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Abstract—Since Estimation of Distribution Algorithms (EDA)

were proposed, many attempts have been made to improve EDAS’

performance in the context of global optimization. So far, he
studies or applications of multivariate probabilistic model based
continuous EDAs are still restricted to rather low dimensimal
problems (smaller than 100D). Traditional EDAs have difficdties

in solving higher dimensional problems because of the curse

of dimensionality and their rapidly increasing computational
cost. However, scaling up continuous EDAs for higher dimen-
sional optimization is still necessary, which is supportedy the
distinctive feature of EDAs: Because a probabilistic modelis
explicitly estimated, from the learnt model one can discoveuseful
properties or features of the problem. Besides obtaining a @pd
solution, understanding of the problem structure can be of geat
benefit, especially for black box optimization.

We propose a novel EDA framework with Model Complex-
ity Control (EDA-MCC) to scale up EDAs. By using Weakly
dependent variable Identification (WI) and Subspace Modelig
(SM), EDA-MCC shows significantly better performance than
traditional EDAs on high dimensional problems. Moreover, he
computational cost and the requirement of large population
sizes can be reduced in EDA-MCC. In addition to being able
to find a good solution, EDA-MCC can also produce a use-
ful problem structure characterization. EDA-MCC is the first
successful instance of multivariate model based EDAs thatan
be effectively applied a general class of up to 500D problems
It also outperforms some newly developed algorithms desigm
specifically for large scale optimization. In order to undestand
the strength and weakness of EDA-MCC, we have carried out
extensive computational studies of EDA-MCC. Our results hae
revealed when EDA-MCC is likely to outperform others on what
kind of benchmark functions.

Index Terms—Estimation of distribution algorithm, large scale
optimization, model complexity control.

I. INTRODUCTION
STIMATION of Distribution Algorithms (EDA) [1], [2]

model which presents extracted global statistical infdioma
from the search space. EDA uses the model as guidance of
reproduction to find better solutions. Actually, any EA has
an underlying model presenting its sampling (reprodugtion
mechanism. But in traditional EAs, the underlying model is
usually implicitly expressed through evolutionary operat
Once the model is explicitly presented, the algorithm camth

be classified as an instance of EDA. EDAs were proposed
originally for combinatorial optimization. Research on &AD

has been extended from discrete domain to continuous opti-
mization and much progress has been made. In this paper,
we focus EDASs in single objective continuous optimization
domain.

Many studies on continuous EDA have been done in the
last decade. In general, so far there are two major branches
of continuous EDAs. One is based on Gaussian distribution
model, which is the most widely used and intensively studied
[2], [4]-[11]. Another major branch is based on histogram
models [6], [12]-[19]. However, most of the existing stiglie
have a common problem that the performance of EDA is
only validated on low dimensional problems (usually smalle
than 100D). The performance of EDA on higher dimensional
problems (e.g. 500D) is rarely studied. As we can see in the
following sections, the reason of this is not that reseache
simply ignored such an issue, but that continuous EDAs do
have difficulties in high dimensional search space. Due to
relying on learning a model from samples, EDAs suffer from
the well-knowncurse of dimensionality20]. If considering
multi-dependency structure of variables to solve non-sdpa
problems more effectively, traditional EDAs’ fast incraas
computational cost also makes them impractical to realdvor
applications. In this paper, we propose a novel EDA framé&wor
with Model Complexity Control (MCC), named EDA-MCC,

have been intensively studied in the context of globg scale up EDA for continuous optimization. By adopting

optimization. Compared with traditional Evolutionary Alg

Weakly dependent variable Identification (WI) and Subspace

rithms (EA) such as Genetic Algorithms (GA) [3], there iodeling (SM) in EDA-MCC, we can restrict the model
neither crossover nor mutation operator in EDA. Instead\EDcomplexity to a necessary level and make EDA-MCC less

explicitly builds a probabilistic model of promising sals
in search space. Then new solutions are sampled from
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suffer from the curse of dimensionality. Furthermore, we
¥ also suppress the increasing demand of population size
and reduce the overall computational cost in terms of CPU
gyme. Experimental comparisons on well-known benchmark
functions validate the effectiveness and efficiency of EDA-
MCC. We can find that EDA-MCC have significant advantages
over traditional EDAs when solving high dimensional non-
separable problems with few local optima (up to 500D in
current experiments) in terms of solution quality and compu
tational cost. The significant difference between EDA-MCC
and traditional EDAs with model complexity penalization is
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discussed. According to the No Free Lunch Theorem [21], the
limitations of EDA-MCC are also analyzed. EDA

If traditional EDA is not appropriate for high dimensional |nitialize a population by generating individuals
optimization, why do we still strive to scale it up? Our mot randomly.
tivation is based on a distinctive advantage of applying EDARepeatuntiI a stopping criterion is met.
compared with other EA - users can discover or identify usefu
properties/features of the problem from the learnt prdistiai
model. Since the model is explicitly built in EDA, it is alway
possible to observe the learnt model structure and parasnete
For simple univariate (marginal distribution) model based
EDAs, because the interdependencies among variables |al
simply ignored, it is not possible to reveal deeper level of
information which represents the problem structure oraldei  Fig- 1. A typical EDA.
dependencies. However, multivariate model based EDAs have
such potentials. In EDA-MCC, multi-dependency is adopted

Lo - f d, such as EMNAs. [2], Normal IDEA [5], [6]
but the degree of model complexity is explicitly controlled? °P9s€ < .
EDA-MCC is a first attempt of scaling umultivariate model and EGNA [2], [7]. EMNAy;qq,adopts a conventional max-

based EDA for high di . | fi timizati Ar_num likelihood estimated multivariate Gaussian disttido
ase or mgn dimensional continlious optimizatio presented by; and 3. In Normal IDEA and EGNA, after

There are clear difference between EDA-MCC and previousrl taining th : likelihood estimation &fand 3
developed EDAs with model complexity penalization strgfeg amning the maximum likelinood estimation prand 2, a
graphical factorization, that is, a Bayesian factorizat{oe.,

which will be shown in the following sections. . .
9 e%_Gaussmn network), is constructed, usually by local $earc

The remainder of this paper is organized as follows. In S q h. Construct hical factorizatidroi
tion I, we analyze the difficulties of traditional EDAs onghi or greedy search. Lonstructing graphical factorizatiaro
duces additional computation along with maximum likelidloo

dimensional problems, especially for Gaussian based EDAs.” =~ . . . ; :
Section Ill, we present W1 and SM for EDA-MCC when GaysEstimation, but the computational time in solution sanglin
' ocedure can be reduced. On the other hand, if we want

sian model is adopted. The difference between EDA-MCE | luti f tional ltivariat
and traditional EDAs with model complexity penalization i%: sampie new sotions irom a conventional muttivariate

also discussed. Experimental studies on 50D-500D proble gussian dlStF!butIOI’] as in EMNAvar, deco_mposng IS

are given in Section IV. In Section V, the dependence & Mmust [22]. Since these EDAs are essentially based on the
EDA-MCC of its WI and' SM paramete’rs is investigated same multivariate Gaussian distribution, their perforogsn
Section VI, random partitioning based SM is compared \'Ni are similar. At least no significant superiority of one to tres

a clustering based SM, the advantage of random partitioni sAbehen retf)orted so far é_?ter, some ?ﬁ(tgnsmns of lthesfe
in high dimensional optimization is verified and discusse s have been proposed 1o Improve their poor explorative

o " bility, such as EEDA [8], CT-AVS-IDEA [9] and SDR-AVS-
The problem property characterization ability of EDA-MC ' ’ ) L
is shown in Section VII. In Section VIII, we analyze the DEA [10]. These EDAs scal& according to some criterion

respective and mutual effects between WI and SM. Our fin%‘iter maximum likelihood estimation. A comparative study o

conclusions are drawn in Section IX along with future WOI’k[ if{]er%rgsfggsrtlﬁgcsbrgfg:;lsecégzissiggtggf: dcgg,gs d’gg&s

adopting Gaussian mixture distribution [23]-[26] have bee
proposed for solving multimodal problems. Some hybrid con-
tinuous optimization algorithms using Gaussian based EDAs
A. Related Work [27], [28] have also been proposed.

A typical EDA flow is shown in Fig. 1. Each individual in Interestingly, previous studies have shown that although

the population presents a solution. One iteration of the |O(t§rs1aL{ESS|a3_rr;c_)getl§ car}not alv_va_lys offlert_an act;urate esUmazftI 'on
refers to one generation of evolution. € true distribution of promising soiutions, they can r

The primary difference between different EDAs is the prol&gSS offer_ a ugelful ir(;formatiokrjl ffr g;JidIilng thﬁ_ glogall Séﬁgf'
abilistic model used. When adopting a Gaussian distributi any unimodai and some, but not all, muftimodal problems.
model, the /() in Fig. 1 has the form of a normal density o far no satisfactory explanation of this phenomenon has

which can be defined by a mean vecforand a covariance been presented in the literature. It will be interestinghe t
matrix . The earliest proposed Gaussian based EDAs ag,gure to study when a multimodal problem is easy or hard

based on simple univariate Gaussian, such as UMI# and or a given single Gaus_sian based EDA, e.g., by using a
PBIL. [4]. In these EDAs, all variables are regarded indepe geently proposed analytical approach [29]. However, pikce

dent with each other. The simplicity of such models makgr univariate Gaussian based EDAs, most existing studies

1) Selectm < M individuals from?P.
2) f(¥) «+ Estimate a probability density function from
the selected individuals.
3) P’ + Sample a number of individuals froff(Z).
re4) CombineP andP’ to create the newP.

II. THE DIFFICULTIES OFEDAS ONHIGH DIMENSIONAL
PROBLEMS

them easy to implement and the algorithms are characteriZ} dmultlvanate Gaussian based EDAs are restricted to low

by a low level of computational cost. But also because mcen?_lonal pré)g[ims (_prot;j_e;n size 100[;)" includ |
the simplicity, they may have difficulties in solving probie ontinuous S using histogram models include severa

Whose variables have strong |nt§rdgpendeHC|qs. To remediome comparisons between EMMAy,;and EGNA can be found in [2].
this, several EDAs based on multivariate Gaussian have be@wever rare comparisons involving Normal IDEA have beemena



EDAs based on univariate histogram [6], [12], [13], [15]size M when some level of selection pressure needs to be
[18] and some based on multivariate histogram [14], [16aintained. Of course, the demand of the increasing popula-
[17], [19]. Histogram models are more flexible than Gaussidion size can be of different levels when models have differe
models because of the convenience to describe arbitrary melels of complexity. For simple univariate model based EPDA
timodality. However, if considering multiple variable dap when solving ann dimensional problem, it estimates one
dencies such as full interdependency, the required nunmberdanensional distributions independently. When poputasize
bins can increase exponentially with problem size [30],cluhi M is large enough for estimating thesedistributions and
makes multivariate histogram models hard to be applied finding good enough solutiony/ does not necessarily grow
high dimensional problems in practice. Although some ¢$forasn grows. However for multivariate models, the far more de-
have been made to improve the scalability of multivariagrees of freedom make them usually require larger populatio
histogram model based EDAs [14], [16], existing results dfizes, which can be validated from our experiments. When the
these EDAs are also restricted to low dimensional problerdanensions of problems are very high, traditional EDAs with
(problem size< 30D), which is even lower than multivariatecomplex multivariate models may become inapplicable since
Gaussian based EDAs. the large population size may consume considerable com-
To the best of our knowledge, there have been only thrpatational resources. There is an urgent need for techgique
attempts studying continuous EDA on large scale §00D) that can reduce the required computational resources witho
problems: 1) a univariate model based EDA, LSEDA-ghffecting (too much) the precisions of learning probatdis
proposed by Wang and Li [31]; 2) application of UMGAnd models.
EGNA as logistic regression regularizers on a “lakggenes),  Since previous results (e.g., [6]) show that Gaussian nsodel
small N (samples)” microarray classification problem, proare less affected by the curse of dimensionality than hiatog
posed by Bielza et al. [32]; and 3) study of parallel immodels, which is reasonable because usually Gaussian snodel
plementation of EGNAE on sphere function, proposed byhave less degrees of freedom than histogram models, and
Mendiburu et al. [33]. However, these attempts have their-li single Gaussian models have less degrees of freedom than
tations. LSEDA-gl adopts amnivariatemodel, that is, a mixed Gaussian mixture models, in the following sections we focus
Gaussian and Lévy distribution. As discussed beforecitda on using single multivariate Gaussian models to scale up
of the ability to describe and reflect problem structure. B t EDA. Univariate Gaussian models are also involved in arslys
other hand, in [32], a multivariate EDA is utilized as a paramand experiments. However, it should be noticed that our
eter optimizer of a logistic regression model with (ordey ofconclusions can be generalized and are not restricted only t
500 parameters, trained via constrained maximum likelhooGaussian models. Although previous research has shown that
The parameters are constrained to certain intervals,teffdc single Gaussian model based EDAs can perform well on many
regularizing the model. However, the general performarice unimodal and multimodal problems, they still have known
the multivariate EDA on broader types of high-dimensiondimitations other than the effect of the curse of dimensiitya
problems is still unknown. In [33], the study focuses on th8pecifically, EDAs using maximum likelihood estimated Gaus
parallel multivariate EDA's performance in terms of spegd usian are supposed to have poor explorative ability. Thaadet
of execution time but not on solution quality, and only onanalysis of UMDA’ [34], [35] have proved that the maximal
test function is involved in experiment. In a word, an oped ardistance that the mean of the population can move across
important question is, can we expect promising performanttee search space is bounded, and the algorithm is guaranteed
(in terms of solution quality) of multivariate model basedo converge since the population variance converges ta zero
EDAs on high dimensional optimization problems? Although theoretical analysis have not been developedlasim
results of multivariate Gaussian based EDAs using maximum
. . . likelihood estimation have been also observed in experiaten
B. The Curse of Dimensionality studies [9], [11], [24], [36]. To improve the explorativeiktly,
Since EDAs completely rely on probabilistic models builseveral Gaussian based EDAs with covariance matrix scaling
from finite data samples, they must suffer from the well-know[8]-[10] thus have been proposed. But the effectiveness of
curse of dimensionalitj20]. The more flexible and complexthese techniques in very high dimensional search spade stil
the model is, the more data it requires to yield a reliable escks validation.
timation and to sustain enough good performance. According
to the curse of dimensionality theory, the amount of data to )
sustain a given spatial density increases exponentiatly thie C. Computational Cost
dimensionality of the search space. This will adverselydnip  Besides the curse of dimensionality, computational cost of
any method based on spatial density, unless the data folloavs EDA can also restrict its application to high dimensional
certain simple distributions. Obviously the latter coraditis optimization. In an EDA, if exclude fitness evaluation, the
not always satisfied in practice. The population size of EDAodel building and subsequent solution sampling steps-dete
has to grow fast as the problem size grows to sustain gowmdhe its overall computational cost, which is also relatethe
performance. Since EDA tries to learn some global stasistiomodel complexity. In general, univariate model based EDAs
information fromm sampled data (i.e., individuals selectedhave very low level of computational cost. However, when
from the population ofM individuals, see Fig. 1)n has to applied to high dimensional problems, even if the populatio
be sufficiently large, which also requires a large populatisize is sufficiently large, multivariate EDAs have diffica



in terms of rapidly increasing computational cost in thosaf EMNA ;.,.Ccan approximately give a lower bound of all
steps. Even for problems whose fithess function evaluatiomultivariate Gaussian based EDAs.
is not very time-consuming, multivariate model based EDAs’ As mentioned above, when univariate model is sufficient
overall runtime can become unacceptable in practice. Here for solving a problem) andm do not necessarily need to
concentrate on the computational cost brought by the modgbw asn grows. As Table | shows, for univariate model based
within one generatiorWe give analytical computational com-EDAs such as UMDA, the overall computational cost grows
plexity in terms of data access for two representative EDAisearly with n. Although the model’'s simplicity restricts its
of different model complexities: a univariate Gaussianeldasperformance, its computational cost grows mildly. On the
EDA, UMDAY [2], and a multivariate Gaussian based EDAgther hand, for multivariate Gaussian based EDAs such as
EMNA g100a1 [2]. EMNA gi00q1, the overall cost grows much faster. Although
Suppose the current model is built from the selected indivifP] has reported that a necessaty grows approximately
uals of the last generation/ denotes the population size, andvith /n for Normal IDEA, in practice it is usually true
m denotes the number of selected individuals= 7M, usu- that M > m > n. Overall computational cost of a typical
ally 0.3 < 7 <0.5 [2], [24]. The computational complexities multivariate Gaussian based EDA thus grows at least with
of UMDA%and EMNA, .1, are shown in Table 1. Detailed O(n?). In following experimental studies, more illustrative
steps of computation please see Appendix A. comparisons of CPU time will be made.

TABLE | [1l. SCALING UP EDA: EDA-MCC

SUMMARY OF ONE-GENERATIONCOMPUTATIONAL COMPLEXITY ) ) ) ) )
According to previous discussion, there are three require-

UMDAS | EMNA gjopai ments to be met in order to scale up multivariate model based
Model Building O(nm) | O(n*m) EDA to higher dimensional problems:
Solution Sampling| O(nM) | O(n?M)

1) Multivariate nature of the search should be preserved as
much as possible.

. - : : ,
UMDAand all other univariate Gaussian based EDAS 2y computational cost must be acceptable and grow mildly.
shares the same model structure and only differ in the Way3) Only a limited population size can be applied.

the model parameters are updated. These EDAs share a s

. . . Q@@alling the differences on performance and computdtiona
level of computational complexity. However, different mul

o ) : . complexity between univariate Gaussian and multivariate
tivariate Gaussian based EDAs have different computattio aussian, we can easily find they are both related to the Gaus-

complexity. As mentioned above, EMNA,q estimates model sian model complexity. Roughly speaking, univariate Giamss

via maX|mum.I.|keI|hood estimation gnd sa_mpllng solut|0nﬁas simple structure and cheap computational cost, butifias d
via decomposition of covariance matrix. While Normal lDEpﬁcuIty to solve non-separable problems. Multivariate G

and EGNA build a graphical factorization after the sam . :
. o S ; as complex structure and thus expensive computationgl cos
maximum likelihood estimation, then fit the parameters ef tt’EI b P b a

o . ) ut can solve non-separable problems more effectively.elf w
factorization and sample solutions by traversing the graph, explicitly control the model complexity according t

ical structure._The maximum likelihood estimation step i riterion, we can combine their advantages together. Here w
all the three IS exactly th.e same, thus they share a sa Sposeanovel way to control the Gaussian model complexity
E?me%utatlor,lsalcg?nmplgt(_lg];:] Ctg':] ‘T‘;eﬁ' '.:Soreglse Iflottzrn;llep y two steps: Weakly dependent variable Identification (WI)
since ci]éogglmposingl; C(I)variance Enazt(rli;/ (;onstar}:tly costk;)f:zu%nd Subspace Modeling (SM). The resulting algorithm is
time with problem size. Whereas the graphical factorizatio alled EDA-MCC (Model Complexity Control).
Normal IDEA and EGNA can be obtained by several different . e
structure search algorithms, whose compu}[/ational contplex ™ Weakly Dependent Variable Identification (W1)

is relevant to the specific algorithms used and the currenthA multivariate Gaussian represents the (linear) interdepe
state of data. After obtaining the structure, in Normal IQEAdencies between variables by their covariances. Accortting
the conditional variances of the factorization are comgutéhe definition of covariance, we have

by the inverse of covariance matrix [5_], which _costs same cov(Xi, X;) = B(Xs — 13)(X; — 117)) 1)
computational complexity as decomposing covariance matri

So we can say Normal IDEAs computational complexity igvherecov(X;, X;) is the covariance between variablEsand
definitely higher than that of EMNAu.. In EGNA, the Xj,i,j =1,...,n, Eis the expected value operator. We also
parameters of Gaussian network are computed in a differ&@ve Y. X.
manner, making analytical calculation of the computationa corr(X;, X;) = M , (2
cost very difficult. Previous literature on EGNA does not 7i0j

offer any analytical results on computational complexitger. where corr(X;, X;) is the linear correlation coefficient be-
Also considering the fact that multivariate Gaussian baséseen X; and X, o; and o, are the standard deviations of
EDAs with covariance matrix scaling have more additional; and X; respectively,o; > 0, o; > 0, i,j = 1,...,n.
computation, here we choose EMMNAas the represen- According to the definition, a correlation coefficient cahno
tative of all multivariate Gaussian based EDAs to analyaxceedl in absolute value. Thus correlation coefficients can
the computational complexity. We can say that the analysitso be seen as normalized covariances.



Suppose during an evolution process of a multivariate

Gaussian based EDA, if at some generation, the correlatjon Wi

coefficients are nearly zeros, which meansdbservedinear 1) Calculate am x n global correlation matrixC' based
dependencies between variables are actually very weak, the ON Meorr individuals. Ci; = corr(Xi, X;),i,j =
the distribution that the model can learn will not be much 1 n. '

gee ey

different from a univariate Gaussian model. Its exhibited 2) UseC to construct according to (3).

behavior at this generation does not differ much from |a 3) Estimate a univariate model fo#’ based on then
univariate Gaussian either. (Fig. 2 shows an example of 2D selected individuals.

Gaussian distribution with different correlation coefficis).
In this case, switching current model to a univariate Gaumssi
can significantly reduce the computational complexity dred t
requirement of population size while holding nearly the sam
performance. Inspired by this fact, we can firstly identif¥/
those approximately independent variables, and then agppl

simple univariate model on them. We call this strate ak orrelation matrix at hand and the user specified parameter
P ) e gy We . The correlation matrix reflects the observed information
dependent variable Identification (WI). :

. w2 . .. in the search space, while different valuesfotan reflect
Weakly dependent/correlated” variables can be |dent|f|(=t e user's confidence on the univariate model. The larger

by first calculating am x n global correlation matrix, then pick , . . -
. . "0 is, the more probable that more variables are optimized
out variables whose absolute values of correlation coefftsi Lo :
by the univariate model. Then less computational cost and

to all the other variablesare no larger than a thresholt smaller population size will be required. Note that for non-

((joefigneedgasl)' The set of such variablesy, can be formally Gaussian model based EDAs, weakly dependent may not be
identical to weakly correlated. If apply WI to those EDAsgth
W ={X;||corr(X;, X;)| <0,¥j=1,...,n,j #i} . (3) identification method needs to be re-defined.
. . . Of course, one can imagine other ways of defining
Alter perfqrm|_ng WI, we sitill leave the rest of thg Va”al?lesweakly/strongly dependent” variables. For instance, oar
for a mul_t|var|ate model. In othe_r words, we still Cons'deEIassify the variables as weakly or strongly dependent by
these variables fully dependent with each cher. In contoas onsidering their correlation with the function to be optied.
weakly dependent’, we regard these variables as strong(-i%e idea of separating weakly dependent variables from

dependent’. The set of the “strongly dependent” variafgs, strongly dependent ones in this context is interesting aowdhw

Fig. 3. Main flow of Weakly dependent variable IdentificatiGil).

ariable is classified intdV or not is determined by both the

is defined as of further consideration in the future. However, as tygical
S={X;| X;dW,i=1,...,n.} . (4) done in EDA implementations, our definition of weak/strong
) dependency is restricted to variables only (within the ernt
Let V denote the set of all variables: of building a local Gaussian model on the variables) and the
V={X;|i=1,...,n} . (5) model does not reflect any correlation between a variable and

the function value.
ObviouslyW and S partition V, i.e.,

v=wlJs, (6) B. Subspace Modeling (SM)

@:Wﬂg ) (7) Suppqse we only have a very limited p_opulatior_l size,
and |S| is still too large form samples to give a reliable
Note that if we use a global correlation matrix for th@stimation for a multivariate Gaussian model. To obtairepet
purpose of identifyinglV, we do not need a large amounerformance, we can project the points to several subspaces
of samples as we do for estimating a reliable global covags the n, dimensional search space, and then build model
ance matrix for the purpose of guiding search, even thougd sample solutions on subspaces. When it is impractical
computing a correlation matrix is essentially of no diffete {5 further increasen, building subspace models and using
with computing a covariance matrix. Because the precisfon @ejr combination to approximate the global estimation ban
covariance matrix has direct impact on influencing the sargpother choice. We call this Subspace Modeling (SM), whose
pling procedure and thus influencing the algorithm’s betwavi flow is shown in Fig. 4. Each subset &f or say group of
it does require sufficiently large amount of data. Whereasjfriables, corresponds to a subspace. All thesamples are
we just use a correlation matrix to do a “coarse” leamingrojected to[|S|/c] subspacés and we build a multivariate
such as identifying weakly dependent variables, its pr@gis mode| for each subspace. The capacitndicates the maxi-
no longer plays the leading role to determine the algorihmynym size of a subspace. It represents to what extent we trust
performance. Later we will see, a loose requirement of samphe 1, samples to give reliable estimation. By dividing the
size in WI also helps reduce the computational cost. variables into several subspaces and projectingitreamples
Let mc,,» denote the sample size for constructing a globg |ower dimensional subspaces, the EDA only considers the

correlation matrixC'. The main flow of WI is depicted in |ocal dependencies among variables belonging to the same
Fig. 3. Here the term “weakly dependent/correlated” is not a

strictly defined term as in the statistics domain. Whether aFor a real number, [z] is the smallest integey, such thaty > x.
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Fig. 2. Demonstrations of 2D Gaussian distributions witlfiedént correlation coefficients. The contours denote tlaig3ian densities. In every sub-figure,
each of the two variables has a standard deviation equals<o fere the correlation coefficient equals to the covagianc

subspace, and the density of samples for each subspace ivitheans that the size of currestis beyond the capability
increase. This technique probably offers a feasible way fof a global multivariate model that, samples can estimate
alleviating the growth of population size with respect to according to user’s experience. Therefore we have to make
growing problem dimension, which will be validated by oua concession by explicitly eliminating some dependencies
experimental results in later sections. between variables while keeping the rest. As we will state
later, WI and SM are performed in every generation, thus the
random partition is not fixed through evolution. Variablesf

SM different subsets in current generation always have thaagha

to be grouped in one subset and keep their interactions in the
next generations. Similar strategy has also been propoged b
[37]. When sampling a new individual using above model, its

parameter defining the size of a subset(c < n). variables inS are sampled from the subspace models they

3) Estimate a multivariate model for each subset baseaebng o, and then concatenate them with tho_se _sgmpled
on them selected individuals. variables inWW. The evaluation of a newly sampled individual

is the same as in traditional EDAs.

The random subspace partitioning method proposed here
is a simple and the most straightforward one. Experiments
will show that although we only use the simplest SM method,
it indeed significantly improve EDAS’ performance on high
Xp1 Xwe Xes  Xea  Xes  Xws Xwr Xis dimensional problems. Of course, more sophisticated sudesp
partitioning methods can be developed if needed. For exampl

1) ConstructS according to (4).
2) Randomly partitionS into [|S|/c] non-intersecteg
subsets:Si, Sa, ..., Syis/e1- ¢ is a user specified

Fig. 4. Main flow of Subspace Modeling (SM).

X 179 092 131 0 0 0 0 0 e ; : ;
X1y 092 241 059 0 0 0 0 o Wecan d|V|de_S into sev_eral clusters of variables according
X,z 131 059 3.88 0 0 0 0 o to the correlation coefficients, and then treat each clustea
§k4 0 0 0 154 -023 0.75 0 0 subspace. However, such clustering still has the disadgant

k5 0 0 0 -023 1.21 -0.84 0 0 - , . ; . -
Xro 0 0 0 075 —084 182 0 0 that it suf_fers from the curse of d|menS|onaI|t¥. Glyen aténl_
X7 0 0 0 0 0 0o 195 o056 Sample size, we cannot expect good clustering in very high
Xisg 0 0 0 0 0 0 056 294 dimensional space. Later in Section VI, comparison between

the random subspace partitioning and a clustering-based on
Fig. 5. An example of the approximated global covariance rimatn will be CondUCted' EXpe“me[_T,[S \,NIII prowde the, e\_”,dence
S after performing SM.S = {X1,...,Xs}, c=3. (Xp1,...,Xss) is a that the simple random partitioning performs significantly

random permutation ofX1,..., Xs). The three subsets of are S1 = better than clustering-based partitioning on high dimemesi
{Xk1, X2, Xis}t S2 = {Xka, Xps, Xpe} and Sz = {Xp7, Xy} problems.

After randomly partitioningS, variables of different sub-
sets are regarded independently. When we use a multivariete
Gaussian to model each subspace, combination of all subspac
Gaussian models can be seen as an approximation of th®&y incorporating WI and SM within the EDA framework,
global Gaussian estimation @h The global mean vector onwe can explicitly control the model complexity. WI helps
S is still identical to the combination of subspace model$p reduce the model complexity to a necessary level, and
but the global covariance matrix is approximated by a bloc&M further reduces the model complexity according to the
diagonal matrix whose main diagonal blocks are the subspam®pulation size that can be applied. L%t (1 < k& < [|S|/c])
covariance matrices. Fig. 5 shows an exampléS|f< ¢, the denote a subset &, and vectors; denote realizations of the
variables can be kept together within one group|ldf > ¢, variables inS;. After performing WI and SM, the final joint

Model Complexity Control: WI + SM



pdf has the form:

[181/¢l
F@= 1] g T mlsi)
k=1

X, eW

(8)

whereg;(+) is the univariate pdf of variabl&;, andhy(-) is the
multivariate pdf of variables i;,. For instance, we can assig
all g;(-) to a univariate Gaussian as (10) and assigrhg(})

with EMNA ;0 When using same parameters. Therefore, the
computational complexity analysis of EDA-MCC in Table I
still holds true.

D. Difference Between EDA-MCC and EDAs with Model
Complexity Penalization

Several other approaches for controlling/penalizing the

n

to a multivariate Gaussian as (12). Based on WI + SM, tifaodel complexity in EDAs have also been proposed in previ-
main flow of a novel algorithm, EDA with Model Complexity OUS studies. For instance, EGINA uses edge exclusion test to

Control (EDA-MCC), is given in Fig. 6. As discussed abové:,ontrolthe structure complexity of a Gaussian network,sasu
for the purpose of “coarse” learningj..,» does not need to BGe (Bayesian Gaussian equivalence) metric and locallsearc

be as large as. We can sample .- individuals from them
selected individuals to calculate correlation mattixBecause
duplicate samples cannot contribute to correlation estima
we use sampling without replacement.

EDA-MCC

Initialize a population’? by generatingM individuals
randomly.
Repeatuntil a stopping criterion is met.

1) Selectm < M individuals from?P.

2) Randomly samplem...» < m individuals from

thesem..,» individuals to calculata”' in WI.

sequentially.

4) P’ + Sample new individuals: Sample from(-)
and hy(-) independently. Combine all sampled var
ables together to reproduce an individual.

5) CombineP andP’ to create the newp.

Fig. 6. Main flow of EDA-MCC.

the m selected individuals without replacement. Use

3) Build a model as in (8): Call WI and SM procedufe

to decide the structure [2]. Normal IDEA uses BIC (Bayesian
Information Criterion) metric to penalize the complexitlya
normal pdf factorization [24]. However, there are significa
differences between EDA-MCC and previous approaches:

1) Fig. 7 shows typical results of the model structure after
applying previous approaches and WI+SM. After using
previous approaches, it is still very probable that the
model structure is a connected graph, although some
dependencies are removed. It means that all the variables
are still within a “big” multivariate model. Thus the
curse of dimensionality and computational complexity
issue still strongly restrict the algorithm'’s performance
on higher dimensional problems. Asgrows, the per-
formance will keep on deteriorating and computational
cost will rapidly increase. This is consistent with the fact
that rare results of these algorithms on 100D or higher
dimensional problems have been reported. On the other
hand, WI+SM explicitly partitions the variables into
several separated groups. Then different “small” models
are applied toW and subsets of. Our experiments
will prove that WI+SM can significantly slow down the
performance deterioration and the increasing speed of
commotional cost ag grows.

The comparison of computational complexity of EDA-
MCC, UMDAfand EMNAopqiare shown in Table Il. De-
tails of computation please refer to Appendix B. Because
Meorr < m andc < n, in @ same number of generations,
EDA-MCC's computational complexity is always between the
complexities of a univariate Gaussian EDA and a multivariat
one. Besides, if EDA-MCC requires smaller and M, the
computational cost can be further reduced.

Specifically, in experiments, we will apply a UMDAnodel
as (10) for variables i, and an EEDA model mentioned
in Section Il for each subset &. EEDA [8] is a multivariate
Gaussian based EDA using covariance matrix scaling. After
performing maximum likelihood estimation, EEDA scales the
covariance matrix by resetting its minimum eigenvalue to
its maximum eigenvalue. EEDA regards the direction of the
eigenvector which the minimum eigenvalue corresponds to as
an approximation of the fitness function’s gradient. Presio
studies [11], [28] have shown that by enlarging the variance
along this direction, EEDA can have better explorativeigpbil

V

O

(a) Previous approaches

Vv

S

S>

w
OO
O

55
e

(b) WI+SM

than EMNAy;.sc;and require a smaller population size. Sincgig 7

the covariance matrix scaling can be done (Gxin) [11],

A demonstration of model structures after applyingditional
approaches and WI+SM, respectively. Each circle represantariable and

EEDA has roughly the same level of computational complexitiye directed edges represent the dependency.



TABLE Il
COMPARISON OFONE-GENERATIONCOMPUTATIONAL COMPLEXITY

UMDAC | EMNA 41050; | EDA-MCC
Model Building O(nm) O(n?m) [O(n®mcorr) + O(nm), O(n’meorr) + O(cnm))
Solution Sampling| O(nM) | O(n?M) [O(nM),O(enM))

2) Previous approaches are all tryinggeecisely learna in W, and an EEDA model for each subset &f Such an
global structure from data, which is in fact impractical inmplementation can yield fair comparisons with UMBA
high dimensional space. They also involve complicatdeMNA ;;,;and EEDA. In order to compare the CPU time
computation that make the computational complexity d&irly, we implement all algorithms in Visual C++ 2005 withi
EDAs become even higher. On the other hand, if usesame template framework. All algorithms share same basic
WI+SM, the global structure is jusbughly learnt Since data structures, algorithm flow, utility functions and nuiocal
it is too hard to perform good global learning in highcomputation library. They only differ on model building and
dimensional space, WI+SM tries to perform good learrsolution sampling modules.
ing in divided subspaces to give a better approximated2) Test Functions:Test functions are listed in Table III.
global estimation. Fortunately, the controlling parameFhey are selected from classical benchmark functions in [7]
ters § and ¢ both have explicit physical implications[42] and CEC2005 Special Session [43]. All the functions are
that can be interpreted and set easily. WI and SM duinimization problems. Details of the CEC2005 functioms, i
not introduce additional time consuming computationluding the shifted global optima, the transformation ricas,
into EDA. They can even help reduce EDAs compuetc., are omitted here. Readers can find them in [43]. The test
tational complexity when problem size goes large. Bdtinctions contains several comparison pairs, from which we
we can also imagine that if the global structure can @n see whether an algorithm is sensitive to the shifted or
successfully learnt under some conditions, WI+SM willotated function landscape. These functions can also tiesfur
not outperform traditional approaches. More discussiaassified into 3 groups:
of controlling parameterg and ¢ will be conducted in « Separable unimodal problems; and Fs.

Section V. « Non-separable problems with only a few< (2) local

3) Compared with previous approaches, WI+SM offers  optima: Fs, Fy, Fs, Fs, Fr, Fs, Fy, and Fy,.
more flexibility in introducing different search strategie « Multimodal problems with many local optimd? |, Fio
into EDAs. For instance, any form of univariate models  and Fy5.
and multivariate models (not restricted to Gaussian) cang) common Parameter Settingi real-world applications
be applied to/V and subsets af, respectively. Different of Eas, usually the only limitation is the maximal number
models on different subsets Sfcan also be implemeted. of fitness evaluations (#FEs), while the algorithm parame-
This offers new opportunities to develop new EDAS angbrs can be varied. For traditional EDAs such as UMDA
hybrid algorithms. But in this paper we only discuss thEMNAglobaland EEDA, besides representing the selection

application of Gaussian models. pressure, the only parameter is population siZe Given a
fixed #FEs, a larged/ may offer better learning, but reduce
IV. EXPERIMENTAL STUDIES the number of generations in the meantime, and vice versa

for small M. People are aware of the tradeoff between the
population size and the number of generations, and unaekrsta
1) Involved Algorithms:Four algorithms are involved in that the balance between the two factors, which may even
our experimental comparisons: UMHAEMNA ;;.,q;, EEDA  vary from problem to problem, has significant influence on
and EDA-MCC. As extensions of our previous analysis otfie performance of an EDA. However, to our best knowledge
computational complexity, we select UMDAs a representa- there is still no common experience about setting suitalsle
tive of univariate Gaussian based EDAs, and ENMNfas for achieving promising performance given a fixed #FEs. As
a representative of multivariate Gaussian based EDAs. Bottost (if not all) studies on EDAs, our investigations does
of them are based on maximum likelihood estimation. Sine®t emphasize the setting of population size. Instead, for
also many theoretical studies, experimental comparisods ahe population sizeV/ of each EDA, we always apply four
real-world applications of these two EDAs have been madtoices (200, 500, 1000, and 2000), aiming at releasing the
[2], [7], [8], [11], [15]-[19], [26]-[28], [31]-[35], [38}H[41], promising performance of every EDA on every problem. In
taking these two EDAs in comparisons make sense. EEAIr four-population-size tests, given the problem and teee
[8] is included as a representative of multivariate Gaumssiaponding dimensionality, we compare the average bestiaolut
based EDAs using covariance matrix scaling. It can be seealues obtained by every population size on every problem,
as an extension of EMNAw.;, Which makes it very easy and select the best population size as the final decision of
to implement based on an implementation of EMNA,;. the algorithm on the problem with the given problem size.
Furthermore, fair comparisons of algorithm’s behaviorsl arMoreover, all algorithms use = 0.5 for all tests, thus we
computation time between EMNAu,and EEDA can be havem = 100, 250, 500, 1000, respectively. All algorithms are
made. In EDA-MCC, we apply a UMD@model for variables initialized by uniform random initialization within the aech

A. Experimental Setup



TABLE Il
TEST FUNCTIONS USED IN EXPERIMENTSTHE DOMAINS OF FUNCTIONF7 AND F11 ARE CHANGED FROM ORIGINAL DEFINITIONS IN[42] TO MAKE
THEM CONSISTENT WITH THE DOMAINS OFFg AND F'2, RESPECTIVELY Fy AND Fg ARE SHIFTED VERSION OFF3 AND F5, RESPECTIVELY THE
SHIFTED GLOBAL OPTIMA ARE GENERATED FOLLOWING THE SAME WAY & [43]. ALSO NOTE THAT THE TRANSFORMATION MATRIXM HERE IS NOT
THE POPULATION SIZEM IN OUR PREVIOUS ANALYSIS

| | Description | Expression | Domain |

F Sphere f; in [42]) F@) =", xf [~100, 100]™

Py Shifted Sphere Ky in [43]) F(&) =30 122+ foias,, Z=&—0 [—100, 100]™

F3 Schwefel's Problem 2.21ff in [42]) F(Z) = max;{|z;],1 <i < n} [—100, 100]™

Fy Shifted F3 F(Z) =max;{|zi[,1<i<n}, Z=F-0 [—100, 100]™

Fs Schwefel ¢ in [7]) F@) =" 1l(w1—22)? + (z; — 1)?] [—10, 10]™

Fs | Shifted F5 F(@) =31 1[(21 — 22)2 +(z—1)?, Z=F—-5+1 [-10,10]"

F7 | Rosenbrock f5 in [42]) F(Z) =31 . H100(zi41 — 22)? + (2 — 1)2] [—~100, 100]™

Fs | Shifted RosenbrockKp in [43]) F(Z) = S0 100(zi41 — 22)2 + (20 — D)2 + friasgy Z=&—38+1 | [—100,100]"

Fy | Shifted Rotated High Conditioned F(@) =31 1(1()6)733;—11zi2 + foiass [~100, 100]™
Elliptic (F in [43]) Z=(-0)-M

Fio | Schwefel 2.6 with Global Optimum F(Z) = maz{|A:Z — Bil} + fiass [—100, 100]™
on Bounds £5 in [43]) i=1,...,n.

F11 | Rastrigin (fo in [42]) F(Z) =31 ,[22 — 10cos(2nx;) + 10] [-5,5]"

Fi2 | Shifted Rotated Rastriginfo in [43]) | F(Z) = >0 [22 — 10cos(272;) + 10] + frias,y, Z= (£ —0) - M [-5,5]"

Fy3 | Shifted Expanded Griewank plus See [43], page 16. [-3,1™
Rosenbrock 43 in [43])

space. Elitist approach is used for all algorithms, i.ely@me be an independent issue. Later in Section V, different wlue
best individual is survived into the next generation, tbget of § and the influence to EDA-MCC will be tested and shown.
with (M —1) newly sampled individuals they constitute a new For SM, we setc = 20. In practice, the settings of
generation. All these settings are widely used when stgdyinan be determined by: according to user's preference. In
these EDAs in previously publications. normal cases, if a largem can be applied¢ can also be

For each test function, we set 2 problem sizes; 50, 100. set larger, and vice versa. When is large enough to give
We also illustrate the EDAS’ requirements on populatiore sizeliable estimation on the entire dimensional space, we
to achieve their best performance. The #FEs are set acgordian setc = n, which implies that we fully trust the global
to [43], i.e., the maximal #FEs is set 1®000 x n for ann estimation rather than approximating it by combination of
dimensional problem. Algorithms are terminated only whesubspace models. But at the same time, we should also afford
their #FEs exceed the limit. For each single test, the resthe required computational complexity. On the other hand, a
is averaged over 25 independent runs. All experiments amallerc can reduce the computational complexity. Users can
executed on a P4 2.40 GHz computer with 512 MB RAM. weigh the pros and cons and then set

4) Parameters of EDA-MCCThrough all experiments of Parametersn...-, 8 andc all have explicit physical impli-
EDA-MCC, we setm .- = 100, § = 0.3 in WI. We regard cations. Their values are either bounded or can be detedmine
meorr = 100 points are enough to calculate the correlatiowith the guidance of other pre-determined parameters aisuse
coefficients between any pair of variables (a pair of vadablpreference. It should be easy to set these parameters when
implies a 2D space). We sé& = 0.3 here because it is aapplying EDA-MCC to a new problem. The influence of
popular threshold to define weakly correlated in the contedifferentd andc will be investigated later in Section V.
of statistics. In our experience, we have also observedthat
can be sensitive to the value é@fFor example, a small value of
6 = 0.15 may resultin an emptyV, i.e., all of the variables are
regarded as strongly correlated with each other, which make We record the difference between the best fitness that
WI a null operation. Largé = 0.6 may lead toW =V, i.e.,, an algorithm can find and the known global optimum, i.e.,
EDA-MCC degrades itself into an UMOAwhich discards all F(#) — F(#), through all tests. The values are always non-
the dependencies among variables. To release the powenedative for minimization problems. The smaller it is, the
EDA-MCC most, there must be an optimtabiven a problem better performance of an algorithm it implies. The mean
and other parameters. Different problems and other pammetvalues and standard deviations 6fz) — F(z*) for each
may lead to different optimal value 6f As mentioned above, algorithm in each test are shown in Table IV. If the reported
6 reflects the user’s confidence on univariate model. To hav&z) — F(Zx) is smaller than 1e-12, then we consider that
reasonable analysis on the effects of WI, we set a constant dn(Z¥) = F(Zx). If multiple results among the four-population-
moderate value of = 0.3 through all experiments. Here oursize tests have"(Z¥) — F(¥x) below le-12, we report the
aim is to demonstrate that EDA can benefit from WI, wherease that shows the fastest convergence. Table V shows the
which value off benefits EDA most for a give problem cancorresponding population sizes used by the algorithms on

B. Experimental Results
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each test. According to the results, CPU time comparisonseded for EMNA,;.».;and EEDA keeps at high levels. EDA-
on different problems are similar, therefore we only shoe/ tiMCC's requirement of large population size is clearly reldx
CPU comparisons on selected functions includisg Fs and due to WI+SM. It requires much smaller population size and
Fyy in Fig. 8. simultaneously shows significant better performance.
TABLE V 2) Non-separable Problems with Only A Few Local Optima:
POPULATION SI1ZE COMPARISON THE CORRESPONDING POPULATION ThlS group Of fUnCtionS are either UnimOdal or Only have two
SIZES USED BY THE ALGORITHMS TO GENERATE THE RESULT IN local optima, which implies the problems have clear inner
TABLE IV ARE SHOWN. ON EACH BENCHMARK PROBLEM, THE SMALLEST structures. The non-separab|e properties pose S|gn|fmﬁnt
POPULATION SIZE ADOPTED BY THE ALGORITHMS IS MARKED IN BOLD Culties for UMDA? We can see that UMD@fallS to perform

[Prob. | Dim | UMDAC | EMNA /05, | EEDA | EDA-MCC | best on any test. On the other hand, EDA-MCC performs
1 50 500 2000 | 1000 200 significantly best on nearly all tests only except 50D tests
100 500 2000 | 2000 200 of Fy and F19. EMNA ;;45,:Shows the worst performance and
2 igo 1‘388 2888 %888 1%88 EEDA performs generally between UM3and EDA-MCC.
5 = =000 =000 1000 00 Note thatFA%, Fg and Fg are _shifted vgrsions OFg, F5 and
100 2000 2000 | 2000 200 F, respectively. On the original unshifted versions, altjitou
Fy 50 2000 2000 [ 1000 200 UMDA %and EEDA performs significantly worse than EDA-
o égo 2888 2888 2288 ggg MCC, their absolute performance is not so bad. However, once
7 100 2000 2000 200 200 the global optima are shifted away, their performance becom
Fs 50 2000 2000 | 1000 200 much worse. EMNA.qhas similar issue and its absolute
= égo iggg 2888 2888 ggg performance is always the worst. Among all algorithms, only
100 1000 2000 | 2000 500 EDA-MCC shows robust performance with respect to shifts of
Fy 50 2000 2000 | 1000 2000 the global optima. The CPU time cost of algorithms is similar
100 2000 2000 | 2000 500 to the results of previous group of functions that EDA-MCC'’s
Fo igo 3888 2888 1%88 ggg CPU time grows much slower than EMNA,,.and EEDA.
Fro 50 2000 2000 | 1000 200 Although UMDAS costs least CPU time, its performance is
100 2000 2000 | 2000 200 always worse than EDA-MCC on these problems. EDA-MCC
Fu | 50 1000 2000 200 2000 also usually needs the smallest population sizes among alll
I3 égo 2888 2888 1%83 2888 except on SODFg. As we can glso see ORA}s in the next
100 2000 2000 500 2000 group, the optimal population size of EDA-MCC and EEDA
Fi3 | 50 500 2000 200 500 can sometimes fluctuate whengrows. This can be explained
100 500 2000 200 1000 as that since they have better explorative ability, they can

benefit not only from large population size but also from ¢arg
) ) ) number of generations, which is resulted by applying small
C. Discussion and Analysis population size. However, for UMD@Aand EMNA, ;.. Which
1) Separable Unimodal Problem&he separable and uni-completely relies on maximum likelihood estimation, their
modal structures ofF} and F» can facilitate univariate optimal population sizes usually keep increasing.
model based EDAs in solving the problems although this In this group,F; - Fjo are relatively hard problems that
is not always the case. Our experiments show that, mo algorithm gives a very good absolute performance. But to
our case, UMDA’and EDA-MCC perform very well. How- the best of our knowledge and as we can see in the following
ever, EMNAy;+q1, Which relies on global multivariate esti-500D tests, no known algorithms can find very good solutions
mation, exhibits significant performance degradation. BEDfor these problems, and EDA-MCC is in fact the best so far in
also performs well due to its better explorative ability thageneral. Among these problem&,,’s global optimum is on
EMNA 10501, but not as good as UMD#Aand EDA-MCC on the bounds of the domain, which requires explorative abilit
100D F5. Overall, onF; and F,, EDA-MCC shows the best the most among all test functions. We can see that on 50D
performance among the multivariate model based EDAs withst, EEDA performs the best since it has a global guidance of
statistical significance and performs as well as UMDA\Iso the gradient and a relatively good estimation can be obtaine
note that EMNA;.,;and EEDA can perform worse when theHowever, because EDA-MCC explicitly partitions the search
global optimum is shifted away from the center of searcépace, search along the approximated global gradient is not
space. so effective as EEDA. But as problem size grows to 100D,
Regarding CPU time and required population sizes, @&DA-MCC outperforms EEDA with significant better solution.
though the CPU time of an algorithm may correspond fbhis confirms the effectiveness of using the combination of
different population sizes and thus different number ofeggan subspace models to approximate the global estimationgim hi
tions, they reflect the CPU time needed to exert an algorghndimensional space where a precise global estimation is hard
best performance. UMD&costs least CPU time whereago obtain, approximating the global estimation by comborat
EMNA g00c:and EEDA cost the most. EDA-MCC’s CPU timeof subspace models performs better. To further verify the
grows faster than UMD&but slower than EMNAsiand  effectiveness of the combination of subspace models, we
EEDA. SinceF; and F, are easy for UMD/§;’5 model, its extend our experiments afi, to 150D and 200D to compare
population size grows mildly. However, the population sizeEEDA and EDA-MCC. All the experimental settings are the



TABLE IV
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SOLUTION QUALITY COMPARISON. THE RESULTS ARE DIVIDED INTO3 GROUPS ACCORDING TO THE PROBLEM PROPERTIEEACH CELL CONTAINS THE
MEAN AND STANDARD DEVIATION OF F'(Z) — F(&*) FOR25RUNS. IF THE VALUE < 1E-12,WE REGARD IT AS ZERQ IN EACH ROW, THE BEST RESULT

WITH THE MINIMAL MEAN VALUE IS BOLDED . THE RESULTS OFEDA-MCC ARE ALSO COMPARED WITH RESULTS OF EACH OF THE OTHER

ALGORITHMS BY NONPARAMETRICMANN-WHITNEY U TEST. THE SIGNIFICANCE LEVEL IS SHOWN BY MARKERS(*, T AND §). NO MARKER IMPLIES
THERE IS NO SIGNIFICANT DIFFERENCE

[ Prob. | Dim | UMDAT [ EMNA j0pai | EEDA | EDA-MCC
F 50 0+0 1.3e-11+ 6.3e-1% 0+0 0+0
100 | 0+ 0 1.4e+01+ 5.6e+06 | 0+ 0 0+0
Fy 50 0+0 45e+04+ 2.2e+08 [ 0+ 0 0+0
100 |0+ 0 1.4e+05+ 4.0e+08 | 5.3e-10+ 1.4e-0$ 0+0
F3 50 2.6e-04+ 1.5e-05 [ 1.2e-01+ 1.2e-0f | 1.8¢-08+24e0§ [0+ 0
100 | 2.6e-02+ 8.3e-02 | 3.3e+00+ 7.0e-0f | 1.5e-03+ 8.5e-04 | 0+ 0
Fy 50 3.4e+01+ 2.5e+06 | 4.1e+01+ 2.6e+06 | 1.4e-05+ 6.8e-05 0+0
100 | 4.7e+01+ 3.1e+0§ | 5.8e+01+ 2.7e+06 | 8.1e+00+ 1.4e+06 | 0+ O
Fs 50 1.5e+01+ 4.1e+0§ | 1.5e+02+ 1.4e+0F | 2.4e-02+ 3.7e-03 0+0
100 | 1.3e+024 2.7e+0f | 6.7e+02+ 7.5e+0% | 3.8e-01+ 4.7e-02 0+0
Fg 50 1.4e+01+ 5.2e+00 | 6.6e+03+ 9.4e+02 | 1.0e-01+ 1.2e-02 0+0
100 | 1.8e+02+ 2.6e+0% | 2.2e+04+ 2.1e+03 | 7.2e+00+ 7.9e-0f | 0+ 0
Fr 50 4.8e+01+ 3.4e-02 | 5.7e+01+ 5.9e+06 | 5.0e+01+ 9.2e+00 | 4.7e+01+ 2.1e-01
100 | 9.7e+01+ 6.4e-08 | 2.7e+03+ 1.5e+03 | 9.7e+01+ 3.7e-0f | 9.6e+01+ 7.5e-02
Fy 50 4.1e+02+ 9.1e+02 | 4.0e+09+ 7.5e+08 | 5.2e+02+ 1.0e+03 | 4.8e+01+ 1.5e-01
100 | 9.3e+02+ 3.1e+03 | 1.8e+10+ 1.9e+0§ | 4.4e+04+ 4.4e+04 | 9.6e+01+ 1.3e-01
Fy 50 4.3e+07+ 4.1e+06 | 1.8e+09+ 2.4e+08 | 4.1e+06+ 1.4e+06 | 3.6e+06+ 1.5e+06
100 | 4.3e+07+ 3.1e+06 | 4.9e+08+ 9.7e+0F | 2.2e+07+ 3.7e+06 | 9.6e+06+ 2.5e+06
Fio 50 4.9e+03+ 1.8e+02 | 2.9e+04+ 1.4e+08 | 2.0e+03+ 2.0e+03 | 3.1e+03+ 3.4e+02
100 | 5.9e+03+ 4.3e+02 | 7.8e+04+ 2.1e+03 | 4.4e+03+ 6.0e+02 | 1.9e+03+ 3.6e+02
Fip [ 50 [ 0408 7.7e+00+ 5.0e+00 | 3.1e+02+ 1.3e+0% | 2.9e+02+ 1.4e+01
100 | 0+ Of 1.4e+02+ 2.4e+0% | 7.3e+02+ 1.5e+0f | 7.5e+02+ 1.6e+01
Fio 50 2.1e+00+ 9.5e-08 | 3.2e+02+ 2.1e+0% | 3.1e+02+ 1.7e+01 | 3.0e+02+ 1.46e+01
100 | 8.6e+00+ 2.1e+06 | 9.0e+02+ 2.9e+0f | 7.3e+02+ 2.5e+01 | 7.4e+02+ 2.35e+01
Fi3 50 7.8e+00+ 8.3e-0f | 9.9e+01+ 2.4e+0f | 2.7e+01+ 1.1e+00 | 2.6e+01+ 9.2e-01
100 | 1.5e+01+ 2.0e+06 | 1.2e+03+ 1.9e+02 | 3.8e+01+ 2.6e+0f | 6.5e+01+ 1.6e+00

* The value of Asymp. Sig. (2-tailedx 0.05 when compared with the results of EDA-MCC.
T The value of Asymp. Sig. (2-tailed} 0.01 when compared with the results of EDA-MCC.
§ The value of Asymp. Sig. (2-tailedx 0.001 when compared with the results of EDA-MCC.
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same as above. The comparison is shown in Table VI aMCC. In Fig. 10 we plot the averaged evolutionary curves of
Fig. 9. We can see that ifi grows even larger, the perfor-25 runs for all the algorithms on 100D tests to give an answer.
mance of combination of subspace models can be significaritlie can see that the evolutionary curves of UMEs quickly
better than a poor global model. EDA-MCC not only finddecome flat as the algorithm proceeds. This implies the fact
significantly better solutions, but also scales to largebfgms that even given more CPU time, UMD#&annot find better
better, i.e., with a much slower increase in CPU time fordargsolution but converges to a suboptimal one.

problems. ]
Another possible reason of why UMD#loes not per-

On this group of functions, UMD&cannot perform as well form well is that the population sizes applied are still not
as EDA-MCC, but its computational cost is always muclarge enough. Therefore, we further test even larger pop-
lower. One may wonder whether a bigger CPU time budgefation sizesM = 4000,8000,16000 and selected sizes
for UMDA Ywould lead to superior performances over EDAm = 2000, 4000, 8000 for UMDA $on 100D functions of this
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F3, F5 and Fg, respectively.

TABLE VI

THE RESULTS OFEEDA AND EDA-MCC ON Fjg FROM50D 1O 200D.
ALL RESULTS ARE AVERAGED OVER25 RUNS. POPULATION SIZES USED

ARE SHOWN IN BRACKETS IN EACH ROW, THE SIGNIFICANTLY BETTER

RESULT IS SHOWN IN BOLD THE RESULTS ARE COMPARED BY
NONPARAMETRICMANN-WHITNEY U TEST. FOR ALL RESULTS OFEEDA,
THE VALUE OF ASYMP. SIG. (2-TAILED) < 0.001WHEN COMPARED WITH
THE RESULTS OFEDA-MCC.

Comparison of evolutionary curves on 108B, F5, Fys, Fg and Fo. Results onFy, Fs and F; are omitted since they are similar to results of

MCC. On other functions, large population sizes perforrmeve
worse. This implies the failure of UMD@on this group of
functions is primarily due to its model simplicity, eithergjer
population size or longer CPU time may not lead to better
performance.

In a word, on this group of non-separable functions, EDA-

MCC performs significantly the best. UMD#ails on all tests
because of its model simplicity. EMNA,;and EEDA cannot

Dim EEDA EDA-MCC
50 | 2.0e+03L 2.0e+02(1000) | 3.1e+03L 3.4e+02 (200)
100 | 4.4e+03+ 6.0e+02 (2000)| 1.9e+03+ 3.6e+02(200)
150 | 1.7e+044 1.2e+03 (2000)| 3.1e+03+ 4.0e+02(500)
200 | 2.9e+04+ 2.0e+03 (2000)| 4.3e+03+ 7.7e+02(500)
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Fig. 9. CPU time comparison of EEDA and EDA-MCC df.

perform well in high dimensional tests, either.

3) Multimodal Problems with Many Local Optimahese
functions all have a quite large humber of local optima, \whic
can lead to very complicated function landscape and make
the problem very hard to solve. On these problems, using the
same sample size, the estimated multivariate model carnot b
as reliable as on previous group of problems. Results abénci
with this intuition. AlthoughF1; is separable, results show that
it is not easy to solve for multivariate Gaussian based EDAs.
Previous study [11] has shown that if only a small population
size can be applied, EMNA.and EEDA cannot perform
well, and EEDA may even perform worse than EMNA,;.

The huge number of local optima misleads the multivariate
search and the covariance matrix scaling. UMip&rforms
the best and EMN4,..,the second on this function. Both
EEDA and EDA-MCC adopting covariance matrix scaling fail.
Applying a rotation toF;; makesF;> non-separable. Even

group. Results on representative functions are summaiizedhe global optimum ofF}, has been shifted, compared with
Table VII. We can observe that larger population size doés rthe results onF; (see Table 1V), surprisingly UMD&still
help UMDASto obtain better results in our experiments. Toutperforms the others, whereas EMNA,,becomes much
be specific, only onfs and Fs the results usingl/ = 4000 worse. EEDA and EDA-MCC approximately hold the solu-
become a little better, but still always much worse than EDAion quality. Intuitively, non-separable problem is haror f
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THE RESULTS OFUMDASUSANG LARGE POPULATION SIZES ONLOOD F3, F5, Fg, Fg AND F'1g. ALL RESULTS ARE AVERAGED OVER25RUNS. RESULTS
OF EDA-MCC AND UMDA $USING M = 2000 ARE ALSO DIRECTLY INCLUDED FROMTABLE IV FOR COMPARISON ON EACH FUNCTION, THE VALUE
OF ASYMP. SIG. (2-TAILED) < 0.001WHEN ANY UMDACGRESULT IS COMPARED WITHEDA-MCC RESULT USING NONPARAMETRICMANN-WHITNEY

U TEST.

Prob. EDA-MCC UMDAG, M = 2000 | UMDAS, M = 4000 | UMDAS, M = 8000 | UMDAY, M = 16000
F3 0F0 2.6e-02+ 8.3e-02 6.7e-02% 2.7e-03 2.6e+00+ 8.7e-02 1.6e+01F 3.6e-01
Fs 0+0 1.3e+02+ 2.7e+01 1.3e+02+ 1.7e+01 1.3e+02+ 1.4e+01 7.4e+02+ 3.3e+01
Fy 9.6e+01+ 1.3e-01 | 9.3e+02+ 3.1e+03 1.2e+02+ 4.7e+01 2.4e+02+ 4.4e+01 9.6e+05+ 9.2e+04
Fy | 9.6e+06+ 2.5e+06| 4.3e+07+ 3.1e+06 | 4.9e+07+ 2.7e+06 9.5e+07+ 3.5e+06 4.2e+084 3.3e+07
Fjo | 1.9e+03+ 3.6e+02| 5.9e+03+ 4.3e+02 6.0e+03+ 2.8e+02 9.1e+03+ 2.0e+02 2.0e+04+ 5.2e+02

UMDA¢. However the results reveal that high dimension@romising performance on the three functions may indicate
F15 is even much harder for multivariate Gaussian model. Qhat maximum likelihood estimation is more efficient than
expanded multimodal functiod;3, UMDASagain performs covariance matrix scaling on the three functions. Theegfor
the best. It seems that the complicated problem structutesof we replace the EEDA model with the EMNAs,;model in
group of functions poses similar difficulties to EDA-MCCdan the EDA-MCC framework to test the effect of base model.
simple algorithms like UMDA/can be good enough on these By crossing over the settings of base multivariate model and
problems. CPU time comparisons on this group of functionse subspace size, we have four candidate implementations
are similar to previous results that EDA-MCC’s CPU time iso be compared with UMDK: (a) EDA-MCC with EEDA
always between UMDE&and EMNA;.,,;. Since EDA-MCC  model,c = 20; (b) EDA-MCC with EEDA model,c = 2; (c)
based on WI+SM cannot perform well, its optimal populatioEDA-MCC with EMNA ;,,,;model, ¢ = 20; (d) EDA-MCC
size also becomes large. with EMNA g05q:model,c = 2. Still, for each implementation,

4) The Failure of EDA-MCC And The Success dbur population sizes are applied in each test. The best
UMDA%on Fy1, Fi» And Fi3: To further analyze the failure result among the four-population-size tests is selectdihak
of EDA-MCC and the success of UMGfon Fy;, Fi» and result. The comparison including the results of UMPdye
Fy3 (three functions sharing the common property that they allimmarized in Table VIII.
have a huge number of local optima), additional experimentsFrom the experiments we observe that on 10D tests, there
are presented here. Generally speaking, the experimerds he no statistical significant difference among candidagmo-al
concern two characteristics of EDAs which may be closelthms on the three problems. EDA-MCC can be as good as
related to the performance on these functions. Our goal BIDA . On 50D and 100D tests, switching different degrees
to find the intrinsic reasons that prevent EDA-MCC fromdf multi-dependencies does not help EDA-MCC to achieve
performing well on them. performance as promising as the UMPA&, no matter the

The first characteristic we take into account here is thgse model is EEDA model or EMNA model. This implies that
model complexity in an EDA. On a specific problem, @n the three functions, if the computational resources fmax
multivariate Gaussian EDA does not necessarily outper®rnmimal #FEs) are limited, utilizing multi-dependencies amon
univariate Gaussian EDA. The failures of several multa@i variables may not be an effective strategy. To be specific,
Gaussian EDAs and the success of univariate Gaussian E®#A long as considering the multi-dependencies, even only
(UMDAY) on Fi;, Fi» and Fy3 probably imply that using with the minimal degree: = 2, the search will be misled
high dependency degree (i.e., high model complexity) fes¢h by the huge number of local optima. As increases, this
functions is no longer effective. If the above intuition da& effect becomes more serious. Nevertheless, changing from
validated by experiments, then the failures of EDA-MCC oBEDA model to EMNA,;,,;model does help to find better
these functions are very likely to attribute to the failuds solutions, although the results are not always as good as
high dependency degree, not the novel techniques adopt8dDAC. This implies that for these functions, iif is large,
by EDA-MCC. Therefore, we test explicitly controlling thethe “radical” covariance matrix scaling can be easily nusle
dependency degree by changing the valuecoi.e., from by the complicated function landscape. However, the more
original settingsc = 20 to ¢ = 2. Note that ifc = 1, EDA- “conservative” maximum likelihood estimation perform teet
MCC will perform exactly the same as UMDA andc = 2 Covariance matrix scaling strategy is more effective orihew
restricts the multivariate dependencies to the minimakekeg » is small. Of course discussions here are restricted to @ir pr
that at most dependencies of two variables are considered. #éfined population sizes and the maximal #FEs. Since EDA-
also addn = 10 tests to see what happens in low dimensionsICC can perform as good as UM%n low dimensional
Note that forn = 10 tests,c = 20 is essentially identical to 10D tests, we guess that with extremely large populatios siz
¢ = 10 since all variables can be included. and sufficiently large budget of #FEs, EDA-MCC has the

Another characteristic that may influence the performanpetential to come up with or even outperform UMBABut
of an EDA is the base multivariate model, which also ineonsidering the fast increasing number of local optima and
dicates the algorithm for building the probabilistic madekhe fast increasing complexity of the function landscape as
UMDA adopts maximum likelihood estimation, and thgrows, EDA-MCC's requirement of population size and #FEs
EMNA g00csmodel is more similar to UMngodeI because to outperform UMDAEWiII also increase tremendously. This
they both use maximum likelihood estimation. UMPA& can also be explained by the effect of curse of dimensignalit
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TABLE VI
COMPARISON OF DIFFERENT BASE MULTIVARIATE MODELS AND DIFFEENT SUBSPACE SIZESTHE RESULTS ARE AVERAGED OVER25 RUNS. THE BEST
RESULTS FOR EACH ROW ARE SHOWN IN BOLD FONTTHE RESULTS OFUMDA § ARE COMPARED WITH RESULTS OF EACH OF THE OTHER
IMPLEMENTATIONS OF EDA-MCC BY NONPARAMETRICMANN-WHITNEY U TEST. THE SIGNIFICANCE LEVEL IS SHOWN BY MARKERS(*, T AND §). No

MARKER IMPLIES THERE IS NO SIGNIFICANT DIFFERENCE

EDA-MCC with EDA-MCC with EDA-MCC with EDA-MCC with
Prob. | Dim UMDAE" EEDA model EEDA model EMNA ;554 model EMNA ;554 model
c=20 c=2 c=20 c=2
F11 10 0+0 0+0 0+0 0+0 0+0
50 0+0 2.88e+02:1.36e+0% | 2.96e+021.13e+0% | 6.31e-081.52e-0% | 4.81e-08-5.93e-08
100 | 0+ 0 7.49e+02:1.61e+0% | 7.96e+02:2.33e+0% | 0+ 0 1.52e-04-7.62e-04
Fi» | 10 5.83e-02:2.91e-01 | 8.46e-04-2.86e-03 1.68e-01:3.70e-01 1.59e-013.73e-01 1.33e-01:3.68e-01
50 2.08e+0@:9.49e-01 | 2.96e+02£1.46e+0% | 2.97e+021.50e+0% | 7.30e+08:-2.47e+06 | 8.70e+0@-3.58e+06
100 | 8.57e+0@-2.07e+00| 7.41e+02£2.35e+0% | 8.01e+021.61e+0% | 2.66e+017.51e+08 | 2.54e+01-3.96e+06
Fi3 | 10 1.33e+0@2.13e-01 | 1.31e+0@&2.57e-01 | 1.33e+0@-3.09e-01 | 1.45e+0@&-3.91e-01 | 1.46e+0@3.39e-01
50 7.77e+0@:8.34e-01 | 2.64e+019.20e-08 | 2.59e+011.05e+06 | 8.13e+0@-1.37e+00 | 8.16e+0@-1.58e+00
100 | 1.52e+011.98e+00| 6.53e+011.64e+06 | 6.82e+012.09e+06 | 1.63e+011.97e+00 | 1.66e+011.54e+00

* The value of Asymp. Sig. (2-tailedx 0.05 when compared with the results of UMPA
T The value of Asymp. Sig. (2-tailedx 0.01 when compared with the results of UMPA
§ The value of Asymp. Sig. (2-tailed} 0.001 when compared with the results of UMBA

Therefore, when facing problems with many local optima, it « The success of EDA-MCC does not mean that it can
maybe computationally too expensive to apply a multivariat  escape from the curse of dimensionality. EDA-MCC only
search strategy and expect a good performance. In this case, suffer less from it by controlling the model complexity
a cheap and simple univariate model based algorithm such as to a necessary level. If using a fixed finite population
UMDA%can be a better choice given limited computational size, EDA-MCC and all other EDAs relying on learning
resources. will definitely fail in extremely high dimensional search
space.
D. Summary So Far We note that although EDA-MCC can have better perfor-

It is discovered by the above experiments that comparBtnce than the traditional EDAs (e.g. on test functidhs
with traditional EDAs, EDA-MCC shows remarkable effec/10), none of the candidate algorithms performs well enough,

tiveness and efficiency on high dimensional non-separa#ding a high quality solution. On one hand, these problems
problems with only a few local optima. On simple separab@'e.rea"y hard to solve for EDAs using current e>.<p.er|mental
problems, EDA-MCC is comparable with UMI3A But on Settings. On the other hand, more effec'uve and efﬁuen‘cs!ea
problems with too many local optima, it does not work as wefitrategies for large scale optimization are still to be gtesd
as simple UMDA’. In any case, EDA-MCC offers a partial@nd investigated.
solution to the three problems proposed at the beginning of
Section llI: E. Experimental Results on 500D Functions
1) The multivariate Gaussian based search is not abandonetow we further enlarge the problem sizelgf-F;3 to 500D,
in EDA-MCC, which leads to good performance on higland compare EDA-MCC with traditional EDAs and several
dimensional non-separable problems. optimization algorithms designed for large scale optimiza
2) EDA-MCC's computational cost is usually lower thartion. Involved traditional EDAs include UMD@&and MIMIC¢
traditional multivariate Gaussian based EDAs; EDAR]. MIMICCis also a Gaussian model based continuous
MCC's increasing speed of CPU time cost is also mudhDA, whose model complexity is between UMBAnd those
slower. multivariate Gaussian based EDAs. The variable dependency
3) EDA-MCC can be applied with very small populatiorin MIMIC ¢is a chain-shaped structure with bivariate con-
sizes for high dimensional optimizations. ditional Gaussian densities. However, multivariate Ginss

Conditions under which EDA-MCC may succeed or fail caRased EDAs such as EMNA.:, EEDA and EGNA are not
also be summarized: included, because their CPU time on any of the benchmark

« In low dimensional space with sufficient data, where thnctions withn = 500 is too long to be acceptable
global estimation is still precise enough, EDA-MCC is Recently, Yang et al. [37] proposed a cooperative coevolu-

not better than traditional EDAs. tion framework with variable grouping and adaptive weighti

« In high dimensional space with sparse data only, whelgr large sca}le optimizgtion p_roblems. .An algorithm named
global estimation is no longer precise, EDA-MCC is morQEC_C-G WhICh uses Differential Evolution (DE) as the base
effective. However, if the function landscape has a hugddorithm in the framework was proposed. DECC-G also

number of local optima as i1, Fi» and Fy3, EDA- adopts variable partitioning strategy, but within the cewp
MCC as well as traditional muIti,variate Gauséian moddtive coevolution framework, when DECC-G is activating the

based . EDAs will fail. In this case, S|mple un'var_'a.te 3Tests of MIMICGand EGNA are based on source codes provided by Dr.
Gaussian based EDAs can be more effective and efficienxander Mendiburu.
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variables of one group, all the other variables are fixed. TEEDA-MCC needsM = 1000 on F3, F, and Fip, and only
evaluation of currently activated variables are calcdaite A/ = 200 on all other functions. The detailed comparisons are
the context of other fixed variables. Whereas in EDA-MCGummarized in Table 1X.
although variables are also grouped into several subdets, t On the simplest separablg and F», EDA-MCC, UMDAY,
optimizations are simultaneous and synchronized. EDA-MOQECC-O, DECC-G, and sep-CMA-ES perform very well.
is not an instance of cooperative coevolution. In [37], DECGn the second group of non-separable functidisFy,
G has been compared with three other algorithms, SaNSIEDA-MCC and sep-CMA-ES show the most stable good
FEPCC and DECC-O, on several 500D and 1000D functionzrformance. Interestingly, although sep-CMA-ES only@do
and it shows outstanding performance in terms of the mediagonal covariance matrix, its performs generally well on
best solution values compared with other algorithms. Hexe these non-separable functions, which was also reported in
compare EDA-MCC with the results reported in [37] [45]. But only on two Ronsenbrock functiondg’( and Fy)
Another algorithm, sep-CMA-ES recently proposed by Rd significantly outperforms EDA-MCC. Whereas EDA-MCC
and Hansen [44] is also included in comparison. Becausignificantly outperforms sep-CMA-ES ohf3, F, and Fio.
the original CMA-ES is incapable of handling problems witiBoth EDA-MCC and sep-CMA-ES reach the global optimum
more than several hundreds dimensions [45], sep-CMA-B® F5 and Fi. On Fy although sep-CMA-ES has a little
was developed only using a diagonal covariance matrix inbgtter average performance, there is no significant diffege
Gaussian model while keeping the original covariance mativith EDA-MCC’s. If we compare DECC-G with EDA-MCC,
adaptation. Several recent studies (e.g., [44], [45])stigated only on F3 and F7, DECC-G performs better than EDA-
its performance on high dimensional problems larger thd4CC. But DECC-G is rather sensitive to the shifted global
500D. Although sep-CMA-ES uses a diagonal covariang®timum: On the shifted’; and Fgz, EDA-MCC performs well
matrix as well as UMDA’, their model estimations are veryholding almost the same solution quality whereas DECC-G
different. A major difference is that sep-CMA-ES relies otvecomes much worse. Similar situations happenFpnand
cumulation of the information gathered in the evolutionhpatits shifted rotated versiof’», the performance of EDA-MCC
to model the covariance matrix, which is more heuristiceldlas is not sensitive to the shifted and rotated function langsca
and thus requires a very small population size. Howeverag DECC-G.
typical EDA like UMDASestimates the covariance matrix For the last group of functions, as analyzed above,
only based on samples in current generation with maximudMDA has clear advantage to effectively solV@:-Fis
likelihood estimation, which is a more learning-based nepnWwith a huge number of local optima in general. (s,
thus usually requires a much larger population size than sépECC-O and UMDA’performs much better than the others.
CMA-ES. As can be seen later in experiments, this could leddis is consistent to previous observations. Because DECC-
to very different performance. We use recommended parame® optimize function of one variable at a time within the
settings of sep-CMA-ES [44] to conduct the comparison, wittooperative coevolution framework, its behaviors are lsimi
population sizeA = 4 + [31In(n)] (i.e., 22 whenn = 500), to UMDASto some extent. Therefore they should be more
selected size, = | 3], initial standard deviation (step siz§ effective on functions with a huge number of local optima,
identical to one third of the search interval, and initiadusdn such asFi;-Fi3. The exception that DECC-O fails oR»
point the center of the search space. The implementationcaih be explained as its sensitiveness to shifted globahoypti.
sep-CMA-ES is derived from a C implementation of CMA-As for sep-CMA-ES, although it also uses univariate model,
ES. its performance orf};-F}3 is far worse than UMDA'. This
Following [37], we set the maximal #FEs to 2.5e+06. Rénight be partly due to the very small population siz2
sults are averaged from 25 independent runs. The populat®¥nthe way the covariance matrix is estimated in sep-CMA-
size of DECC-G is 100 and its subcomponent dimension [S. Such observations are also to some extent consistent
100 for all tests. The parameters of SaNSDE, FEPCC aWéth previous analysis that a simple univariate model with
DECC-O please refer to [37]. For UMOfand MIMICS, standard “conservative” maximum likelihood estimatiom ca
population sizeM = 2000 and selected sizex = 1000 are be more efficient on high dimensional problems with many
adopted. The implementation of EDA-MCC keeps unchang&fal optima.
as above experiments that using UMB¥odel fory and ~ We also observe that MIMIEfails to perform best on any
EEDA model for each subset &. We set population size problem. Due to more suffering from the effect of the curse
M = 200, selected sizen = 100, mo, = 100, # = 0.3, and Of dimensionality, it is neither so effective as UmMBan
¢ = 100 for all tests. If M = 200 is too small for solving a problems which simple univariate model can already handle,
problem, we consequently ted8f = 500 and M/ = 1000 to NOr as good as EDA-MCC on non-separable problems with
see whether better performance can be obtained while kgepit€ar structure. The results again validate our analysithen
the selection pressure. In our test, we give the small ptipala difficulties of traditional EDAs on high dimensional probis.
sizes high confidence that fer= 100 dimensional subspace, Generally speaking, EDA-MCC with a relatively small

we still trust the estimated subspace models. The resuiais tPopulation size shows robust performance on these 500D
problems, especially on non-separable problems with only a
4Results onF}-Fp are not available in [37]. These results are obtained b]ceW local optima. It performs statlstlcally better than SHDE,

running the source code provided by the authors of [37]. bECC'O: UMDASand MIMICS. Although DECC-G also
Shttp:/Amww.Iri.fr/~ hansen/cmags.tar performs generally well, its sensitiveness to shifted glob
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THE COMPARISONS OFSANSDE, FEPCC, DECC-0O, DECC-G, UMDA MIMIC &, EDA-MCC AND SEP-CMA-ESIN 500D TESTS FOR EACH TEST
FUNCTION, THE BEST RESULT IS BOLDED |IF THE RESULT< 1E-12,WE REGARD IT ASO. SNCE THE RESULTS OFSANSDE, FEPCC, DECC-@ND
DECC-GFROM[37] ONLY CONTAIN THE MEAN PERFORMANCE WE ARE NOT ABLE TO GIVE THE STANDARD DEVIATIONS THE RESULTS OFEDA-MCC
ARE COMPARED WITH RESULTS OFUMDA &, MIMIC &, AND SEP-CMA-ESRESPECTIVELY BY NONPARAMETRIC MANN-WHITNEY U TEST. THE
SIGNIFICANCE LEVEL IS SHOWN BY MARKERS(*, T AND §). NO MARKER IMPLIES THERE IS NO SIGNIFICANT DIFFERENCESOME RESULTS OFFEPCC
ARE NOT REPORTED IN[37], THUS WE ALSO LEAVE THEM BLANK. TWO-TAILED FRIEDMAN TEST DEMONSTRATES THAT ALL ALGORITHMS(EXCEPT
FEPCCWHOSE DATA IS NOT AVAILABLE ) ARE NOT EQUIVALENT AT THE SIGNIFICANCE LEVEL OF0.05, AND POSFHOCNEMENYI TESTS DEMONSTRATE
THAT EDA-MCC OUTPERFORMSSANSDE, DECC-OAND MIMIC fAT THE SIGNIFICANCE LEVEL OF0.05 [46]. MOREOVER ACCORDING TO

SIGNIFICANCE LEVEL, EDA-MCC DOES NOT SIGNIFICANTLY OUTPERFORMDECC-GAND SEP-CMA-ES.

ONE-TAILED WILCOXON SIGNED RANKS TESTS EDA-MCC oUTPERFORMSUMDA $AT THE SIGNIFICANCE LEVEL OF0.15. AT THE SAME

| Prob. | SaNSDE | FEPCC | DECC-O | DECC-G | UMDAY | MimIC & | EDA-MCC sep-CMA-ES

I 2.41e-11 | 4.90e-08| 0 0 0+0 0+0 0+0 0+0

Fy 2.61le-11 | - 1.04e-12 | O 0+0 2.56e+02+ 2.2e+03 | 0 £ 0 0+0

F3 4.07e+01] 9.00e-05| 6.01e+01 | 4.58e-05 | 1.35e+01+ 2.9e+06 | 4.40e-01+ 1.4e-08 | 2.79e-01+ 2.3e-02 | 1.40e+02+ 1.4e+0%
Fy 8.29e+01| - 1.05e+02 | 7.00e+01 | 6.92e+01+ 4.2e+00 | 7.93e+01+ 4.8e-0f | 3.27e-01+ 3.7e-02 | 1.41e+02+ 1.2e+0%
Fs 9.30e-07 | - 1.37e+02 | 6.66e-08 | 2.60e+03+ 2.8e+02 | 2.03e+02+ 2.1e+0f | 0 £ 0 0+0

Fe 1.02e-06 | - 1.44e+02 | 9.59e-08 | 6.61e+03+ 8.7e+02 | 1.07e+03+ 2.6e+0f | 0+ 0 0+0

Fr 1.33e+03] - 6.64e+02 | 4.92e+02 | 4.96e+02+ 1.4e+01 | 4.93e+02+ 8.6e-02 | 6.42e+02+ 4.1e+02 | 2.91e+02+ 2.6e+0%
Fy 2.71e+03]| - 1.71e+03 | 1.56e+03 | 3.44e+04+ 9.8e+04 | 3.75e+08+ 8.5e+0F | 6.77e+02+ 6.3e+02 | 2.87e+02+ 2.9e+0%
Fy 6.88e+08| - 4.78e+08 | 3.06e+08 | 4.72e+08+ 1.6e+0F | 4.44e+08+ 7.1e+06 | 8.03e+07+ 1.1e+07 | 7.98e+07+ 1.7e+07
Fio 4.96e+05| - 2.40e+05 | 1.15e+05 | 3.48e+04+ 8.4e+03 | 1.03e+05+ 7.8e+023 | 2.09e+04+ 1.3e+03 | 1.20e+05+ 9.4e+03
i 2.84e+02] 1.43e-01| 1.76e+01 | O 2.27e+00+ 1.2e+06 | 4.80e+03+ 4.0e+0f | 5.24e+03+ 3.9e+01 | 2.14e+03+ 9.9e+0%
Fio 6.97e+03| - 1.50e+04 | 5.33e+03 | 7.55e+01+ 6.5e+06 | 5.03e+03+ 4.7e+0F | 5.25e+03+ 4.2e+01 | 2.28e+03+ 1.8e+02
Fis 2.53e+02] - 2.81e+01 | 2.09e+02 | 7.90e+01+ 3.1e+06 | 4.73e+02+ 4.7e+00 | 4.52e+02+ 5.0e+00 | 1.03e+02+ 7.1e+06

§ The value of Asymp. Sig. (2-tailed) 0.001 when compared with the results of EDA-MCC.

optimum is a clear disadvantage compared with the robublete that because current implementation of EDA-MCC uses
ness of EDA-MCC. Sep-CMA-ES also performs generallgEDA model on subsets aof, even when adopting a large
well, notably on non-separable problem&;{Fs), which is 6, as long asS is not empty, EDA-MCC'’s performance still
interesting considering the univariate nature of the Gausshas distance with UMD&'’s. When variable dependencies are
model. This could be a topic worthy further study in futur@ver-eliminated by a large, according to the definition of co-
work. We can say that EDA-MCC is the first successfulariance matrix scaling, its performance can become ulestab
application of multivariate model based EDA on a generalnce the gradient is easily to be wrongly approximated. But
class (13 in total) of 500D problems since continuous EDAgenerally speaking, on separable problems diffefeand ¢
have been proposed. Moreover, compared with other EAR not have much impact on EDA-MCC's performance.
EDA-MCC and UMDA( show their significant superiority on  On non-separabley, only whend < 0.3, different ¢
8 out of the 13 functions, which implies the advantage ofgisirdoes not change the so far best performance much, except
probabilistic models and statistical learning for optiatian. when combining with a very small. Larged (> 0.3) can
Also note that we did not further tune the parameters of EDAnakeS easily become empty, which is undoubtedly hazardous
MCC. Its potential performance can be even better on reéd performance on non-separable problems. Large not
world high dimensional problems. harmful for solving non-separable problems, although iyma
cost longer CPU time as analyzed before. However too small
¢ has similar effect of largé that the dependencies between
d@riables are over-eliminated. Since the partition &fis

In this section, we investigate the dependence of EDA-M d idering. th bilitv. it furth K
on the newly introduced parametetsand ¢ through experi- random, considering e non-separability, It further nsake
covariance matrix scaling fail together with a small We

ments. A separable functioR, and a non-separable function lude that too | i obviouslv h q ¢

Fy are selected from the 9 test functions as demonstratidfi" corl:l:u ebla ooBarg(;’elsot wous_;; aztar ous for r:jor:j—
Different settings off and ¢ are tested on these 2 functiongSParabie probiems. besides, 100 smas not recommende
with problem sizen = 100. § € {0.2,0.25,0.3,0.35,0.4} and either because it brings similar negative effect as la#rge

¢ € {5,10,20,30,40,50}. The population size and selected Generally speaking, setting around 0.3 will be good in

size are adopted from previous experiments of EDA-MCC arEHOSt cases. With such a setting éfthe value ofc does not

kept fixed during following tests, i.e} = 1000, m = 500 |mpac§ overall performance much, but may lead to different

for F, and M = 500,m = 250 for Fg. The performance CPU time cost.

comparison of combinations df and ¢ are summarized in

Tables X-XI. VI. SUBSPACEMODELING BY CLUSTERING VARIABLES?
From the results we can see that on separébj@s longas In EDA-MCC, we randomly partitionS into subspaces

0 < 0.3, differentc does not change the performance. Howevén SM. One may ask whether a more sophisticated way of

when § > 0.3, the performance becomes a little unstablgartitioning S can be applied, e.g., partition subspaces by

V. INFLUENCE OFPARAMETERS 6 AND ¢



TABLE X

THE PERFORMANCE COMPARISONS OF DIFFERENG AND ¢ ON 100D F5. EACH CELL CONTAINS AVERAGED RESULT FOR25 RUNS.

c=5 c=10 c=20 c=30 c=40 c =50
0=0.2 0+0 0+0 0+0 0+0 0+0 0+0
0=025|0+0 0+0 0+0 0+0 0+0 0+0
0=0.3 0+0 0+0 0+0 0+0 0+0 0+0
0=035]|0x0 1.96e-019.82e-01| 0+ 0 0+0 7.2e-02:3.6e-01| 0+ 0
0=04 8.2e+00t3.5e+01 | 1.8e+00:9.0e+00 | 9.8e-02-3.7e-01| 2.8e-03t1.4e-02 | 1.8e-05:8.9e-05| 1.1e+0G:4.6e+00

TABLE XI

THE PERFORMANCE COMPARISONS OF DIFFERENGTAND ¢ ON 100D Fg. EACH CELL CONTAINS AVERAGED RESULT FOR25 RUNS.
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c=30

c =140

c=50

9.6e+0H1.1e-01

9.6e+0H-2.1e-01

9.6e+0H-3.9e-01

1.3e+02:1.6e+02

9.6e+0H-9.0e-02

9.6e+0H-5.0e-01

9.7e+0H1.2e-01

9.7e+0H-2.1e-01

9.7e+0H-3.9e-01

9.5e+03t2.6e+04

7.7e+03:3.3e+04

1.2e+03:3.2e+03

c=5 c=10 c=20
0=0.2 4.4e+06E2.1e+07 | 9.5e+01-2.9e-01 | 2.3e+02+6.9e+02
0 =0.25 | 1.1e+02:8.0e+01 | 9.5e+012.0e-01 | 9.6e+0H1.4e-01
6=0.3 9.9e+0H11.2e+01 | 9.9e+011.3e+01 | 9.6e+0H-1.3e-01
0 =0.35 | 2.1e+t04:7.3e+04 | 2.2e+02-2.4e+02 | 7.9e+02+2.4e+03
0=04 6.3e+06t1.4e+07 | 1.3e+06:1.6e+06 | 1.2e+06:2.3e+06

1.4e+06:4.0e+06

2.5e+06:6.0e+06

1.1e+06:2.3e+06

clustering the variables i based on the strength of the
interdependencies. Intuitively, such a method should waek
when sample size is large enough compared with the probl
size n. But asn grows very large (e.gnp = 500) and only
limited sample size is available (e.g., population size= 200
and selected size: = 100), its performance may not be ag
good as random partition since any learning method, inoydi
unsupervised clustering, will be affected by the curse
dimensionality. In this section, we replace the previousi8M
EDA-MCC with a greedy clustering like method named SM
GC (Subspace Modeling by Greedy Clustering), and compa
it with EDA-MCC. The new resulting algorithm is called
EDA-MCC-GC (Greedy Clustering).

The details of SM-GC are shown in Fig. 11. In short
SM-GC partitions subspaces in the following steps: First,
pair of variables, whose absolute correlation is the large
among the ones abow is picked up fromS as an initial
cluster. This implies the pair of variables are the mostrsfhp
dependent among all. Then a variable outside the cluster
selected and added to the cluster, on the condition that
correlation to other variables in the cluster is the strahge
The operation iterates until the cluster reaches the madxin
size ¢ or no strongly dependent variable can be found fro
the perspective of the cluster. Now the cluster refers to
partitioned subspace. Then, the dependencies between
cluster and the rest variables & will be eliminated. An
outer loop keeps generating new subspaces in a greedy ma

re

a
¢S

S
its

na
m
a

until all variables inS is partitioned or there is no strongly
dependent variables left. If after clustering, there ai# st

the algorithm.
We compare EDA-MCC-GC with previous EDA-MCC on

nner

SM-GC

PM 1) ConstructS according to (4).

b) Repeatuntil S = 0.

i) Find two variablesX;, X, € S maximizing
|corr(X7, X2)| > 6.

i) GenerateS; + {X1, X2} and removeX;
and X, from S if X; and X, can be found;
Otherwise exit current loop.

i) Repeatwhile |S;| < ¢, wherec is a user

2) Partiion S into  non-intersected  subsefts
813825' .- ,Sk(l < k < Tl):
a) i<+ 1.

specified parameter defining the maximal

size of a subse2(< ¢ < n).

A) Find a variable X € S maximizing
|corr(X,Y)| > 0, wherevY € S;.

B) S; + S;|U{X} and removeX from S if
X can be found; Otherwise exit current
loop.

iv) i< i+ 1.

c) If S # (), estimate a univariate model for vari

ables inS since they are all weakly depende

on them selected individuals.

Fig. 11.

Main flow of Subspace Modeling by Greedy Clusterisf/{GC)

—

nt.

the3) Estimate a multivariate model for each subset based

’ ’ el - : Note that the partition step is changed from original SM anel tinimal
variables left inS, a univariate model will be applied to thesevalue ofc is changed to 2 since there is no need to clustersf 1. The ¢

variables since they are now regarded weakly dependentRg{gmeter here is the same as defined in (3).

three representative functions,, Fs and Fy;. The algorithms MCC performs significantly better than EDA-MCC-GC. This
are compared on 50D and 500D tests. Population sizesrifies our previous intuition that when applied to high di-
parameters) and ¢ of EDA-MCC-GC are set the same asmensional optimization problems with very limited popidat
used in EDA-MCC in previous 50D and 500D experimentsize, partitioning subspaces based on clustering might not
Results and parameters used are summarized in Table Xi. as effective as random partition. Though the illusteativ
We can find that on 50D tests, there is no significant diffeexperiments cannot exclude the possibility that some aliglic
ence between EDA-MCC-GC and EDA-MCC. However, oglustering approach might outperform random partition on
500D tests where very small sample size is applied, EDApecific high dimensional optimization problems, a clustgr



TABLE XII
THE COMPARISONS OFEDA-MCC-GCAND EDA-MCCIN 50D AND 500D TESTS ONF5, Fg AND F11. EACH CELL CONTAINS AVERAGED RESULT FOR
25RUNS. FOR EACH TEST, THE BEST RESULT IS BOLDED EDA-MCC’'S RESULTS ARE DIRECTLY FROMIABLE IV AND TABLE IX. THE RESULTS OF
EDA-MCC ARE COMPARED WITH RESULTS OFEDA-MCC-GCBY NONPARAMETRICMANN-WHITNEY U TEST. THE SIGNIFICANCE LEVEL IS SHOWN
BY MARKERS (*, T AND §). NO MARKER IMPLIES NO SIGNIFICANT DIFFERENCE

[ Prob. | Dim [ EDA-MCC-GC | EDA-MCC | Parameters
75 50 | 0LoO 0Lo0 M = 200, m = 100, meorr = 100,0 = 0.3, ¢ = 20
500 | 1.32e+05+ 2.73e+05 | 0+ 0 M = 200, m = 100, mecorr = 100,60 = 0.3, ¢ = 100
133 50 4.78e+01+ 2.34e-01 4.77e+01+ 1.52e-01 | M = 2000, m = 1000, mcorr = 100,60 = 0.3,¢c = 20
500 | 6.32e+11+ 1.29e+13 | 6.77e+02+ 6.28e+02| M = 200, m = 100, meorr = 100,60 = 0.3, c = 100
Fi1 50 3.00e+02+ 1.45e+01 | 2.88e+02+ 1.36e+01| M = 2000, m = 1000, mcorr = 100,60 = 0.3,¢c = 20
500 | 6.25e+03+ 1.01e+08 | 5.24e+03+ 3.86e+01| M = 200, m = 100, meorr = 100,60 = 0.3, c = 100
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§ The value of Asymp. Sig. (2-tailedX 0.001 when compared with the results of EDA-MCC.

approach often require relatively higher computationadtco column of @ which indicates the number of generations into
By contrast, random partition is simple and efficient, whicthe number of evaluations (#eval) in all the following figsire
can be considered as a default component of EDA-MCC. The horizontal axis of average #strong graph is converted to
#eval as well. Due to the limited page length, here we only
VII. CHARACTERIZATION OF PROBLEM PROPERTIESBY ~ '€Port the results o, Fy, Fy and F1,. Although the results
EDA-MCC are seemed to be the solo effect of WI, actually SM plays
an important role to guarantee the effectiveness of WI. The

As our motivation of scaling up EDAs, we regard thaf,tyal effects between Wi and SM are to be shown later.
when solving a problem, a major advantage of using EDA

other than traditional EA is that we can gain some feedback )

on the problem properties through observing the probaigilis From Fig. 12 we can see that on separable #strong
model learnt. The learnt structure and the estimated paeasne'®Mains at a low level. But as grows up, the level of

of the model should reflect some underlying properties §frong also becomes higher. This can be interpreted as the
the problem. In addition to finding a solution, EDA has th&ffects of data sparsity in higher dimensional space. Fedfix

ability to characterize the problem properties. Howevechs ¢ through all experiments, the number of variables/incan
an advantage of EDA has not been deeply investigated._qﬁcome smaller when search space enlarges (thus #strong can
a recent study [47], discrete EDA model has been used ifgrease) because EDA-MCC may capture some correlations
represent interactions between the protein conformatigns Which actually do not exist between variables. The relafive
probability models. But still, rare study has been done dfW level of #strong is consistent with the separability loé t
continuous EDA models to characterize the structure of &#ction. Furthermore, the grey levels of matric@sre nearly
optimization problem. unlform,_whlc_h means that all theT va_nablesSnare observe(_j

In EDA-MCC, we are able to give such analysis by obseni@ play |_dent|cal role_s for c_ontrlbutmg t_he fitness _funcrtlo
ing the model structure (in graphics) obtained by wi+spyalue. It is also consistent with the function expression.
During above experiments of EDA-MCC, we also record the
results of WI procedure in every generation for each test. ByFig. 13 shows that EDA-MCC correctly recognizes the
analyzing these results, we can give in-depth analysis en froblem structures of Shifted Rosenbrogk. The variable
problem properties characterization ability of EDA-MCCeW dependency of the problem is a chain-like structure: The firs
record the number of strongly dependent variables (#sjrongariable determines the second, the second determines the
i.e., |[S|, and the elements . The curves of the averagethird, and so on. We can see that WI first identifies the last
#strong of the 25 runs during evolution thus can be plottegair of variables, then it quickly “realizes” the first paif o
Which variables are partitioned int® can also be plotted by variables are the most important. The structural inforomati
a matrix Q. Each row of@ corresponds to a variable. Eactof the problem is clearly and precisely identified.
column corresponds to one generation. Its elenGgnton the
ith row and thejth column, ranging from 0 to 25, indicates

how many runs partitioned variable; into 5 at generation performs others on Shifted Rotated High Conditioned Edipt

J durmg the 25. runs. Because examining a m_a(@x(even Fy. Fig. 14 shows that WI always helps EDA-MCC to recog-

shown in graphics) with 50 or_1_00 rows is relatively har(_j forrﬂ e the problem structure. The WI results clearly show that
human eyes, we here add addltlonallloD and 30D experlmenosme variables are constantly identified as strongly degrend
of EDA-MCC. Results of 500D experiments are even harderd;:l)Jrin evolution (the dark rows ap)
read so we omit them here. The 10D and 30D tests are baSed 9 '

on the same settings as previous 50D and 100D experiments.

Becausen = 10, 30 is relatively small, it is easier for us to Furthermore, by checking the expression &f 1(see Ta-
examine the graphic results and see the changing trendsbleslil), we can see that the coefficieE?:l(l()G)% before
n grows. For the purpose of comparing average #strong agdincreases exponentially withgiven a fixedn. Thus among
matrix Q in a same figure more clearly, we transform théhe transformed variables, 1 < i < n, z, mostly impacts the

Experiments have shown that EDA-MCC significantly out-
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function. Fy can also be written as:
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Wherele- = ji ©\/ (106)71“;*11,1 < ’L,j < n. Mji is the

element of M, whose value can be found in [43]. Matrix
R partly represents to what extent the original variabies
impact the function value. Roughly speaking,; indicates
the effect ofz; onto z; and thus onto final function value.
Becausd; is non-linear, it is hard to analyze the exact impact
of each variable. But since, mainly impacts the function
value, we can instead analyze thn column of R which can
partly indicate the impact of onto z,, and thus onto the final
function value to give a rough analysis. We plot the curves

of coefficienty/ (106)% as sub-figures in the first column
of Fig. 15. The sub-figures in the second column show the
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absolute value of matri?, Abs(R). We use absolute valueother algorithms, its characterization ability to deserithe
because both positive or negative coefficients of a varialeoblems’ underlying structural information is always @
can influence the function value. The sub-figures in the thiable. We regard this the most valuable aspect of EDA-MCC.
column show theaxth column of Abs(R), which is denoted as However for Iy, Fi2 and Fi3 which has a huge number
Abs(R)(:,n). To compare them with the experimental resultsf local optima, EDA-MCC still has limitation. It should
Q@ shown in the last column of Fig. 15, we stretch the widthalso be noticed that in current implementation of EDA-MCC,
to make them same size. Hegeare directly from Fig. 14. We we haven't tried every possible univariate model dh and
can see that when is large, the domination of,, becomes multivariate model orS other than the two Gaussian models
weak because the coefficientsf 1, z,_», etc., approach the used. Therefore, even if EDA-MCC correctly characterizes
coefficient ofz,,. Therefore, the difference between the rougthe problem properties, it does not try every possible effor
analysis and the experimental results also becomes larger.utilize this information. This can explain why in some
However, for all four tests, we can always find the evidenaases EDA-MCC cannot outperform other algorithms, even
that WI successfully recognizes the problem structure:s€howith correct problem structure characterization. We have t
variables most impacting function value are correctly tfesd  admit that our results are restricted within the capabitify

as dark rows inQ.% Gaussian models.

Fig. 16 shows the WI results on Shifted Rotated Rastrigin One thing needs to be addressed is that when solving a real-
Fi5. Results here also help explain why UMBperforms world problem in practice, a user may not want or be able
well on this problem while EDA-MCC fails. By examiningto run EDA-MCC for multiple runs to obtain the problem’s
the WI results on Rastrigirf;; (not shown here), we find structural information. However, through only one run on a
that the results are very similar to Fig. 16. Sinég; is problem may not provide sufficient information. In this case
separable, the results are reasonable. As analyzed abaveore recommended way is to allow EDA-MCC for restarts,
due to the inefficiency of covariance matrix scaling on thiand aggregate the information collected over multiplddria
function with a huge number of local optima, EDA-MCCgenerate th&) matrix.
cannot perform well. However, on non-separablg, WI still
fails to recognize the problem structure because the sample V|||. ROLES AND INTERACTIONS OFWI AND SM
size (selected size)_is far less eno_ugh con_sidering the hugt?n this section, we analyze the roles of WI and SM and
number of_IocaI optlma. From the information that Wi C@heir interactions. Besides the above implementation oAED
_gather,Fu just I_ooks like a separable problem and no useﬂ,{}]cC with WI+SM, we also implement a “SM only” version
interdependencies are learnt from qbsgrvatlon. As a reSLélﬁd a “WI only” version. We compare these 2 versions with
EDA-MCC does not perform well on it either. EDA-MCC on 100D of our test functions to analyze their

EDA-MCC'’s remarkable ability on characterizing the probzeqnective roles. But to save space, we only report compais
lem properties are clearly shown in this section. Althou selected functions including, Fs, Fy, Fio, Fi1 and Fis

in some cases, EDA-MCC cannot find better solutions th%re The parameters of “SM only” and “WI only” are exactly

5We recommend readers to refer to the high resolution versiothe the same as the respective settings of SM and WI in_ pre\{ious
original digital formatted (.eps) figures. EDA-MCC experiments. For each test, the population sizes
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Fig. 15. Explanations of WI results afy. The coefficients of; are shown in the first column. The second column demonstrétesR). The third column
shows thenth column of Abs(R), denoted asAbs(R)(:,n). The experimental) results are shown in the last column, which are directly &tbgrom
Fig. 14. We can see that the last two columns are very singipecially for low dimensional tests.

of all the 3 versions are set to the same as the selected limse. Generally speaking, WI+SM shows much more robust
results of EDA-MCC. performance and moderate CPU time cost than “SM only” and
The solution results are shown in Table Xlll. We can s€&VI only”. It is also interesting that “WI only” can perform
that when WI+SM performs best, it usually finds order-ofslightly better than WI+SM onFj; and Fis. This implies
magnitude better solutions than “SM only” and “WI only”.that SM does not contribute a bit on these functions. This is
Because “SM only” applies several multivariate models otonsistent with our previous conclusions in Section V-4t
all variables, the ways dealing with those actually weaklyubspace partitioning with changimgdoes not help to solve
dependent variables are not so efficient. Therefore it fails these functions. Without SM, “WI only” can even performs a
perform best on any function except the simplést On the little better. But when SM is necessary, e.g., Bt Fig, “WI
other hand, “WI only” can perform slightly better than WI+SMonly” will fail.
on I}, and Fy3 and the same as WI+SM ohf,, but much To investigate the interaction between WI and SM in
worse on the others. The CPU times are reported in Fig. & rms of EDA-MCC'’s ability of characterization of problem
Although “SM only” cannot find solutions of comparablestructure, we here plot the WI results (#strong @hanatrix)
quality, its CPU time cost is usually acceptable or complaratof “WI only” on Fg and Fy; in Fig. 18 as demonstrations. WI
with WI+SM. Whereas “WI only” can cost much more CPUWesults of “WI only” on other functions are similar to either
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Fig. 16. WI results onF';2: Shifted Rotated Rastrigin. Curves of average #strong e in the upper row. Correspondi@ matrices are plotted in the
lower row. The darker the element @ is, the more times a variable is partitioned ioat the specific #eval during the 25 runs.

TABLE XIlI
COMPARISON AMONG“WI+SM”, “SM ONLY” AND “WI ONLY” ON 100D 100
TESTS MEAN BEST RESULTS FORR5 RUNS ARE REPORTEDFOR EACH % %
TEST FUNCTION THE BEST RESULT IS BOLDED THE RESULTS OF 8 &
“WI+SM” ARE COMPARED WITH RESULTS OF'SM ONLY” AND “WI ° ;Z > ;2
ONLY”, RESPECTIVELY BY NONPARAMETRICMANN-WHITNEY U TEST. S w S
THE SIGNIFICANCE LEVEL IS SHOWN BY MARKERS(*, T AnD §). No 2 4 2 4
MARKER IMPLIES THERE IS NO SIGNIFICANT DIFFERENCE 30 SOMWMWWWWM
20 20
[ Prob. [ WI + SM [ SM only [ WI only ® ®
| Fy | 0+0 | 0+0 | 0+0 ’ ’ 4#eval6 ) xml’o ’ ’ 4#:teval6 ° ><101°0
Fyg 9.65e+011.3e-01 | 1.00e+02£2.3e+01 | 4.51e+03F2.1e+04 (a) Fy: average #strong (b) Fi1: average #strong
Fy 9.59e+06-2.5e+06 | 9.01e+09%1.1e+09 | 3.33e+07%6.7e+06
Fio 1.87e+033.6e+02 | 8.15e+04:-3.9e+03 | 2.39e+04-2.3e+03
Fii 7.49e+02£1.6e+01 | 7.82e+02£1.7e+0% | 7.36e+02-1.1e+0%
Fi3 6.53e+011.6e+00 | 6.97e+01#1.8e+00 | 6.51e+011.1e+00

§ The value of Asymp. Sig. (2-tailed) 0.001 when compared with the

results of “WI+SM”.
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Fig. 17.
only” on selected functions.

The comparison of CPU time of “WI+SM”, “SM only” and/\|
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teval
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Fig. 18. The results of WI procedure in “WI only” oAy and F11. Fy1
results are similar to 100D WI results of EDA-MCC &2 in Fig. 16 because
SM contributes nothing in solving or characterizing thelgbeen. ButFy result
is quite different from Fig. 13, which implies the effects ®# on functions
with strong and clear variable interdependencies.

but also the WI procedure. Based on samples drawn from
the unprecise global model, WI also becomes useless that
eventually all variables are partitioned info This also makes
that modeling and sampling from global multivariate model
becomes slower and costs longer CPU time. On the other

of these two functions. We can see that on functions wittand, when SM is unnecessary asfan, “WI only” can still
strong variable interdependencies li#&, without SM, the charactenze the problem_structure properly and finds isoisit
precision of global multivariate model afi fast deteriorates With same or better quality.

as the search proceeds. It affects not only the solutionitgual

We can conclude that SM helps to maintain the global



23

precision of the search model, and thus helps WI moesd X; denotes theth variable of X. The problem isn di-
effectively recognize the problem structure. On the otlaerdy mensional M denotes the population size, anddenotes the
WI helps to properly apply different search strategies amumber of selected individuals. Without the loss of geriggral
weakly dependent and strongly dependent variables to finé assuméP’| = |P| = M.

good solutions effectively. Obviously, the success of EDA- 1) UMDAS: Let u; and o2 denote the mean and the
MCC, in terms of the problem structure characterizatiotittbi variance ofX;, respectively { = 1,...,n). The joint density
and the robust performance on high dimensional optiminatiof UMDA %is:
problems, are based on the combination of Wl and SM.

1 _(@i—np)?

z) = Tis fiy 02) = e > . (10
IX. CONCLUSIONS ANDFUTURE WORK /&) EfN( Hir ) g oiV2m (10)
In this paper we first analyze the difficulties of tradi-
tional continuous EDAs in high dimensional search space.
Due to the curse of dimensionality, given a finite population
size, the performance of traditional EDAs fast detericgate 0
as the problem size grows large. Their computational cost 2) /'I{;évergénm (zgllg.cted individuals to estimate
also increases fast when using a multivariate model for non- o 5.
separable problems. To improve the performance and reduce Tir- s On Q(nm)'
the computational cost for high dimensional optimization, —Overall complexity:O(nm).
a novel multivariate EDA with Model Complexity Control * Sampling new solutions.
(EDA-MCC) has been proposed. By adopting Weakly de- For X;, we need to generate a standard normal random
pendent variable Identification (WI) and Subspace Modeling number¢, then do
(SM), EDA-MCC shows significantly better performance than Ti e i+ C -0y (11)
traditional EDAs on high dimensional non-separable pnotsle ! ! v
with only a few local optima. The computational cost and  Since such operation is fast, we suppose sampling one

requirement for a large population size can also be signif-  variable costs)(1), thusO(n) is needed for variables.
icantly reduced in EDA-MCC. Besides, EDA-MCC exhibits  Repeating)/ times to creatéP’ costsO(nM).

remarkable problem property characterization ability. éWh Overall complexity:0(nM).
solving a problem, EDA-MCC will not only find a solution, 2) EMNA, i Let /i and = denote then dimensional

but also give users feedbacks on the variable dependeqeyy, \ector and the x n covariance matrix respectively.
structures of the problem. Such an ability can be far mote joint density of EMNAopaiis: ’
ooa. .

valuable than just obtaining a solution. It is especiallgfub

« Building the model.
Estimate(u;, 0?) for X; (i =1,...,n):
1) Traverse m selected individuals to estimate

when facing a black box optimization problem. Based on , ., - . 1 L@ TE" (7))
the extracted problem structural information, more effitie 1@ = fn(@ 0, %) = (27T)%|2|%e ’ '
algorithms can be designed specifically to give better snist (12)

The limitations of EDA-MCC are also analyzed. First, in low , Building the model.

dimensional search space where available population size i 1) Traversem selected individuals to estimatg:

usually large enough to offer a good global model estimation O(nm)
EDA-MCC may not be so effectl\(g as traditional EDAs. Th_e 2) Traversem selected individuals to estimats:
advantage of EDA-MCC over traditional EDAs only appears in O(n2m)

high dimensional space where a given population size fails t
give a reliable global model estimation. Second, when facin
high dimensional non-separable problems which has a hug

Overall complexity:O(n?m).
& Sampling new solutions.

number of local optima, EDA-MCC may not be so effective or 1) Before first time sampling, we nee&d(n®) to de-
efficient as a simple univariate Gaussian EDA. We should note composeX: such thats = HH" [22].
that current discussions and implementation on EDA-MCC are ~ 2) To sample a new solution, we need to generate a
still restricted to Gaussian models. Different base uraar standard normal random vector then do
and multivariate models other than Gaussian are still to be T
tested and analyzed. Moreover, smarter self-adaptivengett Tefi+c-H. (13)
of # andc is still an interesting issue that is left for our future Primary cost here is the(n2) matrix multipli-
work. cations. Repeating/ times to createP’ costs
O(n?M).
APPENDIX . Note that for EMNA,,q;, usually M > n in practice,
COMPUTATIONAL COMPLEXITY ANALYSIS OF UMDA(, which means the population size is usually larger than

EMNA g10p01AND EDA-MCC the problem size, thus here the overall complexity of
A. Computational Complexity of UMD#and EMNAobai sampling can be measured primarily &yn?M) in step
Suppose the current model is built from the selected indi-  2- TheO(n?) in step 1 can be ignored.
viduals of the last generation. Vectar denotes an individual, Overall complexity:O(n*M).
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