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Abstract— To solve dynamic optimization problems, multiple
population methods are used to enhance the population divsity
for an algorithm with the aim of maintaining multiple popula tions
in different sub-areas in the fitness landscape. Many expeamental
studies have shown that locating and tracking multiple relaively
good optima rather than a single global optimum is an effectie
idea in dynamic environments. However, several challengeseed
to be addressed when multi-population methods are applieds.g.,
how to create multiple populations, how to maintain them in
different sub-areas, and how to deal with the situation whee

changes can not be detected or predicted. To address these

issues, this paper investigates a hierarchical clusteringnethod
to locate and track multiple optima for dynamic optimization
problems. To deal with undetectable dynamic environmentsthis
paper applies the random immigrants method without change
detection based on a mechanism that can automatically redec
redundant individuals in the search space throughout the ru.

address DOPs, including diversity increasing and maiirtgin
schemes [18], [25], [77], memory schemes [9], [76], [82],
multi-population schemes [10], [81], adaptive schemeq, [45
[52], [79], [80], multi-objective optimization methods 4],
hybrid approaches [46], [47], change prediction metho@$, [6
and problem change detection approaches [57].

Many experimental studies have shown that locating and
tracking a set of optima (the global optimal and near-global
optimal solutions) rather than a single global optimum is an
effective idea to solve DOPs [6], [44], [54], [78]. Howevidr,
is difficult for an algorithm to accurately locate the glolog-
timum in a specific environment and it is even more difficult to
track the changing global optimum in different environngent
In order to effectively solve DOPs, one solution is to locate

These methods are implemented into several research areas,and track a set of good optima. This will greatly increase the

including particle swarm optimization, genetic algorithm, and

differential evolution. An experimental study is conductal based
on the moving peaks benchmark to test the performance with
several other algorithms from the literature. The experimental

results show the efficiency of the clustering method for loding

and tracking multiple optima in comparison with other algo-

rithms based on multi-population methods on the moving peak
benchmark.

Index Terms— Clustering, dynamic optimization problem, un-
detectable dynamism, multiple population methods, partite
swarm optimization, genetic algorithm, differential evolution.
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|. INTRODUCTION

chance of finding the global optimum by the assumption that
one of the near-global optima in the current environment has
a larger chance than those bad optima to be the new global
optimum in the next environment.

From the literature for DOPs, many algorithms have been
proposed to address DOPs using the multi-population method
[5], [6], [33], [43], [53], [78], [81], which seems an idea¢h-
nigue to serve the purpose of locating and tracking multiple
optima in dynamic environments. The traditional approache
which use the multi-population method to find optima for
multi-modal functions, divide the whole search space into
different sub-spaces, each of which may cover one or a small

ENERALLY speaking, to solve dynamic optimizationnumber of local optima, and then separately search within
problems (DOPs) where changes occur over time, these sub-spaces. However, one challenging issue of teeng t

requires the optimization algorithm to not only find the gibb Multi-population method is that of how to create an appwipri
optimal solution under a specific environment but also eentinumber of sub-populations with an appropriate number of
uously track the changing optima over different environtaerindividuals to cover different sub-areas in the fitness szage.

during the search process. Recently, investigating eloolaty

In order to answer this question, a clustering particle swar

algorithms (EAs) for DOPs has attracted many research&imizer (CPSO) was proposed in [40], [78]. In CPSO, a

because EAs are intrinsically inspired from natural or dggl

hierarchical clustering method is employed to automdtical

ical evolution, which is always subject to an ever-changirfgeate a proper number of sub-populations in different sub-
environment, and hence EAs, with proper enhancements, ha{@as.

a potential to be good optimizers for DOPs. Over the years,S0 far, most algorithms proposed for DOPs are informed
several approaches have been developed in traditional EAd¥hen a change occurs or use some techniques to detect
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changes. However, it is difficult or impossible to detect
changes in some cases. For example, it will be very hard to
detect changes if only some random local sub-areas change
over time in the entire search space. In this case, we can not
always successfully detect the changes or predict the esang
because we do not know when or where the changes occur
in the search space. Therefore, it is important to develop



algorithms that do not need to detect changes or are ablethis clustering approach lies in that the number of clusters
be ready for changes in any time during the search progressich is problem dependent, must be predefined.

In order to effectively use the multi-population method Brits et al. [12] proposed abest PSQOalgorithm which
in undetectable environments, this paper proposes a basiaesigned for locating multiple solutions to a system of
framework that is not based on change detection. Seveeguations. ThenbestPSO algorithm defines the “neighbor-
issues are discussed in this paper, e.g., how to create dubed” of a particle as the closest particles in the popufatio
populations, how to deal with the overcrowding problem, howhe neighborhood best for each particle is defined as the
to make sub-populations ready for changes, and how to applyerage of the positions of these closest particles. In, [11]
this framework in general EAs for problems in different doa niching PSO (NichePSO) was proposed by incorporating a
mains. The basic framework is instantiated into three ifié cognitive only PSO model and the guaranteed convergence
research areas, including particle swarm optimizationQQPSPSO (GCPSO) algorithm [72]. NichePSO maintains a main
[20], [34], genetic algorithm (GA), and differential evéilon  swarm that can create a sub-swarm once a niche is identified.
(DE) [65]. The corresponding algorithms are called CPSORhe main swarm is trained by the cognition only model [32]. If
CGAR, and CDER respectively. To indicate the clustering particle’s fithess shows a little change over a small nuraber
algorithms without change detection, we put a suffix “Rfenerations, then a new sub-swarm is created with the |eartic
for each clustering algorithm without change detection: Fand its closest neighbors. NichePSO uses some rules toedecid
example, CPSOR and CPSO represent the clustering P®®@ absorption of particles into a sub-swarm and the merging
algorithm without change detection and the clustering PS@peration between two sub-swarms, which mainly depends on
algorithm with change detection, respectively. the radius of the involved sub-swarms.

This paper carries out a comprehensive experimental studyParrott and Li developed a speciation based PSO (SPSO)
based on the moving peaks benchmark (MPB) problem [9]. [43], [53], which dynamically adjusts the number and size of
order to test whether the clustering method benefits gereralswarms by constructing an ordered list of particles, ranked
search areas or not, we systemically compare the perfornaaccording to their fitness, with spatially close particleising
of CPSO, CGA, CDE with the corresponding algorithms tha particular species. At each generation, SPSO aims tafigent
use traditional multi-population methods. We also complage multiple species seeds within a swarm. Once a species seed
performance of CPSOR, CGAR, and CDER with CPSO, CGAas been identified, all the particles within its radius are
and CDE, respectively, to investigate whether the strategly assigned to that same species. Parrott and Li also proposed
does not have change detection works or not. This paper agsoimproved version with a mechanism to remove redundant
compares the performance of CPSOR, CGAR, and CDER willaplicate particles in species in [54]. In [3], Bird and Li
a set of algorithms that were developed for DOPs using multleveloped an adaptive niching PSO (ANPSO) algorithm which
population methods in the literature. adaptively determines the radius of a species by using the

The rest of this paper is organized as follows. Sett. flopulation statistics. Based on their previous work, Bindl a
reviews some multi-population methods developed in both introduced another improved version of SPSO using a
stationary and dynamic environments. The basic framewddast squares regression (rSPSO) in [4]. Recently, in order
for multi-population methods with clustering is introddci to determine niche boundaries, a vector-based PSO [62] was
Sect[TIl. Sect[1V instantiates the basic framework int@-paproposed to locate and maintain niches by using additional
ticle swarm optimization, genetic algorithm, and diffeiah vector operations.
evolution. The experimental study regarding the configonat  To specify the number of clusters within themeans PSO
working mechanism, and comparison with other algorithnagorithm, Passaro and Starita [55] used the optimizatfca o
is presented in Sedf]V. Application domains of the proposedterion function in a probabilistic mixture-model framerk.
framework in the real world are discussed in SEct. VI. Finallln this framework, the particles are assumed to be generated
conclusions and discussions on the future work are givenlig a mix of several probabilistic distributions. Each diéfet
Sect[VII. cluster corresponds to a different distribution. Then, ifigd

the optimum numbelk is equivalent to fitting the model
II. MULTI-POPULATIONMETHODS with the observed data while optimizing some criterion. The
Many experimental studies have shown that mul,{Ferformance of their algorithm was reported better thanGBPS

: : . 143] and ANPSO [3] for static problems.
population methods are effective approaches to enhanleéng .
diversity for EAs to solve multi-modal problems in both gtat Recgntly, a new GA, caII.ed_C.:ardlffGA_ (CGA?’ was pro-
and dynamic environments. posed in [17]. In CGA, each individual is given a life-spamlan

an age, and the population size is also allowed to change. The

) o ] ) interesting work in CGA is that two populations, which are

A. Multi-population in Static Environments named two-human populations, are designed to simulate the
Kennedy [33] proposed a PSO algorithm that uses campetition in species in real life. The two-human popolagi

k-means clustering algorithm to identify the centers ofatif undergo the competition of a shared resource, called “Water
ent clusters of particles in the population, and then useseth An experimental study showed that the two-human CGA
cluster centers to substitute the personal best or neipbbdr found the solution in a shorter time compared with the single
best positions. In order to allow cluster centers to be Btaloi, population CGA, but with lower success rate than the single
the k-means algorithm iterates three times. The limitation qfopulation CGA.



B. Multi-population in Dynamic Environments promising area when the environment changes, and a group

. of child swarms are used to search the local optimum in their
Branke et al. proposed a self-organizing scouts (SOS) [ n sub-spaces. Each child swarm has a search radius, and

algorithm that has been shown to give promising results kre is no overlap among all child swarms by excluding
DOPs with many peaks. In SOS, the whole population {ge

d of lati h h h h m from each other. If the distance between two child
composed of a parent population that searches throug rms is less than their radius, then the whole swarm of the

ent!re search space and ‘Fh”‘?' populations that track lo rse one is removed. This guarantees that no more than one
optima. The parent population is regularly analyzed to kheEhild swarm will cover a single peak. Another similar idea
the condition for creating child populations, which areitspl

f hibernation multi-swarm optimization algorithm (HmSO
off from the parent population. Although the total number q(i/ P g ( )

o . . - . as introduced in [29], where a child swarm will hibernate
individuals is constant since no new individuals are introet, [29]

) . . . if it is not productive anymore and will be woken up if an
the size of each child population is adjusted regularly. environmental change has been detected

Another term of “multi-population”, called “multi-natidn A cjustering PSO (CPSO) has recently been proposed for
was introduced in [71], where multi-national GAs were depops in [40], [78]. CPSO applies a hierarchical clustering
scribed for multi-modal problems in dynamic environment$nethod to divide an initial swarm into sub-swarms that cover
The basic idea of multi-national GAs in dynamic environnsengjifrerent local regions. CPSO was proposed to attempt to
is to maintain multiple populations in different searcha&@  ¢qjve some challenging issues when applying multi-pojariat
the search space so that the algorithm can search for bath '%ethods, e.g., how to guide particles to move toward differe
and global optima. A valley detection method was introduc%lomising sub-regions, how to define the area of each sub-
in order to identify different “nations” in the fitness lamdpe. merging, and how to determine the number of sub-swarms

The atomic swarm approach has been adapted to track Mileded. CPSO has shown some promising results compared

tiple optima simultaneously with multiple swarms in dynamiwith several state-of-the-art algorithms in [78].
environments by Blackwell and Branke [5], [6]. In their ap-

proach, a charged swarm is used for maintaining the diyersit |||
of the swarm, and an exclusion principle ensures that no more
than one swarm surrounds a single peak. In the algorithm, .
called mQSO in [6], anti-convergence is introduced to detec So far, mo;t EAs developed for DOPs either use some
new peaks by sharing information among all sub-swarms. T gange dete_ctlon methods [6], [43]’ [40], [46], [47], [57],
strategy was experimentally shown to be efficient for the MP! 8] or predict changes by assuming that changes haye a
function [9]. Borrowing the idea of exclusion from [5], Meesl| pgttern [6_3]' Once a Ch"?‘”ge has be_e” de_tected or pred_|cted,
and Mohais developed a multi-population DE algorithm [49] td_n"ferent kinds of st_rate_gles are applle_d to increase therdi
solve the MPB problem. In their approach, a dynamic strategﬂ}y' €.9., randqm |mm|grants_ strategies, or to re-u_seedtor
for the mutation factor¥ and probability factorC R in DE .seful information by assuming thgt the new environment
was introduced. Recently, an enhanced version of mQSO ' Sclosely relqted to the current environment, €.g., memory
proposed by applying two heuristic rules to further enhahee ased strategles. Howgver, to use those strategies, aioondi
diversity of mQSO in [19]. One of the two rules is to increasB'Ust be applied. That is, the environmental changes must be

the number of quantum particles and to decrease the num&l/ég:cessfulh/ detelcte(_j.h So,dhgfreh co]rcn_ei\s a(\jcommhon ﬂugst|on:
of trajectory particles when a change occurs. The otherisule at_can.t. eseggor_n ms doT they fail to eteptt € change
Maintaining diversity without change detection throughou

to re-initialize or pause the swarms that have bad perfocman . . . . S
he run is an interesting topic. In [25], random individuals

waA; C()r!al;?s;a(;l\/ii TZ?SI]UUI?]”aéé;gartr\?voostn;rﬁgogvéiisiere created every iteration. Three different mutationtagias
prop ) ' ' ere designed to control the diversity in [18]. Sharing or

the crowding differential evolution (CDE) [68] and the psd" . . . d
: . crowding mechanisms in [16] were introduced to ensure
model, respectively, cooperate with each other by a collab

rative mechanism. The swarm using CDE is responsible féllversny. The thermodynamical genetic algorithm (TDGA)

. . : . . - 150] was proposed to control the diversity explicitly via a
preserving diversity while the PSO swarm is used for tragki rafeasure, called “free energy”. However, these methodsare n

Fhe global optimum. The_competlt!ve results were rgportee ective because the continuous focus on diversity slawad
in [46]. Thereafter, a similar algorithm, called evolutag S : : .
e optimization process as pointed out in [27] and hente lit

swarm cooperative algorithm (ESCA), was proposed in [4r &earch on maintaining diversity without change detadtias

based on the collaboration between a PSO algorithm : . . :
an EA. In ESCA, three populations using different EAs aa:f)e]een carried out in the literature. Therefore, far morectiffe

used. Two of them follow the rules of CDE [68] to maintain'rjllgorlthms are still needed.

the diversity. The third population uses the rules of PSO.

Three types of collaborative mechanism are also develop&d Undetectable Dynamic Environments

to transmit information among the three populations. It is important and meaningful to build effective mecharssm
Inspired by the SOS algorithm [10], a fast multi-swarnmto EAs for DOPs that do not need to detect changes. This is

optimization (FMSO) algorithm was proposed in [38] to lacatbecause sometimes it is hard or impossible for algorithms to

and track multiple optima in dynamic environments. In FMSQletect changes. For example, if there are only some random

a parent swarm is used as a basic swarm to detect the nmadi-areas in the whole search space that change, it will

. GENERAL FRAMEWORK OF MULTI-POPULATION
METHODS WITH CLUSTERING FORDOPs



the other hand, if the allowed capacity is increased, it |
likely to go undetected. This is because the capacity change
does not affect the current population, which is still in the
feasible areas in the search space.

The recurrent change with noise in [41] is one example
of dynamic environments where the changes are completely
undetectable. Because of noise, every evaluation for dagimi
solution is different. Therefore, in this kind of dynamicven
ronment, the changes are never detected by checking whether
there is a change in the fitness of the same individual in the

1 2 3 4 5 6 7 8 9 10 fitness landscape.
Number of changing peaks In the real world, there are also many DOPs where the
changes are hard-to-detect or undetectable. For exanmple, i
Fig. 1. Successful detection rate with different numbersfuinging peaks the design of the path planning system, it is difficult for
in the MPB problem with a total number of ten peaks. mobile robots to detect the environmental changes due to
moving obstacles with unknown trajectories. In the dynamic

. ) scheduling problem, it will be hard to detect a constraint
become very difficult for algorithms to detect the changespange if the change does not affect current solutions. For

If an algorithm fails to detect the changes, all the tradio o mii-rover coordination problem in noisy environment
corresponding strategies will lose their functions. the signals that rovers receive from the environment are not
In order to illustrate that such kind of dynamic environngentejiable due to the noise generated by the rovers’ sensors.
exist, we add a new feature into the MPB problem (it will The apove cases show that the design of approaches without
be described in detail in Se€l V-A.1): Only some randofthange detection is very necessary to solve optimization
peaks, rather than all peaks in the original MPB probleyoplems in dynamic environments where the changes are
[9], are allowed to change during one environmental changgificult to detect. This is because traditional EAs based on

This feature will make the changes difficult to detect. Tephange detection will fail to work in such kind of dynamic
show the difficulty of detecting changes in the modified MPRpironments due to the difficulties of detecting the change
problem, the following experiments were conducted, whefg,; example, change detection methods will not work in dy-
10000 uniformly distributed random points were sampled iamic environments with noise due to the disturbance caused

the fitness landscape with a total number of ten peaks yj nojse. As a result, the performance of these algorithriis wi
five dimensions. We record the total number of pointsc] significantly deteriorate.

that successfully detect the changes over 1000 changes. The
average rate of successfully detecting changes can beagstim
by suc/107. A detection by a point is successful if the fitnes8- Clustering Methods to Create Multiple Populations
of that point is different from its previous fithess. Hig. Joals The methods of creating multiple populations can be
the rate of successful detection with different numbers @hughly classified into three different categories in teohthe
changing peaks in the MPB problem with a total number @fay to generate multiple populatiariBhe first class of multi-
ten peaks. population methods simply uses a certain number of randomly
Fig.[d clearly shows that the successful detection rate ligenerated populations. Usually, all populations use tmeesa
early decreases when the number of changing peaks decreasssrch strategy with the same number of individuals. Howeve
The smaller the number of changing peaks, the harder it wili some of these kinds of algorithms, the populations are
be to detect the change. It can be seen that the succesafigigned into different groups where each group uses éiifter
detection rate is less than 0.2 when only one out of ten peaksarch methods (e.g., ESCA [47], CESO [46], and mQSO
changes in the search space. And the figure increases to 1 wigg)to serve different purposes (e.g., exploring new pising
all peaks change, i.e., any one point in the fitness landsm@pe sub-areas or exploiting local optima). The second class of
detect the changes. It means any single individual is enfargh multi-population methods starts from a main population and
an EA to successfully detect the changes in the MPB problamaintains it to generate sub-populations by splitting odin
when all peaks change, which is a default setting of the MRBe main population (e.g., SOS [10], NichePSO [11], FMSO
problem used by all EAs so far. [38], and HMSO [29]) if some predefined criteria are satisfied
The dynamic knapsack problem [31], [39] is another exan(e.g., the best individual in the main population does not
ple for dynamic environments where changes are difficult tmprove for a certain number of iterations). The third clags
detect. In the dynamic knapsack problem, detecting a changalti-population methods divides a large randomly gerestat
is not always as straightforward as it may seem. Normallgppulation into several small sub-populations to make them
monitoring a possible change in fithess value is used to tleteover different sub-areas in the search space (e.gk-theans
the change but this does not always work. For exampRSO [33], SPSO [43lbest PSO [12], and CPSO [40], [78]).
you will detect a change by monitoring the fitness of an The major common problem of these multi-population
individual over two successive iterations, if the maximummethods is that, although they benefit the algorithms, they a
allowed capacity for a knapsack problem is reduced. But, @ning new issues which are difficult to solve. For example,

Success rate




Algorithm 1 Clustering(pop) Algorithm 2 FindNearestPair(G,t, s)

1: Create a temporary cluster liét of size |popl; 1. found := FALSE;

2: for each individuali in pop do 2: min_dist == /2 (U; — L;)?, whereU; and L, are

3 Gl := popli]; {i.e., each individual forms one cluster  the upper and lower bounds of tligh dimension of the
in G} search space;

4: end for 3: for i :=0to |G| do

5: Calculate the distance between all clusters (i.e., individs.  for j .=+ 1 to |G| do
uals) in G and construct a distance matrM of size

5: if (|G[i]] + |Glj]| > subSize) then
|G| x |G]; 6: continue;
6: while TRUFE do 7 end if
7. if |FindNearestPair(G,t,s) then s if (min_dist > M(G[i],G[j])) then
8: Br_eak; 9: min_dist := M(G[i], G[j]);
9 end if 10: t:= Gli;
10: t:=t+s; {i.e.,, merge clusters ands into ¢} 11: 5:= G[j);
11:  Delete the clustes from G; 12: found == TRUE;
12:  Re-calculate all distances i which have been af- ;3. end if
fected by the merge aof and s; 14:  end for
13:  if each cluster irG has more than one individutllen 5. end for
14: Break; 16: Return found,;
15:  end if
16: end while

17: Removepop;

only containing one individual ipop. Then, in each iteration,
18: plst := plst + G y g mop

it uses Algorithn{P to find a pair of clustetsands such that
they are the closest among those pairs of clusters, of whizh t
total number of individuals in the two clusters is not greate

the optimal value of in the k-means PSO is unknown andang,.9i-e (subSize is a prefixed maximum sub-population
problem dependent; the optimal number of sub-populati®nsdi,e) and, if successful, combinesand s into one cluster.

unknown for the mQSO algorithm; there is no overlappingpis- iteration continues until all clusters ii contain more

control among populations in ESCA and CESO; itis difficulf,a one individual. Finally, the cluster lit is appended to
to identify the proper representative individuals in Spsodglobal sub-population listlst.

NichePSO, SOS, FMSO, HmSO, antitst PSO; anditis very  prom the above description, it can be seen that using
difficult to define an appropriate radius for each population o apove clustering method, sub-populations will be auto-

SPSO, mQSO, FMSO, and HmMSO. » matically created with close individuals depending on the
_ Amqng these methods, CPSO seems a competitive On€yagjpy tion of initial individuals in the fitness landsaeaprhe
it alleviates the common problems that other methods Suffaf,mper of sub-populations and the size of the search area of

Different from other methods, CPSO uses a single linkage ., syb-population are also automatically determinedhey t
hierarchical clustering method [28], as shown in AlgoritHi fithess landscape and the unique parametésizec.

to create sub-populations. The clustering method can enabl

CPSO to assign individuals to different promising sub-oagi

adaptively adjust the number of sub-populations neede%', Redundancy Control

and automatically calculate the search region for each subRedundancy is a very important factor that will affect the

population. performance of an algorithm. Here, redundancy control is to
In the clustering method, the distandé, j) between two remove redundant individuals, including the convergedearn

individualsi and j in the D-dimensional space is defined agonverged individuals, the overcrowded individuals in ealo

the Euclidean distance between them as follows: sub-area, and the individuals that are located in the qupirg
areas of two conjunction populations.

It is important to perform the operation of redundancy
control. First of all, redundant individuals normally dotno
) ) ) . contribute much to the search progress. Taking the congerge
The distance of two clustersand s in the list of G, which o near converged individuals as an example, they are iracti
is an element in}/ in Algorithm[l and is denoted/(t,s), and almost dying so they hardly contribute to the search.
is defined as the distance of the two closest individuaad Secondly, we can save computing resources and give the
j that belong to clustersands, respectively.M (¢, s) can be gaved resources to theseful individuals. Thirdly, removal

1)

formulated as: of redundant individuals is a preparation phase in order to
M(t,s) = min d(i, ) 2) in_crea_se the dive_rsity in this paper (the phase of maintgini
i€t,jEs diversity will be discussed later in SeEi_1II-D).

Given an initial populatiopop, the clustering method works  Traditionally, the overlapping check between two popula-
as follows: It first creates a lis¥ of clusters with each clustertions is carried out using their search radius. The seaidinsa



of a sub-populatiors can be calculated as follows: Algorithm 3 Remove(plst)
1: for each pair of sub-populatior(s, s) in plst do

; 1 . 2:if Toperiap(t, s) > B then
d — d ) 3 over ap b) i
radius(s) |s] ; (3, Scenter), S Merget ands into ¢;
4: Removes from plst;
Where s.onier is the central position of the sub-populatien 5  €nd if
6: end for

and|s| is the number of individuals ig. If any individual in _
a sub-population is within the search radius of another sub’ for €ach sub-populatione pist do

population, then the overlapping search occurs. If theadiz & if [¢| > subSize then L

of the best individuals of two sub-populations is less thar’: Remove wors{({| — subSize) individuals fromt;
their search radius, then they are combined or one of thetfy  end if

is removed. The above checking mechanism assumes thkt&nd for _

each sub-population just covers one peak. However, it is nt# fOr €ach sub-population € plst do

always true for the real situation. If a sub-population in &% if radius(s) < ¢ then

sub-region covers more than one peak, other sub-popuatioif’ Removes from plst;

that are within its search area should not be removed & €nd if

combined together with this sub-population; otherwiseyite _16: €nd for

lose the peaks which are currently being searched due to the

combination. Therefore, we should take this issue into @cto Initialization
before combining two overlapping populations.
To address the above issues, when applying the merge op- Clustering Random
. . . ) immigrants
eration, we adopt the following overlapping checking sceem
. e y Yeslf
If two sub-populationst and s are within each other’s

search area, an overlapping ratio between them, denoted
roverlap(t, $), 1S calculated as follows: We first calculate the
percentage of individuals ihwhich are within the search area

of s and the percentage of individualsdnwhich are within the
search area of, and then set yeriqp(t, s) to the smaller one

of these two percentages. The two sub-populaticersd s are
combined only whem,,er14p(t, s) is greater than a threshold
value 3.

It should be noted that the radius efand ¢ used in the Fig. 2. Framework for multi-population methods with clugig in unde-

overlapping check operation is their initial radius wheand 'ectable dynamic environments.

t are first created by the clustering method rather than their

current radius. Usually, the radius of a sub-population wil o . .

decrease with the evolutionary process as the sub-poqmlatP' Maintaining Diversity

will gradually converge. Therefore, the initial radius @ibed  Based on the above description, it is easy to figure out how
when a sub-population is formed is usually larger than its maintain the diversity. We do not increase the diversigrg
current radius. Therefore, using the initial radius rattrem jteration as traditional methods do. Instead, we only iasee
the current radius of sub-populations, we can identify aRe diversity if the population diversity decreases to aaier
overcrowded area as early as possible to save computatigeg@él. In this paper, we use a simple metric to measure the
resources. population diversity#s_indis(t)/gSize, where#s_indis(t)

In order to avoid too many individuals searching on a single the number of survived individuals at iterationd gSize
peak and hence save computing resources, an overcrowdithe size of the initial population. If the population disiy
check is performed on each sub-population after the abadecreases to a constant threshelli (hen we apply a random
overlapping check. If the number of individuals in a subimmigrants method where a temporal population of the size
population is greater thasubSize, then the worst individuals ¢gSize — #s_indis(t) is randomly generated. Thereafter, we
are removed one by one until the size of the sub-populatiotuster the temporal population by the above clusterindhoebt
is equal tosubSize. and append the new sub-populationist.

Individuals that have already converged, are also redundanThanks to the clustering method and the redundancy control
and should be removed. If the radius of a sub-population figechanism, we can easily implement an algorithm for DOPs
less than a small threshold value which is set to 0.01 in using any population-based EA. FIg. 2 describes the whole
this paper, the sub-population is regarded to be convergedgeneral framework for multi-population methods using the
a peak. If a sub-population is converged, it will be removeglustering method in dynamic environments. The step oflloca
from the sub-population lisplst. The convergence check issearch in FiglR is the optimization process which should be
carried out after the overcrowding check. The procedure tsfplaced by a specific EA (e.g., PSO, GA, or DE).
redundancy control is as shown in Algorithih 3. Using this framework to solve DOPs has several advantages.

Local search|  No # Inidividuals < gSizetx

Redundancy|
control

YeS‘L
End



Firstly, it can be used in dynamic environments with anflgorithm 4 gbestLearn(particle 7;)

properties, e.g., mild change, severe change, cyclic ehangi: for each dimensior of gbest do

chaotic change, or even undetectable changes. FromllFig. 2,28 Z;_gpest := Tgpest {Zt_gvest 1S @ temporary particle
can be seen that the whole process has nothing to do with  x;_gpes[d] := 2;[d];

the environmental changes. When to increase the diversity  if Z; gpes: IS better thantyyes; then

only depends on the information gathered from the currens: Tgbest|d] = Tt_gbest [d];

populations. Secondly, it can be implemented by any EAs: end if

Thirdly, it is simple to implement. Sedt_]V will present sem 7: end for

instances implemented from this framework for DOPs in
several different research areas.

versions of the PSO algorithm have been developed [56].
E. Complexity Analysis In PSO, each particlé, which is a candidate solution, is
represented by a position vect@y and a velocity vector;,

In the framework, compared V.V'th a_tradmpnal EA, we Neehich are updated in the version of PSO with an inertia weight
to perform some extra operations, including the clustenr[[?S] as follows:

process and the overcrowding check among sub-populations:.

From Algorithm[d, it can be seen that the time complexity of v"ii — wvid + mrl(a;gbesti — x;.i) + 7727’2(173best — x;_i) (4)

the clustering operation i©(gSize®). We first compute all

distances among each pair of cluster€ifySize?). For each x’f =azd 4 1}’?7 (5)

iteration of merging two clustersand s from the cluster list p _ N

G, we find the nearest pair of clusters 6fin O(|G|?) (if Wherez'; andz¢ represent the current and previous position

we use a dynamic programming method, it would be reduc8tthe d-th dimension of particle, respectivelyy’; andv; are

to O(|G|log(|G]))), then update the distance matr¢ in the current and previous velocity of particle respectively,

O(|G|). The number of clusters G will decrease by one ZLpbest; @NdZgue: are the best position found by partidleso

every iteration until the stop criteria is met. Finally, werform  far and the best position found by the whole swarm so far,

the clustering operation i) (gSize3). It should be noted respectivelyw € (0,1), m, andn, are constant parameters,

that the clustering operation is not performed every iterat @andr, andr, are random numbers generated in the interval

during the search process, instead it is triggered only wh&h0,1.0] uniformly.

the total number of individuals is less than- gSize (see  In order to speed up the local search within the PSO

Fig[@ for the framework). In addition, after the first clustg algorithm, we introduce a learning method for tlyéest

operation, only(1 — ) - gSize individuals will be involved in particle used in CPSO [78]. This learning method tries to ex-

the f0||owing C|u5tering Operations in the whole run. tract useful information relevant to those potentially rmpad
The time complexity of the overcrowding check, which iglimensions of an improved particle to updatest, as shown

mainly on the calculation of the overlapping ratio betweea t in Algorithm [4. When a particlé in a sub-population finds

sub-populations (see Algorithid 3), depends on how many sidbbetter position, we iteratively check each dimension ef th

populations have survived. For each pair of sub-populatiorgbest particle: replace the dimension with the corresponding

the calculation of the overlapping ratio is donedisubSize), dimensional value of particleif the gbest particle is improved

which is a constant times(bSize = 7 is suggested in this by doing so. In this way, thgbest particle is able to learn

paper, see Sedf_V-B.1 for details). Furthermore, the numpie useful information from those dimensions of a partibk t

of sub-populations will decrease before the next clusgerifias been improved.

operation is performed during the search process. The PSO algorithm with thgbest model is used in the
In total, according to the above component complexifyPSOR algorithm where each particle’s neighborhood is de-

analysis, it can be seen that the extra computing time need&gd as the whole swarm. The basic PSO algorithm in CPSOR
for the framework is not so high. is shown in Algorithn{h, and the whole framework of the

CPSOR algorithm is described in AlgoritHoh 6.
IV. INSTANTIATION OF THE FRAMEWORK

In this section, we instantiate the framework of multiB- Clustering with GA
population with clustering into three different researcbas: In the CGAR algorithm, we use a simple real-coded GA
PSO, GA, and DE. For the convenience of description, thg described in Algorithni]7. The crossover and mutation
corresponding algorithms are denoted CPSOR, CGAR, agferators used in CGAR are the arithmetic crossover and the
CDER, respectively, in this paper. We also discuss how grmal mutation operator, respectively. They are desdriz
apply this framework for DOPs in combinatorial space in thglows.
end of this section. For two individuals#; and #;, the arithmetic crossover

operator is performed on théth dimension as follows:

A. Clustering with PSO
PSO was first introduced by Kennedy and Eberhart in [20],
d d

[34]. Ever since PSO was first introduced, several major xG=xf k7 + zd % (1—7) (7

xf:xf*r—l—x?*(l—r} (6)



Algorithm 5 PSO

Algorithm 8 DE

1: for each particler; do
2:  Zp= 4 {#, is a temporal particlp

3:  Update particle according to Eqs[{4) andl(5);
4 if f(Z) < f(Zppest,) then
S fpbesti = fu

6: if f(fl) < f(fgbest) then
7 fgbest = fu

8 end if

o: if f(%;) < f(#,) then

10: gbest Learn(Z;);

11: end if

12:  end if

13: end for

Algorithm 6 CPSOR

1: for each individualz?; do

2:  Generate a donor vectoty: v := &1+ F- (o —Zp3);
{F is mutation factor in [0,2] and,1, Z,2, andZ,; are
randomly selected individuals (indices ©fr1, 2, and
r3 are distinct}

3:  Generate a trial vectar as follows:
yd v, ifr<=CRoOrd=Iqnaq
T 24, if r>CR andd! = Lgna
where CR is a probability constant and,,q is a
random integer within [1,D].
4 if f(d) < f(Z;) then
5: T = U,
6: endif
7: end for

1: Create an initial populatiopop with gSize particles by ¢ clustering with DE

randomly generating the position and velocity for each

particle;
: Create an empty lisblst to store sub-populations;
. Clustering(pop);
. while stop criteria is not satisfiedlo
for each sub-populatiopist[i] do
plst[i].PSO();
end for
Remove(plst);
Count the number of survived individualsindis;
if s_indis < gSize-a then
Create a temporal populatignpop with
(gSize — s_indis) random individuals;
12: Clustering(t_pop);
13:  end if
14: end while

© N aR N
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Algorithm 7 GA

DE [65] is also a population-based optimization approach,
whose main strategy is to generate a new position for an
individual by calculating vector differences between othe
randomly selected members of the population. A simple DE
algorithm used in CDER is described in Algoritiih 8.

It should be noted that the CPSOR algorithm is different
from the CGAR and CDER algorithms where thiest posi-
tion of each particle does not involve the evaluation preces
Therefore, there is an issue of outdated memory ofpthwet
position that will mislead the future search for each péatic
In order to solve this problem for the CPSOR algorithm, we
re-evaluate a particle’sbest position before comparing with
its current position every iteration. Fortunately, theuessof
outdated memory in CGAR and CDER is not as serious as in
CPSOR as each individual will be evaluated every iteration.

So far, we have recognized that we do not need to de-
velop any complex techniques to deal with the dynamism or
even to detect the environmental changes. Furthermore, thi

1: Select individuals into mating pOOI by the roulette Wheq"amework is easy to app|y in any EA. The On|y differences

selection mechanism;
. for each pair of individualg’; and#;; do
if » < p.then

RN

probability}
end if
end for
. for each individuals?; do
Perform the mutation operation;
: end for

© e Nog

between two algorithms using this framework are the steps of
initialization and local search. Due to the similaritiesvbeen
CGAR and CPSOR, the framework of CGAR is not provided

Perform arithmetic crossovef(p. is the crossover in this paper, and neither for the CDER algorithm.

D. The Clustering Framework for Combinatorial DOPs

From the description of the clustering method in SEct.]lI-B
it is easy to apply the framework for DOPs in the combinato-
rial space. The only work that we need to do is to re-define a
proper distance metric for the particular problem to be e]v
i.e., re-calculation of the distance of two individuals ig.&).

where r is a random number uniformly distributed in theThen, we can directly use Algorithij 1 and Algoritfith 2 to

interval (0.0, 1.0).

generate multiple populations, AlgoritHoh 3 to reduce the re

The mutation operation for théth dimension of individual dundancy, and the framework in FIg. 2 to adapt the clustering

Z; is performed with a probability of /D as follows:

x‘?:x?—i—N(O,l)

J

method into dynamic environments.

The choice of the distance metric depends on the problem
to be solved. For example, a proper distance metric for two in
dividuals in binary encoding would be the Hamming distance,

where N (0, 1) is a normally distributed random number withthat is the number of genes at which the corresponding values

mean 0 and variance 1.

are different. For the travelling salesman problem (TSI, t



distance between two individuals would be the number of peaks, whose locations and heights are able to change
different edges. A proper distance metric would determiirge tovertime. To achieve this, we first need to make the height
performance of this framework. of each peak changeable. For the above expression, it inplie

1) Discussion: As we know, poor offspring will be gen- that all the P peaks have an equal height of 1. However, we
erated by recombination if two parents are in two differeran assign a changing weighff(¢)) to each peak at time
peaks. This is because the offspring are highly likely torbe which enables the peaks to have different heights over time.
the valley between the two peaks. Therefore, recombindtionTherefore, a DOP can be obtained as follows:
deleterious to the performance of EAs if the involved pasent 1
are in different peaks [64]. We expect that this issue shbald ~ f(z,t) = T ,nax Hy(t)(L — d(z, Peaky(t)))  (10)
relieved with the clustering method. The aim of the clusigri Pl
method is to divide the whole search space into multiple It should be noted that the above problem generator is just
sub-areas. The result of the clustering method is that aimikin example of the kind of problem the clustering framework is
individuals, which are close to each other and likely to be itapable of solving in the combinatorial space. If we are &ble
one peak in the fitness landscape, are assigned to one clustdy understand the fithess landscape for a given probletim wi
The ideal result after using the clustering method is thaheamultiple optima, i.e., the distance metric is properly dedin
sub-area only contains a single peak. In this ideal case, thién, we believe, the framework will be applicable to that
parents will be in the same peak, and, hence, recombinatfmoblem.
will produce promising offspring other than bad ones.

However, regarding the framework for DOPs in the combi-
natorial space, our major concern is the effectiveness @f th
clustering method to locate multiple sub-areas in the $earc In this section, four groups of experiments are carried out
space. The original motivation of the clustering method ased on the MPB problem [9]. The objective of the first
for multi-modal problems in the continuous space. There @oup of experiments is to investigate the working mechmanis
clear understanding of the fitness landscape for most prableof the framework through the CPSOR algorithm, analyze the
in the continuous space, i.e., a typical fitness landscapesgnsitivity of key parameters, and suggest some methods to
composed of multiple peaks that are distributed in differeaét up the parameters, including the overlapping ratithe
areas in the fitness landscape. Therefore, we can divide €heersity degreer, the global population sizgSize, and the
whole fitness landscape into multiple sub-areas, then lseagtib-population sizesubSize. The objective of the second
and track them simultaneously. However, there is no su@roup of experiments is to investigate whether EAs benefit
clear indication for many combinatorial problems regagdinor not from using the framework of multi-population with
what the fitness landscape is, e.g., the TSP, and how to defiiéstering to solve DOPs. In the third group of experiments,
the distance between two individuals. Although we can gasthe performance of CPSOR, CGAR, and CDER is compared
extend this framework for DOPs into combinatorial problemaith a set of EAs taken from the literature for DOPs. The
it lacks clear explanatory support from the motivation poirinvolved algorithms include mCPSO [6], mQSO [6], SPSO
of view. Therefore, we will not implement this framework fo{54], rSPSO [4], CESO [46], ESCA [47], CPSO [78], PSO-
combinatorial problems in this paper. CP [45], HmSO [29], and RVDEA [73].

2) Possible Combinatorial DOP GeneratoAlthough we ~ The RVDEA [73] is a dynamic EA that uses variable
do not test the performance of this framework for combinatéelocation to adapt already converged or currently evglvin
rial problems in this paper, it is an interesting topic. lets individuals to the new environmental condition. In this pap
wish to extend this framework into the combinatorial spac#/e used the version of RVDEA with clusters [73], whose
we suggest a possible combinatorial DOP generator thatprformance is better than that of the version of RVDEA
able to create multi-modal problems (it surely can be agpligvith memory [73] on the MPB problem. In the version of
in any combinatorial problem). To generate a fitness laruiscaRVDEA with clusters, multiple clusters (populations) ased
with P random peaks [64], we can randomly generdte to guide the selection and replacement procedures withithe a
binary strings with lengthZ, which represent the locationsof exploring different sub-areas in the search space.
of the P peaks in the fitness landscape. To evaluate the fitnesdll the results of the peer algorithms shown in this paper
of an arbitrary individuak:, we first locate the nearest pealare provided in the papers where they were proposed except
by the Hamming distance, then the fitness of individuas the CPSO algorithm, whose results are updated in this paper.
calculated as the number of bits that are in common with thainally, we present the comparison between CPSOR and

V. EXPERIMENTAL STUDY

nearest peak, divided b, as follows: CPSO in dynamic environments where changes are difficult
1 to detect.
flx) = 7 p:Hll.é?(.,P (L — d(z, Peaky)) 9
whered(z, Peak,) is the Hamming distance between indivig/- EXPerimental Setup

ual z and thep-th peakPeak,,. 1) The Moving Peaks Benchmark (MPB) Probleffhe
Interestingly, we can also easily extend this problem #dPB problem, proposed by Branke [9], has been widely used

dynamic environments with characteristics as in the MP& dynamic benchmark problems in the literature. Within the

problem [9], where the fitness landscape has a certain numb#?B problem, the optima can be varied by three features,
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TABLE |
DEFAULT SETTINGS FOR THEMPB PROBLEM, WHERE THE TERM
“CHANGE FREQUENCY(U)” MEANS THAT ENVIRONMENT CHANGES

i.e., the location, height, and width of peaks. For the
dimensional landscape, the problem is defined as follows:

H;(t) EVERY U FITNESS EVALUATIONS, S DENOTES THE RANGE OF ALLELE
1
F(Z,t) = max , (11) VALUES, AND I DENOTES THE INITIAL HEIGHT FOR ALL PEAKS THE
= D
Sl T WD) S (a(8) = X4 (0)?
g J=1\"J v HEIGHT OF PEAKS IS SHIFTED RANDOMLY IN THE RANGEH = [30, 70]
AND THE WIDTH OF PEAKS IS SHIFTED RANDOMLY IN THE RANGE

where W;(t) and H;(t) are the height and width of peak

at time ¢, respectively, andX;;(¢) is the j-th element of the rene
location of peak: at time¢. The p independently specified Parameter Value
peaks are blended together by thex function. The position f”ec‘?]';f] ég“][:‘et;elje?w&;"ks) 5038
of each peak is shifted in a random direction by a vectaf a height severity 7.0
distances (s is also called the shift length, which determines width severity 10
the severity of the problem dynamics), and the move of a bgsiikfjrl;];[i)(?n o
single peak can be described as follows: shift length s 1.0
number of dimensions D 5
s . I
vi(t) = m((l = NP+ AG(E-1)),  (12) percent;%ggI%tflocnhgr?gifrfllgfogt;kBeaks o
! s [0, 100]
where the shift vectorw;(t) is a linear combination of a VIIJ/ [3?'1(,)'172(])'0]
random vector” and the previous shift vectar; (¢t — 1) and I 50.0

is normalized to the shift length. The correlated parameter
A is set to 0, which implies that the peak movements are

uncorrelated. ) . 2) Experimental SettingsThe default settings and defini-
More formally, a change of a single peak can be describggy of the benchmark used in the experiments of this paper
as follows: can be found in TablE I, which are the same as in all the
involved algorithms. It should be noted that different from
the traditional MPB problem, the percentages of changing
peaks ¢Peaks), which is a new feature, is added in the
Wi(t) = Wit — 1) + width_severity x o (14) MPB problem in this paper. This feature will make the MPB
problem harder to solve because many techniques based on
- - ~ change detection may lose their functions. The traditional
Xi(t) = i)t = 1) +7(t) (15 mpB problem is a special case of the MPB problem used
) o ) in this paper wherePeaks = 1.0.
whereo is a normal distributed random number with mean 0 e performance measure used in this paper is the offline

and variation 1. error, which is defined as follows:
It should be noted that the same setup for the MPB problem

K
[9] — the second scenario — was used for all the involved peers _ 1 B — 16
algorithms. i.e., the comparison of all the peer algoritims =& ;( k= Je), (16)
under the same configuration of the MPB problem in this _ - . . .
paper. where f; is the best solution obtained by an algorithm just

It should also be noted that the choice of the MPB problebefore thei-th environmental changéy, is the optimum value

of the k-th environmenty is the average of all differences
does not favor our method. There are several other benclsmar . X
etweenh;, and f; over the environmental changes, akidis

in the literature for DOPs, e.g., the DF1 [51] and the GDB e total number of environments, which is setifo= 100 in

[41]. The structures of the DF1 [51] problem and the GDB is paper. All the results reported are based on the average

[41] problem are similar to the MPB problem, which a%ver 30 independent runs with different random seeds.

able to create a user-defined number of peaks with changin .
heights, widths, and locations. However, they are not aghyid n CPSOR, the a_ccelerauon constantsands, were both
’ ’ ' ' set to 1.7. The inertia weight was set to 0.6. For the CGAR

used as the MPB problem in the literature. Although th . I -
GDBG system is more complex than the MPB and DI:.:?ilgonthm,the crossover probability ) was set to 0.6F'=0.5

o o . . and CR=0.1 were used in the CDER algorithm. It should
problems, it is not familiar to many researchers since it was

: . . e noted that the values of the parameters used in the three
just recently proposed (the experimental results in thi&8s . . o
A . . algorithms may not be the best choice. However, it is not the

shown that the clustering idea is also effective to solve the”. . . . . .

. d . . ain task in this paper to investigate the optimal values of
GDBG system in comparison with several other algorithm ‘ese parameters
The motivation of the design of the MPB problem is to bridge P '
the gap between very complex, hard to understand real-world _ o
problems and all too simple toy problems [9]. Although iB- Experimental Investigation of CPSOR
is not the real-world problem, it has been put forward as To effectively apply the framework to solve DOPs, we first

representative of real-world dynamic problems [5], [6]}.[9 investigate the effect of different configurations and ®sig

H;(t) = H;(t — 1) 4+ height_severity x o (13)
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TABLE Il

eneral settings for the four parameters: the overlapmitig r
g g p pmng OFFLINE ERRORS AND+ STANDARD ERROR FOR DIFFERENT VALUES Olﬁ

B, the diversity degre_ea, th_e glObal population SIZ@SZZ?' WITH DIFFERENT NUMBERS OF PEAKSWHEREa = 0.3, gSize = 200,
and the sub-population sizeubSize. Then, the working ‘
. . .. AND subSize = 7, AND THE DEFAULT SETTINGS FOR THEMPB PROBLEM
mechanism of the CPSOR algorithm is illustrated based on
. . . . . IN TABLEl]]WERE USED
the MPB problem in two dimensions with different aspects.
peaks3=0.1 5=0.2 5=0.3 5=0.4 3=0.5 3=0.6 5=0.7 5=0.8 5=0.9
b ActuaI]!y, how tofsEtu]E) the fomlJ(r_parZTf_etelrs o get _the 10 075 0.77 0.773 0.824 0.791 0.811 0.802 0.859 0.869
est performance of the framework is a difficult optimizatio +0.05 +0.05 40.06 -0.05 +0.05 £0.08 £0.05 4-0.07 £0.08
problem because the four parameters may depend on each,, 0.866 0.916 0.859 0.925 0.938 0.887 0.931 0.894 0.913
other, and there are many potential and unknown factors that ~ +0.05+0.06-:£0.0540.05-:0.06 :0.06 +£0.06 -+0.06 +0.08
. g 106 108 105 111 108 1.03 106 111 11
may affelct the choice of the four parameters. Therefore, n +0.06 +0.05 +0.06 +-0.06 +-0.05 +0.06 +0.06 +0.06 +-0.06
order to investigate whether there are general rules tgpsetu ., 093 0.918 0.94 0094 0947 0972 0.978 0.979 1

the four parameters and how to find out the guidance, we first +0.06+0.05+0.06 -£0.05+£0.05 -£0.06 +-0.06 +0.07 +0.07
: 100 108 107 107 107 107 112 109 112 1.09
have an overview of the four parameters. 40.06 40.04 +0.05 +0.05 +0.04 +0.05 +0.04 +0.05 +0.05

The overlapping ratig? determines the moment to merge
two sub-populations when they overlap each other. The darge
the value of 3, the longer the time it will take to start the peaks=10--4-~  peaks=30--&--  peaks=100---@--
. N . . . . peaks=20---*---- peaks=50--©&---
merging process, and vice versa. This combination prociiss w

remove redundant individuals to save computational ressur ol . o

. . . . o @@
and hence speed up the search. Performing this process a bit | | ®.5  8:8-® . - 1
late or early should not affect too much of the performance. L ,@\‘j o o4
Intuitively, this parameter should not be crucial to thefper § 095} o-O-a o ,,®~0,O\¥_f/i;§gi/ 7 ,*\if@ ° %
mance of the framework. In addition, it will not depend onthe £ oo *-x_ T T Ry 1
other parameters. Therefore, it can be separately analyzed 085 HK * an LA

For the global population sizgSize and the sub-population e P E

size subSize, they are apparently two crucial parameters and ot
they directly determine how many sub-populations will be ®"7% o1 02 03 04 05 06 07 08 09

Roveriap

generated in the fitness landscape, which is the most imgorta
factor that will affect the performance of the framework.odt
small number of sub-populations generated will bring abo'?'i{g. 3. Offline errors of varying the values ¢f with different numbers of
more than one peak contained in a single sub-population, @@ks, wherex = 0.3, gSize = 200, and subSize = 7, and the default
the algorithm will not effectively track different optim@®n settings for the MPB problem in Tal | were used.
the contrary, if too many sub-populations are distributethe
fitness landscape, too many isolated sub-populations aikic
a single peak, which is also not a good option. To effectivefjarameter, we fix the values of the other three parametees. Th
locate and track the changing optimum in the fitness landscafefault values of the four parameters dte= 0.1, a = 0.3,
with a fixed number of peaks, the number of sub-populatiop§ize = 200, andsubSize = 7, respectively. Each parameter
has to be optimized. Therefore, these two parameters will b@s tested in a set of values. The four sets of values for the
analyzed together in this section. corresponding parameters afein {0, 0.05, 0.1, 0.15, ... ,
In order to solve DOPs without change detection, we ne®®, 0.9, « in {0.1, 0.3, 0.7, 0.9, gSize in {30, 50, 70,
to maintain the population diversity throughout the run bg t 100, 150, 200, 250, 300 and subSize in {3, 5, 7, 10, 15,
parameterv. Intuitively, the choice ofx would depend on how respectively.
much diversity is needed. Usually, the larger the number of We first analyze the sensitivity of the parameterTable[]]
peaks in the fitness landscape, the larger diversity is meedad Fig[B present the effect of varying the values3ofith
and hence the larger value of different numbers of peaks. According to the combination
Based on the above analysis regarding the configurationpsbcess of two overlapping sub-populations in Algorifiim 3,
the four parameters, we carried out the following experitserthe larger the value off, the more strict the condition for
based on the assumption that o, and the group of;Size two overlapping sub-populations to merge together, vicsaie
andsubSize are independent of each other. It should be notéithe two extreme cases afe= 1.0 and 3 = 0.0. In the case
that the assumption might not be exactly the fact of theit reaf 5 = 1.0, the two overlapping sub-populations merge only
relationship and there are many other factors related to ftifi@ll individuals are within each other’'s search radiusorfr
problem that would affect the setup of the four parameterBable[ll and Fig[B, it can be seen that the performance of
e.g., the number of peaks, the change severity, and the eha@®SOR is not affected too much by using different values of
frequency, etc. The following section will find out how towet S for all the cases. The results also validate our assumption
the framework to effectively solve DOPs. that the choice of3 is not crucial to the performance of the
1) Parameter Sensitivity Studyin this section, the four framework. Therefore, we can conclude that the performance
parameters in the basic framework are investigated segyarabf CPSOR is not sensitive to the parameterHowever, we
except for gSize and subSize, which are bound togetherstill suggest that the value of 0.1 fg should be used in
to analyze the sensitivity. In order to test one particuldhe basic framework since CPSOR achieved relatively better
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settings for the MPB problem in Tablg | were used.

TABLE Il

OFFLINE ERRORS AND+ STANDARD ERROR FORCPSORWITH

DIFFERENT CONFIGURATIONS OFgSzie AND subSize WITH 10 PEAKS,
WHERE« = 0.3, f = 0.1, AND THE DEFAULT SETTINGS FOR THEMPB

PROBLEM IN TABLE[[JWERE USED

subSize gSize

30 50 70 100 150 200 250 300

3 245 185 1.73 2 274 326 373 398
+0.2+0.14+0.1+0.1 +£0.2 4+0.2 +£0.2 +0.2

5 442 2.2 181 1.06 0.521 0.752 0.901 1.12
4+0.5+0.2+0.1 +0.1 +0.08 +-0.06 £0.04 +0.08

7 5.1 299 2.38 2.06 1.48 0.44 0.607 0.764
4+0.4 £0.3+0.3+0.3 £0.2 +0.06 £0.05+0.04

10 9.04 449 3.35 2.89 258 1.61 0.842 0.474
+1 +0.6+0.4+04 +£0.3 +0.1 +0.1 +0.07

15 9.63 6.03 555 4.73 412 265 22 178

+1 +0.7+0.7+0.8 +£0.9 +0.4 +0.4 =+0.3

results by using 0.1 than other values for the parameter

. . . . . . . . . . . .
100 150 200 250 300 30 50 70 100 150 200 250 300
Global population size (gSize) with peaks=30

Global population size (gSize) with peaks=100

Offline error of CPSOR with different values gfize and subSize with different numbers of peaks, whete= 0.3, 8 = 0.1, and the default

increases to 2.65 whesubSize is further increased to 15.

By observing the top three graphs in Hig. 4, it can be
seen that the curve ofubSize = 3 is much worse than
the other curves when the number of peaks is relatively
small, e.g., less than 5. One reason for this result is due
to the large value ofySize, e.g., greater than 50, which
causes too many sub-populations to be generated. On the
other hand, too few individuals in each sub-population,,e.g
at most three individuals because @fbSize = 3, will result
in the slow search or premature problem. From Elg. 4 and
Table[Il, it can be seen that these two parameters greatly
affect the performance of CPSOR. In order to achieve the
best performance, CPSOR needs the optimal configurations in
terms of the parametegsSize and subSize.

Generally speaking, the larger the number of peaks in the
search space, the larger the number of sub-populationgdeed
to achieve the best performance. This trend can be easily
observed in the graphs when the number of peaks increases.

Fig.[4 shows the offline errors of CPSOR with differenEor example, the best performance of CPSOR with a single
values ofgSize and subSize for different numbers of peaks. peak was obtained by settingSize = 30, which is the
Table[Il presents the offline errors of different combinas smallest value we tested. However, when the number of peaks
of gSize and subSize on the MPB problem with 10 peaks.increases to 100, the largest valugize = 300 helps CPSOR
From Algorithm[1, the number of sub-populations obtained et the best performance even for different valuesudfSize.
determined by the value ofubSize if gSize is fixed to a The suggested configurations regarding the paramefers:
specific value. The larger the value &fbSize, the smaller andsubSize will be introduced at the end of this section.
the number of sub-populations to be obtained. Hence, a todn order to investigate what factors may affect the best
large or too small value ofubSize will cause too few or too choice of «, we carried out experiments on the MPB prob-
many sub-populations to be created, which may be far awigyn with different numbers of peaks and different change
from the optimal number of sub-populations needed. Takirigequencies. Generally speaking, the more peaks in thes§itne
gSize = 200 in Table[IIl as an example, the offline error bylandscape, the higher diversity needed. The diversityinagg
CPSOR is 3.26 whesubSize = 3, decreases to the smallesin the basic framework can only be achieved by increasing the
value 0.44 with the value ofubSize increased to 7, and thennumber of random individuals. Hence, the larger the value of
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a=0.1 -4~  @=0.5 ~-&E- 0=0.9 ---@-- TABLE V
0708 e Az e OFFLINE ERRORS AND+ STANDARD ERROR FORCPSORWITH
3 P ‘ ‘ DIFFERENT VALUES OFc AND INCREASING VALUES OF THE CHANGE
o5 1 FREQUENCYU, WHERE B = 0.1, gSize = 200, subSize = 7, AND THE
) A A DEFAULT SETTINGS FOR THEMPB PROBLEM IN TABLE [IWERE USED
g - e g U 0701 a=03 a=05 a=07 a=09
2 157 o ol 3000 3.08 0.722 1.15 1.42 1.44
& SN o) +0.4 +0.08 +0.08 +0.09 +0.09
ir BT e 5000 1.93 0.44 0.65 0.765 0.771
+0.2 +0.06 +0.05 +0.03 +0.05
osr o ] 7000 167 0391 0477 0561 0559
0 L , , . . . . . . +0.2 +0.07 4+0.04 4+0.04 +0.04
1 3 5 7 10 20 30 50 100 200 10000 1.39 0.426 0.34 0.409 0.418
The number of peaks +0.3 +0.05 +0.04 +0.03 +0.04
Fig. 5. Offline errors of CPSOR with varying values afwith different TABLE VI
numbers of peaks, wher@ = 0.1, gSize = 200, subSize = 7, and the
default settings for the MPB problem in Talfle | were used. THE BEST ERRORS AND STANDARD DEVIATION ACHIEVED BYCPSORON
DIFFERENT NUMBERS OF PEAKS WITH CORRESPONDING SETTINGS OF
TABLE IV gSize, subSize, AND o, WHERE 3 = 0.1 AND THE DEFAULT SETTINGS
OFFLINE ERRORS AND== STANDARD ERROR FOR DIFFERENT VALUES OB FOR THEMPB PROBLEM IN TABLE [IWERE USED
WITH DIFFERENT NUMBERS OF PEAKSWHERE 3 = 0.1, gSize = 200, peaks Error STD gSize subSize
subSize = 7, AND THE DEFAULT SETTINGS FOR THEMPB PROBLEM IN 1 7.84e-05 6.91e-06 150 15 0.1
2 0.00366  3.54e-04 50 15 0.9
TaBLEMWERE USED 5 0192 00232 100 10 05
peaks 7 0.461 0.108 150 7 0.3
@ 1 3 5 7 10 20 30 50 100 200 10 0.44 0.0563 200 7 0.3
01 0.327 0.1811.21 0.819 179 227 283 215 177 178 20 0.721 0.0627 200 7 0.5
"7{+£0.034+0.01 +0.2 +0.1 +0.2 +0.5 +0.2 +0.3 +0.1 +0.1 30 0.982 0.0632 250 7 0.5
03 0.62 0.4350.901 0.709 0.6071.12 19 167 17 1.78 50 0.951 0.0518 200 7 0.9
"7{£0.04 £0.03 +£0.054+0.08 +£0.054+0.09 +0.2 +0.1 +0.09 +0.1 100 1.05 0.038 300 7 0.7
05 0.9 0574 1.05 0.893 0.780.789 0.982 1.08 1.28 1.49 200 0.931 0.0334 300 7 0.9
~|£0.06 +-0.03 +0.06 +0.1 +0.06 +0.06 +0.06 +0.06 +0.1 +0.08
0.7 0.978 0.694 1.29 1.16 0.958 1.09 1.20.963 1.12 1.18
" | £0.08 £0.04 +0.06 +0.09 +0.06 +0.08 +0.06 +0.05+0.06 +0.09
0.9 0.981 0.704 1.28 1.15 0.957 1.14 1.34 1.08.06 0.963 ]
?14+0.084+0.04+0.06 +0.1 +0.07+0.06 +0.07 +0.05+0.044+0.04 gets better whei/ increases for most values of e.g., the

offline error decreases from 1.15 to 0.34 when the value of
U increases from 3000 to 10000 with = 0.5. Therefore,
according to the results of Fifl 5, Talple] 1V, and Tdble V, we
«, the more often the diversity will be increased, which magan roughly draw a conclusion that the number of peaks may
be good for the environments with a large number of peakse the main factor to affect the choice of the optimal
i.e., more than 50 peaks in the MPB problem. Another factor, So far, we have roughly recognized which parameters are
which may affect the choice af, is the change frequendy. sensitive to the performance of the CPSOR algoritfiims
Intuitively, the smaller the change frequency, the larggug  not a key parameter in the framework, so we use a constant
of a may be needed. Figuté 5 and Tablé IV show the effeealue of 0.1 for3 in the remaining experiments. For the other
of varying the value ofa with different numbers of peaks, three parameters, the best configurations seem to be relevan
where the best results over different numbers of peaks aocethe number of peaks. Therefore, in order to find out some
shown in bold font in TableTV. Table]lV shows the offlinehints on how to setup these parameters, we summarize the
errors of different values oft with increasing values of/ in  results of all the combinations of the three parameters used
the environments with 10 peaks. in the paper. The best configurations (may be not the true
The results of Figl]5 and Table]V validate our assumptiogptimal configurations as we can not test all the possigdjti
i.e., the larger the number of peaks, the largereeded. From for different numbers of peaks are listed in Tablé VI.
Fig.[8 and Tabl&V, it can be seen that= 0.1 helps CPSOR It should be noted that there are of course many other factors
obtain the best performance when the number of peaksth&t may affect the optimal choice of gSize, andsubSize,
less than 5. Then, when the number of peaks increases, sheh as the width severity, height severity, shift lengtig a
optimal value ofa also increases to get the best performancéae number of dimensions. The parameters of PSO algorithms
e.g.,a = 0.3 for peaks = 5, 7, and 10,0 = 0.5 for (w, m1, andns) may also affect the choice. However, we do
peaks = 20 and 30,a = 0.7 for peaks = 50, anda = 0.9 not discuss these factors as they are not the main objective i
for peaks = 100 and 200. By observing TablelV, howeverthis paper.
we do not get the corresponding results as we expected orfrrom Table[Vl, it is interesting to see that the begbSize
the analysis of the relationship betweanand U. o = 0.3 is 7 for most test cases. Based on the above results and @nalys
seems a good choice regarding different numbers of chargfehe CPSOR algorithm, we give some empirical formulae to
frequencies. From TablelV, it can be seen that the performarsetup these parameters for the basic framework to solve the
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Fig. 6. Progress of the number of sub-populations (lefg, thmber of individuals (middle), and the offline error (tiglwhere the suggested configuration
for the framework and the default settings for the MPB proble Table[], excepf/=2000 andD=2, were used.

MPB problem. Fors andsubSize, we use 0.1 and 7 for all the strategy is triggered not by the environmental changes Yut b
following experiments in this paper, respectively, ajglize the current population diversity only. So, this basic framek
and « are estimated by the following equations: does not consider what kind of changes or whether changes
) 05 have occurred or not.
gSize =300 - (1 — exp(~0.33 - peaks™)) (17) For further detailed information about the distributioniof
a=1—exp(—0.2 - peaks®45) (18) plividuals, we can observe the pqpulation distribution(m[bdrs .
in Fig.[d. Fig.[T-(a) shows the initial 36 sub-populationshwi
For the remaining experiments, we use the suggested cantotal of 194 individuals just after the clustering process
figuration for algorithms that use the basic framework, i.eThe second one shows all the surviving individuals just
CPSOR, CDER, and CGAR. before the random immigrants strategy was triggered. At thi
A limitation to use Eqgs.[{17) and(IL8) to set the parameteafisoment, only 14 sub-populations with a total of 78 surviving
gSize and « is that we have to know the number of peaksndividuals and they were close to their own nearest peaks
which is assumed unknown to users. However, how to set thet not distributed across the whole fitness landscape. 1So fa
population size is also a general problem for most EAs. At thgore than half of the individuals have been removed by the
end of this section, we summarize a principle for setting thedundancy control mechanism. This procedure saved a lot of
configurations of the basic framework: the larger the numbesmputing resources for theseful(surviving) individuals. The
of local optima in the fitness landscape, the larger the valuird graph shows the whole populations when the third chang
of gSize and . happened. The remaining graphs in Fiy. 7 show similar situ-
2) Working Mechanism:In this set of experiments, we ations as the top three graphs in the following environments
illustrate the working mechanism of the basic framework From the above experimental results, it can be seen that the
through the CPSOR algorithm with respect to two differemopulation diversity is able to be automatically regainédew
aspects to see how the basic framework locates and traghs diversity decreases to a threshold level. In this fraomew
multiple peaks. The experiments were carried out on thiee diversity-maintaining technique is not the only tecjusi
MPB problem in two dimensions with’ = 2000 in a single for handling the dynamism, the memory with elitism techmiqu
typical run. The suggested configuration was used in this $&talso involved for dealing with the dynamism. From the
of experiments. Fid.]6 shows the progress of the number fedmework, we know that “useless” (redundant) individuals
sub-populations, the number of individuals, and the offlingill be gradually removed before the random immigrants
error over six successive environments. Eig. 7 presents #hethod is triggered. Therefore, those surviving individua
distribution of particles’ personal best positions of siftetent which are usually good individuals with high fitness, will
episodes in the run. In Figl 7, the ten black square boxesaaftomatically go to the next environment. As we know, those
each graph are the locations of the ten peaks and the cregsyiving individuals, which represent the memory of poeid
points are thepbest positions of particles. environments, will help the search in the new environment if
From Fig.[®, it can be clearly seen that the number of suthe next environment is similar to the previous one.
populations decreases to a certain level and then incrégses
clustering a new random population generated by the random
immigrants strategy. The similar observations can be seen f-
changes of the number of individuals in the middle graph. RPS
the offline error graph (the right one), we can not see the in-In this section, we investigate how much benefit the multi-
crease when the random immigrants strategy takes place. Tgopulation method will get by using the clustering and ran-
is because we record only the best solution so far to cakulaiom immigrants strategies introduced in SEct. Ill. In orer
the offline error. From the results, we can understand wiepmpare the algorithms with clustering and the algorithms
this basic framework is suitable for any change type or evevithout clustering, we just use a simple multi-population
undetectable environments, because the random immigramesthod where a certain number of sub-populations are create

Investigation of Clustering and Random Immigrants Meth-
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Fig. 7. Distribution of thepbest positions of particles in six different episodes, whereghggested configuration for the framework and the defattings
for the MPB problem in TablEl I, exce@f=2000 andD=2, were used.

randomly. In the simple multi-population method, there isbservations. Firstly, CPSO, CGA, and CDE obtain the best
no overcrowding control among sub-populations because itresults on most test cases due to the corresponding sasategi
very hard to do that without defining their search areas. Thised once a change has been detected. However, we do find
aim of this set of experiments is just to show that the cluster that the best results of the CPSOR and CGAR algorithms are
method is a suitable method to create sub-populationsigjtino 0.474 and 2.41, which are better than the best results (063 a
this may not be a fair comparison between the methods witi74) obtained by the CPSO and CGA algorithms, respectively
and without clustering. In order to check the efficiency a&f thThis means that the algorithms without change detection can
random immigrants strategy, we also carry out experimemts work as well as the algorithms with change detection. Inothe
the comparison of the algorithms using the basic framewowords, the basic framework proposed in SEct. Il is effectiv
(i.e., CPSOR, CGAR, and CDER) with the algorithms usinfpr DOPs.

the clustering method but no mechanism of handling hard-to-Secondly, all the results achieved by the algorithms using
detect or undetectable environments (i.e., CPSO [78], CDiag clustering method are much better than the results\athie
and CGA). The CDE and CGA algorithms use the sani®y the simple multi-population methods. However, it is htard
working mechanism proposed in the CPSO algorithm whejudge the contribution of the clustering method becauseame ¢
they all use the elitism, memory, and random immigrantst conduct the operation of redundancy control in the stmpl
strategies once changes have been detected. multi-population methods without the clustering method.

We carry out experiments to compare three sets of al-Thirdly, the results of CGAR and CDER are worse than
gorithms: (CPSOR, CPSO, and MultiPSO), (CGAR, CGAthe results of CPSOR. One reason behind this lies in the
and MultiGA), and (CDER, CDE, and MultiDE). MultiPSO, mutation operation in both GA and DE. The mutation will
MultiGA, and MultiDE are the algorithms using the simplecause a sub-population jumping from one peak with a lower
multi-population method without any overcrowding controlheight to another peak with a higher height. This means that
For each set, we used the same configurations regarding ttie algorithms using mutation operators will discard thakge
global population size ¢(Size) and the sub-population sizewith a lower height that they have searched. Thereforegther
(subSize). In MultiPSO, MultiGA, and MultiDE, the size is a trend where all sub-populations try to explore the same
of each sub-population isubSize and the number of sub- promising areas in the search space, which is against the aim
populations is fixed t@Size/subSize. of using the multi-population method, i.e., to maintain sub

Table[VIl shows the comparison of offline errors of each sebpulations in different areas. For PSO algorithms, themoi
of algorithms with different configurations on the MPB probmutation. Once a sub-population is created in a sub-ardein t
lem with ten peaks. The best offline error of each algorithm gearch space, it just focuses on exploitation on that seh-ar
shown in bold font. From the results, we can get three differedue to the working mechanism of PSO. The sub-population
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TABLE VI TABLE VI
COMPARISON BETWEEN ALGORITHMS WITH CLUSTERING AND WITHOUT ~ OFFLINE ERRORS AND+ STANDARD ERROR FOR DIFFERENT ALGORITHMS
CLUSTERING, WHERE THE SUGGESTED CONFIGURATION FOR AND f3 IN ON THE MPB PROBLEM WITH DIFFERENT SHIFT SEVERITIESWHERE THE

THE FRAMEWORK AND THE DEFAULT SETTINGS FOR THEMPB PROBLEM SUGGESTED CONFIGURATION FOR THE FRAMEWORK AND THE DEFAULT
IN TABLE[ITWERE USED RESULTS REPORTED ARE THE OFFLINE ERRORS SETTINGS FOR THEMPB PROBLEM IN TABLE[[][EXCEPTSs WERE USED
AND + STANDARD ERRORS Algorithm Severity of shift length £
subSize 0 1 2 3 4 S 6
gSizd  alg 3 = - 10 15 CPSOR | 0418 0599 0849 0964 138 169 207
CPSOR 2745507 447505 S04 904 9631 4+0.08 +0.04 +0.06 +0.07 +0.09 +0.08 +0.13
CPSO| 15+0.2 2.10.2 2.6260.2 3.52:0.4 4.39:0.4 CGAR | 148 26 276 296 316 346 3.8
MuliPSQ 8.94:0.2 7.3:0.2 8.06:0.2 8.73:0.3 9.53:0.3 +0.15 +£0.132 40.13 +0.13 +0.13 +0.16 +0.24
CGAR | 6.72E0.4 9.58:0.6 9.56£0.9 18.6£0.9 18.60.9 CDER | %56 552 r47 862 981 107 114
30 | CGA | 445104 38602 46503 56304 69104 4+0.26 +0.16 +0.27 +0.25 +0.32 +0.34 +0.36
MultiGA| 10.6£0.3 9.14:0.3 9.42:0.3 10+0.3 10.9:0.3 cpso | 0465 0715 0843 0911 0997 1.08 1.23
~DER T 37— L0 e 10603 4+0.08 +0.103 +0.15 4+0.12 +0.12 +0.14 +0.14
CDE | 5.71+0.3 5.38-0.3 5.78:0.2 6.08-0.2 6.85:0.2 mcpso | 118 205 280 357 418 4.89 553
MUltiDE | 14.6+0.3 9.69-0.3 9.77:0.2 10.}-0.2 10.3-0.2 iloi%7 if-;’g ig-% i%-%% ioéoggio.ﬁ 4i0-i379
CPSOR| 1.73t0.1 L.8H0.1 2.3800.3 3.3500.4 5.5550.7 mQSO : ' ' : : ' :
4+0.07 +0.06 +0.06 +0.06 +0.10 40.10 +0.10
CPSO| 0.715:0.1 0.99:0.1 1.24:0.1 1.81-0.2 2.56£0.2 T
MuliPSQ  8+0.2 5.58-0.2 5.970.3 6.45-0.3 7.570.3 CESO ~ - ~ ~ ~ ~ -
4+0.02 +0.02 +0.02 +0.03 +0.05 +0.06 +0.10
CGAR | 4.7403 4.2203 65509 6.18:0.7 9.3650.8 ok e e O e s s e
70 | CGA | 2.94+0.2 2.89-0.1 3.06:0.1 3.7-0.2 4.8:0.3 rSPSO : ' ' : ' ' :
- 4+0.08 +0.08 +0.05 +0.08 +0.08 40.09 +0.11
MultiGA| 23.5£0.7 15.960.4 13.5-0.4 11.5:0.3 10.9:0.3 oor Taep oo T8 HOSE H009 HO
CDER | 854F05 6r0.3 605005 7.5500.6 9.49E1 SPSO : ' ' ' : ' :
4+0.08 +0.09 +0.09 +0.12 +0.13 40.15 +0.16
CDE | 3.78£0.2 3.76:0.2 4.35:0.2 5.33:0.2 6.14:0.3 D les o TR HOLS HOIS w000
MUliDE | 11.6£0.2 9.62+0.2 10.H-0.2 10.7-0.2 10.9:0.2 ESCA | [0'03 4001 4001 £0.01 40.03 +0.06 +0.03
CPSOR| 2.740.2 0.5200.1 1.4800.2 2.5800.3 4.12:0.9 087 131 198 221 5oL 350 303
CPSO| 1.16+0.070.63t0.1 0.74:0.1 0.970.1 1.40:0.1 PSO-CP | L0707 1006 40.06 £0.06 4011 4013 40.14
MuliPSQ 8.97+0.2 6.610.2 6.1-0.2 6.17-0.2 6.37:0.2 : : : : : : :

CGAR | 5.42+0.4 2.68t0.1 3.03t0.2 3.73t0.3 5.6:0.7
150 CGA 3.37£0.2 2.99£0.2 2.74£0.1 2.95:0.2 3.55:0.2
MultiGA| 36.3+0.6 28.5:0.5 23.8£0.4 20.1-0.5 17.740.5 TABLE IX

CDER 7.72£0.5 5.58:0.2 52702 5.5:0.3 6.4450.3 ALGORITHM RANKINGS ON THEMPB PROBLEM WITH DIFFERENT SHIFT
CDE | 32+01 3.140.1 3.53:0.2 4.39:0.2 5.54:0.2

MuliDE | 13.6£0.2 12.9:0.2 13.5:0.1 14.2:0.1 14.8:0.2 SEVERITIES
CPSOR|  3.98£0.2 1.1200.1 0.76:0.04 0.4740.1 1.78:0.3 Agorthm 0 1 2 3 4 5 6] Overal
CPSO| 4.39£0.1 1.99:0.1 1.16:0.04 1.12-0.1 1.24:0.1 PSOR T 1T 75 > 7 33
MuliPSQ 12.7£0.2 10.4:0.1 9.46:0.1 8.99:0.2 8.65:0.2 CeAR 9 10 &8 + 8 7 sl 7
CGAR | 625504 34802 2.8%02 241102 3.403 CDER 11 11 11 11 11 11 11 10
300 | CGA | 4.45:02 3.9:0.2 3.6:0.1 3.31:0.2 3.44:0.2 CPSO 2 2 1 1 1 1 1] 1
MultiGA | 40.4:0.6 34.2:0.6 30.4£0.6 26.3:0.4 24+0.5 epso 7 8 9 © 10 9 o @
CDER| 8.250.3 563002 55102 5540257302 moso 7 7 7 8 9 8 8 7
CDE | 4.74:0.1 4.38:0.1 4.12:0.1 4.55:0.1 5.43:0.2 CESO 4 4 4 4 4 a 4| 3
MuliDE | 19.8£0.2 19.2-0.2 19.8:0.2 20.4:0.2 20.7:0.2 “pey 3 = 5 e 7 & & &
SPSO 6 9 10 10 5 10 10 8
ESCA 10 6 3 3 3 3 2| 4
PSOCP 5 3 6 5 6 5 7 5

will not jump to other sub-areas. This is even obvious for
the PSO algorithms with thgbest model. This result also

reminds us that we should choose or design effective local , .
search algorithms rather than global search operators ifsge N¢luding mCPSO [6], mQSO [6], SPSO [54], rSPSO [4],

multi-population methods to locate and track multiple oati CESO [(;16]’ ESCA [47], CESO [78]. PSIO'CP _[4:15](5_flf-|m80

There may be some other factors that cause the inefficiert _]' an R\_/DEA [73], on the MPB problems with different

of CGAR and CDER, e.g., improper parameter settings. H ift severities §) and different numbers of peaksefuks).

to adjust the parameter settings for CGAR and CDER is notl) Effect of Varying the Shift Length Severityable[VIIl

the main aim of this paper, and, hence, is not discussed heRE€sents the comparison results of different algorithms re
So far, we have investigated how the basic framework work@rding varying the severity of the shift length Table[IX

through the three case studies (CPSOR, CGAR, and CDgigr)ow_s.the rankings of algonthms with d|ff(_arent_sh|ft lemgt

in dynamic environments. However, we have not known ho@¢Verities. The total ranking of each algorithm is caladat

they would perform in comparison with other algorithms yep_y the average rankings obtained for all test cases. From the

The following section will present the results of compamisoresunsi it can be seen that when the shift severity is larger
with other algorithms. than 1, CPSO achieves the best results, which are much better

than that of all the other algorithms. CPSOR obtains the best
results among all the algorithms when there is no shift odlsma
shift length (i.e.,s = 1.0). Compared with other algorithms

In this section, experiments were carried out to compare thrcept CPSO, the results obtained by CPSOR are much better
performance of algorithms that use the basic framework (i.¢han those of other algorithms. For the rest of the algorsthm
CPSOR, CGAR, and CDER) with several peer algorithm€ESO and ESCA are the best two performers due to their

D. Comparison of the Involved Peer Algorithms



17

TABLE X
OFFLINE ERRORS AND=E STANDARD ERROR FOR DIFFERENT ALGORITHMS ON THIMIPB PROBLEM WITH DIFFERENT NUMBERS OF PEAKSWHERE THE
SUGGESTED CONFIGURATION FOR THE FRAMEWORK AND THE DEFAULTESTTINGS FOR THEMPB PROBLEM IN TABLE[[[EXCEPTpeaks WERE USED

peaks CPSOR CGAR CDER CPSO mCPSO mQSO mCP3@SO" CESO rSPSO SPSO ESCA PSO-CP HmSO RVDEA
1 0.0356 2.02 0.9032.29e-04 4.93 5.07 4.93 5,07 104 142 264 098 341 087 102
+0.008 £0.05 +0.20 £1.04e-04 +0.17 £0.17 +0.17 +0.17 +0.00 £0.06 £0.10 £0.0 +0.06 +0.05 -

5 0.0535 1.88 2.6 0.00566 3.36 3.47 3.36 3.47 - 110 231 - - - -
+0.005 £0.10 +£0.63 +0.002 +0.26 +0.23 +0.26 +0.23 - +0.03+0.11 - - - -

5 0.549 256 8.02 0.361 2.07 181 2.07 181 - 1.04 215 - - 1.18 -
+0.049 +0.1 +0.34 +£0.15 +0.08 +0.07 +0.11 +0.07 - +0.03+0.07 - - +0.04 -

7 0.594 298 6.74 0.675 211 177 211 1.77 - 121 198 - - - -
+0.08 +0.18 £0.39 +0.09 +£0.11 +0.07 +£0.11 +£0.07 - =£0.05+0.04 - -

10 0599 26 552 0.715 2.08 1.80 2.05 175 138 150 251 154 1312 1854
+0.048 £0.13 +0.16 +0.103 +0.07 £0.06 +0.07 +0.06 +0.02 +0.08 £0.014+0.02 +0.06 +0.04 -

20 0.796 3.66 7.49 1.18 264 242 2.95 274 172 220 321 189 - 15 7 38
+0.05 +0.14 £0.27 +0.09 +£0.07 +£0.07 £0.08 +£0.07 +£0.02 £0.07 £0.07+0.04 - +0.06 -

30 1.05 3.12 551 1.34 2.63 248 3.38 3.27 124 262 364 152 2025 1.8.92
+0.06 +£0.1 £0.12 =+0.07 =£0.08 £0.07 +£0.11 +£0.11 £0.01 +£0.07 +£0.07£0.02 +0.07 +0.04 -

50 0.986 3.26 5.79 1.42 265 250 3.68 3.65 145 272 386 167 214 6 1.8.78
+0.05 +0.11 £0.15 =+0.07 +£0.06 +£0.06 +£0.11 £0.11 +0.01 +0.08 £0.08 £0.02 +0.08 +0.06 -

100 1.06 268 4.12 1.09 249 236 4.07 393 128 293 4.01 161 204 8 1.8.37
+0.04 +0.07 +0.1 +0.03 +0.04 +0.04 £0.09 +£0.08 +£0.02 +£0.06 +£0.07+£0.01 +0.07 +0.03 -

200 0.949 239 371 0.955 244 226 3.97 3.86 - 279 382 - - 1.71 354
+0.04 +0.07 £0.11 +0.04 +£0.04 +0.083 +0.08 +0.07 - =£0.05+0.05 - - £0.02 -
TABLE XI

ALGORITHM RANKINGS ON THEMPB PROBLEM WITH DIFFERENT NUMBERS OF PEAKS
peaks CPSOR CGAR CDER CPSO mCPSO mQSO mCP3@SO" CESO rSPSO SPSO ESCA PSO-CP HmSO RVDEA

1 2 9 4 1 12 14 12 14 7 8 10 5 11 3 6
2 2 4 6 1 7 9 7 9 - 3 5 - - - -

5 2 0 11 1 7 5 7 5 - 3 9 - - 4 -

7 1 9 10 2 7 4 7 4 - 3 6 - - - -

10 1 13 15 2 11 9 10 8 4 6 12 7 3 5 14

20 1 12 14 2 8 7 10 9 4 6 11 5 - 3 13

30 1 0 15 3 9 7 12 11 2 8 13 4 6 5 14

50 1 0 15 2 8 7 12 11 3 9 14 5 6 4 13

100 1 9 15 2 8 7 14 12 3 10 13 4 6 5 11

200 1 5 9 2 6 4 12 11 - 7 10 - - 8 3

Overall 1 10 15 2 9 8 12 11 3 6 13 5 7 4 14

diversity maintaining and local search strategies. the fitness landscape. In this section, we investigate the

2) Effect of Varying the Number of Peak$able[X shows performance of CPSOR in hard-to-detect environments in
the offline errors of all the algorithms when varying the nuneomparison with the CPSO algorithm. Fid. 8 shows the effect
ber of peaks. The corresponding rankings of each algorittohvarying the ratio of changing peak#eaks with different
are shown in TablEZXI. In the two tables, the “~" sign meansumbers of peaks for the CPSOR algorithm. Tablg X!l and
that there is no result available in the original paper. ThEable[XIIl show the comparison between CPSOR and CPSO
algorithms mCPSO and mQSO denote mCPSO without under different ratios of changing peaks with differentftshi
anti-convergence and mQSO without anti-convergenceerespseverities and different numbers of peaks, respectiveligoth
tively. tables, the best results of the two algorithms are shown lith bo

From the results, it can be easily seen that CPSOR outpfamt.

forms all the other peer algorithms when the number of peaksgom the results, it can be seen that different ratios of

is Iarger than five. By looking at the ranking table, the Cpsawanging peaks do bring different levels of difficulty fortho
algorithm takes the second place followed by CESO, HMSQqorithms. Generally speaking, the smaller the ratio angh
ESCA, rSPSO, and PSO-CP, which are recently proposedng peaks, the harder it is for an algorithm to detect changes
From the comparison results of CPSOR with the other pegiiy hence, the more difficult it is for an algorithm to track th
algorithms on the MPB problem with different numbers Otf:hanging peaks. From Fifll 8, it can be seen dfataks = 0.1

peaks and shift severities, we can draw a conclusion that %gs the biggest difficulty for CPSOR in most test cases,
CPSOR algorithm is a competitive optimizer for DOPs. except the case opeaks = 50. By observing Tabl&Xl

although CPSO outperforms CPSOR whdPeaks = 1, the
E. CPSOR in Hard-to-Detect Environments results of CPSOR are much better than those of CPSO on alll
In all the above experiments, we assume that all peaRaift severities whemPeaks is less than 0.5.
change over time in the fitness landscape. Therefore, ckangeFrom the results of Table Xlll, we can make two ob-
can be easily detected even by a single random point servations. Firstly, CPSOR outperforms CPSO on most test
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peats=10~ A peats=30' = pealés:lOOV - TABLE XIlI

eaks=20---3K--- eaks=50--&-- eaks=200--m

P P P COMPARISON OFCPSORAND CPSOON THE MPB PROBLEM WITH
2 #

DIFFERENT RATIOS OF CHANGING PEAKS:Peaks AND DIFFERENT
NUMBERS OF PEAKS WHERE THE SUGGESTED CONFIGURATION FOR
CPSORAND THE DEFAULT SETTINGS FOR THEMPB PROBLEM IN
] TABLE[ EXCEPTcPeaks AND peaks, WERE USED RESULTS REPORTED
1 ARE THE OFFLINE ERRORS ANDt STANDARD ERRORS

18

16

14

1.2

Offline error

L peaks| Algorithm cPeaks
0.8 B : 1 0.1 0.3 0.5 0.7 0.9 1.0
06l E-Ca N ] CPSOR | 0.931 0.761 1.02 0.952 0.752 0.594
os ‘ ‘ ‘ ‘ ‘ ‘ 7 +0.2 +0.1 #£0.2 +0.1 +£0.1 +0.09
- o1 0.3 05 0.7 0.9 10 CPSO 394 166 154 0.822 0.932 0.675
Percentages of changing peaks (cPeaks) +1 +03 £0.2 £0.2 +02 0.1
CPSOR| 1.77 1.09 0.633 0.742 1.83 0.599
10 +0.3 +0.3 +0.05 £0.08 £0.2 +0.05
Fig. 8. Offline errors of CPSOR on the MPB problem with differeatios of CPSO 3 276 0912 102 211 0.715
changing peaksPeaks and different numbers of peaks, where the suggested +04 +04 £0.1 =+0.1 #£0.2 =+0.1
configuration for CPSOR and the default settings for the MP&lem in CPSOR | 1.99 0.922 0.657 0.897 0.792 0.796
Table[] were used. 20 +0.5 +0.1 +0.07 £0.07 £0.1 +0.05
CPSO 458 133 0998 152 134 1.18
TABLE XII +05 +0.2 401 +0.1 +£0.1 +0.09
CPSOR| 1.18 0.952 0.812 0.823 0.903 1.05
COMPARISON OFCPSORAND CPSOON THE MPB PROBLEM WITH . 102 401 40.09 40.07 +007 +0.06
DIFFERENT RATIOS OF CHANGING PEAK®Peaks AND DIFFERENT SHIFT CPSO 443 145 147 112 105 1.34
SEVERITIESS, WHERE THE SUGGESTED CONFIGURATION FORPSOR +0.6 £0.2 £0.1 +£0.09 £0.07 £0.07
CPSOR | 0.888 1.1 1.09 1.04 124 0.986
AND THE DEFAULT SETTINGS FOR THEMPB PROBLEM IN TABLE[T} 1009 +£0.07 +0.07 4006 +0.07 +0.06
EXCEPTcPeaks AND s, WERE USED RESULTS REPORTED ARE THE 50 CPSO 253 187 142 132 178 1.42
OFFLINE ERRORS AND+ STANDARD ERRORS +04 +0.1 +0.1 +0.1 40.09 +0.08
. CPSOR| 157 0.802 1.12 0989 1.17 1.06
s| Algorithm cPeaks 100 +0.1 +0.05 +0.07 +0.04 +0.05 +0.04
0.1 03 0.5 0.7 0.9 1.0 CPSO 3.4 122 137 126 137 1.09
CPSOR | 1.47 0535 0.5 0.6 1.72 0.418 406 +0.1 4+0.1 +0.08 +0.06 +0.04
0 +0.3 +£0.2 +£0.06 +0.1 +0.2 +0.08 CPSOR| 14 124 0927 1.16 1.27 0.949
CPSO | 301 27 0.904 0.7651.68 0.465 200 +0.2 +0.08 +0.05 4+0.05 +0.04 +0.04
+04 405 +£0.09 +0.1 +0.2 +0.09 CPSO | 3.06 1.93 1.08 1.17 1.18 0.955
CPSOR | 1.77 109 0.633 0.742 1.83 0.599 +0.3 +0.1 +0.08 £0.05 +0.03 +0.04

+0.3 +0.3 +0.05 +0.08 £0.2 +0.05
CPSO 3 276 0912 102 211 0.715
404 404 +£0.1 401 402 +0.1
CPSOR| 1.89 1.17 0.781 0.99 2.040.849
2 +0.3 +0.2 +£0.06 +0.09 +0.1 +0.07 unigue advantages of the proposed clustering framework in

CPSO | 324 2.96 0.939 1.19 2.240.843 .
104 404 401 401 402 402 hard-to-detect environments.
CPSOR| 194 1.61 0995 1.24 235 0.964

+0.3 +£0.3 £0.05 +0.1 +0.1 £0.07

3| cPso | 311 3.38 0928 1.32 258 0911 VI. DISCUSSION INREAL-WORLD APPLICATIONS
+0.3 +0.4 +0.08 +0.2 +0.2 +0.1
CPSOR| 2.06 2.09 1.25 158 26 138 The general framework proposed in this paper is for dy-
4 +03 202 2007 +£0.1 +0.1 +0.09 namic environments where dynamism is hard to detect or
CPSO | 317 329 1.11 1.43 2.66 0.997 ere ay
+0.3 +0.3 4+0.09 +0.2 +0.2 +0.1 totally undetectable, which is close to real-world probéem
CPSOR| 205 26 134 172 283 169 Here, hard-to-detect means the dynamism can be detected
5 +02 4£0.2 40.05 +0.09 +0.1 +0.08 but with a huge price, and hence, is impractical in real-
CPSO | 327 379 114 145 269 1.08 X _ ;
40.3 40.3 401 402 +01 =+0.1 world problems. Figl]l in Sedf II[JA is such an example.
CPSOR|[ 217 304 1.43 203 313 207 The change can be detected with the cost of enumerating
4+0.3 £+0.2 +0.07 +0.08 +0.1 +0.1 ; ; : R e ;
6l cpso | 331 284 191 144 287 193 all the points in the fltne.ss landscape, which is |mp053|blle
404 +0.3 +01 +01 +0.2 401 for problems in the continuous space. Another example is

the dynamic TSP [37]. For a TSP with a small number of
cities, e.g., less than 100, it is easy to check the changa whe
the position of one city changes. However, it will become
cases. Secondly, for each particular number of peaks, iiepractical to check the position change of a single city agno
peaks = 50, the offline error for CPSO basically increasesillions of cities. Therefore, this framework is partictija
with the decrease of the ratio of changing peaks, but not geeful for the environments where dynamism is hard-toalete
obviously for CPSOR. or undetectable.

The comparison results with the peer algorithms in this Below, we first present some discussions regarding the usage
paper clearly show that the performance of the proposefithe clustering framework and then give some discussions
clustering framework is competitive in detectable dynamiegarding the potential application of the framework inesav
environments. Most importantly, the results also show theal-world problems.
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A. Usage of the Framework a particular activity is re-scheduled later than its orajin

The clustering framework is proposed for EAs in dynamiﬂme* all currer_1t solution_s yvill still be feasible regardithis
environments with any change properties to locate and tratk@nge. In this case, it is not easy to detect the change
multiple optima. Hence, we believe that it would work foPY monitoring t.he fitness or feaS|b|!|ty of individuals ineth
any optimization problems that have multiple optima in theUrrentpopulation. As a result, we fail to respond to thengea
fitness landscape, which is one of the most common feature€¥en though we should. In a dynamic scheduling problem,
many optimization problems. To apply this framework, usef§@ constraint change does not affect the current populatio
only need to define a proper distance metric for a particulf}at iS, the change expands the feasible areas in the search
problem to be solved. space, that change will be difficult to detect. Two examples o

Although this framework is easy to apply, it does not haydynamic schedqling pro_blems in the real world are timetegpli
any domain knowledge. So, to effectively solve a particuIz!i’rmbl‘_amS anq flight assignment problems. i
problem with this framework, users should design or choose” timetabling problem can be described as the scheduling
search operators that may make use of specific domain kno@fi& certain number of activities (lectures, labs, surgemtc.),
edge. Regarding the parameter settings in this framewoWd)ich involves a particular group of people (teachers, estis|
users can follow the suggested settings in this paper. BEIC) Over a finite period of time, requiring certain res@src

we suggest that users should re-adjust them because they((#8MS, Projectors, etc) in conformity with the availatyilof
problem dependent. resources so that it maximizes the possibility of allocato

minimizes the violation of constraints [21]. There are vas
timetabling problems, including, school timetabling, exa

B. Path Planning in Dynamic Environments nation timetabling, employment timetabling, and univrsi

In the real world, hard-to-detect environments widely exiscourse timetabling, etc. There are also different methods t
Taking the design of the path planning system as an examsielve timetabling problems, such as, graph coloring [15],
the optimal path planning is an important issue in navigatid>As [67], integer programming [61], tabu search [26], and
of autonomous mobile robots. The objective is to find a@onstraint programming approaches [24], [30]. A reviewed
optimal collision-free path from a starting point to a gaals Work for dynamic timetabling problems with changes and
given environment according to some criteria, e.g., digtan uncertainties was reported in [13]. A complex timetabling
time, or energy. In the real world, the environment chang@goblem was investigated in [59], and the system designed
over time due to moving obstacles with unknown trajectorie [59] is currently used for many varied course timetabling
e.g., a large public square full of people moving in différerproblems encountered each term at Purdue University [59].
directions and a factory full of moving robots and human There are some advantages using the framework proposed in
workers, etc. The distance that the sensors of a robot dhis paper to solve dynamic scheduling problems. Firstig, t
reach is limited. Furthermore, the ways of moving obstaclé&mework together with specialized knowledge in timeitag!
are unknown. Therefore, the robot can not detect changessfble to find new solutions due to the diversity maintaining
a moving obstacle that is beyond its detectable range. mechanism, even for undetectable constraint changes. Sec-

There are many classic approaches for the path plannigiedly. the new solutions would be close to the original ones
problem, e.g., the potential field methods [22], visibilisaph because of the memory with elitism scheme in the framework.
methods [42], and grid methods [8]. These classic appraacti@ the framework, some old individuals carrying informatio
have a big disadvantage of being trapped in local minim@f previous environments will survive in the new environrnen
which makes them inefficient in practice [48]. There are alstherefore, the new solutions are very likely to contain in-
methods for path planning based on EAs [7]. The methotRymation from previous environments based on the survived
proposed in [74], [84] have shown that it is effective tdndividuals. This is an important issue in dynamic scheayli
apply the general idea of evolutionary computation to sohgoblems. Usually, a new solution, which is close to an oagi
a problem in a more natural and suitable representation. Gure (minimal changes), is the best choice for decision nsaker
approach can be also applied to solve the path plannipgcause it will reduce the cost in re-scheduling the ressurc
problem since we do not need to detect the changes in or@ad activities from the current solution to the new solution
to maintain the population diversity.

D. Optimization in Dynamic Environments with Noise

C. Dynamic Scheduling Problems One of the most important applications of our framework

For static scheduling problems, all resources and a@svitis for optimization problems in dynamic environments with
are given in advance. Constraints are also fixed, i.e., thereise. Noise in the real world comes from many different
are no uncertainties in the behavior of resources and fetivi sources, e.g., sensory measurement errors and randomized
[35]. However, in the real world, every schedule is subjesimulations. One example is the evolutionary structure-opt
to unexpected events, such as unexpected resource failunézation of neural networks using indirect encoding scheme
(e.g., machine breakdown), the arrival of new activitiesrty [83], where noise is inevitable to evaluate the networkcstru
the solving phase, and shorter/longer processing time thame. Different fithess values can be obtained from the same
expected, etc. Among these uncertain constraints, some ge@otype (network structure) due to random initializatain
hard-to-detect. For example, if the time of completion dhe weights and the multi-modality of the error function.
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Another good example is the multi-rover coordination peobl algorithms under different test environments. In orderest t
in dynamic and noisy environments [70], [69]. The signa& thhow the framework performs in hard-to-detect environments
rovers receive from the environment are not reliable duéé¢o twe conducted comparison of CPSOR with the CPSO algo-
noise caused by the rovers’ sensors and actuators. rithm, which is a competitive optimizer in detectable dymnam

To address optimization problems in noisy environmentspvironments.
many studies have been reported [1], [2]. And many methodsTo summarize the experimental study in this paper, we can
have also been proposed to reduce the detrimental effedtaw two conclusions. First, CPSOR is the best performer
of noise, such as population sizing [23], fithess averagimgnong all the involved algorithms in detectable environteen
and fitness estimation [60], specific selection mechanish [Sand also an effective optimizer for DOPs in hard-to-deteet e
and Kalman filtering [66]. The proposed framework is ableironments. Second, CPSOR possesses an outstanding adapt-
to search optimal solutions in noisy environments since ability to different dynamic environments in terms of wheth
does not need to detect the changes that are very difficultth@ changes can be detected or not. Generally speaking, this
detect in noisy environments. In other words, we may comsideaper has achieved the main objective: to develop a multi-
the proposed framework as a noise-proof method from tpepulation method in undetectable environments.
detection-free point of view in dynamic environments with In the future, there are several interesting areas to pursue
uncertainties. The first is to improve the performance of the clustering

method. The current version can not detect the situatiomwhe
VII. CONCLUSIONS ANDFUTURE WORK a single peak is covered by only one individual. More work

Multiple population approaches are effective methods should be done to resolve this problem. The second is to
locate and track multiple optima in dynamic environmentslesign effective local search algorithms within this framek
However, how to effectively use multi-population methosds iin more research areas. The third is to test the performance
a difficult question. The difficulty lies in several issuestth of the basic framework in completely undetectable dynamic
need to be addressed in dynamic environments, e.g., howettvironments. The last one is the application of this frapréw
create sub-populations, how to remove redundant indiVégluain real-world problems.
and how to deal with the dynamism that is difficult to detect.
Especially for the last issue, there is little research thes
been identified to address it [27].

This paper proposes a simple, general, and effective mu
population method to solve DOPs in undetectable dyna
environments. The basic framework employs a single linka
hierarchical clustering method to generate sub-populatio
whose search radius and size are self-deterministic. The re
dundancy control is achieved by removing the individuadsrfr
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