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Abstract—Since Estimation of Distribution Algorithms (EDA)
were proposed, many attempts have been made to improve EDAs’
performance in the context of global optimization. So far, the
studies or applications of multivariate probabilistic model based
continuous EDAs are still restricted to rather low dimensional
problems (smaller than 100D). Traditional EDAs have difficulties
in solving higher dimensional problems because of the curse
of dimensionality and their rapidly increasing computational
cost. However, scaling up continuous EDAs for higher dimen-
sional optimization is still necessary, which is supportedby the
distinctive feature of EDAs: Because a probabilistic modelis
explicitly estimated, from the learnt model one can discover useful
properties or features of the problem. Besides obtaining a good
solution, understanding of the problem structure can be of great
benefit, especially for black box optimization.

We propose a novel EDA framework with Model Complex-
ity Control (EDA-MCC) to scale up EDAs. By using Weakly
dependent variable Identification (WI) and Subspace Modeling
(SM), EDA-MCC shows significantly better performance than
traditional EDAs on high dimensional problems. Moreover, the
computational cost and the requirement of large population
sizes can be reduced in EDA-MCC. In addition to being able
to find a good solution, EDA-MCC can also produce a use-
ful problem structure characterization. EDA-MCC is the firs t
successful instance of multivariate model based EDAs that can
be effectively applied a general class of up to 500D problems.
It also outperforms some newly developed algorithms designed
specifically for large scale optimization. In order to understand
the strength and weakness of EDA-MCC, we have carried out
extensive computational studies of EDA-MCC. Our results have
revealed when EDA-MCC is likely to outperform others on what
kind of benchmark functions.

Index Terms—Estimation of distribution algorithm, large scale
optimization, model complexity control.

I. I NTRODUCTION

ESTIMATION of Distribution Algorithms (EDA) [1], [2]
have been intensively studied in the context of global

optimization. Compared with traditional Evolutionary Algo-
rithms (EA) such as Genetic Algorithms (GA) [3], there is
neither crossover nor mutation operator in EDA. Instead, EDA
explicitly builds a probabilistic model of promising solutions
in search space. Then new solutions are sampled from the
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model which presents extracted global statistical information
from the search space. EDA uses the model as guidance of
reproduction to find better solutions. Actually, any EA has
an underlying model presenting its sampling (reproduction)
mechanism. But in traditional EAs, the underlying model is
usually implicitly expressed through evolutionary operators.
Once the model is explicitly presented, the algorithm can then
be classified as an instance of EDA. EDAs were proposed
originally for combinatorial optimization. Research on EDAs
has been extended from discrete domain to continuous opti-
mization and much progress has been made. In this paper,
we focus EDAs in single objective continuous optimization
domain.

Many studies on continuous EDA have been done in the
last decade. In general, so far there are two major branches
of continuous EDAs. One is based on Gaussian distribution
model, which is the most widely used and intensively studied
[2], [4]–[11]. Another major branch is based on histogram
models [6], [12]–[19]. However, most of the existing studies
have a common problem that the performance of EDA is
only validated on low dimensional problems (usually smaller
than 100D). The performance of EDA on higher dimensional
problems (e.g. 500D) is rarely studied. As we can see in the
following sections, the reason of this is not that researchers
simply ignored such an issue, but that continuous EDAs do
have difficulties in high dimensional search space. Due to
relying on learning a model from samples, EDAs suffer from
the well-knowncurse of dimensionality[20]. If considering
multi-dependency structure of variables to solve non-separable
problems more effectively, traditional EDAs’ fast increasing
computational cost also makes them impractical to real-world
applications. In this paper, we propose a novel EDA framework
with Model Complexity Control (MCC), named EDA-MCC,
to scale up EDA for continuous optimization. By adopting
Weakly dependent variable Identification (WI) and Subspace
Modeling (SM) in EDA-MCC, we can restrict the model
complexity to a necessary level and make EDA-MCC less
suffer from the curse of dimensionality. Furthermore, we
can also suppress the increasing demand of population size
and reduce the overall computational cost in terms of CPU
time. Experimental comparisons on well-known benchmark
functions validate the effectiveness and efficiency of EDA-
MCC. We can find that EDA-MCC have significant advantages
over traditional EDAs when solving high dimensional non-
separable problems with few local optima (up to 500D in
current experiments) in terms of solution quality and compu-
tational cost. The significant difference between EDA-MCC
and traditional EDAs with model complexity penalization is
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discussed. According to the No Free Lunch Theorem [21], the
limitations of EDA-MCC are also analyzed.

If traditional EDA is not appropriate for high dimensional
optimization, why do we still strive to scale it up? Our mo-
tivation is based on a distinctive advantage of applying EDA
compared with other EA - users can discover or identify useful
properties/features of the problem from the learnt probabilistic
model. Since the model is explicitly built in EDA, it is always
possible to observe the learnt model structure and parameters.
For simple univariate (marginal distribution) model based
EDAs, because the interdependencies among variables are
simply ignored, it is not possible to reveal deeper level of
information which represents the problem structure or variable
dependencies. However, multivariate model based EDAs have
such potentials. In EDA-MCC, multi-dependency is adopted,
but the degree of model complexity is explicitly controlled.
EDA-MCC is a first attempt of scaling upmultivariatemodel
based EDA for high dimensional continuous optimization.
There are clear difference between EDA-MCC and previously
developed EDAs with model complexity penalization strategy,
which will be shown in the following sections.

The remainder of this paper is organized as follows. In Sec-
tion II, we analyze the difficulties of traditional EDAs on high
dimensional problems, especially for Gaussian based EDAs.In
Section III, we present WI and SM for EDA-MCC when Gaus-
sian model is adopted. The difference between EDA-MCC
and traditional EDAs with model complexity penalization is
also discussed. Experimental studies on 50D-500D problems
are given in Section IV. In Section V, the dependence of
EDA-MCC of its WI and SM parameters is investigated. In
Section VI, random partitioning based SM is compared with
a clustering based SM, the advantage of random partitioning
in high dimensional optimization is verified and discussed.
The problem property characterization ability of EDA-MCC
is shown in Section VII. In Section VIII, we analyze the
respective and mutual effects between WI and SM. Our final
conclusions are drawn in Section IX along with future work.

II. T HE DIFFICULTIES OFEDAS ON HIGH DIMENSIONAL

PROBLEMS

A. Related Work

A typical EDA flow is shown in Fig. 1. Each individual in
the population presents a solution. One iteration of the loop
refers to one generation of evolution.

The primary difference between different EDAs is the prob-
abilistic model used. When adopting a Gaussian distribution
model, thef(~x) in Fig. 1 has the form of a normal density
which can be defined by a mean vector~µ and a covariance
matrix Σ. The earliest proposed Gaussian based EDAs are
based on simple univariate Gaussian, such as UMDAG

c [2] and
PBILc [4]. In these EDAs, all variables are regarded indepen-
dent with each other. The simplicity of such models makes
them easy to implement and the algorithms are characterized
by a low level of computational cost. But also because of
the simplicity, they may have difficulties in solving problems
whose variables have strong interdependencies. To remedy
this, several EDAs based on multivariate Gaussian have been

EDA

Initialize a populationP by generatingM individuals
randomly.
Repeatuntil a stopping criterion is met.

1) Selectm ≤M individuals fromP .
2) f(~x)← Estimate a probability density function from

the selected individuals.
3) P ′ ← Sample a number of individuals fromf(~x).
4) CombineP andP ′ to create the newP .

Fig. 1. A typical EDA.

proposed, such as EMNAglobal [2], Normal IDEA [5], [6]
and EGNA [2], [7]. EMNAglobaladopts a conventional max-
imum likelihood estimated multivariate Gaussian distribution
represented by~µ andΣ. In Normal IDEA and EGNA, after
obtaining the maximum likelihood estimation of~µ andΣ, a
graphical factorization, that is, a Bayesian factorization (i.e.,
a Gaussian network), is constructed, usually by local search
or greedy search. Constructing graphical factorization intro-
duces additional computation along with maximum likelihood
estimation, but the computational time in solution sampling
procedure can be reduced. On the other hand, if we want
to sample new solutions from a conventional multivariate
Gaussian distribution as in EMNAglobal, decomposingΣ is
a must [22]. Since these EDAs are essentially based on the
same multivariate Gaussian distribution, their performances
are similar. At least no significant superiority of one to another
has been reported so far1. Later, some extensions of these
EDAs have been proposed to improve their poor explorative
ability, such as EEDA [8], CT-AVS-IDEA [9] and SDR-AVS-
IDEA [10]. These EDAs scaleΣ according to some criterion
after maximum likelihood estimation. A comparative study of
different covariance matrix scaling strategies can be found in
[11]. Besides the abovesingle Gaussian based EDAs, EDAs
adopting Gaussian mixture distribution [23]–[26] have been
proposed for solving multimodal problems. Some hybrid con-
tinuous optimization algorithms using Gaussian based EDAs
[27], [28] have also been proposed.

Interestingly, previous studies have shown that although
Gaussian models cannot always offer an accurate estimationof
the true distribution of promising solutions, they can neverthe-
less offer a useful information for guiding the global search on
many unimodal and some, but not all, multimodal problems.
So far no satisfactory explanation of this phenomenon has
been presented in the literature. It will be interesting in the
future to study when a multimodal problem is easy or hard
for a given single Gaussian based EDA, e.g., by using a
recently proposed analytical approach [29]. However, except
for univariate Gaussian based EDAs, most existing studies
of multivariate Gaussian based EDAs are restricted to low
dimensional problems (problem size≤ 100D).

Continuous EDAs using histogram models include several

1Some comparisons between EMNAglobaland EGNA can be found in [2].
However rare comparisons involving Normal IDEA have been made.
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EDAs based on univariate histogram [6], [12], [13], [15],
[18] and some based on multivariate histogram [14], [16],
[17], [19]. Histogram models are more flexible than Gaussian
models because of the convenience to describe arbitrary mul-
timodality. However, if considering multiple variable depen-
dencies such as full interdependency, the required number of
bins can increase exponentially with problem size [30], which
makes multivariate histogram models hard to be applied to
high dimensional problems in practice. Although some efforts
have been made to improve the scalability of multivariate
histogram model based EDAs [14], [16], existing results of
these EDAs are also restricted to low dimensional problems
(problem size≤ 30D), which is even lower than multivariate
Gaussian based EDAs.

To the best of our knowledge, there have been only three
attempts studying continuous EDA on large scale (≥ 500D)
problems: 1) a univariate model based EDA, LSEDA-gl,
proposed by Wang and Li [31]; 2) application of UMDAG

c and
EGNA as logistic regression regularizers on a “largek (genes),
small N (samples)” microarray classification problem, pro-
posed by Bielza et al. [32]; and 3) study of parallel im-
plementation of EGNAEE on sphere function, proposed by
Mendiburu et al. [33]. However, these attempts have their limi-
tations. LSEDA-gl adopts anunivariatemodel, that is, a mixed
Gaussian and Lévy distribution. As discussed before, it lacks
of the ability to describe and reflect problem structure. On the
other hand, in [32], a multivariate EDA is utilized as a param-
eter optimizer of a logistic regression model with (order of)
500 parameters, trained via constrained maximum likelihood.
The parameters are constrained to certain intervals, effectively
regularizing the model. However, the general performance of
the multivariate EDA on broader types of high-dimensional
problems is still unknown. In [33], the study focuses on the
parallel multivariate EDA’s performance in terms of speed up
of execution time but not on solution quality, and only one
test function is involved in experiment. In a word, an open and
important question is, can we expect promising performance
(in terms of solution quality) of multivariate model based
EDAs on high dimensional optimization problems?

B. The Curse of Dimensionality

Since EDAs completely rely on probabilistic models built
from finite data samples, they must suffer from the well-known
curse of dimensionality[20]. The more flexible and complex
the model is, the more data it requires to yield a reliable es-
timation and to sustain enough good performance. According
to the curse of dimensionality theory, the amount of data to
sustain a given spatial density increases exponentially with the
dimensionality of the search space. This will adversely impact
any method based on spatial density, unless the data follows
certain simple distributions. Obviously the latter condition is
not always satisfied in practice. The population size of EDA
has to grow fast as the problem size grows to sustain good
performance. Since EDA tries to learn some global statistical
information fromm sampled data (i.e., individuals selected
from the population ofM individuals, see Fig. 1),m has to
be sufficiently large, which also requires a large population

size M when some level of selection pressure needs to be
maintained. Of course, the demand of the increasing popula-
tion size can be of different levels when models have different
levels of complexity. For simple univariate model based EDAs,
when solving ann dimensional problem, it estimatesn one
dimensional distributions independently. When population size
M is large enough for estimating thesen distributions and
finding good enough solution,M does not necessarily grow
asn grows. However for multivariate models, the far more de-
grees of freedom make them usually require larger population
sizes, which can be validated from our experiments. When the
dimensions of problems are very high, traditional EDAs with
complex multivariate models may become inapplicable since
the large population size may consume considerable com-
putational resources. There is an urgent need for techniques
that can reduce the required computational resources without
affecting (too much) the precisions of learning probabilistic
models.

Since previous results (e.g., [6]) show that Gaussian models
are less affected by the curse of dimensionality than histogram
models, which is reasonable because usually Gaussian models
have less degrees of freedom than histogram models, and
single Gaussian models have less degrees of freedom than
Gaussian mixture models, in the following sections we focus
on using single multivariate Gaussian models to scale up
EDA. Univariate Gaussian models are also involved in analysis
and experiments. However, it should be noticed that our
conclusions can be generalized and are not restricted only to
Gaussian models. Although previous research has shown that
single Gaussian model based EDAs can perform well on many
unimodal and multimodal problems, they still have known
limitations other than the effect of the curse of dimensionality.
Specifically, EDAs using maximum likelihood estimated Gaus-
sian are supposed to have poor explorative ability. Theoretical
analysis of UMDAGc [34], [35] have proved that the maximal
distance that the mean of the population can move across
the search space is bounded, and the algorithm is guaranteed
to converge since the population variance converges to zero.
Although theoretical analysis have not been developed, similar
results of multivariate Gaussian based EDAs using maximum
likelihood estimation have been also observed in experimental
studies [9], [11], [24], [36]. To improve the explorative ability,
several Gaussian based EDAs with covariance matrix scaling
[8]–[10] thus have been proposed. But the effectiveness of
these techniques in very high dimensional search space still
lacks validation.

C. Computational Cost

Besides the curse of dimensionality, computational cost of
an EDA can also restrict its application to high dimensional
optimization. In an EDA, if exclude fitness evaluation, the
model building and subsequent solution sampling steps deter-
mine its overall computational cost, which is also related to the
model complexity. In general, univariate model based EDAs
have very low level of computational cost. However, when
applied to high dimensional problems, even if the population
size is sufficiently large, multivariate EDAs have difficulties
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in terms of rapidly increasing computational cost in those
steps. Even for problems whose fitness function evaluation
is not very time-consuming, multivariate model based EDAs’
overall runtime can become unacceptable in practice. Here we
concentrate on the computational cost brought by the model
within one generation. We give analytical computational com-
plexity in terms of data access for two representative EDAs
of different model complexities: a univariate Gaussian based
EDA, UMDAG

c [2], and a multivariate Gaussian based EDA,
EMNAglobal [2].

Suppose the current model is built from the selected individ-
uals of the last generation.M denotes the population size, and
m denotes the number of selected individuals,m = τM , usu-
ally 0.3 ≤ τ ≤ 0.5 [2], [24]. The computational complexities
of UMDAG

c and EMNAglobal are shown in Table I. Detailed
steps of computation please see Appendix A.

TABLE I
SUMMARY OF ONE-GENERATIONCOMPUTATIONAL COMPLEXITY

UMDAG
c EMNAglobal

Model Building O(nm) O(n2m)

Solution Sampling O(nM) O(n2M)

UMDAG
c and all other univariate Gaussian based EDAs

shares the same model structure and only differ in the way
the model parameters are updated. These EDAs share a same
level of computational complexity. However, different mul-
tivariate Gaussian based EDAs have different computational
complexity. As mentioned above, EMNAglobalestimates model
via maximum likelihood estimation and sampling solutions
via decomposition of covariance matrix. While Normal IDEA
and EGNA build a graphical factorization after the same
maximum likelihood estimation, then fit the parameters of the
factorization and sample solutions by traversing the graph-
ical structure. The maximum likelihood estimation step in
all the three is exactly the same, thus they share a same
computational complexity in this step. For the latter steps,
EMNAglobal’s computational complexity is easy to analyze
since decomposing a covariance matrix constantly costs cubic
time with problem size. Whereas the graphical factorization in
Normal IDEA and EGNA can be obtained by several different
structure search algorithms, whose computational complexity
is relevant to the specific algorithms used and the current
state of data. After obtaining the structure, in Normal IDEA,
the conditional variances of the factorization are computed
by the inverse of covariance matrix [5], which costs same
computational complexity as decomposing covariance matrix.
So we can say Normal IDEA’s computational complexity is
definitely higher than that of EMNAglobal. In EGNA, the
parameters of Gaussian network are computed in a different
manner, making analytical calculation of the computational
cost very difficult. Previous literature on EGNA does not
offer any analytical results on computational complexity either.
Also considering the fact that multivariate Gaussian based
EDAs with covariance matrix scaling have more additional
computation, here we choose EMNAglobalas the represen-
tative of all multivariate Gaussian based EDAs to analyze
the computational complexity. We can say that the analysis

of EMNAglobalcan approximately give a lower bound of all
multivariate Gaussian based EDAs.

As mentioned above, when univariate model is sufficient
for solving a problem,M andm do not necessarily need to
grow asn grows. As Table I shows, for univariate model based
EDAs such as UMDAGc , the overall computational cost grows
linearly with n. Although the model’s simplicity restricts its
performance, its computational cost grows mildly. On the
other hand, for multivariate Gaussian based EDAs such as
EMNAglobal, the overall cost grows much faster. Although
[9] has reported that a necessaryM grows approximately
with

√
n for Normal IDEA, in practice it is usually true

that M > m > n. Overall computational cost of a typical
multivariate Gaussian based EDA thus grows at least with
O(n3). In following experimental studies, more illustrative
comparisons of CPU time will be made.

III. SCALING UP EDA: EDA-MCC

According to previous discussion, there are three require-
ments to be met in order to scale up multivariate model based
EDA to higher dimensional problems:

1) Multivariate nature of the search should be preserved as
much as possible.

2) Computational cost must be acceptable and grow mildly.
3) Only a limited population size can be applied.

Recalling the differences on performance and computational
complexity between univariate Gaussian and multivariate
Gaussian, we can easily find they are both related to the Gaus-
sian model complexity. Roughly speaking, univariate Gaussian
has simple structure and cheap computational cost, but has dif-
ficulty to solve non-separable problems. Multivariate Gaussian
has complex structure and thus expensive computational cost,
but can solve non-separable problems more effectively. If we
can explicitly control the model complexity according to some
criterion, we can combine their advantages together. Here we
propose a novel way to control the Gaussian model complexity
by two steps: Weakly dependent variable Identification (WI)
and Subspace Modeling (SM). The resulting algorithm is
called EDA-MCC (Model Complexity Control).

A. Weakly Dependent Variable Identification (WI)

A multivariate Gaussian represents the (linear) interdepen-
dencies between variables by their covariances. Accordingto
the definition of covariance, we have

cov(Xi, Xj) = E((Xi − µi)(Xj − µj)) , (1)

wherecov(Xi, Xj) is the covariance between variablesXi and
Xj , i, j = 1, . . . , n, E is the expected value operator. We also
have

corr(Xi, Xj) =
cov(Xi, Xj)

σiσj
, (2)

where corr(Xi, Xj) is the linear correlation coefficient be-
tweenXi andXj , σi and σj are the standard deviations of
Xi and Xj respectively,σi > 0, σj > 0, i, j = 1, . . . , n.
According to the definition, a correlation coefficient cannot
exceed1 in absolute value. Thus correlation coefficients can
also be seen as normalized covariances.
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Suppose during an evolution process of a multivariate
Gaussian based EDA, if at some generation, the correlation
coefficients are nearly zeros, which means theobservedlinear
dependencies between variables are actually very weak, then
the distribution that the model can learn will not be much
different from a univariate Gaussian model. Its exhibited
behavior at this generation does not differ much from a
univariate Gaussian either. (Fig. 2 shows an example of 2D
Gaussian distribution with different correlation coefficients).
In this case, switching current model to a univariate Gaussian
can significantly reduce the computational complexity and the
requirement of population size while holding nearly the same
performance. Inspired by this fact, we can firstly identify
those approximately independent variables, and then applya
simple univariate model on them. We call this strategy Weakly
dependent variable Identification (WI).

“Weakly dependent/correlated” variables can be identified
by first calculating ann×n global correlation matrix, then pick
out variables whose absolute values of correlation coefficients
to all the other variablesare no larger than a thresholdθ
(0 ≤ θ ≤ 1). The set of such variables,W , can be formally
defined as

W = {Xi | |corr(Xi, Xj)| ≤ θ, ∀j = 1, . . . , n, j 6= i} . (3)

After performing WI, we still leave the rest of the variables
for a multivariate model. In other words, we still consider
these variables fully dependent with each other. In contrast to
“weakly dependent”, we regard these variables as “strongly
dependent”. The set of the “strongly dependent” variables,S,
is defined as

S = {Xi | Xi 6∈ W , i = 1, . . . , n.} . (4)

Let V denote the set of all variables:

V = {Xi | i = 1, . . . , n.} . (5)

ObviouslyW andS partitionV , i.e.,

V =W
⋃

S , (6)

∅ =W
⋂

S . (7)

Note that if we use a global correlation matrix for the
purpose of identifyingW , we do not need a large amount
of samples as we do for estimating a reliable global covari-
ance matrix for the purpose of guiding search, even though
computing a correlation matrix is essentially of no difference
with computing a covariance matrix. Because the precision of
covariance matrix has direct impact on influencing the sam-
pling procedure and thus influencing the algorithm’s behavior,
it does require sufficiently large amount of data. Whereas if
we just use a correlation matrix to do a “coarse” learning
such as identifying weakly dependent variables, its precision
no longer plays the leading role to determine the algorithm’s
performance. Later we will see, a loose requirement of sample
size in WI also helps reduce the computational cost.

Let mcorr denote the sample size for constructing a global
correlation matrixC. The main flow of WI is depicted in
Fig. 3. Here the term “weakly dependent/correlated” is not a
strictly defined term as in the statistics domain. Whether a

WI

1) Calculate ann×n global correlation matrixC based
on mcorr individuals. Cij = corr(Xi, Xj), i, j =
1, . . . , n.

2) UseC to constructW according to (3).
3) Estimate a univariate model forW based on them

selected individuals.

Fig. 3. Main flow of Weakly dependent variable Identification(WI).

variable is classified intoW or not is determined by both the
correlation matrix at hand and the user specified parameter
θ. The correlation matrix reflects the observed information
in the search space, while different values ofθ can reflect
the user’s confidence on the univariate model. The larger
θ is, the more probable that more variables are optimized
by the univariate model. Then less computational cost and
smaller population size will be required. Note that for non-
Gaussian model based EDAs, weakly dependent may not be
identical to weakly correlated. If apply WI to those EDAs, the
identification method needs to be re-defined.

Of course, one can imagine other ways of defining
“weakly/strongly dependent” variables. For instance, onecan
classify the variables as weakly or strongly dependent by
considering their correlation with the function to be optimized.
The idea of separating weakly dependent variables from
strongly dependent ones in this context is interesting and worth
of further consideration in the future. However, as typically
done in EDA implementations, our definition of weak/strong
dependency is restricted to variables only (within the context
of building a local Gaussian model on the variables) and the
model does not reflect any correlation between a variable and
the function value.

B. Subspace Modeling (SM)

Suppose we only have a very limited population size,
and |S| is still too large form samples to give a reliable
estimation for a multivariate Gaussian model. To obtain better
performance, we can project them points to several subspaces
of the n dimensional search space, and then build model
and sample solutions on subspaces. When it is impractical
to further increasem, building subspace models and using
their combination to approximate the global estimation canbe
another choice. We call this Subspace Modeling (SM), whose
flow is shown in Fig. 4. Each subset ofS, or say group of
variables, corresponds to a subspace. All them samples are
projected to⌈|S|/c⌉ subspaces2, and we build a multivariate
model for each subspace. The capacityc indicates the maxi-
mum size of a subspace. It represents to what extent we trust
the m samples to give reliable estimation. By dividing the
variables into several subspaces and projecting them samples
to lower dimensional subspaces, the EDA only considers the
local dependencies among variables belonging to the same

2For a real numberx, ⌈x⌉ is the smallest integery, such thaty ≥ x.
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Fig. 2. Demonstrations of 2D Gaussian distributions with different correlation coefficients. The contours denote the Gaussian densities. In every sub-figure,
each of the two variables has a standard deviation equals to 1, so here the correlation coefficient equals to the covariance.

subspace, and the density of samples for each subspace will
increase. This technique probably offers a feasible way for
alleviating the growth of population size with respect to a
growing problem dimension, which will be validated by our
experimental results in later sections.

SM

1) ConstructS according to (4).
2) Randomly partitionS into ⌈|S|/c⌉ non-intersected

subsets:S1,S2, . . . ,S⌈|S|/c⌉. c is a user specified
parameter defining the size of a subset (1 ≤ c ≤ n).

3) Estimate a multivariate model for each subset based
on them selected individuals.

Fig. 4. Main flow of Subspace Modeling (SM).

Xk1 Xk2 Xk3 Xk4 Xk5 Xk6 Xk7 Xk8

Xk1 1.79 0.92 1.31 0 0 0 0 0
Xk2 0.92 2.41 0.59 0 0 0 0 0
Xk3 1.31 0.59 3.88 0 0 0 0 0
Xk4 0 0 0 1.54 −0.23 0.75 0 0
Xk5 0 0 0 −0.23 1.21 −0.84 0 0
Xk6 0 0 0 0.75 −0.84 1.82 0 0
Xk7 0 0 0 0 0 0 1.95 0.56
Xk8 0 0 0 0 0 0 0.56 2.94

Fig. 5. An example of the approximated global covariance matrix on
S after performing SM.S = {X1, . . . ,X8}, c=3. (Xk1, . . . ,Xk8) is a
random permutation of(X1, . . . , X8). The three subsets ofS are S1 =
{Xk1,Xk2,Xk3}, S2 = {Xk4, Xk5, Xk6} andS3 = {Xk7,Xk8}.

After randomly partitioningS, variables of different sub-
sets are regarded independently. When we use a multivariate
Gaussian to model each subspace, combination of all subspace
Gaussian models can be seen as an approximation of the
global Gaussian estimation onS. The global mean vector on
S is still identical to the combination of subspace models,
but the global covariance matrix is approximated by a block
diagonal matrix whose main diagonal blocks are the subspace
covariance matrices. Fig. 5 shows an example. If|S| ≤ c, the
variables can be kept together within one group. If|S| > c,

it means that the size of currentS is beyond the capability
of a global multivariate model thatm samples can estimate
according to user’s experience. Therefore we have to make
a concession by explicitly eliminating some dependencies
between variables while keeping the rest. As we will state
later, WI and SM are performed in every generation, thus the
random partition is not fixed through evolution. Variables from
different subsets in current generation always have the chance
to be grouped in one subset and keep their interactions in the
next generations. Similar strategy has also been proposed by
[37]. When sampling a new individual using above model, its
variables inS are sampled from the subspace models they
belong to, and then concatenate them with those sampled
variables inW . The evaluation of a newly sampled individual
is the same as in traditional EDAs.

The random subspace partitioning method proposed here
is a simple and the most straightforward one. Experiments
will show that although we only use the simplest SM method,
it indeed significantly improve EDAs’ performance on high
dimensional problems. Of course, more sophisticated subspace
partitioning methods can be developed if needed. For example,
we can divideS into several clusters of variables according
to the correlation coefficients, and then treat each clusteras a
subspace. However, such clustering still has the disadvantage
that it suffers from the curse of dimensionality. Given a finite
sample size, we cannot expect good clustering in very high
dimensional space. Later in Section VI, comparison between
the random subspace partitioning and a clustering-based one
will be conducted. Experiments will provide the evidence
that the simple random partitioning performs significantly
better than clustering-based partitioning on high dimensional
problems.

C. Model Complexity Control: WI + SM

By incorporating WI and SM within the EDA framework,
we can explicitly control the model complexity. WI helps
to reduce the model complexity to a necessary level, and
SM further reduces the model complexity according to the
population size that can be applied. LetSk (1 ≤ k ≤ ⌈|S|/c⌉)
denote a subset ofS, and vector~sk denote realizations of the
variables inSk. After performing WI and SM, the final joint



7

pdf has the form:

f(~x) =
∏

Xi∈W

gi(xi) ·
⌈|S|/c⌉
∏

k=1

hk( ~sk) , (8)

wheregi(·) is the univariate pdf of variableXi, andhk(·) is the
multivariate pdf of variables inSk. For instance, we can assign
all gi(·) to a univariate Gaussian as (10) and assign allhk(·)
to a multivariate Gaussian as (12). Based on WI + SM, the
main flow of a novel algorithm, EDA with Model Complexity
Control (EDA-MCC), is given in Fig. 6. As discussed above,
for the purpose of “coarse” learning,mcorr does not need to
be as large asm. We can samplemcorr individuals from them
selected individuals to calculate correlation matrixC. Because
duplicate samples cannot contribute to correlation estimation,
we use sampling without replacement.

EDA-MCC

Initialize a populationP by generatingM individuals
randomly.
Repeatuntil a stopping criterion is met.

1) Selectm ≤M individuals fromP .
2) Randomly samplemcorr ≤ m individuals from

them selected individuals without replacement. Use
thesemcorr individuals to calculateC in WI.

3) Build a model as in (8): Call WI and SM procedure
sequentially.

4) P ′ ← Sample new individuals: Sample fromgi(·)
andhk(·) independently. Combine all sampled vari-
ables together to reproduce an individual.

5) CombineP andP ′ to create the newP .

Fig. 6. Main flow of EDA-MCC.

The comparison of computational complexity of EDA-
MCC, UMDAG

c and EMNAglobalare shown in Table II. De-
tails of computation please refer to Appendix B. Because
mcorr ≤ m and c ≤ n, in a same number of generations,
EDA-MCC’s computational complexity is always between the
complexities of a univariate Gaussian EDA and a multivariate
one. Besides, if EDA-MCC requires smallerm and M , the
computational cost can be further reduced.

Specifically, in experiments, we will apply a UMDAGc model
as (10) for variables inW , and an EEDA model mentioned
in Section II for each subset ofS. EEDA [8] is a multivariate
Gaussian based EDA using covariance matrix scaling. After
performing maximum likelihood estimation, EEDA scales the
covariance matrix by resetting its minimum eigenvalue to
its maximum eigenvalue. EEDA regards the direction of the
eigenvector which the minimum eigenvalue corresponds to as
an approximation of the fitness function’s gradient. Previous
studies [11], [28] have shown that by enlarging the variance
along this direction, EEDA can have better explorative ability
than EMNAglobaland require a smaller population size. Since
the covariance matrix scaling can be done inO(n) [11],
EEDA has roughly the same level of computational complexity

with EMNAglobalwhen using same parameters. Therefore, the
computational complexity analysis of EDA-MCC in Table II
still holds true.

D. Difference Between EDA-MCC and EDAs with Model
Complexity Penalization

Several other approaches for controlling/penalizing the
model complexity in EDAs have also been proposed in previ-
ous studies. For instance, EGNAEE uses edge exclusion test to
control the structure complexity of a Gaussian network, or uses
BGe (Bayesian Gaussian equivalence) metric and local search
to decide the structure [2]. Normal IDEA uses BIC (Bayesian
Information Criterion) metric to penalize the complexity of a
normal pdf factorization [24]. However, there are significant
differences between EDA-MCC and previous approaches:

1) Fig. 7 shows typical results of the model structure after
applying previous approaches and WI+SM. After using
previous approaches, it is still very probable that the
model structure is a connected graph, although some
dependencies are removed. It means that all the variables
are still within a “big” multivariate model. Thus the
curse of dimensionality and computational complexity
issue still strongly restrict the algorithm’s performance
on higher dimensional problems. Asn grows, the per-
formance will keep on deteriorating and computational
cost will rapidly increase. This is consistent with the fact
that rare results of these algorithms on 100D or higher
dimensional problems have been reported. On the other
hand, WI+SM explicitly partitions the variables into
several separated groups. Then different “small” models
are applied toW and subsets ofS. Our experiments
will prove that WI+SM can significantly slow down the
performance deterioration and the increasing speed of
commotional cost asn grows.

(a) Previous approaches

(b) WI+SM

Fig. 7. A demonstration of model structures after applying traditional
approaches and WI+SM, respectively. Each circle represents a variable and
the directed edges represent the dependency.
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TABLE II
COMPARISON OFONE-GENERATIONCOMPUTATIONAL COMPLEXITY

UMDAG
c EMNAglobal EDA-MCC

Model Building O(nm) O(n2m) [O(n2mcorr) + O(nm), O(n2mcorr) + O(cnm)]

Solution Sampling O(nM) O(n2M) [O(nM), O(cnM)]

2) Previous approaches are all trying toprecisely learna
global structure from data, which is in fact impractical in
high dimensional space. They also involve complicated
computation that make the computational complexity of
EDAs become even higher. On the other hand, if use
WI+SM, the global structure is justroughly learnt. Since
it is too hard to perform good global learning in high
dimensional space, WI+SM tries to perform good learn-
ing in divided subspaces to give a better approximated
global estimation. Fortunately, the controlling parame-
ters θ and c both have explicit physical implications
that can be interpreted and set easily. WI and SM do
not introduce additional time consuming computation
into EDA. They can even help reduce EDA’s compu-
tational complexity when problem size goes large. But
we can also imagine that if the global structure can be
successfully learnt under some conditions, WI+SM will
not outperform traditional approaches. More discussion
of controlling parametersθ and c will be conducted in
Section V.

3) Compared with previous approaches, WI+SM offers
more flexibility in introducing different search strategies
into EDAs. For instance, any form of univariate models
and multivariate models (not restricted to Gaussian) can
be applied toW and subsets ofS, respectively. Different
models on different subsets ofS can also be implemeted.
This offers new opportunities to develop new EDAs and
hybrid algorithms. But in this paper we only discuss the
application of Gaussian models.

IV. EXPERIMENTAL STUDIES

A. Experimental Setup

1) Involved Algorithms:Four algorithms are involved in
our experimental comparisons: UMDAGc , EMNAglobal, EEDA
and EDA-MCC. As extensions of our previous analysis on
computational complexity, we select UMDAGc as a representa-
tive of univariate Gaussian based EDAs, and EMNAglobalas
a representative of multivariate Gaussian based EDAs. Both
of them are based on maximum likelihood estimation. Since
also many theoretical studies, experimental comparisons and
real-world applications of these two EDAs have been made
[2], [7], [8], [11], [15]–[19], [26]–[28], [31]–[35], [38]–[41],
taking these two EDAs in comparisons make sense. EEDA
[8] is included as a representative of multivariate Gaussian
based EDAs using covariance matrix scaling. It can be seen
as an extension of EMNAglobal, which makes it very easy
to implement based on an implementation of EMNAglobal.
Furthermore, fair comparisons of algorithm’s behaviors and
computation time between EMNAglobaland EEDA can be
made. In EDA-MCC, we apply a UMDAGc model for variables

in W , and an EEDA model for each subset ofS. Such an
implementation can yield fair comparisons with UMDAG

c ,
EMNAglobaland EEDA. In order to compare the CPU time
fairly, we implement all algorithms in Visual C++ 2005 within
a same template framework. All algorithms share same basic
data structures, algorithm flow, utility functions and numerical
computation library. They only differ on model building and
solution sampling modules.

2) Test Functions:Test functions are listed in Table III.
They are selected from classical benchmark functions in [7],
[42] and CEC2005 Special Session [43]. All the functions are
minimization problems. Details of the CEC2005 functions, in-
cluding the shifted global optima, the transformation matrices,
etc., are omitted here. Readers can find them in [43]. The test
functions contains several comparison pairs, from which we
can see whether an algorithm is sensitive to the shifted or
rotated function landscape. These functions can also be further
classified into 3 groups:

• Separable unimodal problems:F1 andF2.
• Non-separable problems with only a few (≤ 2) local

optima:F3, F4, F5, F6, F7, F8, F9, andF10.
• Multimodal problems with many local optima:F11, F12

andF13.
3) Common Parameter Settings:In real-world applications

of EAs, usually the only limitation is the maximal number
of fitness evaluations (#FEs), while the algorithm parame-
ters can be varied. For traditional EDAs such as UMDAG

c ,
EMNAglobaland EEDA, besidesτ representing the selection
pressure, the only parameter is population sizeM . Given a
fixed #FEs, a largerM may offer better learning, but reduce
the number of generations in the meantime, and vice versa
for small M . People are aware of the tradeoff between the
population size and the number of generations, and understand
that the balance between the two factors, which may even
vary from problem to problem, has significant influence on
the performance of an EDA. However, to our best knowledge
there is still no common experience about setting suitableM
for achieving promising performance given a fixed #FEs. As
most (if not all) studies on EDAs, our investigations does
not emphasize the setting of population size. Instead, for
the population sizeM of each EDA, we always apply four
choices (200, 500, 1000, and 2000), aiming at releasing the
promising performance of every EDA on every problem. In
our four-population-size tests, given the problem and the corre-
sponding dimensionality, we compare the average best solution
values obtained by every population size on every problem,
and select the best population size as the final decision of
the algorithm on the problem with the given problem size.
Moreover, all algorithms useτ = 0.5 for all tests, thus we
havem = 100, 250, 500, 1000, respectively. All algorithms are
initialized by uniform random initialization within the search
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TABLE III
TEST FUNCTIONS USED IN EXPERIMENTS. THE DOMAINS OF FUNCTIONF7 AND F11 ARE CHANGED FROM ORIGINAL DEFINITIONS IN[42] TO MAKE

THEM CONSISTENT WITH THE DOMAINS OFF8 AND F12 , RESPECTIVELY.F4 AND F6 ARE SHIFTED VERSION OFF3 AND F5 , RESPECTIVELY. THE
SHIFTED GLOBAL OPTIMA ARE GENERATED FOLLOWING THE SAME WAY OF [43]. ALSO NOTE THAT THE TRANSFORMATION MATRIXM HERE IS NOT

THE POPULATION SIZEM IN OUR PREVIOUS ANALYSIS.

Description Expression Domain

F1 Sphere (f1 in [42]) F (~x) =
∑n

i=1
x2
i [−100, 100]n

F2 Shifted Sphere (F1 in [43]) F (~x) =
∑n

i=1
z2i + fbias1 , ~z = ~x− ~o [−100, 100]n

F3 Schwefel’s Problem 2.21 (f4 in [42]) F (~x) = maxi{|xi|, 1 ≤ i ≤ n} [−100, 100]n

F4 ShiftedF3 F (~x) = maxi{|zi|, 1 ≤ i ≤ n}, ~z = ~x− ~o [−100, 100]n

F5 Schwefel (F2 in [7]) F (~x) =
∑n

i=1
[(x1 − x2

i )
2 + (xi − 1)2] [−10, 10]n

F6 ShiftedF5 F (~x) =
∑n

i=1
[(z1 − z2i )

2 + (zi − 1)2], ~z = ~x− ~o+ ~1 [−10, 10]n

F7 Rosenbrock (f5 in [42]) F (~x) =
∑n−1

i=1
[100(xi+1 − x2

i )
2 + (xi − 1)2] [−100, 100]n

F8 Shifted Rosenbrock (F6 in [43]) F (~x) =
∑n−1

i=1
[100(zi+1 − z2i )

2 + (zi − 1)2] + fbias6 , ~z = ~x− ~o+ ~1 [−100, 100]n

F9 Shifted Rotated High Conditioned F (~x) =
∑n

i=1
(106)

i−1
n−1 z2i + fbias3 [−100, 100]n

Elliptic (F3 in [43]) ~z = (~x− ~o) ·M

F10 Schwefel 2.6 with Global Optimum F (~x) = max{|Ai~x−Bi|}+ fbias5 [−100, 100]n

on Bounds (F5 in [43]) i = 1, . . . , n.

F11 Rastrigin (f9 in [42]) F (~x) =
∑n

i=1
[x2

i − 10cos(2πxi) + 10] [−5, 5]n

F12 Shifted Rotated Rastrigin (F10 in [43]) F (~x) =
∑n

i=1[z
2
i − 10cos(2πzi) + 10] + fbias10 , ~z = (~x− ~o) ·M [−5, 5]n

F13 Shifted Expanded Griewank plus See [43], page 16. [−3, 1]n

Rosenbrock (F13 in [43])

space. Elitist approach is used for all algorithms, i.e., only one
best individual is survived into the next generation, together
with (M−1) newly sampled individuals they constitute a new
generation. All these settings are widely used when studying
these EDAs in previously publications.

For each test function, we set 2 problem sizes,n = 50, 100.
We also illustrate the EDAs’ requirements on population size
to achieve their best performance. The #FEs are set according
to [43], i.e., the maximal #FEs is set to10000× n for an n
dimensional problem. Algorithms are terminated only when
their #FEs exceed the limit. For each single test, the result
is averaged over 25 independent runs. All experiments are
executed on a P4 2.40 GHz computer with 512 MB RAM.

4) Parameters of EDA-MCC:Through all experiments of
EDA-MCC, we setmcorr = 100, θ = 0.3 in WI. We regard
mcorr = 100 points are enough to calculate the correlation
coefficients between any pair of variables (a pair of variables
implies a 2D space). We setθ = 0.3 here because it is a
popular threshold to define weakly correlated in the context
of statistics. In our experience, we have also observed thatWI
can be sensitive to the value ofθ. For example, a small value of
θ = 0.15 may result in an emptyW , i.e., all of the variables are
regarded as strongly correlated with each other, which makes
WI a null operation. Largeθ = 0.6 may lead toW = V , i.e.,
EDA-MCC degrades itself into an UMDAGc which discards all
the dependencies among variables. To release the power of
EDA-MCC most, there must be an optimalθ given a problem
and other parameters. Different problems and other parameters
may lead to different optimal value ofθ. As mentioned above,
θ reflects the user’s confidence on univariate model. To have
reasonable analysis on the effects of WI, we set a constant and
moderate value ofθ = 0.3 through all experiments. Here our
aim is to demonstrate that EDA can benefit from WI, whereas
which value ofθ benefits EDA most for a give problem can

be an independent issue. Later in Section V, different values
of θ and the influence to EDA-MCC will be tested and shown.

For SM, we setc = 20. In practice, the settings ofc
can be determined bym according to user’s preference. In
normal cases, if a largerm can be applied,c can also be
set larger, and vice versa. Whenm is large enough to give
reliable estimation on the entiren dimensional space, we
can setc = n, which implies that we fully trust the global
estimation rather than approximating it by combination of
subspace models. But at the same time, we should also afford
the required computational complexity. On the other hand, a
smallerc can reduce the computational complexity. Users can
weigh the pros and cons and then setc.

Parametersmcorr, θ andc all have explicit physical impli-
cations. Their values are either bounded or can be determined
with the guidance of other pre-determined parameters or user’s
preference. It should be easy to set these parameters when
applying EDA-MCC to a new problem. The influence of
different θ andc will be investigated later in Section V.

B. Experimental Results

We record the difference between the best fitness that
an algorithm can find and the known global optimum, i.e.,
F (~x) − F (~x∗), through all tests. The values are always non-
negative for minimization problems. The smaller it is, the
better performance of an algorithm it implies. The mean
values and standard deviations ofF (~x) − F (~x∗) for each
algorithm in each test are shown in Table IV. If the reported
F (~x) − F (~x∗) is smaller than 1e-12, then we consider that
F (~x) = F (~x∗). If multiple results among the four-population-
size tests haveF (~x) − F (~x∗) below 1e-12, we report the
one that shows the fastest convergence. Table V shows the
corresponding population sizes used by the algorithms on
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each test. According to the results, CPU time comparisons
on different problems are similar, therefore we only show the
CPU comparisons on selected functions includingF2, F8 and
F11 in Fig. 8.

TABLE V
POPULATION SIZE COMPARISON. THE CORRESPONDING POPULATION

SIZES USED BY THE ALGORITHMS TO GENERATE THE RESULT IN

TABLE IV ARE SHOWN. ON EACH BENCHMARK PROBLEM, THE SMALLEST

POPULATION SIZE ADOPTED BY THE ALGORITHMS IS MARKED IN BOLD.

Prob. Dim UMDA G
c EMNA global EEDA EDA-MCC

F1 50 500 2000 1000 200
100 500 2000 2000 200

F2 50 500 2000 1000 200
100 1000 2000 2000 1000

F3 50 2000 2000 1000 200
100 2000 2000 2000 200

F4 50 2000 2000 1000 200
100 2000 2000 2000 200

F5 50 2000 2000 200 200
100 2000 2000 200 200

F6 50 2000 2000 1000 200
100 2000 2000 2000 200

F7 50 1000 2000 2000 500
100 1000 2000 2000 500

F8 50 2000 2000 1000 2000
100 2000 2000 2000 500

F9 50 2000 2000 500 200
100 2000 2000 1000 200

F10 50 2000 2000 1000 200
100 2000 2000 2000 200

F11 50 1000 2000 200 2000
100 2000 2000 200 2000

F12 50 2000 2000 1000 2000
100 2000 2000 500 2000

F13 50 500 2000 200 500
100 500 2000 200 1000

C. Discussion and Analysis

1) Separable Unimodal Problems:The separable and uni-
modal structures ofF1 and F2 can facilitate univariate
model based EDAs in solving the problems although this
is not always the case. Our experiments show that, in
our case, UMDAGc and EDA-MCC perform very well. How-
ever, EMNAglobal, which relies on global multivariate esti-
mation, exhibits significant performance degradation. EEDA
also performs well due to its better explorative ability than
EMNAglobal, but not as good as UMDAGc and EDA-MCC on
100DF2. Overall, onF1 andF2, EDA-MCC shows the best
performance among the multivariate model based EDAs with
statistical significance and performs as well as UMDAG

c . Also
note that EMNAglobaland EEDA can perform worse when the
global optimum is shifted away from the center of search
space.

Regarding CPU time and required population sizes, al-
though the CPU time of an algorithm may correspond to
different population sizes and thus different number of genera-
tions, they reflect the CPU time needed to exert an algorithm’s
best performance. UMDAGc costs least CPU time whereas
EMNAglobaland EEDA cost the most. EDA-MCC’s CPU time
grows faster than UMDAGc but slower than EMNAglobaland
EEDA. SinceF1 andF2 are easy for UMDAGc ’s model, its
population size grows mildly. However, the population sizes

needed for EMNAglobaland EEDA keeps at high levels. EDA-
MCC’s requirement of large population size is clearly relaxed
due to WI+SM. It requires much smaller population size and
simultaneously shows significant better performance.

2) Non-separable Problems with Only A Few Local Optima:
This group of functions are either unimodal or only have two
local optima, which implies the problems have clear inner
structures. The non-separable properties pose significantdiffi-
culties for UMDAG

c . We can see that UMDAGc fails to perform
best on any test. On the other hand, EDA-MCC performs
significantly best on nearly all tests only except 50D tests
of F9 andF10. EMNAglobalshows the worst performance and
EEDA performs generally between UMDAGc and EDA-MCC.
Note thatF4, F6 andF8 are shifted versions ofF3, F5 and
F7, respectively. On the original unshifted versions, although
UMDAG

c and EEDA performs significantly worse than EDA-
MCC, their absolute performance is not so bad. However, once
the global optima are shifted away, their performance become
much worse. EMNAglobalhas similar issue and its absolute
performance is always the worst. Among all algorithms, only
EDA-MCC shows robust performance with respect to shifts of
the global optima. The CPU time cost of algorithms is similar
to the results of previous group of functions that EDA-MCC’s
CPU time grows much slower than EMNAglobaland EEDA.
Although UMDAG

c costs least CPU time, its performance is
always worse than EDA-MCC on these problems. EDA-MCC
also usually needs the smallest population sizes among all
except on 50DF8. As we can also see onF12 in the next
group, the optimal population size of EDA-MCC and EEDA
can sometimes fluctuate whenn grows. This can be explained
as that since they have better explorative ability, they can
benefit not only from large population size but also from large
number of generations, which is resulted by applying small
population size. However, for UMDAGc and EMNAglobalwhich
completely relies on maximum likelihood estimation, their
optimal population sizes usually keep increasing.

In this group,F7 - F10 are relatively hard problems that
no algorithm gives a very good absolute performance. But to
the best of our knowledge and as we can see in the following
500D tests, no known algorithms can find very good solutions
for these problems, and EDA-MCC is in fact the best so far in
general. Among these problems,F10’s global optimum is on
the bounds of the domain, which requires explorative ability
the most among all test functions. We can see that on 50D
test, EEDA performs the best since it has a global guidance of
the gradient and a relatively good estimation can be obtained.
However, because EDA-MCC explicitly partitions the search
space, search along the approximated global gradient is not
so effective as EEDA. But as problem size grows to 100D,
EDA-MCC outperforms EEDA with significant better solution.
This confirms the effectiveness of using the combination of
subspace models to approximate the global estimation: In high
dimensional space where a precise global estimation is hard
to obtain, approximating the global estimation by combination
of subspace models performs better. To further verify the
effectiveness of the combination of subspace models, we
extend our experiments onF10 to 150D and 200D to compare
EEDA and EDA-MCC. All the experimental settings are the



11

TABLE IV
SOLUTION QUALITY COMPARISON. THE RESULTS ARE DIVIDED INTO3 GROUPS ACCORDING TO THE PROBLEM PROPERTIES. EACH CELL CONTAINS THE

MEAN AND STANDARD DEVIATION OF F (~x)− F (~x∗) FOR 25 RUNS. IF THE VALUE < 1E-12, WE REGARD IT AS ZERO. IN EACH ROW, THE BEST RESULT
WITH THE MINIMAL MEAN VALUE IS BOLDED . THE RESULTS OFEDA-MCC ARE ALSO COMPARED WITH RESULTS OF EACH OF THE OTHER3

ALGORITHMS BY NONPARAMETRICMANN-WHITNEY U TEST. THE SIGNIFICANCE LEVEL IS SHOWN BY MARKERS(∗, † AND §). NO MARKER IMPLIES

THERE IS NO SIGNIFICANT DIFFERENCE.

Prob. Dim UMDA G
c EMNA global EEDA EDA-MCC

F1 50 0 ± 0 1.3e-11± 6.3e-11§ 0 ± 0 0 ± 0
100 0 ± 0 1.4e+01± 5.6e+00§ 0 ± 0 0 ± 0

F2 50 0 ± 0 4.5e+04± 2.2e+03§ 0 ± 0 0 ± 0
100 0 ± 0 1.4e+05± 4.0e+03§ 5.3e-10± 1.4e-09§ 0 ± 0

F3 50 2.6e-04± 1.5e-05§ 1.2e-01± 1.2e-01§ 1.8e-08± 2.4e-09§ 0 ± 0
100 2.6e-02± 8.3e-02§ 3.3e+00± 7.0e-01§ 1.5e-03± 8.5e-04§ 0 ± 0

F4 50 3.4e+01± 2.5e+00§ 4.1e+01± 2.6e+00§ 1.4e-05± 6.8e-05§ 0 ± 0
100 4.7e+01± 3.1e+00§ 5.8e+01± 2.7e+00§ 8.1e+00± 1.4e+00§ 0 ± 0

F5 50 1.5e+01± 4.1e+00§ 1.5e+02± 1.4e+01§ 2.4e-02± 3.7e-03§ 0 ± 0
100 1.3e+02± 2.7e+01§ 6.7e+02± 7.5e+01§ 3.8e-01± 4.7e-02§ 0 ± 0

F6 50 1.4e+01± 5.2e+00§ 6.6e+03± 9.4e+02§ 1.0e-01± 1.2e-02§ 0 ± 0
100 1.8e+02± 2.6e+01§ 2.2e+04± 2.1e+03§ 7.2e+00± 7.9e-01§ 0 ± 0

F7 50 4.8e+01± 3.4e-02§ 5.7e+01± 5.9e+00§ 5.0e+01± 9.2e+00† 4.7e+01± 2.1e-01
100 9.7e+01± 6.4e-02§ 2.7e+03± 1.5e+03§ 9.7e+01± 3.7e-01§ 9.6e+01± 7.5e-02

F8 50 4.1e+02± 9.1e+02§ 4.0e+09± 7.5e+08§ 5.2e+02± 1.0e+03§ 4.8e+01± 1.5e-01
100 9.3e+02± 3.1e+03§ 1.8e+10± 1.9e+09§ 4.4e+04± 4.4e+04§ 9.6e+01± 1.3e-01

F9 50 4.3e+07± 4.1e+06§ 1.8e+09± 2.4e+08§ 4.1e+06± 1.4e+06 3.6e+06± 1.5e+06
100 4.3e+07± 3.1e+06§ 4.9e+08± 9.7e+07§ 2.2e+07± 3.7e+06§ 9.6e+06± 2.5e+06

F10 50 4.9e+03± 1.8e+02§ 2.9e+04± 1.4e+03§ 2.0e+03± 2.0e+02§ 3.1e+03± 3.4e+02
100 5.9e+03± 4.3e+02§ 7.8e+04± 2.1e+03§ 4.4e+03± 6.0e+02§ 1.9e+03± 3.6e+02

F11 50 0 ± 0§ 7.7e+00± 5.0e+00§ 3.1e+02± 1.3e+01§ 2.9e+02± 1.4e+01
100 0 ± 0§ 1.4e+02± 2.4e+01§ 7.3e+02± 1.5e+01§ 7.5e+02± 1.6e+01

F12 50 2.1e+00± 9.5e-01§ 3.2e+02± 2.1e+01§ 3.1e+02± 1.7e+01† 3.0e+02± 1.46e+01
100 8.6e+00± 2.1e+00§ 9.0e+02± 2.9e+01§ 7.3e+02± 2.5e+01 7.4e+02± 2.35e+01

F13 50 7.8e+00± 8.3e-01§ 9.9e+01± 2.4e+01§ 2.7e+01± 1.1e+00∗ 2.6e+01± 9.2e-01
100 1.5e+01± 2.0e+00§ 1.2e+03± 1.9e+02§ 3.8e+01± 2.6e+01§ 6.5e+01± 1.6e+00

∗ The value of Asymp. Sig. (2-tailed)< 0.05 when compared with the results of EDA-MCC.
† The value of Asymp. Sig. (2-tailed)< 0.01 when compared with the results of EDA-MCC.
§ The value of Asymp. Sig. (2-tailed)< 0.001 when compared with the results of EDA-MCC.
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(a) F2: Shifted Sphere
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(b) F8: Shifted Rosenbrock
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(c) F11: Rastrigin

Fig. 8. Comparison of CPU time onF2, F8 andF11.

same as above. The comparison is shown in Table VI and
Fig. 9. We can see that ifn grows even larger, the perfor-
mance of combination of subspace models can be significantly
better than a poor global model. EDA-MCC not only finds
significantly better solutions, but also scales to larger problems
better, i.e., with a much slower increase in CPU time for larger
problems.

On this group of functions, UMDAGc cannot perform as well
as EDA-MCC, but its computational cost is always much
lower. One may wonder whether a bigger CPU time budget
for UMDAG

c would lead to superior performances over EDA-

MCC. In Fig. 10 we plot the averaged evolutionary curves of
25 runs for all the algorithms on 100D tests to give an answer.
We can see that the evolutionary curves of UMDAG

c all quickly
become flat as the algorithm proceeds. This implies the fact
that even given more CPU time, UMDAGc cannot find better
solution but converges to a suboptimal one.

Another possible reason of why UMDAGc does not per-
form well is that the population sizes applied are still not
large enough. Therefore, we further test even larger pop-
ulation sizesM = 4000, 8000, 16000 and selected sizes
m = 2000, 4000, 8000 for UMDAG

c on 100D functions of this
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(a) F3
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(b) F5
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(c) F8
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(d) F9
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(e) F10

Fig. 10. Comparison of evolutionary curves on 100DF3, F5, F8, F9 andF10. Results onF4, F6 andF7 are omitted since they are similar to results of
F3, F5 andF8, respectively.

TABLE VI
THE RESULTS OFEEDA AND EDA-MCC ON F10 FROM 50D TO 200D.
ALL RESULTS ARE AVERAGED OVER25 RUNS. POPULATION SIZES USED
ARE SHOWN IN BRACKETS. IN EACH ROW, THE SIGNIFICANTLY BETTER

RESULT IS SHOWN IN BOLD. THE RESULTS ARE COMPARED BY

NONPARAMETRICMANN-WHITNEY U TEST. FOR ALL RESULTS OFEEDA,
THE VALUE OF ASYMP. SIG. (2-TAILED ) < 0.001WHEN COMPARED WITH

THE RESULTS OFEDA-MCC.

Dim EEDA EDA-MCC
50 2.0e+03± 2.0e+02(1000) 3.1e+03± 3.4e+02 (200)
100 4.4e+03± 6.0e+02 (2000) 1.9e+03± 3.6e+02(200)
150 1.7e+04± 1.2e+03 (2000) 3.1e+03± 4.0e+02(500)
200 2.9e+04± 2.0e+03 (2000) 4.3e+03± 7.7e+02(500)
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Fig. 9. CPU time comparison of EEDA and EDA-MCC onF10.

group. Results on representative functions are summarizedin
Table VII. We can observe that larger population size does not
help UMDAG

c to obtain better results in our experiments. To
be specific, only onF5 andF8 the results usingM = 4000
become a little better, but still always much worse than EDA-

MCC. On other functions, large population sizes perform even
worse. This implies the failure of UMDAGc on this group of
functions is primarily due to its model simplicity, either larger
population size or longer CPU time may not lead to better
performance.

In a word, on this group of non-separable functions, EDA-
MCC performs significantly the best. UMDAGc fails on all tests
because of its model simplicity. EMNAglobaland EEDA cannot
perform well in high dimensional tests, either.

3) Multimodal Problems with Many Local Optima:These
functions all have a quite large number of local optima, which
can lead to very complicated function landscape and make
the problem very hard to solve. On these problems, using the
same sample size, the estimated multivariate model cannot be
as reliable as on previous group of problems. Results coincide
with this intuition. AlthoughF11 is separable, results show that
it is not easy to solve for multivariate Gaussian based EDAs.
Previous study [11] has shown that if only a small population
size can be applied, EMNAglobaland EEDA cannot perform
well, and EEDA may even perform worse than EMNAglobal.
The huge number of local optima misleads the multivariate
search and the covariance matrix scaling. UMDAG

c performs
the best and EMNAglobalthe second on this function. Both
EEDA and EDA-MCC adopting covariance matrix scaling fail.
Applying a rotation toF11 makesF12 non-separable. Even
the global optimum ofF12 has been shifted, compared with
the results onF11 (see Table IV), surprisingly UMDAGc still
outperforms the others, whereas EMNAglobalbecomes much
worse. EEDA and EDA-MCC approximately hold the solu-
tion quality. Intuitively, non-separable problem is hard for
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TABLE VII
THE RESULTS OFUMDAG

c USING LARGE POPULATION SIZES ON100DF3 , F5 , F8 , F9 AND F10 . ALL RESULTS ARE AVERAGED OVER25 RUNS. RESULTS

OF EDA-MCC AND UMDAG
c USINGM = 2000 ARE ALSO DIRECTLY INCLUDED FROMTABLE IV FOR COMPARISON. ON EACH FUNCTION, THE VALUE

OF ASYMP. SIG. (2-TAILED ) < 0.001WHEN ANY UMDAG
c RESULT IS COMPARED WITHEDA-MCC RESULT USING NONPARAMETRICMANN-WHITNEY

U TEST.

Prob. EDA-MCC UMDA G
c , M = 2000 UMDA G

c , M = 4000 UMDA G
c , M = 8000 UMDA G

c , M = 16000
F3 0 ± 0 2.6e-02± 8.3e-02 6.7e-02± 2.7e-03 2.6e+00± 8.7e-02 1.6e+01± 3.6e-01
F5 0 ± 0 1.3e+02± 2.7e+01 1.3e+02± 1.7e+01 1.3e+02± 1.4e+01 7.4e+02± 3.3e+01
F8 9.6e+01± 1.3e-01 9.3e+02± 3.1e+03 1.2e+02± 4.7e+01 2.4e+02± 4.4e+01 9.6e+05± 9.2e+04
F9 9.6e+06± 2.5e+06 4.3e+07± 3.1e+06 4.9e+07± 2.7e+06 9.5e+07± 3.5e+06 4.2e+08± 3.3e+07
F10 1.9e+03± 3.6e+02 5.9e+03± 4.3e+02 6.0e+03± 2.8e+02 9.1e+03± 2.0e+02 2.0e+04± 5.2e+02

UMDAG
c . However the results reveal that high dimensional

F12 is even much harder for multivariate Gaussian model. On
expanded multimodal functionF13, UMDAG

c again performs
the best. It seems that the complicated problem structure ofthis
group of functions poses similar difficulties to EDA-MCC, and
simple algorithms like UMDAGc can be good enough on these
problems. CPU time comparisons on this group of functions
are similar to previous results that EDA-MCC’s CPU time is
always between UMDAGc and EMNAglobal. Since EDA-MCC
based on WI+SM cannot perform well, its optimal population
size also becomes large.

4) The Failure of EDA-MCC And The Success of
UMDAG

c on F11, F12 AndF13: To further analyze the failure
of EDA-MCC and the success of UMDAGc on F11, F12 and
F13 (three functions sharing the common property that they all
have a huge number of local optima), additional experiments
are presented here. Generally speaking, the experiments here
concern two characteristics of EDAs which may be closely
related to the performance on these functions. Our goal is
to find the intrinsic reasons that prevent EDA-MCC from
performing well on them.

The first characteristic we take into account here is the
model complexity in an EDA. On a specific problem, a
multivariate Gaussian EDA does not necessarily outperforma
univariate Gaussian EDA. The failures of several multivariate
Gaussian EDAs and the success of univariate Gaussian EDA
(UMDAG

c ) on F11, F12 and F13 probably imply that using
high dependency degree (i.e., high model complexity) for these
functions is no longer effective. If the above intuition canbe
validated by experiments, then the failures of EDA-MCC on
these functions are very likely to attribute to the failuresof
high dependency degree, not the novel techniques adopted
by EDA-MCC. Therefore, we test explicitly controlling the
dependency degree by changing the value ofc, i.e., from
original settingsc = 20 to c = 2. Note that if c = 1, EDA-
MCC will perform exactly the same as UMDAGc , andc = 2
restricts the multivariate dependencies to the minimal degree
that at most dependencies of two variables are considered. We
also addn = 10 tests to see what happens in low dimensions.
Note that forn = 10 tests,c = 20 is essentially identical to
c = 10 since all variables can be included.

Another characteristic that may influence the performance
of an EDA is the base multivariate model, which also in-
dicates the algorithm for building the probabilistic model.
UMDAG

c adopts maximum likelihood estimation, and the
EMNAglobalmodel is more similar to UMDAGc model because
they both use maximum likelihood estimation. UMDAG

c ’s

promising performance on the three functions may indicate
that maximum likelihood estimation is more efficient than
covariance matrix scaling on the three functions. Therefore,
we replace the EEDA model with the EMNAglobalmodel in
the EDA-MCC framework to test the effect of base model.

By crossing over the settings of base multivariate model and
the subspace size, we have four candidate implementations
to be compared with UMDAGc : (a) EDA-MCC with EEDA
model,c = 20; (b) EDA-MCC with EEDA model,c = 2; (c)
EDA-MCC with EMNAglobalmodel, c = 20; (d) EDA-MCC
with EMNAglobalmodel,c = 2. Still, for each implementation,
four population sizes are applied in each test. The best
result among the four-population-size tests is selected asfinal
result. The comparison including the results of UMDAG

c are
summarized in Table VIII.

From the experiments we observe that on 10D tests, there
is no statistical significant difference among candidate algo-
rithms on the three problems. EDA-MCC can be as good as
UMDAG

c . On 50D and 100D tests, switching different degrees
of multi-dependencies does not help EDA-MCC to achieve
performance as promising as the UMDAG

c ’s, no matter the
base model is EEDA model or EMNA model. This implies that
on the three functions, if the computational resources (max-
imal #FEs) are limited, utilizing multi-dependencies among
variables may not be an effective strategy. To be specific,
as long as considering the multi-dependencies, even only
with the minimal degreec = 2, the search will be misled
by the huge number of local optima. Asn increases, this
effect becomes more serious. Nevertheless, changing from
EEDA model to EMNAglobalmodel does help to find better
solutions, although the results are not always as good as
UMDAG

c . This implies that for these functions, ifn is large,
the “radical” covariance matrix scaling can be easily misled
by the complicated function landscape. However, the more
“conservative” maximum likelihood estimation perform better.
Covariance matrix scaling strategy is more effective only when
n is small. Of course discussions here are restricted to our pre-
defined population sizes and the maximal #FEs. Since EDA-
MCC can perform as good as UMDAGc on low dimensional
10D tests, we guess that with extremely large population size
and sufficiently large budget of #FEs, EDA-MCC has the
potential to come up with or even outperform UMDAG

c . But
considering the fast increasing number of local optima and
the fast increasing complexity of the function landscape asn
grows, EDA-MCC’s requirement of population size and #FEs
to outperform UMDAGc will also increase tremendously. This
can also be explained by the effect of curse of dimensionality.
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TABLE VIII
COMPARISON OF DIFFERENT BASE MULTIVARIATE MODELS AND DIFFERENT SUBSPACE SIZES. THE RESULTS ARE AVERAGED OVER25 RUNS. THE BEST

RESULTS FOR EACH ROW ARE SHOWN IN BOLD FONT. THE RESULTS OFUMDAG
c ARE COMPARED WITH RESULTS OF EACH OF THE OTHER4

IMPLEMENTATIONS OF EDA-MCC BY NONPARAMETRIC MANN-WHITNEY U TEST. THE SIGNIFICANCE LEVEL IS SHOWN BY MARKERS(∗, † AND §). NO

MARKER IMPLIES THERE IS NO SIGNIFICANT DIFFERENCE.

EDA-MCC with EDA-MCC with EDA-MCC with EDA-MCC with
Prob. Dim UMDAG

c EEDA model EEDA model EMNAglobalmodel EMNAglobalmodel
c = 20 c = 2 c = 20 c = 2

F11 10 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0
50 0 ± 0 2.88e+02±1.36e+01§ 2.96e+02±1.13e+01§ 6.31e-08±1.52e-07§ 4.81e-08±5.93e-08§

100 0 ± 0 7.49e+02±1.61e+01§ 7.96e+02±2.33e+01§ 0 ± 0 1.52e-04±7.62e-04
F12 10 5.83e-02±2.91e-01 8.46e-04±2.86e-03 1.68e-01±3.70e-01 1.59e-01±3.73e-01 1.33e-01±3.68e-01

50 2.08e+00±9.49e-01 2.96e+02±1.46e+01§ 2.97e+02±1.50e+01§ 7.30e+00±2.47e+00§ 8.70e+00±3.58e+00§

100 8.57e+00±2.07e+00 7.41e+02±2.35e+01§ 8.01e+02±1.61e+01§ 2.66e+01±7.51e+00§ 2.54e+01±3.96e+00§

F13 10 1.33e+00±2.13e-01 1.31e+00±2.57e-01 1.33e+00±3.09e-01 1.45e+00±3.91e-01 1.46e+00±3.39e-01
50 7.77e+00±8.34e-01 2.64e+01±9.20e-01§ 2.59e+01±1.05e+00§ 8.13e+00±1.37e+00 8.16e+00±1.58e+00
100 1.52e+01±1.98e+00 6.53e+01±1.64e+00§ 6.82e+01±2.09e+00§ 1.63e+01±1.97e+00 1.66e+01±1.54e+00∗

∗ The value of Asymp. Sig. (2-tailed)< 0.05 when compared with the results of UMDAG
c .

† The value of Asymp. Sig. (2-tailed)< 0.01 when compared with the results of UMDAG
c .

§ The value of Asymp. Sig. (2-tailed)< 0.001 when compared with the results of UMDAG
c .

Therefore, when facing problems with many local optima, it
maybe computationally too expensive to apply a multivariate
search strategy and expect a good performance. In this case,
a cheap and simple univariate model based algorithm such as
UMDAG

c can be a better choice given limited computational
resources.

D. Summary So Far

It is discovered by the above experiments that compared
with traditional EDAs, EDA-MCC shows remarkable effec-
tiveness and efficiency on high dimensional non-separable
problems with only a few local optima. On simple separable
problems, EDA-MCC is comparable with UMDAGc . But on
problems with too many local optima, it does not work as well
as simple UMDAGc . In any case, EDA-MCC offers a partial
solution to the three problems proposed at the beginning of
Section III:

1) The multivariate Gaussian based search is not abandoned
in EDA-MCC, which leads to good performance on high
dimensional non-separable problems.

2) EDA-MCC’s computational cost is usually lower than
traditional multivariate Gaussian based EDAs; EDA-
MCC’s increasing speed of CPU time cost is also much
slower.

3) EDA-MCC can be applied with very small population
sizes for high dimensional optimizations.

Conditions under which EDA-MCC may succeed or fail can
also be summarized:

• In low dimensional space with sufficient data, where the
global estimation is still precise enough, EDA-MCC is
not better than traditional EDAs.

• In high dimensional space with sparse data only, where
global estimation is no longer precise, EDA-MCC is more
effective. However, if the function landscape has a huge
number of local optima as inF11, F12 andF13, EDA-
MCC as well as traditional multivariate Gaussian model
based EDAs will fail. In this case, simple univariate
Gaussian based EDAs can be more effective and efficient.

• The success of EDA-MCC does not mean that it can
escape from the curse of dimensionality. EDA-MCC only
suffer less from it by controlling the model complexity
to a necessary level. If using a fixed finite population
size, EDA-MCC and all other EDAs relying on learning
will definitely fail in extremely high dimensional search
space.

We note that although EDA-MCC can have better perfor-
mance than the traditional EDAs (e.g. on test functionsF9,
F10), none of the candidate algorithms performs well enough,
finding a high quality solution. On one hand, these problems
are really hard to solve for EDAs using current experimental
settings. On the other hand, more effective and efficient search
strategies for large scale optimization are still to be designed
and investigated.

E. Experimental Results on 500D Functions

Now we further enlarge the problem size ofF1-F13 to 500D,
and compare EDA-MCC with traditional EDAs and several
optimization algorithms designed for large scale optimiza-
tion. Involved traditional EDAs include UMDAGc and MIMICG

c

[2]. MIMIC G
c is also a Gaussian model based continuous

EDA, whose model complexity is between UMDAG
c and those

multivariate Gaussian based EDAs. The variable dependency
in MIMIC G

c is a chain-shaped structure with bivariate con-
ditional Gaussian densities. However, multivariate Gaussian
based EDAs such as EMNAglobal, EEDA and EGNA are not
included, because their CPU time on any of the benchmark
functions withn = 500 is too long to be acceptable3.

Recently, Yang et al. [37] proposed a cooperative coevolu-
tion framework with variable grouping and adaptive weighting
for large scale optimization problems. An algorithm named
DECC-G which uses Differential Evolution (DE) as the base
algorithm in the framework was proposed. DECC-G also
adopts variable partitioning strategy, but within the cooper-
ative coevolution framework, when DECC-G is activating the

3Tests of MIMICG
c and EGNA are based on source codes provided by Dr.

Alexander Mendiburu.
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variables of one group, all the other variables are fixed. The
evaluation of currently activated variables are calculated in
the context of other fixed variables. Whereas in EDA-MCC,
although variables are also grouped into several subsets, their
optimizations are simultaneous and synchronized. EDA-MCC
is not an instance of cooperative coevolution. In [37], DECC-
G has been compared with three other algorithms, SaNSDE,
FEPCC and DECC-O, on several 500D and 1000D functions,
and it shows outstanding performance in terms of the mean
best solution values compared with other algorithms. Here we
compare EDA-MCC with the results reported in [37]4.

Another algorithm, sep-CMA-ES recently proposed by Ros
and Hansen [44] is also included in comparison. Because
the original CMA-ES is incapable of handling problems with
more than several hundreds dimensions [45], sep-CMA-ES
was developed only using a diagonal covariance matrix in a
Gaussian model while keeping the original covariance matrix
adaptation. Several recent studies (e.g., [44], [45]) investigated
its performance on high dimensional problems larger than
500D. Although sep-CMA-ES uses a diagonal covariance
matrix as well as UMDAGc , their model estimations are very
different. A major difference is that sep-CMA-ES relies on
cumulation of the information gathered in the evolution path
to model the covariance matrix, which is more heuristic-based,
and thus requires a very small population size. However a
typical EDA like UMDAG

c estimates the covariance matrix
only based on samples in current generation with maximum
likelihood estimation, which is a more learning-based manner,
thus usually requires a much larger population size than sep-
CMA-ES. As can be seen later in experiments, this could lead
to very different performance. We use recommended parameter
settings of sep-CMA-ES [44] to conduct the comparison, with
population sizeλ = 4 + ⌊3 ln(n)⌋ (i.e., 22 whenn = 500),
selected sizeµ = ⌊λ2 ⌋, initial standard deviation (step sizeσ)
identical to one third of the search interval, and initial search
point the center of the search space. The implementation of
sep-CMA-ES is derived from a C implementation of CMA-
ES5.

Following [37], we set the maximal #FEs to 2.5e+06. Re-
sults are averaged from 25 independent runs. The population
size of DECC-G is 100 and its subcomponent dimension is
100 for all tests. The parameters of SaNSDE, FEPCC and
DECC-O please refer to [37]. For UMDAGc and MIMICG

c ,
population sizeM = 2000 and selected sizem = 1000 are
adopted. The implementation of EDA-MCC keeps unchanged
as above experiments that using UMDAG

c model forW and
EEDA model for each subset ofS. We set population size
M = 200, selected sizem = 100, mcorr = 100, θ = 0.3, and
c = 100 for all tests. IfM = 200 is too small for solving a
problem, we consequently testM = 500 andM = 1000 to
see whether better performance can be obtained while keeping
the selection pressure. In our test, we give the small population
sizes high confidence that forc = 100 dimensional subspace,
we still trust the estimated subspace models. The result is that

4Results onF4-F6 are not available in [37]. These results are obtained by
running the source code provided by the authors of [37].

5http://www.lri.fr/∼hansen/cmaesc.tar

EDA-MCC needsM = 1000 on F3, F4 andF10, and only
M = 200 on all other functions. The detailed comparisons are
summarized in Table IX.

On the simplest separableF1 andF2, EDA-MCC, UMDAG
c ,

DECC-O, DECC-G, and sep-CMA-ES perform very well.
On the second group of non-separable functionsF3-F10,
EDA-MCC and sep-CMA-ES show the most stable good
performance. Interestingly, although sep-CMA-ES only adopts
diagonal covariance matrix, its performs generally well on
these non-separable functions, which was also reported in
[45]. But only on two Ronsenbrock functions (F7 and F8)
it significantly outperforms EDA-MCC. Whereas EDA-MCC
significantly outperforms sep-CMA-ES onF3, F4 and F10.
Both EDA-MCC and sep-CMA-ES reach the global optimum
on F5 and F6. On F9 although sep-CMA-ES has a little
better average performance, there is no significant difference
with EDA-MCC’s. If we compare DECC-G with EDA-MCC,
only on F3 and F7, DECC-G performs better than EDA-
MCC. But DECC-G is rather sensitive to the shifted global
optimum: On the shiftedF4 andF8, EDA-MCC performs well
holding almost the same solution quality whereas DECC-G
becomes much worse. Similar situations happen onF11 and
its shifted rotated versionF12, the performance of EDA-MCC
is not sensitive to the shifted and rotated function landscape
as DECC-G.

For the last group of functions, as analyzed above,
UMDAG

c has clear advantage to effectively solveF11-F13

with a huge number of local optima in general. OnF13,
DECC-O and UMDAGc performs much better than the others.
This is consistent to previous observations. Because DECC-
O optimize function of one variable at a time within the
cooperative coevolution framework, its behaviors are similar
to UMDAG

c to some extent. Therefore they should be more
effective on functions with a huge number of local optima,
such asF11-F13. The exception that DECC-O fails onF12

can be explained as its sensitiveness to shifted global optimum.
As for sep-CMA-ES, although it also uses univariate model,
its performance onF11-F13 is far worse than UMDAGc . This
might be partly due to the very small population size22
or the way the covariance matrix is estimated in sep-CMA-
ES. Such observations are also to some extent consistent
with previous analysis that a simple univariate model with
standard “conservative” maximum likelihood estimation can
be more efficient on high dimensional problems with many
local optima.

We also observe that MIMICGc fails to perform best on any
problem. Due to more suffering from the effect of the curse
of dimensionality, it is neither so effective as UMDAG

c on
problems which simple univariate model can already handle,
nor as good as EDA-MCC on non-separable problems with
clear structure. The results again validate our analysis onthe
difficulties of traditional EDAs on high dimensional problems.

Generally speaking, EDA-MCC with a relatively small
population size shows robust performance on these 500D
problems, especially on non-separable problems with only a
few local optima. It performs statistically better than SaNSDE,
DECC-O, UMDAG

c and MIMICG
c . Although DECC-G also

performs generally well, its sensitiveness to shifted global
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TABLE IX
THE COMPARISONS OFSANSDE, FEPCC, DECC-O, DECC-G, UMDAGc , MIMIC G

c , EDA-MCC AND SEP-CMA-ES IN 500DTESTS. FOR EACH TEST

FUNCTION, THE BEST RESULT IS BOLDED. IF THE RESULT< 1E-12,WE REGARD IT AS0. SINCE THE RESULTS OFSANSDE, FEPCC, DECC-OAND
DECC-GFROM [37] ONLY CONTAIN THE MEAN PERFORMANCE, WE ARE NOT ABLE TO GIVE THE STANDARD DEVIATIONS. THE RESULTS OFEDA-MCC

ARE COMPARED WITH RESULTS OFUMDAG
c , MIMIC G

c , AND SEP-CMA-ESRESPECTIVELY, BY NONPARAMETRIC MANN-WHITNEY U TEST. THE

SIGNIFICANCE LEVEL IS SHOWN BY MARKERS(∗, † AND §). NO MARKER IMPLIES THERE IS NO SIGNIFICANT DIFFERENCE. SOME RESULTS OFFEPCC
ARE NOT REPORTED IN[37], THUS WE ALSO LEAVE THEM BLANK. TWO-TAILED FRIEDMAN TEST DEMONSTRATES THAT ALL ALGORITHMS(EXCEPT

FEPCCWHOSE DATA IS NOT AVAILABLE ) ARE NOT EQUIVALENT AT THE SIGNIFICANCE LEVEL OF0.05, AND POST-HOC NEMENYI TESTS DEMONSTRATE

THAT EDA-MCC OUTPERFORMSSANSDE, DECC-O,AND MIMIC G
c AT THE SIGNIFICANCE LEVEL OF0.05 [46]. MOREOVER, ACCORDING TO

ONE-TAILED WILCOXON SIGNED RANKS TESTS, EDA-MCC OUTPERFORMSUMDAG
c AT THE SIGNIFICANCE LEVEL OF0.15. AT THE SAME

SIGNIFICANCE LEVEL, EDA-MCC DOES NOT SIGNIFICANTLY OUTPERFORMDECC-GAND SEP-CMA-ES.

Prob. SaNSDE FEPCC DECC-O DECC-G UMDA G
c MIMIC G

c EDA-MCC sep-CMA-ES

F1 2.41e-11 4.90e-08 0 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0
F2 2.61e-11 - 1.04e-12 0 0 ± 0 2.56e+02± 2.2e+02§ 0 ± 0 0 ± 0

F3 4.07e+01 9.00e-05 6.01e+01 4.58e-05 1.35e+01± 2.9e+00§ 4.40e-01± 1.4e-01§ 2.79e-01± 2.3e-02 1.40e+02± 1.4e+01§

F4 8.29e+01 - 1.05e+02 7.00e+01 6.92e+01± 4.2e+00§ 7.93e+01± 4.8e-01§ 3.27e-01± 3.7e-02 1.41e+02± 1.2e+01§

F5 9.30e-07 - 1.37e+02 6.66e-08 2.60e+03± 2.8e+02§ 2.03e+02± 2.1e+01§ 0 ± 0 0 ± 0
F6 1.02e-06 - 1.44e+02 9.59e-08 6.61e+03± 8.7e+02§ 1.07e+03± 2.6e+01§ 0 ± 0 0 ± 0
F7 1.33e+03 - 6.64e+02 4.92e+02 4.96e+02± 1.4e+01 4.93e+02± 8.6e-02 6.42e+02± 4.1e+02 2.91e+02± 2.6e+01§

F8 2.71e+03 - 1.71e+03 1.56e+03 3.44e+04± 9.8e+04§ 3.75e+08± 8.5e+07§ 6.77e+02± 6.3e+02 2.87e+02± 2.9e+01§

F9 6.88e+08 - 4.78e+08 3.06e+08 4.72e+08± 1.6e+07§ 4.44e+08± 7.1e+06§ 8.03e+07± 1.1e+07 7.98e+07± 1.7e+07
F10 4.96e+05 - 2.40e+05 1.15e+05 3.48e+04± 8.4e+02§ 1.03e+05± 7.8e+02§ 2.09e+04± 1.3e+03 1.20e+05± 9.4e+03§

F11 2.84e+02 1.43e-01 1.76e+01 0 2.27e+00± 1.2e+00§ 4.80e+03± 4.0e+01§ 5.24e+03± 3.9e+01 2.14e+03± 9.9e+01§

F12 6.97e+03 - 1.50e+04 5.33e+03 7.55e+01± 6.5e+00§ 5.03e+03± 4.7e+01§ 5.25e+03± 4.2e+01 2.28e+03± 1.8e+02§

F13 2.53e+02 - 2.81e+01 2.09e+02 7.90e+01± 3.1e+00§ 4.73e+02± 4.7e+00§ 4.52e+02± 5.0e+00 1.03e+02± 7.1e+00§

§ The value of Asymp. Sig. (2-tailed)< 0.001 when compared with the results of EDA-MCC.

optimum is a clear disadvantage compared with the robust-
ness of EDA-MCC. Sep-CMA-ES also performs generally
well, notably on non-separable problems (F5-F8), which is
interesting considering the univariate nature of the Gaussian
model. This could be a topic worthy further study in future
work. We can say that EDA-MCC is the first successful
application of multivariate model based EDA on a general
class (13 in total) of 500D problems since continuous EDAs
have been proposed. Moreover, compared with other EAs,
EDA-MCC and UMDAGc show their significant superiority on
8 out of the 13 functions, which implies the advantage of using
probabilistic models and statistical learning for optimization.
Also note that we did not further tune the parameters of EDA-
MCC. Its potential performance can be even better on real-
world high dimensional problems.

V. I NFLUENCE OFPARAMETERS θ AND c

In this section, we investigate the dependence of EDA-MCC
on the newly introduced parametersθ and c through experi-
ments. A separable functionF2 and a non-separable function
F8 are selected from the 9 test functions as demonstration.
Different settings ofθ and c are tested on these 2 functions
with problem sizen = 100. θ ∈ {0.2, 0.25, 0.3, 0.35, 0.4} and
c ∈ {5, 10, 20, 30, 40, 50}. The population size and selected
size are adopted from previous experiments of EDA-MCC and
kept fixed during following tests, i.e.,M = 1000,m = 500
for F2, and M = 500,m = 250 for F8. The performance
comparison of combinations ofθ and c are summarized in
Tables X-XI.

From the results we can see that on separableF2, as long as
θ ≤ 0.3, differentc does not change the performance. However
when θ > 0.3, the performance becomes a little unstable.

Note that because current implementation of EDA-MCC uses
EEDA model on subsets ofS, even when adopting a large
θ, as long asS is not empty, EDA-MCC’s performance still
has distance with UMDAGc ’s. When variable dependencies are
over-eliminated by a largeθ, according to the definition of co-
variance matrix scaling, its performance can become unstable
since the gradient is easily to be wrongly approximated. But
generally speaking, on separable problems differentθ and c
do not have much impact on EDA-MCC’s performance.

On non-separableF8, only when θ ≤ 0.3, different c
does not change the so far best performance much, except
when combining with a very smallc. Large θ (> 0.3) can
makeS easily become empty, which is undoubtedly hazardous
to performance on non-separable problems. Largec is not
harmful for solving non-separable problems, although it may
cost longer CPU time as analyzed before. However too small
c has similar effect of largeθ that the dependencies between
variables are over-eliminated. Since the partition ofS is
random, considering the non-separability, it further makes
covariance matrix scaling fail together with a smallθ. We
can conclude that too largeθ is obviously hazardous for non-
separable problems. Besides, too smallc is not recommended
either because it brings similar negative effect as largeθ.

Generally speaking, settingθ around 0.3 will be good in
most cases. With such a setting ofθ, the value ofc does not
impact overall performance much, but may lead to different
CPU time cost.

VI. SUBSPACEMODELING BY CLUSTERING VARIABLES?

In EDA-MCC, we randomly partitionS into subspaces
in SM. One may ask whether a more sophisticated way of
partitioning S can be applied, e.g., partition subspaces by
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TABLE X
THE PERFORMANCE COMPARISONS OF DIFFERENTθ AND c ON 100DF2 . EACH CELL CONTAINS AVERAGED RESULT FOR25 RUNS.

c = 5 c = 10 c = 20 c = 30 c = 40 c = 50
θ = 0.2 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0
θ = 0.25 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0
θ = 0.3 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0
θ = 0.35 0 ± 0 1.96e-01±9.82e-01 0 ± 0 0 ± 0 7.2e-02±3.6e-01 0 ± 0
θ = 0.4 8.2e+00±3.5e+01 1.8e+00±9.0e+00 9.8e-02±3.7e-01 2.8e-03±1.4e-02 1.8e-05±8.9e-05 1.1e+00±4.6e+00

TABLE XI
THE PERFORMANCE COMPARISONS OF DIFFERENTθ AND c ON 100DF8 . EACH CELL CONTAINS AVERAGED RESULT FOR25 RUNS.

c = 5 c = 10 c = 20 c = 30 c = 40 c = 50
θ = 0.2 4.4e+06±2.1e+07 9.5e+01±2.9e-01 2.3e+02±6.9e+02 9.6e+01±1.1e-01 9.6e+01±2.1e-01 9.6e+01±3.9e-01
θ = 0.25 1.1e+02±8.0e+01 9.5e+01±2.0e-01 9.6e+01±1.4e-01 1.3e+02±1.6e+02 9.6e+01±9.0e-02 9.6e+01±5.0e-01
θ = 0.3 9.9e+01±1.2e+01 9.9e+01±1.3e+01 9.6e+01±1.3e-01 9.7e+01±1.2e-01 9.7e+01±2.1e-01 9.7e+01±3.9e-01
θ = 0.35 2.1e+04±7.3e+04 2.2e+02±2.4e+02 7.9e+02±2.4e+03 9.5e+03±2.6e+04 7.7e+03±3.3e+04 1.2e+03±3.2e+03
θ = 0.4 6.3e+06±1.4e+07 1.3e+06±1.6e+06 1.2e+06±2.3e+06 1.4e+06±4.0e+06 2.5e+06±6.0e+06 1.1e+06±2.3e+06

clustering the variables inS based on the strength of the
interdependencies. Intuitively, such a method should workwell
when sample size is large enough compared with the problem
size n. But asn grows very large (e.g.,n = 500) and only
limited sample size is available (e.g., population sizeM = 200
and selected sizem = 100), its performance may not be as
good as random partition since any learning method, including
unsupervised clustering, will be affected by the curse of
dimensionality. In this section, we replace the previous SMin
EDA-MCC with a greedy clustering like method named SM-
GC (Subspace Modeling by Greedy Clustering), and compare
it with EDA-MCC. The new resulting algorithm is called
EDA-MCC-GC (Greedy Clustering).

The details of SM-GC are shown in Fig. 11. In short,
SM-GC partitions subspaces in the following steps: First, a
pair of variables, whose absolute correlation is the largest
among the ones aboveθ, is picked up fromS as an initial
cluster. This implies the pair of variables are the most strongly
dependent among all. Then a variable outside the cluster is
selected and added to the cluster, on the condition that its
correlation to other variables in the cluster is the strongest.
The operation iterates until the cluster reaches the maximal
size c or no strongly dependent variable can be found from
the perspective of the cluster. Now the cluster refers to a
partitioned subspace. Then, the dependencies between the
cluster and the rest variables inS will be eliminated. An
outer loop keeps generating new subspaces in a greedy manner
until all variables inS is partitioned or there is no strongly
dependent variables left. If after clustering, there are still
variables left inS, a univariate model will be applied to these
variables since they are now regarded weakly dependent by
the algorithm.

We compare EDA-MCC-GC with previous EDA-MCC on
three representative functions,F2, F8 andF11. The algorithms
are compared on 50D and 500D tests. Population sizes,
parametersθ and c of EDA-MCC-GC are set the same as
used in EDA-MCC in previous 50D and 500D experiments.
Results and parameters used are summarized in Table XII.
We can find that on 50D tests, there is no significant differ-
ence between EDA-MCC-GC and EDA-MCC. However, on
500D tests where very small sample size is applied, EDA-

SM-GC

1) ConstructS according to (4).
2) Partition S into non-intersected subsets
S1,S2, . . . ,Sk(1 ≤ k ≤ n):

a) i← 1.
b) Repeatuntil S = ∅.

i) Find two variablesX1, X2 ∈ S maximizing
|corr(X1, X2)| > θ.

ii) GenerateSi ← {X1, X2} and removeX1

andX2 from S if X1 andX2 can be found;
Otherwise exit current loop.

iii) Repeat while |Si| < c, wherec is a user
specified parameter defining the maximal
size of a subset (2 ≤ c ≤ n).

A) Find a variableX ∈ S maximizing
|corr(X,Y )| > θ, where∀Y ∈ Si.

B) Si ← Si
⋃{X} and removeX from S if

X can be found; Otherwise exit current
loop.

iv) i← i+ 1.

c) If S 6= ∅, estimate a univariate model for vari-
ables inS since they are all weakly dependent.

3) Estimate a multivariate model for each subset based
on them selected individuals.

Fig. 11. Main flow of Subspace Modeling by Greedy Clustering (SM-GC).
Note that the partition step is changed from original SM and the minimal
value of c is changed to 2 since there is no need to cluster ifc = 1. The θ
parameter here is the same as defined in (3).

MCC performs significantly better than EDA-MCC-GC. This
verifies our previous intuition that when applied to high di-
mensional optimization problems with very limited population
size, partitioning subspaces based on clustering might not
be as effective as random partition. Though the illustrative
experiments cannot exclude the possibility that some delicate
clustering approach might outperform random partition on
specific high dimensional optimization problems, a clustering
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TABLE XII
THE COMPARISONS OFEDA-MCC-GCAND EDA-MCC IN 50D AND 500DTESTS ONF2 , F8 AND F11 . EACH CELL CONTAINS AVERAGED RESULT FOR

25 RUNS. FOR EACH TEST, THE BEST RESULT IS BOLDED. EDA-MCC’S RESULTS ARE DIRECTLY FROMTABLE IV AND TABLE IX. T HE RESULTS OF
EDA-MCC ARE COMPARED WITH RESULTS OFEDA-MCC-GCBY NONPARAMETRIC MANN-WHITNEY U TEST. THE SIGNIFICANCE LEVEL IS SHOWN

BY MARKERS (∗ , † AND §). NO MARKER IMPLIES NO SIGNIFICANT DIFFERENCE.

Prob. Dim EDA-MCC-GC EDA-MCC Parameters
F2 50 0 ± 0 0 ± 0 M = 200, m = 100, mcorr = 100, θ = 0.3, c = 20

500 1.32e+05± 2.73e+05§ 0 ± 0 M = 200, m = 100, mcorr = 100, θ = 0.3, c = 100
F8 50 4.78e+01± 2.34e-01 4.77e+01± 1.52e-01 M = 2000, m = 1000, mcorr = 100, θ = 0.3, c = 20

500 6.32e+11± 1.29e+12§ 6.77e+02± 6.28e+02 M = 200, m = 100, mcorr = 100, θ = 0.3, c = 100
F11 50 3.00e+02± 1.45e+01 2.88e+02± 1.36e+01 M = 2000, m = 1000, mcorr = 100, θ = 0.3, c = 20

500 6.25e+03± 1.01e+03§ 5.24e+03± 3.86e+01 M = 200, m = 100, mcorr = 100, θ = 0.3, c = 100

§ The value of Asymp. Sig. (2-tailed)< 0.001 when compared with the results of EDA-MCC.

approach often require relatively higher computational cost.
By contrast, random partition is simple and efficient, which
can be considered as a default component of EDA-MCC.

VII. C HARACTERIZATION OF PROBLEM PROPERTIESBY

EDA-MCC

As our motivation of scaling up EDAs, we regard that
when solving a problem, a major advantage of using EDA
other than traditional EA is that we can gain some feedback
on the problem properties through observing the probabilistic
model learnt. The learnt structure and the estimated parameters
of the model should reflect some underlying properties of
the problem. In addition to finding a solution, EDA has the
ability to characterize the problem properties. However, such
an advantage of EDA has not been deeply investigated. In
a recent study [47], discrete EDA model has been used to
represent interactions between the protein conformationsby
probability models. But still, rare study has been done on
continuous EDA models to characterize the structure of an
optimization problem.

In EDA-MCC, we are able to give such analysis by observ-
ing the model structure (in graphics) obtained by WI+SM.
During above experiments of EDA-MCC, we also record the
results of WI procedure in every generation for each test. By
analyzing these results, we can give in-depth analysis on the
problem properties characterization ability of EDA-MCC. We
record the number of strongly dependent variables (#strong),
i.e., |S|, and the elements inS. The curves of the average
#strong of the 25 runs during evolution thus can be plotted.
Which variables are partitioned intoS can also be plotted by
a matrixQ. Each row ofQ corresponds to a variable. Each
column corresponds to one generation. Its elementQij on the
ith row and thejth column, ranging from 0 to 25, indicates
how many runs partitioned variablexi into S at generation
j during the 25 runs. Because examining a matrixQ (even
shown in graphics) with 50 or 100 rows is relatively hard for
human eyes, we here add additional 10D and 30D experiments
of EDA-MCC. Results of 500D experiments are even harder to
read so we omit them here. The 10D and 30D tests are based
on the same settings as previous 50D and 100D experiments.
Becausen = 10, 30 is relatively small, it is easier for us to
examine the graphic results and see the changing trends as
n grows. For the purpose of comparing average #strong and
matrix Q in a same figure more clearly, we transform the

column ofQ which indicates the number of generations into
the number of evaluations (#eval) in all the following figures.
The horizontal axis of average #strong graph is converted to
#eval as well. Due to the limited page length, here we only
report the results onF1, F8, F9 andF12. Although the results
are seemed to be the solo effect of WI, actually SM plays
an important role to guarantee the effectiveness of WI. The
mutual effects between WI and SM are to be shown later.

From Fig. 12 we can see that on separableF1, #strong
remains at a low level. But asn grows up, the level of
#strong also becomes higher. This can be interpreted as the
effects of data sparsity in higher dimensional space. For fixed
θ through all experiments, the number of variables inW can
become smaller when search space enlarges (thus #strong can
increase) because EDA-MCC may capture some correlations
which actually do not exist between variables. The relatively
low level of #strong is consistent with the separability of the
function. Furthermore, the grey levels of matricesQ are nearly
uniform, which means that all the variables inS are observed
to play identical roles for contributing the fitness function
value. It is also consistent with the function expression.

Fig. 13 shows that EDA-MCC correctly recognizes the
problem structures of Shifted RosenbrockF8. The variable
dependency of the problem is a chain-like structure: The first
variable determines the second, the second determines the
third, and so on. We can see that WI first identifies the last
pair of variables, then it quickly “realizes” the first pair of
variables are the most important. The structural information
of the problem is clearly and precisely identified.

Experiments have shown that EDA-MCC significantly out-
performs others on Shifted Rotated High Conditioned Elliptic
F9. Fig. 14 shows that WI always helps EDA-MCC to recog-
nize the problem structure. The WI results clearly show that
some variables are constantly identified as strongly dependent
during evolution (the dark rows ofQ).

Furthermore, by checking the expression ofF9 (see Ta-
ble III), we can see that the coefficient

∑n
i=1(10

6)
i−1
n−1 before

z2i increases exponentially withi given a fixedn. Thus among
the transformed variableszi, 1 ≤ i ≤ n, zn mostly impacts the
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Fig. 12. WI results onF1: Sphere. Curves of average #strong are plotted in the upper row. CorrespondingQ matrices are plotted in the lower row. The
darker the element ofQ is, the more times a variable is partitioned intoS at the specific #eval during the 25 runs.
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Fig. 13. WI results onF8: Shifted Rosenbrock. Curves of average #strong are plottedin the upper row. CorrespondingQ matrices are plotted in the lower
row. The darker the element ofQ is, the more times a variable is partitioned intoS at the specific #eval during the 25 runs.

function.F9 can also be written as:

F (~x) =
n
∑

i=1

(

√

(106)
i−1
n−1 · zi)2 + fbias3

=

n
∑

i=1

(

√

(106)
i−1
n−1 ·

n
∑

j=1

(xj − oj)Mji)
2 + fbias3

=

n
∑

i=1

(

n
∑

j=1

(xj − oj)Mji

√

(106)
i−1
n−1 )2 + fbias3

=

n
∑

i=1

(

n
∑

j=1

(xj − oj)Rji)
2 + fbias3 , (9)

whereRji = Mji ·
√

(106)
i−1
n−1 , 1 ≤ i, j ≤ n. Mji is the

element ofM , whose value can be found in [43]. Matrix
R partly represents to what extent the original variables~x
impact the function value. Roughly speaking,Rji indicates
the effect ofxj onto zi and thus onto final function value.
BecauseF7 is non-linear, it is hard to analyze the exact impact
of each variable. But sincezn mainly impacts the function
value, we can instead analyze thenth column ofR which can
partly indicate the impact of~x ontozn and thus onto the final
function value to give a rough analysis. We plot the curves

of coefficient
√

(106)
i−1
n−1 as sub-figures in the first column

of Fig. 15. The sub-figures in the second column show the
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Fig. 14. WI results onF9: Shifted Rotated High Conditioned Elliptic. Curves of average #strong are plotted in the upper row. CorrespondingQ matrices
are plotted in the lower row. The darker the element ofQ is, the more times a variable is partitioned intoS at the specific #eval during the 25 runs.

absolute value of matrixR, Abs(R). We use absolute value
because both positive or negative coefficients of a variable
can influence the function value. The sub-figures in the third
column show thenth column ofAbs(R), which is denoted as
Abs(R)(:, n). To compare them with the experimental results
Q shown in the last column of Fig. 15, we stretch the widths
to make them same size. HereQ are directly from Fig. 14. We
can see that whenn is large, the domination ofzn becomes
weak because the coefficients ofzn−1, zn−2, etc., approach the
coefficient ofzn. Therefore, the difference between the rough
analysis and the experimental results also becomes larger.
However, for all four tests, we can always find the evidence
that WI successfully recognizes the problem structure: Those
variables most impacting function value are correctly identified
as dark rows inQ.6

Fig. 16 shows the WI results on Shifted Rotated Rastrigin
F12. Results here also help explain why UMDAG

c performs
well on this problem while EDA-MCC fails. By examining
the WI results on RastriginF11 (not shown here), we find
that the results are very similar to Fig. 16. SinceF11 is
separable, the results are reasonable. As analyzed above,
due to the inefficiency of covariance matrix scaling on this
function with a huge number of local optima, EDA-MCC
cannot perform well. However, on non-separableF12, WI still
fails to recognize the problem structure because the sample
size (selected size) is far less enough considering the huge
number of local optima. From the information that WI can
gather,F12 just looks like a separable problem and no useful
interdependencies are learnt from observation. As a result,
EDA-MCC does not perform well on it either.

EDA-MCC’s remarkable ability on characterizing the prob-
lem properties are clearly shown in this section. Although
in some cases, EDA-MCC cannot find better solutions than

6We recommend readers to refer to the high resolution versionof the
original digital formatted (.eps) figures.

other algorithms, its characterization ability to describe the
problems’ underlying structural information is always remark-
able. We regard this the most valuable aspect of EDA-MCC.
However for F11, F12 and F13 which has a huge number
of local optima, EDA-MCC still has limitation. It should
also be noticed that in current implementation of EDA-MCC,
we haven’t tried every possible univariate model onW and
multivariate model onS other than the two Gaussian models
used. Therefore, even if EDA-MCC correctly characterizes
the problem properties, it does not try every possible effort
to utilize this information. This can explain why in some
cases EDA-MCC cannot outperform other algorithms, even
with correct problem structure characterization. We have to
admit that our results are restricted within the capabilityof
Gaussian models.

One thing needs to be addressed is that when solving a real-
world problem in practice, a user may not want or be able
to run EDA-MCC for multiple runs to obtain the problem’s
structural information. However, through only one run on a
problem may not provide sufficient information. In this case,
a more recommended way is to allow EDA-MCC for restarts,
and aggregate the information collected over multiple trials to
generate theQ matrix.

VIII. R OLES AND INTERACTIONS OFWI AND SM

In this section, we analyze the roles of WI and SM and
their interactions. Besides the above implementation of EDA-
MCC with WI+SM, we also implement a “SM only” version
and a “WI only” version. We compare these 2 versions with
EDA-MCC on 100D of our test functions to analyze their
respective roles. But to save space, we only report comparisons
on selected functions includingF2, F8, F9, F10, F11 andF13

here. The parameters of “SM only” and “WI only” are exactly
the same as the respective settings of SM and WI in previous
EDA-MCC experiments. For each test, the population sizes
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Fig. 15. Explanations of WI results onF9. The coefficients ofzi are shown in the first column. The second column demonstratesAbs(R). The third column
shows thenth column ofAbs(R), denoted asAbs(R)(:, n). The experimentalQ results are shown in the last column, which are directly adopted from
Fig. 14. We can see that the last two columns are very similar,especially for low dimensional tests.

of all the 3 versions are set to the same as the selected best
results of EDA-MCC.

The solution results are shown in Table XIII. We can see
that when WI+SM performs best, it usually finds order-of-
magnitude better solutions than “SM only” and “WI only”.
Because “SM only” applies several multivariate models on
all variables, the ways dealing with those actually weakly
dependent variables are not so efficient. Therefore it failsto
perform best on any function except the simplestF2. On the
other hand, “WI only” can perform slightly better than WI+SM
on F11 andF13 and the same as WI+SM onF2, but much
worse on the others. The CPU times are reported in Fig. 17.
Although “SM only” cannot find solutions of comparable
quality, its CPU time cost is usually acceptable or comparable
with WI+SM. Whereas “WI only” can cost much more CPU

time. Generally speaking, WI+SM shows much more robust
performance and moderate CPU time cost than “SM only” and
“WI only”. It is also interesting that “WI only” can perform
slightly better than WI+SM onF11 and F13. This implies
that SM does not contribute a bit on these functions. This is
consistent with our previous conclusions in Section IV-C4 that
subspace partitioning with changingc does not help to solve
these functions. Without SM, “WI only” can even performs a
little better. But when SM is necessary, e.g., onF8-F10, “WI
only” will fail.

To investigate the interaction between WI and SM in
terms of EDA-MCC’s ability of characterization of problem
structure, we here plot the WI results (#strong andQ matrix)
of “WI only” on F8 andF11 in Fig. 18 as demonstrations. WI
results of “WI only” on other functions are similar to either
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Fig. 16. WI results onF12: Shifted Rotated Rastrigin. Curves of average #strong are plotted in the upper row. CorrespondingQ matrices are plotted in the
lower row. The darker the element ofQ is, the more times a variable is partitioned intoS at the specific #eval during the 25 runs.

TABLE XIII
COMPARISON AMONG “WI+SM”, “SM ONLY” AND “WI ONLY” ON 100D

TESTS. MEAN BEST RESULTS FOR25 RUNS ARE REPORTED. FOR EACH

TEST FUNCTION, THE BEST RESULT IS BOLDED. THE RESULTS OF

“WI+SM” ARE COMPARED WITH RESULTS OF“SM ONLY” AND “WI
ONLY”, RESPECTIVELY, BY NONPARAMETRICMANN-WHITNEY U TEST.

THE SIGNIFICANCE LEVEL IS SHOWN BY MARKERS(∗, † AND §). NO

MARKER IMPLIES THERE IS NO SIGNIFICANT DIFFERENCE.

Prob. WI + SM SM only WI only
F2 0±0 0±0 0±0
F8 9.65e+01±1.3e-01 1.00e+02±2.3e+01 4.51e+03±2.1e+04
F9 9.59e+06±2.5e+06 9.01e+09±1.1e+09§ 3.33e+07±6.7e+06§

F10 1.87e+03±3.6e+02 8.15e+04±3.9e+03§ 2.39e+04±2.3e+03§

F11 7.49e+02±1.6e+01 7.82e+02±1.7e+01§ 7.36e+02±1.1e+01§

F13 6.53e+01±1.6e+00 6.97e+01±1.8e+00§ 6.51e+01±1.1e+00

§ The value of Asymp. Sig. (2-tailed)< 0.001 when compared with the
results of “WI+SM”.
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Fig. 17. The comparison of CPU time of “WI+SM”, “SM only” and “WI
only” on selected functions.

of these two functions. We can see that on functions with
strong variable interdependencies likeF8, without SM, the
precision of global multivariate model onS fast deteriorates
as the search proceeds. It affects not only the solution quality,
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Fig. 18. The results of WI procedure in “WI only” onF8 andF11. F11

results are similar to 100D WI results of EDA-MCC onF12 in Fig. 16 because
SM contributes nothing in solving or characterizing the problem. ButF8 result
is quite different from Fig. 13, which implies the effects ofSM on functions
with strong and clear variable interdependencies.

but also the WI procedure. Based on samples drawn from
the unprecise global model, WI also becomes useless that
eventually all variables are partitioned intoS. This also makes
that modeling and sampling from global multivariate model
becomes slower and costs longer CPU time. On the other
hand, when SM is unnecessary as onF11, “WI only” can still
characterize the problem structure properly and finds solutions
with same or better quality.

We can conclude that SM helps to maintain the global
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precision of the search model, and thus helps WI more
effectively recognize the problem structure. On the other hand,
WI helps to properly apply different search strategies on
weakly dependent and strongly dependent variables to find
good solutions effectively. Obviously, the success of EDA-
MCC, in terms of the problem structure characterization ability
and the robust performance on high dimensional optimization
problems, are based on the combination of WI and SM.

IX. CONCLUSIONS ANDFUTURE WORK

In this paper we first analyze the difficulties of tradi-
tional continuous EDAs in high dimensional search space.
Due to the curse of dimensionality, given a finite population
size, the performance of traditional EDAs fast deteriorates
as the problem size grows large. Their computational cost
also increases fast when using a multivariate model for non-
separable problems. To improve the performance and reduce
the computational cost for high dimensional optimization,
a novel multivariate EDA with Model Complexity Control
(EDA-MCC) has been proposed. By adopting Weakly de-
pendent variable Identification (WI) and Subspace Modeling
(SM), EDA-MCC shows significantly better performance than
traditional EDAs on high dimensional non-separable problems
with only a few local optima. The computational cost and
requirement for a large population size can also be signif-
icantly reduced in EDA-MCC. Besides, EDA-MCC exhibits
remarkable problem property characterization ability. When
solving a problem, EDA-MCC will not only find a solution,
but also give users feedbacks on the variable dependency
structures of the problem. Such an ability can be far more
valuable than just obtaining a solution. It is especially useful
when facing a black box optimization problem. Based on
the extracted problem structural information, more efficient
algorithms can be designed specifically to give better solutions.
The limitations of EDA-MCC are also analyzed. First, in low
dimensional search space where available population size is
usually large enough to offer a good global model estimation,
EDA-MCC may not be so effective as traditional EDAs. The
advantage of EDA-MCC over traditional EDAs only appears in
high dimensional space where a given population size fails to
give a reliable global model estimation. Second, when facing
high dimensional non-separable problems which has a huge
number of local optima, EDA-MCC may not be so effective or
efficient as a simple univariate Gaussian EDA. We should note
that current discussions and implementation on EDA-MCC are
still restricted to Gaussian models. Different base univariate
and multivariate models other than Gaussian are still to be
tested and analyzed. Moreover, smarter self-adaptive setting
of θ andc is still an interesting issue that is left for our future
work.

APPENDIX

COMPUTATIONAL COMPLEXITY ANALYSIS OF UMDAG
c ,

EMNAglobalAND EDA-MCC

A. Computational Complexity of UMDAGc and EMNAglobal
Suppose the current model is built from the selected indi-

viduals of the last generation. Vector~X denotes an individual,

andXi denotes theith variable of ~X. The problem isn di-
mensional.M denotes the population size, andm denotes the
number of selected individuals. Without the loss of generality,
we assume|P ′| = |P| = M .

1) UMDAG
c : Let µi and σ2

i denote the mean and the
variance ofXi, respectively (i = 1, . . . , n). The joint density
of UMDAG

c is:

f(~x) =

n
∏

i=1

fN (xi;µi, σ
2
i ) =

n
∏

i=1

1

σi

√
2π

e
−

(xi−µi)
2

2σ2
i . (10)

• Building the model.
Estimate(µi, σ

2
i ) for Xi (i = 1, . . . , n):

1) Traverse m selected individuals to estimate
µ1, . . . , µn: O(nm).

2) Traverse m selected individuals to estimate
σ2
1 , . . . , σ

2
n: O(nm).

Overall complexity:O(nm).
• Sampling new solutions.

For Xi, we need to generate a standard normal random
numberζ, then do

xi ← µi + ζ · σi . (11)

Since such operation is fast, we suppose sampling one
variable costsO(1), thusO(n) is needed forn variables.
RepeatingM times to createP ′ costsO(nM).
Overall complexity:O(nM).

2) EMNAglobal: Let ~µ and Σ denote then dimensional
mean vector and then × n covariance matrix, respectively.
The joint density of EMNAglobalis:

f(~x) = fN (~x; ~µ,Σ) =
1

(2π)
N
2 |Σ| 12

e−
1
2 (~x−~µ)TΣ

−1(~x−~µ) .

(12)

• Building the model.

1) Traversem selected individuals to estimate~µ:
O(nm).

2) Traversem selected individuals to estimateΣ:
O(n2m).

Overall complexity:O(n2m).
• Sampling new solutions.

1) Before first time sampling, we needO(n3) to de-
composeΣ such thatΣ = HHT [22].

2) To sample a new solution, we need to generate a
standard normal random vector~ζ, then do

~x← ~µ+ ~ζ ·H . (13)

Primary cost here is theO(n2) matrix multipli-
cations. RepeatingM times to createP ′ costs
O(n2M).

Note that for EMNAglobal, usuallyM > n in practice,
which means the population size is usually larger than
the problem size, thus here the overall complexity of
sampling can be measured primarily byO(n2M) in step
2. TheO(n3) in step 1 can be ignored.
Overall complexity:O(n2M).
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B. Computational Complexity of EDA-MCC

Computation here using the same premises in Section A. We
give the one-generation computational complexity of EDA-
MCC. Here allgi(·) are univariate Gaussian models, and all
hk(·) are multivariate Gaussian models.

• Building the model.

1) Samplingmcorr individuals fromm selected indi-
viduals:O(mcorr).

2) Traversemcorr sampled individuals to calculate the
global correlation matrixC: O(n2mcorr).

3) TraverseC to constructW : O(n2).
4) Building gi(·) andhk(·).

Consider two extreme situations:

– WhenW = V , all n variables are identified as
“weakly dependent”:

a) Building gi(·), i = 1, . . . , n:
Same order as UMDAGc model building,
O(nm).

b) No need to buildhk(·).
– WhenW = ∅, all n variables are identified as

“strongly dependent”:

a) No need to buildgi(·).
b) Building hk(·), k = 1, . . . , ⌈n/c⌉:

Same order as building ac dimensional
EMNAglobalmodel ⌈n/c⌉ times, O(c2m ·
n/c) = O(cnm).

Thus the overall complexity is between

O(n2mcorr) +O(nm) (14)

and

O(n2mcorr) + O(cnm) . (15)

Also note that1≪ mcorr ≤ m, 1 ≤ c ≤ n.
• Sampling solutions.

Consider two extreme situations:

– WhenW = V , all n variables are sampled from
gi(·), i = 1, . . . , n:

1) Sampling fromgi(·), i = 1, . . . , n:
Same order as UMDAGc solution sampling,
O(nM).

2) No need to sample fromhk(·).
– WhenW = ∅, all n variables are sampled from

hk(·), k = 1, . . . , ⌈n/c⌉:
1) No need to sample fromgi(·).
2) Sampling fromhk(·), k = 1, . . . , ⌈n/c⌉:

Same order as sampling from ac dimensional
EMNAglobalmodel⌈n/c⌉ times,O(c2M ·n/c) =
O(cnM).

Thus the overall complexity is between

O(nM) (16)

and

O(cnM) . (17)
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