERENT NUMBERS OF PEAKS, WHEREβ = 0.1, gSize = 200,

subSize = 7, AND THE DEFAULT SETTINGS FOR THEMPB PROBLEM IN

TABLE I WERE USED

α
peaks

1 3 5 7 10 20 30 50 100 200

0.1
0.327 0.181 1.21 0.819 1.79 2.27 2.83 2.15 1.77 1.78
±0.03±0.01 ±0.2 ±0.1 ±0.2 ±0.5 ±0.2 ±0.3 ±0.1 ±0.1

0.3 0.62 0.435 0.901 0.709 0.607 1.12 1.9 1.67 1.7 1.78
±0.04±0.03±0.05±0.08±0.05±0.09 ±0.2 ±0.1 ±0.09 ±0.1

0.5
0.9 0.574 1.05 0.893 0.7840.789 0.982 1.08 1.28 1.49

±0.06±0.03±0.06 ±0.1 ±0.06±0.06 ±0.06 ±0.06 ±0.1 ±0.08

0.7 0.978 0.694 1.29 1.16 0.958 1.09 1.20.963 1.12 1.18
±0.08±0.04±0.06±0.09±0.06±0.08±0.06 ±0.05±0.06±0.09

0.9
0.981 0.704 1.28 1.15 0.957 1.14 1.34 1.081.06 0.963
±0.08±0.04±0.06 ±0.1 ±0.07±0.06 ±0.07 ±0.05±0.04±0.04

α, the more often the diversity will be increased, which may
be good for the environments with a large number of peaks,
i.e., more than 50 peaks in the MPB problem. Another factor,
which may affect the choice ofα, is the change frequencyU .
Intuitively, the smaller the change frequency, the larger value
of α may be needed. Figure 5 and Table IV show the effect
of varying the value ofα with different numbers of peaks,
where the best results over different numbers of peaks are
shown in bold font in Table IV. Table V shows the offline
errors of different values ofα with increasing values ofU in
the environments with 10 peaks.

The results of Fig. 5 and Table IV validate our assumption,
i.e., the larger the number of peaks, the largerα needed. From
Fig. 5 and Table IV, it can be seen thatα = 0.1 helps CPSOR
obtain the best performance when the number of peaks is
less than 5. Then, when the number of peaks increases, the
optimal value ofα also increases to get the best performance,
e.g., α = 0.3 for peaks = 5, 7, and 10,α = 0.5 for
peaks = 20 and 30,α = 0.7 for peaks = 50, andα = 0.9
for peaks = 100 and 200. By observing Table V, however,
we do not get the corresponding results as we expected on
the analysis of the relationship betweenα and U . α = 0.3
seems a good choice regarding different numbers of change
frequencies. From Table V, it can be seen that the performance

TABLE V

OFFLINE ERRORS AND± STANDARD ERROR FORCPSORWITH

DIFFERENT VALUES OFα AND INCREASING VALUES OF THE CHANGE

FREQUENCYU , WHEREβ = 0.1, gSize = 200, subSize = 7, AND THE

DEFAULT SETTINGS FOR THEMPB PROBLEM IN TABLE I WERE USED

U α=0.1 α=0.3 α=0.5 α=0.7 α=0.9

3000 3.08 0.722 1.15 1.42 1.44
±0.4 ±0.08 ±0.08 ±0.09 ±0.09

5000 1.93 0.44 0.65 0.765 0.771
±0.2 ±0.06 ±0.05 ±0.03 ±0.05

7000
1.67 0.391 0.477 0.561 0.559
±0.2 ±0.07 ±0.04 ±0.04 ±0.04

10000 1.39 0.426 0.34 0.409 0.418
±0.3 ±0.05 ±0.04 ±0.03 ±0.04

TABLE VI

THE BEST ERRORS AND STANDARD DEVIATION ACHIEVED BYCPSORON

DIFFERENT NUMBERS OF PEAKS WITH CORRESPONDING SETTINGS OF

gSize, subSize, AND α, WHEREβ = 0.1 AND THE DEFAULT SETTINGS

FOR THEMPB PROBLEM IN TABLE I WERE USED

peaks Error STD gSize subSize α

1 7.84e-05 6.91e-06 150 15 0.1
2 0.00366 3.54e-04 50 15 0.9
5 0.192 0.0232 100 10 0.5
7 0.461 0.108 150 7 0.3
10 0.44 0.0563 200 7 0.3
20 0.721 0.0627 200 7 0.5
30 0.982 0.0632 250 7 0.5
50 0.951 0.0518 200 7 0.9
100 1.05 0.038 300 7 0.7
200 0.931 0.0334 300 7 0.9

gets better whenU increases for most values ofα, e.g., the
offline error decreases from 1.15 to 0.34 when the value of
U increases from 3000 to 10000 withα = 0.5. Therefore,
according to the results of Fig. 5, Table IV, and Table V, we
can roughly draw a conclusion that the number of peaks may
be the main factor to affect the choice of the optimalα.

So far, we have roughly recognized which parameters are
sensitive to the performance of the CPSOR algorithm.β is
not a key parameter in the framework, so we use a constant
value of 0.1 forβ in the remaining experiments. For the other
three parameters, the best configurations seem to be relevant
to the number of peaks. Therefore, in order to find out some
hints on how to setup these parameters, we summarize the
results of all the combinations of the three parameters used
in the paper. The best configurations (may be not the true
optimal configurations as we can not test all the possibilities)
for different numbers of peaks are listed in Table VI.

It should be noted that there are of course many other factors
that may affect the optimal choice ofα, gSize, andsubSize,
such as the width severity, height severity, shift length, and
the number of dimensions. The parameters of PSO algorithms
(ω, η1, and η2) may also affect the choice. However, we do
not discuss these factors as they are not the main objective in
this paper.

From Table VI, it is interesting to see that the bestsubSize
is 7 for most test cases. Based on the above results and analysis
of the CPSOR algorithm, we give some empirical formulae to
setup these parameters for the basic framework to solve the
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Fig. 6. Progress of the number of sub-populations (left), the number of individuals (middle), and the offline error (right), where the suggested configuration
for the framework and the default settings for the MPB problem in Table I, exceptU=2000 andD=2, were used.

MPB problem. Forβ andsubSize, we use 0.1 and 7 for all the
following experiments in this paper, respectively, andgSize
andα are estimated by the following equations:

gSize = 300 · (1− exp(−0.33 · peaks0.5)) (17)

α = 1− exp(−0.2 · peaks0.45) (18)

For the remaining experiments, we use the suggested con-
figuration for algorithms that use the basic framework, i.e.,
CPSOR, CDER, and CGAR.

A limitation to use Eqs. (17) and (18) to set the parameters
gSize andα is that we have to know the number of peaks,
which is assumed unknown to users. However, how to set the
population size is also a general problem for most EAs. At the
end of this section, we summarize a principle for setting the
configurations of the basic framework: the larger the number
of local optima in the fitness landscape, the larger the value
of gSize andα.

2) Working Mechanism:In this set of experiments, we
illustrate the working mechanism of the basic framework
through the CPSOR algorithm with respect to two different
aspects to see how the basic framework locates and tracks
multiple peaks. The experiments were carried out on the
MPB problem in two dimensions withU = 2000 in a single
typical run. The suggested configuration was used in this set
of experiments. Fig. 6 shows the progress of the number of
sub-populations, the number of individuals, and the offline
error over six successive environments. Fig. 7 presents the
distribution of particles’ personal best positions of six different
episodes in the run. In Fig. 7, the ten black square boxes of
each graph are the locations of the ten peaks and the cross
points are thepbest positions of particles.

From Fig. 6, it can be clearly seen that the number of sub-
populations decreases to a certain level and then increasesby
clustering a new random population generated by the random
immigrants strategy. The similar observations can be seen for
changes of the number of individuals in the middle graph. In
the offline error graph (the right one), we can not see the in-
crease when the random immigrants strategy takes place. This
is because we record only the best solution so far to calculate
the offline error. From the results, we can understand why
this basic framework is suitable for any change type or even
undetectable environments, because the random immigrants

strategy is triggered not by the environmental changes but by
the current population diversity only. So, this basic framework
does not consider what kind of changes or whether changes
have occurred or not.

For further detailed information about the distribution ofin-
dividuals, we can observe the population distribution episodes
in Fig. 7. Fig. 7-(a) shows the initial 36 sub-populations with
a total of 194 individuals just after the clustering process.
The second one shows all the surviving individuals just
before the random immigrants strategy was triggered. At this
moment, only 14 sub-populations with a total of 78 surviving
individuals and they were close to their own nearest peaks
but not distributed across the whole fitness landscape. So far,
more than half of the individuals have been removed by the
redundancy control mechanism. This procedure saved a lot of
computing resources for theuseful(surviving) individuals. The
third graph shows the whole populations when the third change
happened. The remaining graphs in Fig. 7 show similar situ-
ations as the top three graphs in the following environments.

From the above experimental results, it can be seen that the
population diversity is able to be automatically regained when
the diversity decreases to a threshold level. In this framework,
the diversity-maintaining technique is not the only technique
for handling the dynamism, the memory with elitism technique
is also involved for dealing with the dynamism. From the
framework, we know that “useless” (redundant) individuals
will be gradually removed before the random immigrants
method is triggered. Therefore, those surviving individuals,
which are usually good individuals with high fitness, will
automatically go to the next environment. As we know, those
surviving individuals, which represent the memory of previous
environments, will help the search in the new environment if
the next environment is similar to the previous one.

C. Investigation of Clustering and Random Immigrants Meth-
ods

In this section, we investigate how much benefit the multi-
population method will get by using the clustering and ran-
dom immigrants strategies introduced in Sect. III. In orderto
compare the algorithms with clustering and the algorithms
without clustering, we just use a simple multi-population
method where a certain number of sub-populations are created
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Fig. 7. Distribution of thepbest positions of particles in six different episodes, where thesuggested configuration for the framework and the default settings
for the MPB problem in Table I, exceptU=2000 andD=2, were used.

randomly. In the simple multi-population method, there is
no overcrowding control among sub-populations because it is
very hard to do that without defining their search areas. The
aim of this set of experiments is just to show that the clustering
method is a suitable method to create sub-populations although
this may not be a fair comparison between the methods with
and without clustering. In order to check the efficiency of the
random immigrants strategy, we also carry out experiments on
the comparison of the algorithms using the basic framework
(i.e., CPSOR, CGAR, and CDER) with the algorithms using
the clustering method but no mechanism of handling hard-to-
detect or undetectable environments (i.e., CPSO [78], CDE,
and CGA). The CDE and CGA algorithms use the same
working mechanism proposed in the CPSO algorithm where
they all use the elitism, memory, and random immigrants
strategies once changes have been detected.

We carry out experiments to compare three sets of al-
gorithms: (CPSOR, CPSO, and MultiPSO), (CGAR, CGA,
and MultiGA), and (CDER, CDE, and MultiDE). MultiPSO,
MultiGA, and MultiDE are the algorithms using the simple
multi-population method without any overcrowding control.
For each set, we used the same configurations regarding the
global population size (gSize) and the sub-population size
(subSize). In MultiPSO, MultiGA, and MultiDE, the size
of each sub-population issubSize and the number of sub-
populations is fixed togSize/subSize.

Table VII shows the comparison of offline errors of each set
of algorithms with different configurations on the MPB prob-
lem with ten peaks. The best offline error of each algorithm is
shown in bold font. From the results, we can get three different

observations. Firstly, CPSO, CGA, and CDE obtain the best
results on most test cases due to the corresponding strategies
used once a change has been detected. However, we do find
that the best results of the CPSOR and CGAR algorithms are
0.474 and 2.41, which are better than the best results (0.63 and
2.74) obtained by the CPSO and CGA algorithms, respectively.
This means that the algorithms without change detection can
work as well as the algorithms with change detection. In other
words, the basic framework proposed in Sect. III is effective
for DOPs.

Secondly, all the results achieved by the algorithms using
the clustering method are much better than the results achieved
by the simple multi-population methods. However, it is hardto
judge the contribution of the clustering method because we can
not conduct the operation of redundancy control in the simple
multi-population methods without the clustering method.

Thirdly, the results of CGAR and CDER are worse than
the results of CPSOR. One reason behind this lies in the
mutation operation in both GA and DE. The mutation will
cause a sub-population jumping from one peak with a lower
height to another peak with a higher height. This means that
the algorithms using mutation operators will discard the peaks
with a lower height that they have searched. Therefore, there
is a trend where all sub-populations try to explore the same
promising areas in the search space, which is against the aim
of using the multi-population method, i.e., to maintain sub-
populations in different areas. For PSO algorithms, there is no
mutation. Once a sub-population is created in a sub-area in the
search space, it just focuses on exploitation on that sub-area
due to the working mechanism of PSO. The sub-population
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TABLE VII

COMPARISON BETWEEN ALGORITHMS WITH CLUSTERING AND WITHOUT

CLUSTERING, WHERE THE SUGGESTED CONFIGURATION FORα AND β IN

THE FRAMEWORK AND THE DEFAULT SETTINGS FOR THEMPB PROBLEM

IN TABLE I WERE USED. RESULTS REPORTED ARE THE OFFLINE ERRORS

AND ± STANDARD ERRORS

subSize
gSize alg 3 5 7 10 15

30

CPSOR 2.45±0.2 4.42±0.5 5.1±0.4 9.04±1 9.63±1
CPSO 1.5±0.2 2.1±0.2 2.62±0.2 3.52±0.4 4.39±0.4

MultiPSO 8.94±0.2 7.3±0.2 8.06±0.2 8.73±0.3 9.53±0.3
CGAR 6.72±0.4 9.58±0.6 9.56±0.9 18.6±0.9 18.6±0.9
CGA 4.45±0.4 3.86±0.2 4.68±0.3 5.63±0.4 6.91±0.4

MultiGA 10.6±0.3 9.14±0.3 9.42±0.3 10±0.3 10.9±0.3
CDER 12.7±1 13.7±3 11.3±1 19.6±3 18.6±3
CDE 5.71±0.3 5.38±0.3 5.78±0.2 6.08±0.2 6.85±0.2

MultiDE 14.6±0.3 9.69±0.3 9.77±0.2 10.1±0.2 10.3±0.2

70

CPSOR 1.73±0.1 1.81±0.1 2.38±0.3 3.35±0.4 5.55±0.7
CPSO 0.715±0.1 0.99±0.1 1.24±0.1 1.81±0.2 2.56±0.2

MultiPSO 8±0.2 5.58±0.2 5.97±0.3 6.45±0.3 7.57±0.3
CGAR 4.7±0.3 4.27±0.3 6.55±0.9 6.18±0.7 9.36±0.8
CGA 2.94±0.2 2.89±0.1 3.06±0.1 3.7±0.2 4.8±0.3

MultiGA 23.5±0.7 15.9±0.4 13.5±0.4 11.5±0.3 10.9±0.3
CDER 8.54±0.5 6±0.3 6.95±0.5 7.55±0.6 9.49±1
CDE 3.78±0.2 3.76±0.2 4.35±0.2 5.33±0.2 6.14±0.3

MultiDE 11.6±0.2 9.62±0.2 10.1±0.2 10.7±0.2 10.9±0.2

150

CPSOR 2.74±0.2 0.52±0.1 1.48±0.2 2.58±0.3 4.12±0.9
CPSO 1.16±0.07 0.63±0.1 0.74±0.1 0.97±0.1 1.40±0.1

MultiPSO 8.97±0.2 6.61±0.2 6.1±0.2 6.17±0.2 6.37±0.2
CGAR 5.42±0.4 2.68±0.1 3.03±0.2 3.73±0.3 5.6±0.7
CGA 3.37±0.2 2.99±0.2 2.74±0.1 2.95±0.2 3.55±0.2

MultiGA 36.3±0.6 28.5±0.5 23.8±0.4 20.1±0.5 17.7±0.5
CDER 7.72±0.5 5.58±0.2 5.27±0.2 5.5±0.3 6.44±0.3
CDE 3.2±0.1 3.1±0.1 3.53±0.2 4.39±0.2 5.54±0.2

MultiDE 13.6±0.2 12.9±0.2 13.5±0.1 14.2±0.1 14.8±0.2

300

CPSOR 3.98±0.2 1.12±0.1 0.76±0.04 0.47±0.1 1.78±0.3
CPSO 4.39±0.1 1.99±0.1 1.16±0.04 1.12±0.1 1.24±0.1

MultiPSO 12.7±0.2 10.4±0.1 9.46±0.1 8.99±0.2 8.65±0.2
CGAR 6.25±0.4 3.48±0.2 2.89±0.2 2.41±0.2 3.4±0.3
CGA 4.45±0.2 3.9±0.2 3.6±0.1 3.31±0.2 3.44±0.2

MultiGA 40.4±0.6 34.2±0.6 30.4±0.6 26.3±0.4 24±0.5
CDER 8.2±0.3 5.63±0.2 5.51±0.2 5.54±0.2 5.73±0.2
CDE 4.74±0.1 4.38±0.1 4.12±0.1 4.55±0.1 5.43±0.2

MultiDE 19.8±0.2 19.7±0.2 19.8±0.2 20.4±0.2 20.7±0.2

will not jump to other sub-areas. This is even obvious for
the PSO algorithms with thegbest model. This result also
reminds us that we should choose or design effective local
search algorithms rather than global search operators if weuse
multi-population methods to locate and track multiple optima.
There may be some other factors that cause the inefficiency
of CGAR and CDER, e.g., improper parameter settings. How
to adjust the parameter settings for CGAR and CDER is not
the main aim of this paper, and, hence, is not discussed here.

So far, we have investigated how the basic framework works
through the three case studies (CPSOR, CGAR, and CDER)
in dynamic environments. However, we have not known how
they would perform in comparison with other algorithms yet.
The following section will present the results of comparison
with other algorithms.

D. Comparison of the Involved Peer Algorithms

In this section, experiments were carried out to compare the
performance of algorithms that use the basic framework (i.e.,
CPSOR, CGAR, and CDER) with several peer algorithms,

TABLE VIII

OFFLINE ERRORS AND± STANDARD ERROR FOR DIFFERENT ALGORITHMS

ON THE MPB PROBLEM WITH DIFFERENT SHIFT SEVERITIES, WHERE THE

SUGGESTED CONFIGURATION FOR THE FRAMEWORK AND THE DEFAULT

SETTINGS FOR THEMPB PROBLEM IN TABLE I EXCEPTs WERE USED

Algorithm Severity of shift length (s)
0 1 2 3 4 5 6

CPSOR 0.418 0.599 0.849 0.964 1.38 1.69 2.07
±0.08 ±0.04 ±0.06 ±0.07 ±0.09 ±0.08 ±0.13

CGAR 1.48 2.6 2.76 2.96 3.16 3.46 3.8
±0.15 ±0.132 ±0.13 ±0.13 ±0.13 ±0.16 ±0.24

CDER 2.56 5.52 7.47 8.62 9.81 10.7 11.4
±0.26 ±0.16 ±0.27 ±0.25 ±0.32 ±0.34 ±0.36

CPSO 0.465 0.715 0.843 0.911 0.997 1.08 1.23
±0.08 ±0.103 ±0.15 ±0.12 ±0.12 ±0.14 ±0.14

mCPSO
1.18 2.05 2.80 3.57 4.18 4.89 5.53
±0.07 ±0.07 ±0.07 ±0.08 ±0.09 ±0.11 ±0.13

mQSO 1.18 1.75 2.40 3.00 3.59 4.24 4.79
±0.07 ±0.06 ±0.06 ±0.06 ±0.10 ±0.10 ±0.10

CESO
0.85 1.38 1.78 2.03 2.23 2.52 2.74
±0.02 ±0.02 ±0.02 ±0.03 ±0.05 ±0.06 ±0.10

rSPSO 0.74 1.50 1.87 2.4 2.90 3.25 3.86
±0.08 ±0.08 ±0.05 ±0.08 ±0.08 ±0.09 ±0.11

SPSO
0.95 2.51 3.78 4.96 2.56 6.76 7.68
±0.08 ±0.09 ±0.09 ±0.12 ±0.13 ±0.15 ±0.16

ESCA 1.72 1.53 1.57 1.67 1.72 1.78 1.79
±0.03 ±0.01 ±0.01 ±0.01 ±0.03 ±0.06 ±0.03

PSO-CP 0.87 1.31 1.98 2.21 2.61 3.20 3.93
±0.07 ±0.06 ±0.06 ±0.06 ±0.11 ±0.13 ±0.14

TABLE IX

ALGORITHM RANKINGS ON THE MPB PROBLEM WITH DIFFERENT SHIFT

SEVERITIES

Algorithm 0 1 2 3 4 5 6 Overall
CPSOR 1 1 2 2 2 2 3 2
CGAR 9 10 8 7 8 7 5 7
CDER 11 11 11 11 11 11 11 10
CPSO 2 2 1 1 1 1 1 1

mCPSO 7 8 9 9 10 9 9 9
mQSO 7 7 7 8 9 8 8 7
CESO 4 4 4 4 4 4 4 3
rSPSO 3 5 5 6 7 6 6 6
SPSO 6 9 10 10 5 10 10 8
ESCA 10 6 3 3 3 3 2 4

PSO-CP 5 3 6 5 6 5 7 5

including mCPSO [6], mQSO [6], SPSO [54], rSPSO [4],
CESO [46], ESCA [47], CPSO [78], PSO-CP [45], HmSO
[29], and RVDEA [73], on the MPB problems with different
shift severities (s) and different numbers of peaks (peaks).

1) Effect of Varying the Shift Length Severity:Table VIII
presents the comparison results of different algorithms re-
garding varying the severity of the shift lengths. Table IX
shows the rankings of algorithms with different shift length
severities. The total ranking of each algorithm is calculated
by the average rankings obtained for all test cases. From the
results, it can be seen that when the shift severity is larger
than 1, CPSO achieves the best results, which are much better
than that of all the other algorithms. CPSOR obtains the best
results among all the algorithms when there is no shift or small
shift length (i.e.,s = 1.0). Compared with other algorithms
except CPSO, the results obtained by CPSOR are much better
than those of other algorithms. For the rest of the algorithms,
CESO and ESCA are the best two performers due to their
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TABLE X

OFFLINE ERRORS AND± STANDARD ERROR FOR DIFFERENT ALGORITHMS ON THEMPB PROBLEM WITH DIFFERENT NUMBERS OF PEAKS, WHERE THE

SUGGESTED CONFIGURATION FOR THE FRAMEWORK AND THE DEFAULT SETTINGS FOR THEMPB PROBLEM IN TABLE I EXCEPTpeaks WERE USED

peaks CPSOR CGAR CDER CPSO mCPSO mQSO mCPSO∗ mQSO∗ CESO rSPSO SPSO ESCA PSO-CP HmSO RVDEA

1
0.0356 2.02 0.903 2.29e-04 4.93 5.07 4.93 5.07 1.04 1.42 2.64 0.98 3.41 0.87 1.02
±0.008 ±0.05 ±0.20 ±1.04e-04 ±0.17 ±0.17 ±0.17 ±0.17 ±0.00 ±0.06 ±0.10 ±0.0 ±0.06 ±0.05 –

2 0.0535 1.88 2.6 0.00566 3.36 3.47 3.36 3.47 – 1.10 2.31 – – – –
±0.005 ±0.10 ±0.63 ±0.002 ±0.26 ±0.23 ±0.26 ±0.23 – ±0.03 ±0.11 – – – –

5
0.549 2.56 8.02 0.361 2.07 1.81 2.07 1.81 – 1.04 2.15 – – 1.18 –
±0.049 ±0.1 ±0.34 ±0.15 ±0.08 ±0.07 ±0.11 ±0.07 – ±0.03 ±0.07 – – ±0.04 –

7 0.594 2.98 6.74 0.675 2.11 1.77 2.11 1.77 – 1.21 1.98 – – – –
±0.08 ±0.18 ±0.39 ±0.09 ±0.11 ±0.07 ±0.11 ±0.07 – ±0.05 ±0.04 – – – –

10
0.599 2.6 5.52 0.715 2.08 1.80 2.05 1.75 1.38 1.50 2.51 1.54 1.31 1.42 3.54
±0.048 ±0.13 ±0.16 ±0.103 ±0.07 ±0.06 ±0.07 ±0.06 ±0.02 ±0.08 ±0.01±0.02 ±0.06 ±0.04 –

20 0.796 3.66 7.49 1.18 2.64 2.42 2.95 2.74 1.72 2.20 3.21 1.89 – 1.5 3.87
±0.05 ±0.14 ±0.27 ±0.09 ±0.07 ±0.07 ±0.08 ±0.07 ±0.02 ±0.07 ±0.07±0.04 – ±0.06 –

30 1.05 3.12 5.51 1.34 2.63 2.48 3.38 3.27 1.24 2.62 3.64 1.52 2.02 1.65 3.92
±0.06 ±0.1 ±0.12 ±0.07 ±0.08 ±0.07 ±0.11 ±0.11 ±0.01 ±0.07 ±0.07±0.02 ±0.07 ±0.04 –

50 0.986 3.26 5.79 1.42 2.65 2.50 3.68 3.65 1.45 2.72 3.86 1.67 2.14 1.66 3.78
±0.05 ±0.11 ±0.15 ±0.07 ±0.06 ±0.06 ±0.11 ±0.11 ±0.01 ±0.08 ±0.08±0.02 ±0.08 ±0.06 –

100 1.06 2.68 4.12 1.09 2.49 2.36 4.07 3.93 1.28 2.93 4.01 1.61 2.04 1.68 3.37
±0.04 ±0.07 ±0.1 ±0.03 ±0.04 ±0.04 ±0.09 ±0.08 ±0.02 ±0.06 ±0.07±0.01 ±0.07 ±0.03 –

200
0.949 2.39 3.71 0.955 2.44 2.26 3.97 3.86 – 2.79 3.82 – – 1.71 3.54
±0.04 ±0.07 ±0.11 ±0.04 ±0.04 ±0.03 ±0.08 ±0.07 – ±0.05 ±0.05 – – ±0.02 –

TABLE XI

ALGORITHM RANKINGS ON THE MPB PROBLEM WITH DIFFERENT NUMBERS OF PEAKS

peaks CPSOR CGAR CDER CPSO mCPSO mQSO mCPSO∗ mQSO∗ CESO rSPSO SPSO ESCA PSO-CP HmSO RVDEA
1 2 9 4 1 12 14 12 14 7 8 10 5 11 3 6
2 2 4 6 1 7 9 7 9 – 3 5 – – – –
5 2 10 11 1 7 5 7 5 – 3 9 – – 4 –
7 1 9 10 2 7 4 7 4 – 3 6 – – – –
10 1 13 15 2 11 9 10 8 4 6 12 7 3 5 14
20 1 12 14 2 8 7 10 9 4 6 11 5 – 3 13
30 1 10 15 3 9 7 12 11 2 8 13 4 6 5 14
50 1 10 15 2 8 7 12 11 3 9 14 5 6 4 13
100 1 9 15 2 8 7 14 12 3 10 13 4 6 5 11
200 1 5 9 2 6 4 12 11 – 7 10 – – 8 3

Overall 1 10 15 2 9 8 12 11 3 6 13 5 7 4 14

diversity maintaining and local search strategies.
2) Effect of Varying the Number of Peaks:Table X shows

the offline errors of all the algorithms when varying the num-
ber of peaks. The corresponding rankings of each algorithm
are shown in Table XI. In the two tables, the “–” sign means
that there is no result available in the original paper. The
algorithms mCPSO∗ and mQSO∗ denote mCPSO without
anti-convergence and mQSO without anti-convergence, respec-
tively.

From the results, it can be easily seen that CPSOR outper-
forms all the other peer algorithms when the number of peaks
is larger than five. By looking at the ranking table, the CPSO
algorithm takes the second place followed by CESO, HmSO,
ESCA, rSPSO, and PSO-CP, which are recently proposed.

From the comparison results of CPSOR with the other peer
algorithms on the MPB problem with different numbers of
peaks and shift severities, we can draw a conclusion that the
CPSOR algorithm is a competitive optimizer for DOPs.

E. CPSOR in Hard-to-Detect Environments

In all the above experiments, we assume that all peaks
change over time in the fitness landscape. Therefore, changes
can be easily detected even by a single random point in

the fitness landscape. In this section, we investigate the
performance of CPSOR in hard-to-detect environments in
comparison with the CPSO algorithm. Fig. 8 shows the effect
of varying the ratio of changing peakscPeaks with different
numbers of peaks for the CPSOR algorithm. Table XII and
Table XIII show the comparison between CPSOR and CPSO
under different ratios of changing peaks with different shift
severities and different numbers of peaks, respectively. In both
tables, the best results of the two algorithms are shown in bold
font.

From the results, it can be seen that different ratios of
changing peaks do bring different levels of difficulty for both
algorithms. Generally speaking, the smaller the ratio of chang-
ing peaks, the harder it is for an algorithm to detect changes,
and hence, the more difficult it is for an algorithm to track the
changing peaks. From Fig. 8, it can be seen thatcPeaks = 0.1
brings the biggest difficulty for CPSOR in most test cases,
except the case ofpeaks = 50. By observing Table XII,
although CPSO outperforms CPSOR whencPeaks = 1, the
results of CPSOR are much better than those of CPSO on all
shift severities whencPeaks is less than 0.5.

From the results of Table XIII, we can make two ob-
servations. Firstly, CPSOR outperforms CPSO on most test
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Fig. 8. Offline errors of CPSOR on the MPB problem with different ratios of
changing peakscPeaks and different numbers of peaks, where the suggested
configuration for CPSOR and the default settings for the MPB problem in
Table I were used.

TABLE XII

COMPARISON OFCPSORAND CPSOON THE MPB PROBLEM WITH

DIFFERENT RATIOS OF CHANGING PEAKScPeaks AND DIFFERENT SHIFT

SEVERITIESs, WHERE THE SUGGESTED CONFIGURATION FORCPSOR

AND THE DEFAULT SETTINGS FOR THEMPB PROBLEM IN TABLE I,

EXCEPTcPeaks AND s, WERE USED. RESULTS REPORTED ARE THE

OFFLINE ERRORS AND± STANDARD ERRORS

s Algorithm cPeaks

0.1 0.3 0.5 0.7 0.9 1.0

0

CPSOR 1.47 0.535 0.5 0.6 1.72 0.418
±0.3 ±0.2 ±0.06 ±0.1 ±0.2 ±0.08

CPSO 3.01 2.7 0.904 0.765 1.68 0.465
±0.4 ±0.5 ±0.09 ±0.1 ±0.2 ±0.09

1

CPSOR 1.77 1.09 0.633 0.742 1.83 0.599
±0.3 ±0.3 ±0.05 ±0.08 ±0.2 ±0.05

CPSO 3 2.76 0.912 1.02 2.11 0.715
±0.4 ±0.4 ±0.1 ±0.1 ±0.2 ±0.1

2

CPSOR 1.89 1.17 0.781 0.99 2.040.849
±0.3 ±0.2 ±0.06 ±0.09 ±0.1 ±0.07

CPSO 3.24 2.96 0.939 1.19 2.240.843
±0.4 ±0.4 ±0.1 ±0.1 ±0.2 ±0.2

3

CPSOR 1.94 1.61 0.995 1.24 2.35 0.964
±0.3 ±0.3 ±0.05 ±0.1 ±0.1 ±0.07

CPSO 3.11 3.38 0.928 1.32 2.58 0.911
±0.3 ±0.4 ±0.08 ±0.2 ±0.2 ±0.1

4

CPSOR 2.06 2.09 1.25 1.58 2.6 1.38
±0.3 ±0.2 ±0.07 ±0.1 ±0.1 ±0.09

CPSO 3.17 3.29 1.11 1.43 2.66 0.997
±0.3 ±0.3 ±0.09 ±0.2 ±0.2 ±0.1

5

CPSOR 2.05 2.6 1.34 1.72 2.88 1.69
±0.2 ±0.2 ±0.05 ±0.09 ±0.1 ±0.08

CPSO 3.27 3.79 1.14 1.45 2.69 1.08
±0.3 ±0.3 ±0.1 ±0.2 ±0.1 ±0.1

6

CPSOR 2.17 3.04 1.43 2.03 3.13 2.07
±0.3 ±0.2 ±0.07 ±0.08 ±0.1 ±0.1

CPSO 3.31 3.84 1.21 1.44 2.87 1.23
±0.4 ±0.3 ±0.1 ±0.1 ±0.2 ±0.1

cases. Secondly, for each particular number of peaks, i.e.,
peaks = 50, the offline error for CPSO basically increases
with the decrease of the ratio of changing peaks, but not so
obviously for CPSOR.

The comparison results with the peer algorithms in this
paper clearly show that the performance of the proposed
clustering framework is competitive in detectable dynamic
environments. Most importantly, the results also show the

TABLE XIII

COMPARISON OFCPSORAND CPSOON THE MPB PROBLEM WITH

DIFFERENT RATIOS OF CHANGING PEAKScPeaks AND DIFFERENT

NUMBERS OF PEAKS, WHERE THE SUGGESTED CONFIGURATION FOR

CPSORAND THE DEFAULT SETTINGS FOR THEMPB PROBLEM IN

TABLE I, EXCEPTcPeaks AND peaks, WERE USED. RESULTS REPORTED

ARE THE OFFLINE ERRORS AND± STANDARD ERRORS

peaks Algorithm cPeaks

0.1 0.3 0.5 0.7 0.9 1.0

7

CPSOR 0.931 0.761 1.02 0.952 0.752 0.594
±0.2 ±0.1 ±0.2 ±0.1 ±0.1 ±0.09

CPSO 3.94 1.66 1.54 0.822 0.932 0.675
±1 ±0.3 ±0.2 ±0.2 ±0.2 ±0.1

10

CPSOR 1.77 1.09 0.633 0.742 1.83 0.599
±0.3 ±0.3 ±0.05 ±0.08 ±0.2 ±0.05

CPSO 3 2.76 0.912 1.02 2.11 0.715
±0.4 ±0.4 ±0.1 ±0.1 ±0.2 ±0.1

20

CPSOR 1.99 0.922 0.657 0.897 0.792 0.796
±0.5 ±0.1 ±0.07 ±0.07 ±0.1 ±0.05

CPSO 4.58 1.33 0.998 1.52 1.34 1.18
±0.5 ±0.2 ±0.1 ±0.1 ±0.1 ±0.09

30

CPSOR 1.18 0.952 0.812 0.823 0.903 1.05
±0.2 ±0.1 ±0.09 ±0.07 ±0.07 ±0.06

CPSO 4.43 1.45 1.47 1.12 1.05 1.34
±0.6 ±0.2 ±0.1 ±0.09 ±0.07 ±0.07

50

CPSOR 0.888 1.1 1.09 1.04 1.24 0.986
±0.09 ±0.07 ±0.07 ±0.06 ±0.07 ±0.06

CPSO 2.53 1.87 1.42 1.32 1.78 1.42
±0.4 ±0.1 ±0.1 ±0.1 ±0.09 ±0.08

100

CPSOR 1.57 0.802 1.12 0.989 1.17 1.06
±0.1 ±0.05 ±0.07 ±0.04 ±0.05 ±0.04

CPSO 3.4 1.22 1.37 1.26 1.37 1.09
±0.6 ±0.1 ±0.1 ±0.08 ±0.06 ±0.04

200

CPSOR 1.4 1.24 0.927 1.16 1.27 0.949
±0.2 ±0.08 ±0.05 ±0.05 ±0.04 ±0.04

CPSO 3.06 1.93 1.08 1.17 1.18 0.955
±0.3 ±0.1 ±0.08 ±0.05 ±0.03 ±0.04

unique advantages of the proposed clustering framework in
hard-to-detect environments.

VI. D ISCUSSION INREAL-WORLD APPLICATIONS

The general framework proposed in this paper is for dy-
namic environments where dynamism is hard to detect or
totally undetectable, which is close to real-world problems.
Here, hard-to-detect means the dynamism can be detected
but with a huge price, and hence, is impractical in real-
world problems. Fig. 1 in Sect. III-A is such an example.
The change can be detected with the cost of enumerating
all the points in the fitness landscape, which is impossible
for problems in the continuous space. Another example is
the dynamic TSP [37]. For a TSP with a small number of
cities, e.g., less than 100, it is easy to check the change when
the position of one city changes. However, it will become
impractical to check the position change of a single city among
millions of cities. Therefore, this framework is particularly
useful for the environments where dynamism is hard-to-detect
or undetectable.

Below, we first present some discussions regarding the usage
of the clustering framework and then give some discussions
regarding the potential application of the framework in several
real-world problems.
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A. Usage of the Framework

The clustering framework is proposed for EAs in dynamic
environments with any change properties to locate and track
multiple optima. Hence, we believe that it would work for
any optimization problems that have multiple optima in the
fitness landscape, which is one of the most common features of
many optimization problems. To apply this framework, users
only need to define a proper distance metric for a particular
problem to be solved.

Although this framework is easy to apply, it does not have
any domain knowledge. So, to effectively solve a particular
problem with this framework, users should design or choose
search operators that may make use of specific domain knowl-
edge. Regarding the parameter settings in this framework,
users can follow the suggested settings in this paper. But,
we suggest that users should re-adjust them because they are
problem dependent.

B. Path Planning in Dynamic Environments

In the real world, hard-to-detect environments widely exist.
Taking the design of the path planning system as an example,
the optimal path planning is an important issue in navigation
of autonomous mobile robots. The objective is to find an
optimal collision-free path from a starting point to a goal in a
given environment according to some criteria, e.g., distance,
time, or energy. In the real world, the environment changes
over time due to moving obstacles with unknown trajectories,
e.g., a large public square full of people moving in different
directions and a factory full of moving robots and human
workers, etc. The distance that the sensors of a robot can
reach is limited. Furthermore, the ways of moving obstacles
are unknown. Therefore, the robot can not detect changes of
a moving obstacle that is beyond its detectable range.

There are many classic approaches for the path planning
problem, e.g., the potential field methods [22], visibilitygraph
methods [42], and grid methods [8]. These classic approaches
have a big disadvantage of being trapped in local minima,
which makes them inefficient in practice [48]. There are also
methods for path planning based on EAs [7]. The methods
proposed in [74], [84] have shown that it is effective to
apply the general idea of evolutionary computation to solve
a problem in a more natural and suitable representation. Our
approach can be also applied to solve the path planning
problem since we do not need to detect the changes in order
to maintain the population diversity.

C. Dynamic Scheduling Problems

For static scheduling problems, all resources and activities
are given in advance. Constraints are also fixed, i.e., there
are no uncertainties in the behavior of resources and activities
[35]. However, in the real world, every schedule is subject
to unexpected events, such as unexpected resource failures
(e.g., machine breakdown), the arrival of new activities during
the solving phase, and shorter/longer processing time than
expected, etc. Among these uncertain constraints, some are
hard-to-detect. For example, if the time of completion of

a particular activity is re-scheduled later than its original
time, all current solutions will still be feasible regarding this
change. In this case, it is not easy to detect the change
by monitoring the fitness or feasibility of individuals in the
current population. As a result, we fail to respond to the change
even though we should. In a dynamic scheduling problem,
if a constraint change does not affect the current population,
that is, the change expands the feasible areas in the search
space, that change will be difficult to detect. Two examples of
dynamic scheduling problems in the real world are timetabling
problems and flight assignment problems.

A timetabling problem can be described as the scheduling
of a certain number of activities (lectures, labs, surgeries, etc.),
which involves a particular group of people (teachers, students,
etc.) over a finite period of time, requiring certain resources
(rooms, projectors, etc) in conformity with the availability of
resources so that it maximizes the possibility of allocation or
minimizes the violation of constraints [21]. There are various
timetabling problems, including, school timetabling, exami-
nation timetabling, employment timetabling, and university
course timetabling, etc. There are also different methods to
solve timetabling problems, such as, graph coloring [15],
GAs [67], integer programming [61], tabu search [26], and
constraint programming approaches [24], [30]. A reviewed
work for dynamic timetabling problems with changes and
uncertainties was reported in [13]. A complex timetabling
problem was investigated in [59], and the system designed
in [59] is currently used for many varied course timetabling
problems encountered each term at Purdue University [59].

There are some advantages using the framework proposed in
this paper to solve dynamic scheduling problems. Firstly, the
framework together with specialized knowledge in timetabling
is able to find new solutions due to the diversity maintaining
mechanism, even for undetectable constraint changes. Sec-
ondly. the new solutions would be close to the original ones
because of the memory with elitism scheme in the framework.
In the framework, some old individuals carrying information
of previous environments will survive in the new environment.
Therefore, the new solutions are very likely to contain in-
formation from previous environments based on the survived
individuals. This is an important issue in dynamic scheduling
problems. Usually, a new solution, which is close to an original
one (minimal changes), is the best choice for decision makers
because it will reduce the cost in re-scheduling the resources
and activities from the current solution to the new solution.

D. Optimization in Dynamic Environments with Noise

One of the most important applications of our framework
is for optimization problems in dynamic environments with
noise. Noise in the real world comes from many different
sources, e.g., sensory measurement errors and randomized
simulations. One example is the evolutionary structure opti-
mization of neural networks using indirect encoding schemes
[83], where noise is inevitable to evaluate the network struc-
ture. Different fitness values can be obtained from the same
genotype (network structure) due to random initializationof
the weights and the multi-modality of the error function.
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Another good example is the multi-rover coordination problem
in dynamic and noisy environments [70], [69]. The signals that
rovers receive from the environment are not reliable due to the
noise caused by the rovers’ sensors and actuators.

To address optimization problems in noisy environments,
many studies have been reported [1], [2]. And many methods
have also been proposed to reduce the detrimental effects
of noise, such as population sizing [23], fitness averaging
and fitness estimation [60], specific selection mechanism [58],
and Kalman filtering [66]. The proposed framework is able
to search optimal solutions in noisy environments since it
does not need to detect the changes that are very difficult to
detect in noisy environments. In other words, we may consider
the proposed framework as a noise-proof method from the
detection-free point of view in dynamic environments with
uncertainties.

VII. C ONCLUSIONS ANDFUTURE WORK

Multiple population approaches are effective methods to
locate and track multiple optima in dynamic environments.
However, how to effectively use multi-population methods is
a difficult question. The difficulty lies in several issues that
need to be addressed in dynamic environments, e.g., how to
create sub-populations, how to remove redundant individuals,
and how to deal with the dynamism that is difficult to detect.
Especially for the last issue, there is little research thathas
been identified to address it [27].

This paper proposes a simple, general, and effective multi-
population method to solve DOPs in undetectable dynamic
environments. The basic framework employs a single linkage
hierarchical clustering method to generate sub-populations
whose search radius and size are self-deterministic. The re-
dundancy control is achieved by removing the individuals from
the overlapping, overcrowded, or converged sub-populations.
Finally, the population diversity is regained by a random
immigrants strategy that is triggered when the population
diversity decreases to a certain level.

Using this framework to solve DOPs has several advantages.
Firstly, there is no need to detect changes throughout the whole
run. So, it can be used in any dynamic environments, e.g.,
detectable, hard-to-detect, or undetectable, with any kind of
dynamism, e.g., small step change, large step change, recurrent
change, and even chaotic change. Secondly, it can be easily
extended into different classes of EAs, such as GA, PSO, and
DE. Thirdly, it is simple to implement. There are no complex
techniques applied in this framework. Only clustering, redun-
dancy control, and random immigrants procedures are involved
in the whole process.

In order to investigate the efficiency of the basic frame-
work, we instantiate it into three different research areas:
PSO, GA, and DE. The three corresponding algorithms are
called CPSOR, CGAR, and CDER, respectively. In order
to effectively use this framework, we systematically carried
out experiments on the parameter sensitivity study through
the CPSOR algorithm, including the global population size
(gSize), the sub-population size (subSize), the overlapping
ratio (β), and the diversity degree (α). This paper also com-
pares the performance of the three algorithms with a set of

algorithms under different test environments. In order to test
how the framework performs in hard-to-detect environments,
we conducted comparison of CPSOR with the CPSO algo-
rithm, which is a competitive optimizer in detectable dynamic
environments.

To summarize the experimental study in this paper, we can
draw two conclusions. First, CPSOR is the best performer
among all the involved algorithms in detectable environments
and also an effective optimizer for DOPs in hard-to-detect en-
vironments. Second, CPSOR possesses an outstanding adapt-
ability to different dynamic environments in terms of whether
the changes can be detected or not. Generally speaking, this
paper has achieved the main objective: to develop a multi-
population method in undetectable environments.

In the future, there are several interesting areas to pursue.
The first is to improve the performance of the clustering
method. The current version can not detect the situation when
a single peak is covered by only one individual. More work
should be done to resolve this problem. The second is to
design effective local search algorithms within this framework
in more research areas. The third is to test the performance
of the basic framework in completely undetectable dynamic
environments. The last one is the application of this framework
in real-world problems.
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