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 

Abstract— Designing generic problem solvers that perform 

well across a diverse set of problems is a challenging task. In this 

work, we propose a hyper-heuristic framework to automatically 

generate an effective and generic solution method by utilizing 

grammatical evolution. In the proposed framework, grammatical 

evolution is used as an online solver builder, which takes several 

heuristic components (e.g. different acceptance criteria and 

different neighborhood structures) as inputs and evolves 

templates of perturbation heuristics. The evolved templates are 

improvement heuristics which represent a complete search 

method to solve the problem at hand. To test the generality and 

the performance of the proposed method, we consider two well-

known combinatorial optimization problems; exam timetabling 

(Carter and ITC 2007 instances) and the capacitated vehicle 

routing problem (Christofides and Golden instances). We 

demonstrate that the proposed method is competitive, if not 

superior, when compared to state of the art hyper-heuristics, as 

well as bespoke methods for these different problem domains. In 

order to further improve the performance of the proposed 

framework we utilize an adaptive memory mechanism which 

contains a collection of both high quality and diverse solutions 

and is updated during the problem solving process. Experimental 

results show that the grammatical evolution hyper-heuristic, with 

an adaptive memory, performs better than the grammatical 

evolution hyper-heuristic without a memory. The improved 

framework also outperforms some bespoke methodologies which 

have reported best known results for some instances in both 

problem domains. 

 
Index Terms—Grammatical Evolution, Hyper-heuristics, 

Timetabling, Vehicle Routing 

I. INTRODUCTION 

ombinatorial optimization can be defined as the problem 

of finding the best solution(s) among all those available 

for a given problem [1]. These problems are encountered 

in many real world applications such as scheduling, 

production planning, routing, economic systems and 

management [1]. Many real world optimization problems are 

complex and very difficult to solve. This is due to the large, 
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and often heavily constrained, search spaces which make their 

modeling (let alone solving) a very complex task [2]. Usually, 

heuristic methods are used to solve these problems, as exact 

methods often fail to obtain an optimal solution in reasonable 

times. The main aim of heuristic methods, which provide no 

guarantee of returning an optimal solution (or even near 

optimal solution), is to find a reasonably good solution within 

a realistic amount of time [3, 4]. Meta-heuristic algorithms 

provide some high level control strategy in order to provide 

effective navigation of the search space. A vast number of 

meta-heuristic algorithms, and their hybridizations, have been 

presented to solve optimization problems. Examples of meta-

heuristic algorithms include scatter search, tabu search, 

genetic algorithms, genetic programming, memetic 

algorithms, variable neighborhood search, guided local search, 

GRASP, ant colony optimization, simulated annealing, 

iterated local search, multi-start methods and parallel 

strategies [3],[4].   

Given a problem, an interesting question that comes to mind 

is:  

Which algorithm is the most suitable for the problem at 

hand and what are the optimal structures and 

parameter values? 

The most straightforward answer to the above question might 

be to employ trial-and-error to find the most suitable meta-

heuristic from the large variety of those available, and then 

employ trial-and-error to determine the appropriate structures 

and parameter values. While these answers seem reasonable, 

in terms of the computational time involved, it is impractical 

in many real world applications. Many bespoke meta-heuristic 

algorithms that have been proposed over the years are 

manually designed and tuned, focusing on producing good 

results for specific problem instances. The manually designed 

algorithms (customized by the user and not changed during 

problem solving) that have been developed over the years are 

problem specific, i.e. they are able to obtain high quality 

results for just a few problem instances, but usually fail on 

other instances even of the same problem and cannot be 

directly applied to other optimization problems. Of course, the 

No Free Lunch Theorem [5] states that a general search 

method does not exist, but it does not mean that we cannot 

investigate more general search algorithms to explore the 

limits of such an algorithm [6-8].  

Numerous attempts have been made to develop automated 

search methodologies that are able to produce good results 

Grammatical Evolution Hyper-heuristic for Combinatorial 

Optimization problems  

 

Nasser R. Sabar, Masri Ayob, Graham Kendall, Senior Member, IEEE and Rong Qu, Senior Member, 

IEEE 

C 



Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, October 2013 2 

across several problem domains and/or instances. Hyper-

heuristics [6], meta-learning [9], parameter tuning [10], 

reactive search [11], adaptive memetic algorithms [12] and 

multi-method [13], are just some examples. The performance 

of any search method critically depends on its structures and 

parameter values [6]. Furthermore, different search 

methodologies, coupled with different structures and 

parameter settings may be needed to cope with problem 

instances or different problem domains [9],[10]. A search may 

even benefit from adapting as it attempts to solve a given 

instance. Therefore, the performance of any search method 

may be enhanced by automatically adjusting their structures or 

parameter values during the problem solving process.  Thus, 

the ultimate goal of automated heuristic design is to develop 

search methodologies that are able to adjust their structures or 

parameter values during the problem solving process and work 

well, not only across different instances of the same problem, 

but also across a diverse set of problem domains [6], [9], [10].  

Motivated by these aspects, particularly the hyper-heuristic 

framework [6], in this work, we propose a grammatical 

evolution hyper-heuristic framework (GE-HH) to generate 

local search templates during the problem instance solving 

process, as depicted in Fig 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.1.The GE-HH framework 

The evolved templates represent a complete local search 

method which contains the acceptance criteria of the local 

search algorithm (to determine away of escaping from local 

optima), the local search structures (neighborhoods), and their 

combination. The GE-HH operates on the search space of 

heuristic components, instead of the solution space. In 

addition, GE-HH also maintains a set of diverse solutions, 

utilizing an adaptive memory mechanism which updates the 

solution quality and diversity as the search progresses. We 

choose grammatical evolution to search the space of heuristic 

components due to its ability to represent heuristic 

components and it being able to avoid the problem of code 

bloat that is often encountered in traditional genetic 

programming. Our objectives are:  

 

- To design an automatic algorithm that works well 

across different instances of the same problem and also 

across two different problem domains. 

- To merge the strengths of different search algorithms in 

one framework. 

- To test the generality and consistency of the proposed 

method on two different problem domains.   

 

The performance and generality of the GE-HH is assessed 

using two well-known NP-hard combinatorial optimization 

problems; examination timetabling (Carter [14] and ITC 2007 

[15] instances) and the capacitated vehicle routing problem 

(Christofides [16] and Golden [17] instances). Although both 

domains have been extensively studied by the research 

community, the reasons of choosing them are twofold. Firstly, 

they represent real world applications and the state of the art 

results, we believe, can still be improved. Currently, a variety 

of algorithms have achieved very good results for some 

instances. However, most methodologies fail on generality and 

consistency. Secondly, these two domains have been widely 

studied in the scientific literature and we would like to 

evaluate our algorithm across two different domains that other 

researchers have studied. Although our intention is not to 

present an algorithm that can beat the state of the art, but 

rather can work well across different domains, our results 

demonstrate that GE-HH is able to update the best known 

results for some instances.  

 The remainder of the paper is organized as follows: the 

generic hyper-heuristic framework and its classification are 

presented in Section II.  The grammatical evolution algorithm 

is presented in Section III, followed by our proposed GE-HH 

framework in Section IV. The experimental results and result 

comparisons are presented in Section V and VI, respectively. 

Finally discussions and concluding remarks are presented in 

Sections VII and VIII. 

II. HYPER-HEURISTICS   

Meta-heuristics are generic search methods that can be applied 

to solve combinatorial optimization problems. However, to 

find high quality solutions, meta-heuristics often need to be 

designed and tuned (as do many classes of algorithms, 

including those in this paper) and they are also often limited to 

one problem domain or even just a single problem instance. 

The objective for a solution methodology that is independent 

of the problem domain, serves as one of the main motivations 

for designing hyper-heuristic approaches [6],[18]. 

Recently, significant research attention has been focused on 

hyper-heuristics. Burke et al. [6]  defined hyper-heuristics as  

An automated methodology for selecting or generating 

heuristics to solve hard computational search problems. 

One possible hyper-heuristic framework is composed of two 

levels, known as high and low level heuristics (see Fig.2). 

The high level heuristic is problem independent. It has no 

knowledge of the domain, only the number of heuristics that 

are available and (non-domain) statistical information that is 

allowed to pass through the domain barrier. Only the lower 

part of the framework has access to the objective function, the 

problem representation and the low level heuristics that have 
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been provided for the problem. During the problem solving 

process, the high level strategy decides which heuristic is 

called (without knowing what specific function it performs) at 

each decision point in the search process. Unlike meta-

heuristics, hyper-heuristics operate over a search space of 

heuristics, rather than directly searching the solution space.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Fig.2. A generic hyper-heuristic framework 

 

The low level heuristics correspond to a pool of candidates 

of problem dependent human-designed heuristics or 

components of existing heuristics which operate directly on 

the solution space for a given problem instance. Based on their 

past performance, heuristics compete with each other through 

learning, selection or generating mechanisms at a particular 

point to construct or improve a solution for a given problem 

instance.  

The fact that the high level strategy is problem independent 

means that it can be applied to different problem domains with 

little development effort. Indeed, one of the goals of hyper-

heuristics is to raise the level of generality of search 

methodologies and to build systems which are more generic 

than other methods [6].  

Burke et al. [6] classified hyper-heuristics into two 

dimensions, based on the nature of the heuristic search space 

and the source of feedback during learning (see Fig.3).The 

nature of the heuristic search space can either be heuristics to 

choose heuristics or heuristics to generate heuristics. 

Heuristics can be called from a given pool of heuristics. For 

example, Burke et al. [19] used tabu search with reinforcement 

learning as a heuristic selection mechanism to solve nurse 

rostering and timetabling problems. Heuristics can also be 

generated by combining existing heuristic components. For 

example, Burke et al. [20],[21] employed genetic 

programming to evolve new low level heuristics to solve the 

bin packing problem.  

The nature of the heuristic search space can be further 

classified depending on the type of low level heuristics as 

either constructive or perturbative. Constructive based hyper-

heuristics start with an empty solution, and select low level 

heuristics to build a solution step by step. Perturbation based 

hyper-heuristics start with an initial solution and, at each 

decision point, select an appropriate improvement low level 

heuristic to perturb the solution. Based on the employed 

learning methods, two subclasses are distinguished: on-line or 

off-line.  

 
 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

Fig.3. A classifications of hyper-heuristic approaches, according to two 

dimensions: (i) the nature of the heuristic search space and (ii) the source of 
feedback during learning [6]. 

 

In on-line hyper-heuristics, the learning takes place during the 

problem solving. Examples of online approaches include those 

based on genetic algorithms [22], tabu search[19], and local 

based search [23]. In off-line hyper-heuristics, learning occurs 

during the training phase before solving other problem 

instances, examples include those based on genetic 

programming [20] and learning classifier systems [24]. 

Recently, GE was utilized in [21] as an off-line heuristic 

builder to solve the bin packing problem. Our work differs 

from [21], where we use GE as an online solver builder, and is 

a much more general methodology that is able to address two 

problem domains, and produce best known results. In addition, 

the GE in [21] has been specifically designed and tested on the 

bin packing problem only (i.e. the grammar has been 

specifically designed for the bin packing problem only).  
Our proposed GE-HH framework can be classified as an on-

line generational hyper-heuristic. In this respect, it is the same 

as a genetic programming hyper-heuristic which generates 

heuristics. Genetic programming hyper-heuristics have been 

utilized to solve many combinatorial optimization problems 

including SAT [25],[26], scheduling [27] and bin packing 

[20],[28]. A recent, and comprehensive, review on hyper-

heuristics is available in [29]. 

Most of the proposed genetic programming based hyper-

heuristic approaches, however, are constructive heuristics. 

Their general limitation is that they are tailored to solve 

specific problems (e.g. SAT, bin packing, and TSP) using a 

restricted constructive heuristic component. This limitation 

restricts their applicability to cope with different problem 

domains without any redevelopment (e.g. redefine the 

terminals and functions). In addition, previous genetic 

programming based hyper-heuristics were only applied to one 

single domain, which raises the question to what extent they 

will generalize to other domains. 

Motivated by the above, this work proposes an 

improvement based hyper-heuristic using grammatical 
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evolution. The proposed framework takes several heuristic 

components (e.g. acceptance criteria and neighborhood 

structures) as input and automatically generates a local search 

template by selecting the appropriate combination of these 

heuristic components. The differences between our approach 

and the previous genetic programming based hyper-heuristics 

in the literature are: 

 

1. The proposed framework generates a perturbation local 

search template rather than constructive heuristics.  

2. The proposed framework is not tailored to a particular 

problem domain e.g. it can be applied to several domains 

(the user only needs to change the neighborhood 

structures when applying it to another problem domain).   

3. The proposed framework utilizes an adaptive memory 

mechanism to maintain solution diversity. 

III. GRAMMATICAL EVOLUTION 

Grammatical evolution (GE) [30] is a variant of genetic 

programming (GP) [31]. It is a grammar based GP that can 

evolve a variable-length program in an arbitrary language. 

Unlike GP, GE uses a linear genome representation rather than 

a tree. The clear distinction between the genotype and 

phenotype in GE allows the evolutionary process (e.g. 

crossover) to be performed on the search space (variable 

length linear genotypic) without needing to tailor the 

diversity-generating operator to the nature of the 

phenotype[30],[31]. The mapping process of genotype and 

phenotype to generate a program is governed by a grammar 

which contains domain knowledge [30]. The grammar is 

represented by Backus Naur Form (BNF). The program is 

generated by using a binary string (genome) to determine 

which production rule in the BNF definition will be used. The 

GE general framework is composed of three procedures: 

grammar, search engine and a mapper procedure (see Fig.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig.4.Grammatical evolution 

A. The BNF Grammar  

GE utilizes BNF to generate the output program [30],[31]. 

A suitable BNF grammar must be defined when solving a 

problem, and the definitions vary from one problem to 

another. The BNF grammar can be represented by a tuple <T, 

N, S, P> where T is the terminal set, N is the set of non 

terminals, S is the start symbol (a member of N) and P is a set 

of production rules. If more than one production rule is used 

within a particular N, the choice is delimited with the ‘|’ 

symbol.  Below is an example of BNF grammar (adopted from 

[30]):  

 

T= {Sin, Cos, Tan, Log, +, -, /, *, (,)} // set of terminal  

N= {expr, op, pre_op}                      // set of non-terminal 

S= <expr>// starting symbol  

and P can be represented as     // production rules   

 
(1)  <expr>::= <expr><op><expr> (0) 

 | (<expr><op><expr>) (1) 

 |<pre-op>(<expr>) (2) 

 |<var> (3) 

 
(2) <op>::=  + (0) 

 | - (1) 

 | / (2) 

 | * (3) 

 

 

 

 

B. The Search Engine 

GE uses a standard genetic algorithm as its search engine[30]. 

A candidate solution (genotype or chromosome) is represented 

by a one dimensional variable length string array. The gene in 

each chromosome is called a codon. Each codon is an 8-bit 

binary number (see Fig.5). 

 

 
 

Fig.5. An example of genotype 

The codon values are used in the mapper procedure to 

determine which rule to be selected for the non-terminal 

symbol when it is converted [30] (see Section III-C). The GA 

starts with a population of chromosomes, which are randomly 

generated. The fitness of each chromosome is calculated by 

executing its corresponding program. The fitness function 

varies from one domain to another. GA operators (selection, 

crossover, mutation and replacement) are then applied. At 

each generation, the evolved solutions (children) from the 

crossover and mutation operators are evaluated by converting 

them into its corresponding program via the mapper function. 

If the fitness of the new solution is better than the worst 

solution in the population, it will replace it. The process is 

repeated until a stopping condition is satisfied (e.g. number of 

generations). 

C. The Mapper Procedure 

The mapper function converts the genotype into a 

phenotype (i.e. a program). The function takes two inputs, the 

binary string (genotype) and the BNF grammar [30]. The 

      (3) <var> ::= X   (0) 

       (4)   <pre_op> ::= Sin (0) 
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conversion from genotype to phenotype is carried out using 

the following rule: 

 

Rule= (codon integer value) MOD (number of rules for 

the current non-terminal) 

The mapper function begins by mapping the starting symbol 

into terminals. It converts each codon to its corresponding 

integer value. Assume we have the above BNF grammar (See 

Section III-A) and genotype (see Fig.5). First of all, convert all 

codon values to integers (with reference to Fig 4, this will be 

220, 203, 17, 3, 109, 215, 104, 30). Then, starting from the 

starting symbol, apply the mapping rule to convert the 

leftmost non-terminal into a terminal until all non-terminals 

have been converted into terminals. The genotype-to-

phenotype mapping process of the above BNF grammar and 

the solution (genotype) is illustrated in Table 1. 
 

TABLE 1AN EXAMPLE OF THE MAPPING PROCESS 

Input 
No. of 

Choices 
Rule Result 

<expr> 4 220 MOD 4= 0 <expr><op><expr> 

<expr><op><expr> 4 203 MOD 4= 3 <var><op><expr> 
X <op><expr> 4 17 MOD 4= 1 X -<expr> 

X -<expr> 4 3 MOD 4= 3 X -<var> 

X-X    

 

The mapper begins (see Table 1) with the starting symbol 

<expr>, and then reads the first codon (220). The starting 

symbol <expr> has four production rules to select from (see 

Section III-A). Following the mapping rules, the codon value 

and the number of production rules are used with the modular 

function to decide which rule to select, i.e. 220 MOD 4= 0, 

which means we select the first production rule 

(<expr><op><expr>). Since this production rule is not a 

complete expression (it has at least one non-terminal), rules 

will be applied again. The process will continue from the 

leftmost non-terminal in the current production rule. 

Continuing with <expr><op><expr>, take the next codon 

value (203), the next production rule will be (203 MOD 4= 3) 

<var><op><expr>. Since <var> has only one choice, <var> 

will be replaced by X and the production rules will be 

X<op><expr>. Continuing with the same mapper rules until 

all non-terminals are converted to terminals, the complete 

expression will be X-X.  

During the conversion process, not all codons may be 

used, or after using all codon values not all non-terminals have 

been replaced by terminals. In the case where non-terminals 

have been replaced with terminals but not all codon values 

have been used, the mapper process will simply ignore the 

rest. If all codon values have been used but the expression is 

still invalid, a wrapper procedure is invoked. The wrapper 

procedure reads the codon value from the left to right for a 

predefined number of iterations. If the wrapper procedure is 

finished but the complete expression is still not available, the 

genotype is given the lowest fitness value. 

IV. THE GRAMMATICAL EVOLUTION HYPER-HEURISTIC 

FRAMEWORK 

In this section we present the grammatical evolution hyper-

heuristic (GE-HH) framework. Then, we introduce the 

adaptive memory mechanism, hybridizing it with GE-HH. 

A. The Proposed Framework 

It is well established that the efficiency of any problem solver 

relies on its ability to explore regions of the search space, 

which is strongly influenced by its structures and parameter 

values [7],[10],[12]. Therefore, the performance of any search 

methodology can potentially be enhanced by automatically 

adjusting its structures and/or parameter values. In this work, 

we propose a grammatical evolution hyper-heuristic (GE-HH) 

framework that generates a different local search template 

(problem solver) to suit the given problem instance. The 

proposed framework takes several basic heuristic components 

as input and generates a local search template by combining 

these basic components. The process of combining heuristic 

components will be carried out automatically. Thus, the 

benefit of this framework is not only to generate different 

local search templates by combining basic heuristic 

components, but also to discover new kinds of heuristics, 

without relying on human interference. 

As we mentioned earlier (Section III), there are three 

essential procedures of grammatical evolution algorithm: a 

grammar, a search engine and a mapper function. Our search 

engine (genetic algorithm), and the mapper function are 

implemented as in the original algorithm [30]. The BNF 

grammar, which is problem dependent, must be defined in 

order to suit the problem at hand. Generally, the design of the 

BNF grammar, which decides which production rule will be 

selected, has a significant impact on the output, i.e. the 

programs. In our GE-HH framework, the basic heuristic 

components are represented by BNF. To design a complete 

BNF grammar one needs to carry out the following steps [30]: 

 

 Determine the terminals, non-terminals and starting 

symbol.  

 Design the BNF syntax which may have problem specific 

function(s).   

 

In this work, three different heuristic components (acceptance 

criteria (Ac), neighborhood structures (Ns) and neighborhood 

combinations (Nc)) are used as basic elements of the BNF 

grammar.  We have selected these three components because 

they are recognized as crucial components in designing 

problem solvers [3],[18]. These are explained as follows:  

 

1. The acceptance criteria (Ac) decides whether to accept or 

reject a solution. A number of acceptance criteria have 

been proposed in the literature and each one has its own 

strengths and weaknesses. The strength of one acceptance 

criterion can compensate for the weakness of another if 

they can be integrated into one framework. In this work, 

we have employed several acceptance criteria. The 

acceptance criteria that are used in our GE-HH framework 

have been widely used in the literature [3],[6],[18],[29], 

and are presented below. 

 
Ac Description 

IO 

Improving or equal only: The generated solution is accepted if 
the objective value is equal or better than the previous one. The 

local search template that uses this acceptance criterion will be 

executed for a pre-defined number of iterations. In this work, we 

have experimentally set the pre-defined number of iterations 
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to100 non-improvement iterations [18]. 

AM 

All Moves: All generated solutions are accepted without taking 

into consideration their quality. This criterion can be seen as a 

mutational operator which aims to diversify the search. The local 

search template that uses this acceptance criterion will be run for 

a pre-defined number of iterations. In this work, we have 
experimentally set the pre-defined number of iterations to 

50[18]. 

SA 

Simulated Annealing:  A move to a neighbor of the current 
solution is always accepted if it improves (or is equal to) the 

current objective value. However, non-improving moves are 

accepted based on a probability acceptance function, R<exp (-
δ/t), where R is a random number between [0, 1] and δ is the 

change in the objective value. The ratio of accepted moves to 

worse solutions is controlled by a temperature t which gradually 
decreases by β during the search process. In this work, β= 0.85 

and the initial temperature t is 50% of the value of the initial 

solution, as suggested in [32],[33]. The local search template that 
uses the SA acceptance criteria is terminated when t= 0.  

EMC 

Exponential Monte Carlo: Improving solutions are always 

accepted. Worse solutions are accepted with a probability of 

R<exp (-δ), where R is a random number between [0, 1] and δ is 
the change in the objective value. The probability of accepting 

worse solutions will decrease as δ increases [34]. The local 

search template that uses this acceptance criterion will be run for 
a pre-defined number of iterations. In this work, we have 

experimentally set the pre-defined number of iterations to 100. 

RR 

Record-to-Record Travel: A move to a neighbor solution is 
always accepted if it improves (or is equal to) the current 

objective value. Worse solutions are accepted if the objective 

value is less than R+D, where R is the value of the initial solution 
and D is a deviation. In this work, we set D= 0.03 and R is 

updated every iteration to equal the current solution. The local 

search template that uses the RR acceptance criteria is repeated 
until the stopping condition is met, set to 100 iterations [3].  

GD 

Great Deluge: Improving solutions are always accepted. A non-

improving solution is accepted if its objective value is less than 

the level initially set to the value of the initial solution. The value 
of level is gradually decreased by β. β is calculated by β = 

(f(initial solutions) - estimated(lower bound) / number of 

iterations). In this work, we set the number of iterations to 1000. 
The local search template that uses the great deluge acceptance 

criteria will terminate when the level is equal to, or less than, the 

best known solution found so far [3],[33].  

NV 

Naive acceptance: accepts all improving moves. Non improving 

moves are accepted with 50% probability. The local search 

template that uses this acceptance criterion is executed for a pre-
defined number of iterations (100 iterations) [35]. 

AA 

Adaptive Acceptance: accepts all improving moves. Non 

improving moves are accepted according to an acceptance Rate, 

which is updated during the search. Initially, acceptance Rate is 
set to zero. However, if the solutions cannot be improved for a 

certain number of non improvement iterations (i.e. 10 

consecutive non improvement iterations), then acceptance Rate 

is increased by 5%. Whenever a solution is accepted, acceptance 

Rate is reduced by 5%. The local search template that uses this 

acceptance criterion will be run for a pre-defined number of 
iterations, experimentally set in this work as 100 iterations [35]. 

 

2. The second heuristic component that is used in our GE-HH 

framework are the neighborhoods structures (Ns) or move 

operators.  The aim of any neighborhood structure is to 

explore the neighbor of current solutions or to generate a 

neighborhood solution. The neighborhood solution is 

generated by performing a small perturbation or changing 

some attribute(s) of the current solution. The neighborhood 

structures are critical in the design of any local search 

method [36]. Traditionally, each neighborhood structure 

has its own characteristics (weaknesses and strengths), 

thus, several types of neighborhood structures may be 

needed to cope with changes in the problem landscape as 

the search progresses. In this work, we have employed 

several neighborhoods which are problem dependent. The 

descriptions of the neighborhood structures that have been 

used in our work, which are different from one domain to 

another, are presented in problem description sections (see 

Sections V-B4 and V-C4).  

3. The third heuristic component employed in our framework 

is the neighborhood combinations/operators (Nc). The aim 

of the neighborhood combinations/operators is to combine 

the strength of two or more neighborhood structures into 

one structure. Such combination has been shown to be very 

efficient in solving many optimization problems [37]. The 

benefit of such an idea was first demonstrated using 

strategic oscillation in tabu search [38]. Recently, Lu et al. 

[37] conducted a comprehensive analysis to assess the 

performance of neighborhood combinations within several 

local search methods (tabu search, iterated local search and 

steepest decent algorithm) in solving university course 

timetabling problems.  Their aim was to answer why some 

neighborhood structures can produce better results than 

others and what characteristics constitute a good 

neighborhood structure. They concluded that the use of 

neighborhood combinations can dramatically improve 

local search performance. Other works which have also 

studied the benefit of using neighborhood combinations 

include [39],[40],[41]. In this work, three kinds of 

neighborhood combinations/operators are used 

[37],[40],[18], which are described below. 

 
Nc Description 

+ Neighborhood Union: involves the moves that can be generated by 

using two or more different neighborhoods structures. For example, 

consider two different neighborhoods N1 and N2, which can be 

represented as N1∪N2 or N1+N2, then the union move includes the 

solution that can be obtained by consecutively applying N1 followed 
by N2 then calling the acceptance criterion to decide whether to 

accept or reject the generated solution. Besides combining the 

strength of different neighborhoods [37], when the search space is 
highly disconnected, such a combination might help escape from 

disconnected search spaces, that may not happen when using N1 

alone. For example, in exam timetabling, the single move 
neighborhood structure which moves one exam from one timeslot to 

another one might lead the search to a disconnected search space 

when all exams which clash with another exam in every other 

timeslot often cannot be moved at all [42]. Thus, combining a single 

move neighborhood with another neighborhood i.e. swap two 

exams, can help to find a clash free timeslot for the selected exam to 
be moved to. The same issue can also be observed in capacitated 

vehicle routing problems when using a single move neighborhood 

that moves a customer from one route to another.  

 Random Gradient: A neighborhood structure is repeatedly applied 

until no improvement is possible. This is followed by applying 

other neighborhood structures. For example, consider two different 
neighborhoods; N1 and N2 are random gradient operators which can 

be represented as
21 N N  . The local search template will keep 

applying N1 as long as the generated solution is accepted by the 

local search acceptance criteria. When no improvement is possible 
the local search template stops applying N1 and restarts from the 

local optimum obtained by N1, but with neighborhood N2 [6],[18].  

T-R-S Token-Ring Search: The neighborhood structures of the generated 
template are consecutively applied one after another until the end of 

sequence. When the generated template moves to the next 

neighborhood structure in the sequence, it restarts from the local 
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optimum obtained by the previous neighborhood structure. If the 

generated template reaches the end of the sequence, it restarts the 
search from the first neighborhood in the sequence using the local 

optimum obtained by the last neighborhood structure in the 

sequence [37],[40],[43]. In this work, the token-ring search is set as 
a default in all generated local search template (there is no special 

symbol for it in the BNF grammar). Note that if there is no operator 

between neighborhood structures e.g. N1 N2, each neighborhood is 
applied only one time. For example, if we have N1 N2 N3 the local 

search template will apply N1 one time only, and then move to N2 

which will also be applied once, and then move to N3. This is 
because there is no combination operator between these sequences 

of neighborhood structures. 

 

After determining the basic elements of the BNF grammar, we 

now need to specify the starting symbol (S), terminals (T), 

non-terminals (N) and the production rules (P) that will 

represent the heuristic components. These are as follows: 

 

Objective Symbols Description  
starting symbol ( S) LST Local Search Template 

 

 

non-terminal (N) 

Ac Acceptance Criteria 

Lc LST Configurations 

Ns Neighborhood Structures 

Nc Neighborhood Combinations 

 

 
 

 

 
 

 

 
terminal (T) 

IO Improving Only or equal 

AM All Moves 

SA Simulated Annealing 

EMC Exponential Monte Carlo 

RR Record-to-Record Travel 

GD Great Deluge 

NA Naive Acceptance 

AA Adaptive Acceptance 

+ Neighborhood Union 

 Random Gradient 

Nb1 First neighborhood  e.g. 2-opt 

Nb2 Second neighborhood  e.g. Swap 

. 

. 

. 

. 
Nbn Neighborhood n 

 

 

 

 
 

production rules (P) 

 

(1) <LST>::= AcLc (0) Starting symbol rule. Number of choices available for LST =0 

(2) <Ac>::= IO (0) 

 |AM (1) 
 |SA (2) 

 |EMC (3) 

 | RR (4) 
 | GD (5) 

 | NA (6) 

 | AA (7) 
 

 
 

Acceptance Criteria production rules 

Number of choices available for Ac =8  

(3) <Lc>::= NsLc (0) 

 | NsNcNs (1) 

 | NsNsLc (2) 

 | NcNsNs (3) 
 | NsNsNcNs (4) 

 | Lc (5) 
 

 

LST Configurations production rules. 

Number of choices available for Lc =6 

(4) <Ns>::= Nb1 (0) 

 | Nb2 (1) 

 | . (2) 

 | . (3) 

 | . (4) 

 | . (5) 

 | . (6) 
 | Nbn (n) 

 

 
Neighborhood structures production rules. 

Number of choices available for Nb =1 to n 

Note that n represent the number of neighborhood structures that are 
used for each problem domain (see SectionsV-B4 and V-C4).    

(5) <Nc>::= + (0) 

 | (1) 
 

Neighborhoods combination production rules. 

Number of choices available for Nc =2 

 

The above BNF grammar is valid for every local search 

template (LST) for both problem domains in the work. This 

is because each local search template (LST) has different 

rules and characteristics. Finding the best BNF grammar for 

every local search template (LST) would be problem 

dependent, if not problem instance dependent. Please note 

that not all local search templates will improve the solution 

because the employed acceptance criteria might accept 

worse solutions with a certain probability. For example, the 

local search that uses all moves acceptance criterion (AM) 
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will accept any solution that does not violate any hard 

constraints regardless of its quality. 

The programs in our GE-HH represent local search 

templates or problem solvers. The local search template 

starts with an initial solution and then iteratively improves 

it. The initial solution can be randomly generated or by 

using heuristic methods (see Sections V-B3 and V-C3). 

Please note that the initial solution generation method is not 

a part of the GE-HH. In this work, we use two fitness 

functions. The first one, penalty cost, is problem dependent, 

and is used by the inner loop of the generated local search 

template in deciding whether to accept or reject the 

perturbed solution (see Sections V-B and V-C for more 

details about the penalty cost). The second fitness function 

is problem independent and it measures the quality of the 

generated program (local search template) after executing 

it. At every iteration, if the generated programs are 

syntactically correct (all non-terminals can be converted 

into terminals), the programs are executed and their fitness 

is computed from their output. In this work, the fitness 

function of the generated programs is calculated as a 

percentage of improvement (PI). Assume f1is the fitness of 

the initial solution and f2 is the fitness of the solution after 

executing the generated programs, then PI= | (f1-f2)/ f1| * 

100, if f2<= f1. If  f2 > f1 discard the generated program. 

With all the GE-HH elements (grammar, search engine, 

mapper procedure and fitness function) defined, the 

proposed GE-HH framework is carried out as depicted in 

Fig.6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig.6.The proposed GE-HH framework 

B. Hybrid Grammatical Evolution Hyper-heuristic and 

Adaptive Memory Mechanism 

Traditionally, previous hyper-heuristic frameworks that 

have been proposed in the literature operate on a single 

solution [6],[18],[29]. Single solution based perturbative 

hyper-heuristics start with an initial solution and iteratively 

move from the current solution to another one by applying 

an operator such as 2-opt. Although single solution based 

methods have been widely used to solve several kinds of 

problems, it is accepted that pure single solution based 

methods are not well suited to fine tuning for large search 

spaces and heavily constrained problems [44],[45]. As a 

result, single solution based methods have been hybridized 

with other techniques to improve their efficiency [45]. 

Generally, it is widely believed that a good search 

methodology must have the ability of exploiting and 

exploring different regions of the solution search space 

rather than focusing on a particular region. That is, we must 

address the problem of exploitation vs. diversification, 

which is a key feature in designing efficient search 

methodologies [44].  

 In order to enhance the efficiency of the GE-HH 

framework and to diversify the search process, we 

hybridize it with an adaptive memory mechanism. This 

method has been widely used with several meta-heuristic 

algorithms such as tabu search, ant colonies, genetic 

algorithms and scatter search [46]. The main idea is to 

enhance the diversification by maintaining a population of 

solutions. For example, the reference set in scatter search 

[46] which includes a collection of both high quality and 

diverse solutions. 

 In this work, the adaptive memory mechanism 

(following the approach in [47],[48]) contains a collection 

of both high quality and diverse solutions, which are 

updated as the algorithm progresses. The size of the 

memory is fixed (equal to the number of acceptance 

criteria, which is 8). Our adaptive memory works as 

follows:  

 

 Generate a set of diverse solutions. The set of solutions 

can be generated randomly or by using a heuristic 

method. In this work, the solutions are generated using a 

heuristic method (see SectionsV-B3 and V-C3). 

 For each solution, associate a frequency matrix which 

will be used to measure solution diversity. The 

frequency matrix saves the frequency of assigning an 

object (exam or customer) to the same location. For 

example, in exam timetabling, the frequency matrix 

stores how many times the exam has been assigned to 

the same timeslot. Whilst, in the capacitated vehicle 

routing problem, it stores how many times a customer 

has been assigned to the same route. Fig.7 shows an 

example of a solution and its corresponding frequency 

matrix. The frequency matrix is initialized to zero. We 

can see five objects (represented by rows) and there are 

five available locations (represented by columns). The 

solution on the left of Fig.7 can be read as follows: 

object1 is assigned to location 1, object 2 is assigned to 

location 3, etc. The frequency matrix on the right side of 

the Fig.7 can be read as follows: object 1 has been 

assigned to location 1 twice, to location 2 three times, to 

location 3 once, to location 4 four times and to location 

5 once; and so on for the other objects.  
Location 
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3 0 0 0 0 1 3 2 2 2 2 1 

4 0 0 0 1 0 4 2 1 3 1 1 

5 0 1 0 0 0 5 2 1 2 1 3 

 solution  frequency matrix 

Fig.7. Solution and it is corresponding frequency matrix. 

 If any solution is improved by the GE-HH framework, 

we update the frequency matrix. 

 Calculate the quality and the diversity of the improved 

solution. In this work, the quality represents the penalty 

cost which calculates the number of soft constraint 

violations (see Sections V-B and V-C). The diversity is 

measured using entropy information theory (1), (2) as 

follows [47],[48]: 
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ee
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log.
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e

e

i i  1


  ………. (2) 

Where  

- eij is the frequency of allocating object i to location j. 

- m is the number of objects. 

- εi is the entropy for object i. 

- ε is the entropy for one solution (0 ≤ εi≤ 1).  

 

 Add the new solution to the adaptive memory by 

considering the solution quality and diversity.   

 

Fig.8 shows the hybrid GE-HH framework with an adaptive 

memory mechanism.  Algorithm 1 presents the pseudo-code 

of GE-HH. 

 

 
Fig.8.Hybrid grammatical hyper-heuristic framework and adaptive 

memory mechanism 

The algorithm starts by generating a set of initial solutions 

for the adaptive memory mechanism (see SectionsV-B3 and 

V-C3) and defining the BNF grammar (see Section IV-A). 

It then initializes the genetic algorithm parameters and 

creates a population of solutions by assigning a random 

value between 0 and 255 for each chromosome gene 

(codons) [30].  

For each solution (chromosome) in the population, the 

corresponding program is generated by invoking the 

mapping function. In order to ensure that there is no 

duplication in the generated program (i.e. the program does 

not have two consecutive operators) the program is checked 

by the edit function. For example, if the generated program 

is SA: N1N2++N2+N4, with consecutive ++ operators, the 

edit function will remove one of the + operators and the 

program will be SA: N1N2+N2+N4. One solution from the 

adaptive memory mechanism is then selected, to which the 

generated programs are applied. The adaptive memory is 

then updated.  

Subsequently, the genetic algorithm is executed for a 

pre-defined number of generations. At every generation, 

offspring are generated by applying selection, crossover and 

mutation. The generated offspring (programs) are then 

executed. If the offspring is better than the worst 

chromosome, it is added to the population and the adaptive 

memory mechanism is updated.   

 
 Algorithm 1: Pseudo-code of grammatical evolution hyper-heuristic   
                       framework 

In
it

ia
li

za
ti

o
n
 s

te
p
  
 

 

Generate a set of initial solutions and initialize the adaptive 

memory, adaptivememory 

Defined the BNFgrammar, BNFgrammar 
 

 

Set number of generations, populationsize, chromosomnumbits, pcrossover, 
pmuataion 

population← initializepopulation(populationsize, chromosomnumbits) 

foreach soli  population do 

     soli-integer  ←convert (chromosomnumbits) 
     soli-program  ←map (BNFgrammar, soli-integer) 

     edit(soli-program  ) 

     initialsol ←selectsoltuion(adaptivememory) 
     soli-cost ←execute (soli-program, initialsol) 

     update adaptivememory 

end 

G
en

er
a
te

 i
n
it

ia
l 

p
o
p
u
la

ti
o
n
 

 

 

while not stopping condition () do 

 
     parenti← SelectParents(populationsize) 

     parentj← SelectParents(populationsize) 

se
le

ct
io

n
 

cr
o
ss

o
ve

r 

      child1←Crossover (parenti, parentj, pcrossover) 

     child2←Crossover (parenti, parentj, pcrossover) 

 

      child1m← Mutation (child1, pmuataion) 

     child2m←Mutation (child2, pmuataion) 

m
u
ta

ti
o
n

 
 

co
n
ve

rt
in

g
 

      child1m -integer  ←convert (child1m) 

     child2m -integer  ←convert (child2m) 

m
a
p
p
in

g
 

 

     child1m –program ← map (child1m -integer, BNFgrammar) 
     edit(child 1m –program) 

     child2m -program  ←map (child2m -integer, BNFgrammar) 

     edit(child 2m –program) 
  

ex
ec

u
ti

n
g

 

 

     initialsol ←selectsoltuion(adaptivememory) 
     child1m -cost ←execute (child1m –program, initialsol) 

     child2m -cost ←execute (child2m –program, initialsol) 

u
p
d
a
ti

n
g

 

      population ← populationUpdate(child1, child2) 
     update adaptivememory 

  
end  

return the best solution 
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V. EXPERIMENTAL RESULTS 

In this section, we evaluate and compare the proposed GE-

HH with the state of the art of hyper-heuristics, and other 

search methodologies.  

A. GE-HH Parameters Setting  

In order to find appropriate parameter values for GE-HH, 

we utilize the Relevance Estimation and Value Calibration 

method (REVAC) [49]. REVAC is a steady state genetic 

algorithm that uses entropy theory to determine the 

parameter values for algorithms. Our aim is not to find the 

optimal parameter values for each domain, but to find 

generic values that can be used for both domains. To use 

the same parameter settings across instances of both 

domains, we tuned GE-HH for each domain separately and 

then used the average of them in value obtained by REVAC 

for all tested instances. In order to have a reasonable trade-

off between solution quality and the computational time 

needed to reach good quality solutions, the execution time 

for each instance is fixed to 20 seconds. The number of 

iterations performed by REVAC is fixed at 100 iterations 

(see [49] for more details). For each domain, the average 

values over all tested instances for each parameter are 

recorded. Then, the average values over all parameters are 

set as the generic values for GE-HH. The parameter settings 

of GE-HH that have been used for both domains are listed 

in Table 2. 
TABLE 2 GE-HH PARAMETERS 

Parameters  Value 

Population Size 100 
Number of Generations 20 

One point Crossover Probability 0.8 

Point Mutation Probability  0.01 
Chromosome Length  60 

Probability of Swapping  0.01 

Probability of Duplication 0.01 
Maximum number of Wraps 5 

Selection Mechanism  Roulette Wheel  

Generational Model Steady State 

B. Problem Domain I: Exam Timetabling Problems  

Exam timetabling is a well known NP-hard combinatorial 

optimization problem [50] and is faced by all academic 

institutions. The exam timetabling problem can be defined 

as the process of allocating a set of exams into a limited 

number of timeslots and rooms so as not to violate any hard 

constraints and to minimize soft constraint violations as 

much as possible[51]. In this work, we carried out 

experiments on the most widely used un-capacitated Carter 

benchmarks (Toronto b type I in [51]) and also on the 

recently introduced exam timetable dataset from the 2007 

International Timetabling Competition, ITC 2007 [15]. 

 

1) Test Set I: Carter Uncapacitated Datasets 

The Carter datasets have been widely used in the scientific 

literature[14],[51]. They are un-capacitated exam 

timetabling problems where room capacities are ignored. 

The constraints are shown in Table 3. 

 

TABLE 3 CARTER HARD AND SOFT CONSTRAINTS 

Symbols                                Description 

Hard Constraints 

H1Carter: No student can sit more than one exam at the same time. 

Soft Constraints 

S1Carter: Conflicting exams (with common enrolled students) should 
be spread as far apart as possible to allow sufficient 

revision time between exams for students. 

 

The quality of a timetable is measured based on how well 

the soft constraints have been satisfied. The proximity cost 

is used to calculate the penalty cost (equation 3) [14].  
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Where: 

 wi=2|4-i| is the cost of scheduling two conflicting exams el and ek (which 

have common enrolled students) with i timeslots apart, if i=|tl-tk|<5, i.e. 

w0=16, w1=8, w2=4, w3=2 and w4=1; tl and tk as the timeslot of exam el 

and ek, respectively. 

 skl is the number of students taking both exams ek and el, if i=|tl-tk| <5; 

 m is the number of exams in the problem 

 S is the number of students in the problems   

 

Table 4 gives the characteristics of the un-capacitated exam 

timetabling benchmark problem (Toronto b type I in [51]) 

which comprises 13 real-world derived instances. 

 
TABLE 4 CARTER’S UN-CAPACITATED BENCHMARK EXAM TIMETABLING 

DATASET 

Datasets 
No. of 

timeslots 

No. of 

exams 

No. of 

Students 

Conflict 

Density 

Car-f-92-I 32 543 18419 0.14 

Car-s-91-I 35 682 16925 0.13 

Ear-f-83-I 24 190 1125 0.27 

Hec-s-92-I 18 81 2823 0.42 
Kfu-s-93 20 461 5349 0.06 

Lse-f-91 18 381 2726 0.06 

Pur-s-93-I 43 2419 30032 0.03 
Rye-s-93 23 486 11483 0.07 

Sta-f-83-I 13 139 611 0.14 

Tre-s-92 23 261 4360 0.18 
Uta-s-92-I 35 622 21267 0.13 

Ute-s-92 10 184 2750 0.08 

Yor-f-83-I 21 181 941 0.29 

Note: conflict density = number of conflicts / (number of exams)2 

 

2) Test Set II: ITC 2007 Datasets 

The second dataset was introduced in the second 

International Timetabling Competition, ITC 2007, aiming 

to facilitate a better understanding of real world timetabling 

problems and to reduce the gap between research and 

practice [15]. It is a capacitated problem and has several 

hard and soft constraints (see Tables 5&6, respectively).  

The objective function from [15] is used (see equation 4). 

The ITC 2007 problem has 8 instances. Table 7shows the 

main characteristics of these instances. 
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TABLE 5 ITC 2007 HARD CONSTRAINTS 

Symbols                                                   Description  

H1ITC2007: No student can sit more than one exam at the same time. 

H2 ITC2007: There must be a sufficient number of seats to accommodate the exams being scheduled in a given room. 

H3 ITC2007: The length of exams assigned to each timeslot should not violate the timeslot length. 

H4 ITC2007: Some sequences of exams have to be satisfied. e.g. Exam_B must be scheduled after Exam_E. 

H5 ITC2007: Room related hard constraints must be respected e.g. Exam_B must be scheduled in Room 3. 

 
TABLE 6 ITC 2007 SOFT CONSTRAINTS 

Symbols  
Mathematical 

Symbols 
Description  

S1ITC2007: S
R

S

2  
Two exams in a row: Minimize the number of students that have consecutive exams in a row.  

S2ITC2007: S
D

S

2  Two exams in a day: Student should not be assigned to sit more than two exams in a day. Of course, this constraint 
only becomes important when there are more than two exam periods in the same day.  

S3ITC2007: S
PS

S

 Exams spread: Conflicting exams should be spread as far apart as possible to allow sufficient revision time between 

exams for students. 

S4ITC2007: S
NMD

S

2  
Mixed durations: Minimize exams that have different durations but assigned into the same timeslot and room. 

S5ITC2007: S
FL

 
Larger exams: Minimize the number of exams of large size that appear later in the exam timetable. 

S6ITC2007: S
P
 

Period Penalty: Some periods have an associated penalty. Minimize the number of exams assigned into these periods. 

S7ITC2007: S
R
 

Room Penalty: Some rooms have an associated penalty; Minimize the number of exams allocated in penalized rooms. 

 
TABLE 7 THE ITC 2007 BENCHMARK EXAM TIMETABLING DATASETS 

Datasets A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 

Dataset 1 7891 607 54 7 5 7 5 10 100 30 5 7833 5.05 

Dataset 2 12743 870 40 49 5 15 1 25 250 30 5 12484 1.17 

Dataset 3 16439 934 36 48 10 15 4 20 200 20 10 16365 2.62 
Dataset 4 5045 273 21 1 5 9 2 10 50 10 5 4421 15.0 

Dataset 5 9253 1018 42 3 15 40 5 0 250 30 10 8719 0.87 
Dataset 6 7909 242 16 8 5 20 20 25 25 30 15 7909 6.16 

Dataset 7 14676 1096 80 15 5 25 10 15 250 30 10 13795 1.93 

Dataset 8 7718 598 80 8 0 150 15 25 250 30 5 7718 4.55 

 
Note:      

A1:  No. of students reported in [15].  A8:  No mixed duration penalty, SNMD 

A2:   Number of exams.  A9:  Number of largest exams, SFL 

A3:  Number of timeslots.  A10:  Number of last timeslots to avoid, SP 

A4:  Number of rooms.  A11:  Front load penalty, SR, soft constraints weight[15] 
A5:  Two in a day penalty, S2D  A12:  Number of actual students in the datasets. 

A6:  Two in a row penalty, S2R  A13:  Conflict density 

A7:  Timeslots spread penalty, SPS     

 

3) Problem Domain I: Initial Solutions  

As mentioned in Section IV-A, GE-HH starts by 

initializing the adaptive memory mechanism which contains 

a population of solutions. In this work, we employ hybrid 

graph coloring heuristics [52] to generate an initial 

population of feasible solutions for both the Carter and the 

ITC 2007 instances. The three graph coloring heuristics we 

utilize are: 

 

 Least Saturation Degree First (SD): exams are ordered 

dynamically, in an ascending order, by the number of 

remaining timeslots. 

 Largest Degree First (LD): exams are ordered, in a 

decreasing order, by the number of conflicts they have 

with all other exams.  

 Largest Enrolment First (LE): exams are ordered by the 

number of students enrolled, in decreasing order. 

 

The solution construction method starts with an empty 

timetable and applies the hybridized heuristics to select and 

assign the unscheduled exams one by one until all exams 

have been scheduled. To select an exam, the hybridized 

heuristic (SD+LD+LE) firstly sorts the unscheduled exams 

in a non-decreasing order of the number of available 

timeslots (SD). Those with equal SD evaluations are then 

arranged in a non-increasing order of the number of 

conflicts they have with other exams (LD) and those with 

equal LD evaluations are then arranged in a non-increasing 

order of the number of student enrolments (LE).  The first 

exam in the final order is assigned to the timetable. We 

assign exams to a random timeslot when it has no conflict 

with those that have already been scheduled (in case of ITC 

2007, an exam is assigned to best fit a room), ensuring that 

all hard constraints are satisfied. If some exams cannot be 

assigned to any available timeslot, we stop the process and 

start again. Although there is no guarantee that a feasible 

solution can be generated, for all the instances used in this 

work, we were always able to obtain a feasible solution.  

 

4) Problem Domain I: Neighborhood Structures 

The neighborhood structures that we employed in the GE-

HH framework for both Carter and ITC 2007, which are 

commonly used in the literature [42], are as follows:  

 
Nbe1: Select one exam at random and move it to any feasible 

timeslot-room. 
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Nbe2: Select two exams at random and swap their timeslots (if 

feasible). 
Nbe3: Select two timeslots at random and swap all their exams. 

Nbe4: Select three exams at random and exchanges their timeslots at 

random (if feasible).  
Nbe5: Move the exam causing the highest soft constraint violation to 

any feasible timeslot. 

Nbe6: Select two exams at random and move them to another 
random feasible timeslots. 

Nbe7: Select one exam at random, select a timeslot at random 

(distinct from the one that was assigned to the selected exam) 
and then apply the Kempe chain neighborhood operator.  

Nbe8: Select one exam at random, select a room at random (distinct 

from the one that was assigned to the selected exam) and then 
move the exam to the room (if feasible). 

Nbe9: Select two exams at random and swap their rooms (if 

feasible). 

 

Note that neighborhoods Nbe8 and Nbe9 are applied to ITC 

2007 datasets only because they consider rooms. The 

neighborhood solution is accepted if it does not violate any 

hard constraints. Thus, the search space of GE-HH is 

limited to feasible solutions only.  

C. Problem Domain II: Capacitated Vehicle Routing 

Problems  

The capacitated vehicle routing problem (CVRP) is a well-

known challenging combinatorial optimization problem 

[53]. The CVRP can be defined as the process of designing 

a least cost set of routes to serve a set of customers [53]. In 

this work, we test GE-HH on two sets of benchmark 

capacitated vehicle routing problem datasets. These are the 

14 instances introduced by Christofides [16] and 20 large 

scale instances introduced by Golden [17]. The CVRP can 

be represented as an undirected graph G (V, E), where V= 

{v0, v1…vn} is a set of vertices which represents a set of 

fixed locations (customers) and E= {(vi, vj): vi, vjV, i<j} 

represents the arc between locations (customers). E is 

associated with non-negative costs or travel time defined by 

matrix C= (cij), where cij represents the travel distance 

between customers vi and vj. Vertex v0represents the depot 

which is associated with m vehicles of capacity Q1…Qm to 

start their routes R1…Rm. The remaining vertices v1 … vn 

represent the set of customers and each customer 

requestsq1…qn goods and serving time δi. The aim is to find 

a set of tours that do not violate any hard constraints and 

minimize the distance. The hard constraints that must be 

respected are:  

 

 Each vehicle starts and ends at the depot 

 The total demand of each route does not exceed the 

vehicle capacity 

 Each customer is visited exactly once by exactly one 

vehicle 

 The duration of each route does not exceed a global 

upper bound.  

 

The cost of each route is calculated using (5) [53]:    
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and the cost for one solution is calculated using (6): 
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The two sets of benchmark problems that we have 

considered in this work have similar constraints and 

objective function. However, the complexity, instance sizes 

and customer distributions are different from one set to 

another.  

1) Test Set I: Christofides Datasets 

The first set comprises of 14 instances and was introduced 

by Christofides [16]. The main characteristics of the 

problem are summarized in Table 8. The instance size 

varies from 51 to 200 customers, including the depot. Each 

instance has a capacity constraint. Instances 6-10, 13 and 14 

also have a maximum route length restriction and non-zero 

service times.  The problem instances can be divided into 

two types: in instances 1-10, the customers are randomly 

located, whilst, in instances 11-14 the customers are in 

clusters.   
TABLE 8 CHRISTOFIDES INSTANCES 

Datasets Customers Capacity 
Max. tour 

length 

Service 

time 

No. of 

vehicles  

1 51 160 ∞ 0 5 

2 76 140 ∞ 0 10 
3 101 200 ∞ 0 8 

4 151 200 ∞ 0 12 

5 200 200 ∞ 0 17 
6 51 160 200 10 6 

7 76 140 160 10 11 

8 101 200 230 10 9 
9 151 200 200 10 14 

10 200 200 200 10 18 

11 121 200 ∞ 0 7 

12 101 200 ∞ 0 10 

13 121 200 720 50 11 

14 101 200 1040 90 11 

2) Test Set II: Golden Datasets 

The second CVRP dataset involves 20 large scale instances 

presented by Golden [17] (see Table 9). The instances have 

between 200 and 483 customers, including the depot. 

Instances 1-8 have route length restrictions. 
 

TABLE 9 GOLDEN INSTANCES 

Datasets Customers Capacity 
Max. tour 

length 

Service 

time 

No. of 

vehicles  

1 240 550 650 0 10 

2 320 700 900 0 10 
3 400 900 1200 0 10 

4 480 1000 1600 0 12 

5 200 900 1800 0 5 
6 280 900 1500 0 8 

7 360 900 1300 0 9 

8 440 900 1200 0 11 
9 255 1000 ∞ 0 14 

10 323 1000 ∞ 0 16 

11 399 1000 ∞ 0 18 
12 483 1000 ∞ 0 19 

13 252 1000 ∞ 0 27 
14 320 1000 ∞ 0 30 

15 396 1000 ∞ 0 34 

16 480 1000 ∞ 0 38 
17 240 200 ∞ 0 22 

18 300 200 ∞ 0 28 

19 360 200 ∞ 0 33 
20 420 200 ∞ 0 41 
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3) Problem Domain II: Initial Solutions  

For both the Christofides and the Golden instances, the 

initial population of feasible solutions is constructed 

utilizing the savings algorithm [54].  

4) Problem Domain II: Neighborhoods Structures 

The neighborhood structures that we employ in GE-HH for 

both the Christofides and the Golden instances are the most 

common ones used to solve the capacitated vehicle routing 

problems in the literature. They are as follows:  

 
Nbv1: Select one customer at random and move it to any feasible route. 

Nbv2: Select two customers at random and swap their routes. 

Nbv3: Select one route at random and reverse a part of a tour between 
two selected customers. 

Nbv4: Select three customers at random and exchanges their routes at 

random.  

Nbv5: Select one route at random and perform the 2-opt procedure. 

Nbv6: Perform the 2-opt procedure on all routes. 

Nbv7: Select two distinct routes at random and swap a portion of the 
first route with the first portion and second route.  

Nbv8: Select two distinct routes at random and from each route select 

one customer. Swap the adjacent customer of the selected one for 
both routes. 

Nbv9: Select two distinct routes at random and swap the first portion 
with the last portion. 

Nbv10 Select one customer at random and move it to another position in 

the same route. 

 

The neighborhood solution is accepted if it does not break 

any hard constraints. Thus, the search space of GE-HH is 

limited to feasible solutions only.  

VI. COMPUTATIONAL RESULTS AND COMPARISON 

To assess the benefit of incorporating an adaptive memory 

mechanism in GE-HH, for each domain, we have carried 

out two sets of experiments. The first one compares the 

performance of the grammatical evolution hyper-heuristic 

with an adaptive memory (GE-HH) and the grammatical 

evolution hyper-heuristic without an adaptive memory (GE-

HH*) using the same parameter values and computational 

resources. The second test compares and analyses the 

performance of GE-HH against the state of the art of hyper-

heuristics and bespoke methods. For both experimental 

tests, we report the best, average, standard deviation and 

average time over 51 independent runs with different 

random seeds. By executing 51 runs, instead of 50, we can 

easily calculate the median value without the need for 

interpolation. The aim of executing the proposed hyper-

heuristic framework 51 runs is to get more information and 

to have a good indication regarding the algorithm 

consistency and generality, as it’s highly recommended in 

the literature to have more than 30 runs in statistical 

analysis on algorithm performance [3]. The results 

represent the cost of soft constraint violations. In addition, 

we also report, for each instance, the percentage deviation 

from the best known value found in the literature, 

calculated as follows (7):   
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Where bestGE-HH is the best result obtained over 51 

independent runs by GE-HH and best* represents the best 

known value found in the literature.  

We evaluate the performance of GE-HH by considering 

the following three criteria:  

 

 Generality: We define generality as the ability of GE-

HH to work well, not only across different instances of 

the same problem, but also across two different problem 

domains.  

 Consistency: This is the ability of GE-HH to produce 

stable results when executed several times for every 

instance. Typically, consistency is one of the most 

important criteria in evaluating any algorithm. This is 

because many search algorithms have a stochastic 

component, which leads to different solutions over 

multiple runs even if the initial solution is the same. We 

measure the consistency of GE-HH based on the 

average and the standard deviation over 51 independent 

runs.  

 Efficiency: This is the ability of GE-HH to produce 

good results that are close or better than the best known 

value in the literature. We measure the efficiency of GE-

HH by reporting, for each instance, the best and the 

percentage deviation, see ∆(%) in (7), from the best 

known results in the literature.  

For all tested instances, except the ITC 2007 problem 

instances, we compare the GE-HH results with the state of 

the art in terms of solution quality rather than 

computational time. This is because the different computer 

resources researchers use which make the comparison 

difficult, if not impossible [39],[55]. Therefore, we set the 

number of generations as the termination criteria. As for the 

ITC 2007 datasets, the organizer provided benchmark 

software to determine the allowed execution time [15]. We 

have used this software to determine the execution time 

using our computer resources (i.e. 10 minutes). We have 

given extra time to GE-HH, due to the use of the adaptive 

memory (i.e. 10.83 minutes). As a result, the execution time 

of our method is within the range of those published in the 

literature. 

A. Problems Domain I: Computational Results on Exam 

Timetabling Problems 

1)  Test Set I: Carter Uncapacitated Datasets 

Table 10 lists, for each instance, the best, average, standard  

deviation and average time obtained by GE-HH and GE-

HH*.  

From Table 10, one can clearly see that GE-HH 

outperforms GE-HH* across all instances. Furthermore, 

both the best and average results obtained by GE-HH are 

better than GE-HH* on all instances. We can also see that 

in GE-HH, on twelve of the thirteen instances, the standard 

deviation is lower than GE-HH*. However, the 

computational time is different where GE-HH* is lower 

than GE-HH. This is mainly due to the use of population of 

solutions and diversity updating mechanism in the GE-HH 
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framework. The results reveal that the use of the adaptive 

memory mechanism has an effect on the ability of the GE-

HH in producing good quality and consistent results over 

all instances.  

We compare the performance of GE-HH against hyper-

heuristics and other bespoke methods (see Table 11).   

 Table 12 shows the comparison of the best and average 

results of GE-HH and other hyper-heuristic methods. We 

also report, for each instance, the percentage deviation (∆ 

(%)) from the best result obtained by other hyper-heuristics 

and instance ranking. As can be seen from Table 12, GE-

HH finds better solutions for 7 out of 13 instances 

compared to other hyper-heuristic methods and obtained the 

second best results for the other 5 instances (except Rye-s-

93 which obtained third best results). 

Table 13 presents, for all instances, the best, average, 

percentage deviation (∆(%)) and instance ranking by GE-

HH along with a comparison with respect to the best known 

results (shown in bold) in the literature obtained by bespoke 

methods. It can be seen that, even though GE-HH does not 

obtain the best solutions for all instances, over all, it obtains 

competitive results especially when considering the 

percentage deviation (∆(%)) from the best known value 

found in the literature. If we consider an individual 

comparison, GE-HH is able to obtain better solutions on 

instances 8, 12, 11, 6, 7 and 2 compared to Mc7, Mc8, Mc9, 

Mc10, Mc11, and Mc12, respectively. Furthermore, only Mc10 

reported results for Pur-s-93 and Rye-s-93 instances, Mc7 

andMc11reported result for Rye-s-93 instance (we suspect, 

due to the complexity and inconsistencies in these 

instances). 

Results in Tables 12 and 13 demonstrate that, across all 

instances, GE-HH outperforms other hyper-heuristic 

methodologies and obtained competitive results compared 

to other bespoke methods. Except instance Ute-s-92 (ranked 

6), the instance ranking varies between 2 to 4. Also, the 

percentage deviation indicates that GE-HH results are very 

close to the best known results. This demonstrates that GE-

HH is able to generalize well over a set of problem 

instances rather than only producing good results for one or 

more of the problem instances.   

TABLE 10 RESULTS OF GE-HH COMPARED TO GE-HH*

 GE-HH GE-HH* 

Instances Best Average Std Time Best Average Std Time 

Car-f-92-I 4.00 4.44 0.36 200.2 4.12 4.73 0.48 170.18 
Car-s-91-I 4.62 4.87 0.17 441.32 4.62 5.15 0.25 410.23 

Ear-f-83-I 34.71 36.50 0.71 52.03 35.92 36.64 0.81 38.56 

Hec-s-92-I 10.68 11.57 0.54 65.41 10.96 11.54 0.52 49.41 
Kfu-s-93 13.00 13.58 0.36 92.22 13.06 13.58 0.36 76.17 

Lse-f-91 10.11 11.35 0.91 58.11 10.21 11.36 0.90 45.37 

Pur-s-93-I 4.80 6.29 1.10 610.07 6.31 7.41 1.68 580.16 

Rye-s-93 10.79 11.09 0.69 546.66 11.00 12.10 0.85 495.11 

Sta-f-83-I 158.02 158.47 0.43 32.24 158.21 159.52 0.76 25.04 
Tre-s-92 7.90 8.46 0.41 93.17 7.96 8.49 0.83 81.28 

Uta-s-92-I 3.12 3.70 0.32 189.24 3.18 3.72 0.41 168.19 

Ute-s-92 26.00 27.1 0.69 48.11 26.02 27.15 0.78 40.30 
Yor-f-83-I 36.20 36.91 0.47 181.25 36.20 36.93 0.56 95.08 

Note: GE-HH: GE-HH employing adaptive memory mechanism. GE-HH*: without using adaptive 

memory. The time represents average time in minutes. Best results in the literature are highlighted in bold. 

The bold italic indicates that both methods produce the same result. 

 

TABLE 11 ACRONYMS OF COMPARED METHODS 
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8 Mc8 [61] 

9 Mc9 [62] 

10 Mc10 [63] 

11 Mc11 [64] 

12 Mc12 [65] 

 
TABLE 12 RESULTS OF GE-HH COMPARED TO HYPER-HEURISTIC APPROACHES 

GE-HH Hyper-heuristic 

Instances Best Average ∆ (%) ∆*(%) 
Rank Mc1 Mc2 Mc3 Mc4 Mc5 Mc6 

Car-f-92-I 4.00 4.44 * 8.29 1 4.52 4.53 4.16 4.28 4.1 4.26 

Car-s-91-I 4.62 4.87 * * 1 5.2 5.36 5.16 4.97 4.9 5.09 
Ear-f-83-I 34.71 36.50 4.54 9.93 2 37.02 37.92 35.86 36.86 33.2 35.48 

Hec-s-92-I 10.68 11.57 3.68 12.3 2 11.78 12.25 11.94 11.85 10.3 11.46 

Kfu-s-93 13.00 13.58 * 2.87 1 15.81 15.2 14.79 14.62 13.2 14.68 

Lse-f-91 10.11 11.35 * 9.13 1 12.09 11.33 11.15 11.14 10.4 11. 2 

Pur-s-93-I 4.80 6.29 9.83 43.9 2 - - - 4.37 - - 

Rye-s-93 10.79 11.09 11.81 14.9 3 10.35 - - 9.65 - - 



Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, October 2013 15 

Sta-f-83-I 158.02 158.47 0.71 1.00 2 160.42 158.19 159.00 158.33 156.9 158.28 

Tre-s-92 7.90 8.46 * 1.92 1 8.67 8.92 8.6 8.48 8.3 8.51 
Uta-s-92-I 3.12 3.70 * 12.12 1 3.57 3.88 3.59 3.4 3.3 3.15 

Ute-s-92 26.00 27.1 4.41 8.83 2 27.78 28.01 28.3 28.88 24.9 27.9 

Yor-f-83-I 36.20 36.91 * 1.68 1 40.66 41.37 41.81 40.74 36.3 40.49 

TP(13)              323.95        334.33 

TP(12)              319.15        328.04 

TP(11)              308.36        316.95 

- - - 337.57 - - 

337.87 - - 333.2 - - 

327.52 326.96 324.36 323.55 305.8 309.3 

Note: TP(13): total penalty of 13 instances. TP(12): Total penalty of 12 datasets (excluding Pur-s-93-I). TP(11): Total penalty of 11 

datasets (excluding Pur-s-93-I and Rye-s-93). “*” means GE-HH result is better than other methods. “-“indicates no feasible 
solution has been found. Best results are highlighted in bold.∆*(%): the percentage deviation of the average value with regard to the 

best known results.  

 
TABLE 13 RESULTS OF GE-HH COMPARED TO BESPOKE METHODS 

 GE-HH Bespoke methods  

Instances Best Average ∆ (%) ∆* (%) Rank Mc7 Mc8 Mc9 Mc10 Mc11 Mc12 

Car-f-92-I 4.00 4.44 6.95 18.71 3 4.3 4.10 4.1 6.0 3.93 3.74 

Car-s-91-I 4.62 4.87 4.52 10.18 3 5.1 4.65 4.8 6.6 4.50 4.42 

Ear-f-83-I 34.71 36.50 18.46 24.57 4 35.1 37.05 36.0 29.3 33.7 32.76 

Hec-s-92-I 10.68 11.57 16.08 25.76 3 10.6 11.54 10.8 9.2 10.83 10.15 

Kfu-s-93 13.00 13.58 0.30 4.78 2 13.5 13.90 15.2 13.8 13.82 12.96 

Lse-f-91 10.11 11.35 5.31 18.22 3 10.5 10.82 11.9 9.6 10.35 9.83 

Pur-s-93-I 4.80 6.29 29.72 70.00 2 - - - 3.7 - - 

Rye-s-93 10.79 11.09 58.67 63.08 4 8.4 - - 6.8 8.53 - 
Sta-f-83-I 158.02 158.47 0.63 0.91 3 157.3 168.73 159.0 158.2 158.3 157.03 

Tre-s-92 7.90 8.46 1.93 9.16 2 8.4 8.35 8.5 9.4 7.92 7.75 

Uta-s-92-I 3.12 3.70 1.96 20.91 2 3.5 3.20 3.6 3.5 3.14 3.06 

Ute-s-92 26.00 27.1 6.55 11.06 6 25.1 25.83 26.0 24.4 25.39 24.82 

Yor-f-83-I 36.20 36.91 3.90 5.94 2 37.4 37.28 36.2 36.2 36.35 34.84 

TP(13)             323.95        334.33 
TP(12)             319.15        328.04 

TP(11)             308.36        316.95 

- - - 316.7 - - 

319.2 - - 313.0 316.76 - 

310.8 325.45 316.1 306.2 308.23 301.36 

Note: TP(13): total penalty of 13 instances. TP(12): Total penalty of 12 instances( excluding Pur-s-93-I). TP(11): Total penalty of 

11 instances(excluding Pur-s-93-I and Rye-s-93). “-“means no feasible solution has been found. Best results in the literature are 
highlighted in bold. ∆*(%): the percentage deviation of the average value with regard to the best known results. 

2)  Test Set II: ITC 2007 Datasets 

The first set of experiments presents a comparison between 

GE-HH and GE-HH* as well as the results of GE-HH 

without the extra computational time (GE-HH**), i.e. the 

computational time is fixed the same as GE-HH*. The best, 

average, standard deviation of the results and the average 

time are reported in Table 14. It can be seen that, across all 

instances, GE-HH outperforms GE-HH* and GE-HH** (in 

most cases), not only on solution quality, but also on the 

average and the standard deviation. Comparing the results 

of GE-HH* with GE-HH**, the results demonstrate that 

GE-HH** outperforms GE-HH* on five out of eight 

instances. The average and standard deviation of GE-HH** 

are better than GE-HH* for all tested instances. The results 

demonstrate the importance of incorporating the adaptive 

memory mechanism within GE-HH as well as implying that 

GE-HH is more general and consistent. 

We now compare the performance of GE-HH with the best 

available results in the literature which are divided into two 

groups (see Table 15): ITC 2007 winners (Table 16) and 

Post-ITC 2007 (Table 17 hyper-heuristic and bespoke 

methods). In addition, we also included the results of GE-

HH** in the comparison to assess its ability in producing 

good quality solutions compared to ITC 2007 winners as 

well as post ITC 2007 methods. It is clear from Tables 16 

and 17 that GE-HH is the overall best. The presented results 

demonstrate that GE-HH not only generalizes well over a 

set of problem instances, but also produces much higher 

quality solutions. One can also see that GE-HH** 

outperformed the ITC 2007 winners on 7 instances and post 

ITC 2007 methods on 4 out of 8 tested instances (see 

Tables 16 and 17).  

 
 

TABLE 14 RESULTS OF GE-HH COMPARED TO GE-HH* AND GE-HH** 
 GE-HH GE-HH* GE-HH** 

Instances Best Average Std Time Best Average Std Time Best Average Std Time 

Dataset 1 4362 4394.10 29.18 10.83 4370 4439.31 71.71 10 4370 4401.12 44.24 10 

Dataset 2 380 399.80 12.56 10.83 395 413.17 22.33 10 380 405.12 13.94 10 

Dataset 3 8991 9072.35 112.06 10.83 8998 9140.67 206.48 10 8995 9120.67 180.15 10 
Dataset 4 15094 15483.42 402.25 10.83 15394 16433.71 996.42 10 15184 15824.87 564.74 10 

Dataset 5 2912 3010.15 28.298 10.83 2990 3042.06 57.53 10 2993 3018.27 43.62 10 

Dataset 6 25735 25792.35 56.247 10.83 25818 25930.17 294.57 10 25786 25860.24 94.28 10 
Dataset 7 4025 4062.85 45.74 10.83 4037 4083.92 54.68 10 4041 4068.15 44.93 10 

Dataset 8 7452 7500.48 64.99 10.83 7465 7525.77 78.01 10 7472 7581.10 63.85 10 

Note: GE-HH: with the adaptive memory mechanism. GE-HH*: without adaptive memory. GE-HH**: with adaptive memory but the computational time fixed 

same as GE-HH* (10 minutes). Times represent average time in minutes. Best results are highlighted in bold. 

 

TABLE 15 ACRONYMS OF COMPARED METHODS 
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Note: HH: hyper-heuristic. NON-HH: bespoke methods  

 

TABLE 16 RESULTS OF GE-HH AND GE-HH** ON THE ITC 2007 EXAM TIMETABLING DATASETS  
COMPARED TO ITC 2007 WINNERS 

  GE-HH GE-HH** ITC 2007 Winners  

Instances Best Average ∆ (%) ∆* (%) Rank Best Mitc1 Mitc2 Mitc3 Mitc4 Mitc5 

Dataset 1 4362 4394.10 * 0.55 1 4370 4370 5905 8006 6670 12035 
Dataset 2 380 399.80 * * 1 380 400 1008 3470 623 3074 

Dataset 3 8991 9072.35 * * 1 8995 10049 13862 18622 - 15917 

Dataset 4 15094 15483.42 * * 1 15184 18141 18674 22559 - 23582 
Dataset 5 2912 3010.15 * 0.74 1 2993 2988 4139 4714 3847 6860 
Dataset 6 25735 25792.35 * * 1 25786 26950 27640 29155 27815 32250 

Dataset 7 4025 4062.85 * * 1 4041 4213 6683 10473 5420 17666 
Dataset 8 7452 7500.48 * * 1 7472 7861 10521 14317 - 16184 

“*” means GE-HH result is better than other methods. “-“ indicates no feasible solution has been found. Best results are highlighted in bold. 
∆*(%): the percentage deviation of the average value with regard to the best known results. 

 

TABLE 17 RESULTS OF GE-HH ON THE ITC 2007 EXAM TIMETABLING DATASETS 
 COMPARED TO POST-ITC 2007 APPROACHES 

GE-HH GE-HH** 
Post ITC 2007 

Hyper-heuristic  Bespoke methods 

Instances Best Average ∆ (%) ∆* (%) Rank Bets Mitc6 Mitc7 Mitc8 Mitc9 Mitc10 

Dataset 1 4362 4394.10 * * 1 4370 6235 8559 4775 4370 4633 
Dataset 2 380 399.80 * 3.84 1 380 2974 830 385 385 405 

Dataset 3 8991 9072.35 * 0.84 1 8995 15832 11576 8996 9378 9064 

Dataset 4 15094 15483.42 * 0.75 1 15184 35106 21901 16204 15368 15663 
Dataset 5 2912 3010.15 * 0.74 1 2993 4873 3969 2929 2988 3042 
Dataset 6 25735 25792.35 * 0.20 1 25786 31756 28340 25740 26365 25880 

Dataset 7 4025 4062.85 * * 1 4041 11562 8167 4087 4138 4037 
Dataset 8 7452 7500.48 * * 1 7472 20994 12658 7777 7516 7461 

“*” means GE-HH result is better than other methods. Best results are highlighted in bold. ∆*(%): the percentage deviation of the average 
value with regard to the best known results. 

B. Problems Domain II: Computational Results on 

Capacitated Vehicle Routing Problems  

1)  Test Set I: Christofides Datasets 

The experimental results of GE-HH and GE-HH* are 

reported in Table 18, where for 4 out of 14 instances, GE-

HH achieved better results than GE-HH* (tie on7 

instances).  The average results obtained by GE-HH on all 

instances are better than GE-HH* and the standard 

deviation is relatively small (varies between 0.00 and 0.93). 

Even though GE-HH did not outperform GE-HH* across all 

instances, however, the standard deviation reveals that GE-

HH generalized well overall instances. Overall, the result 

implies that hybridizing the adaptive memory mechanism 

with GE-HH has made a significant improvement.  

We compare the experimental results of GE-HH with the 

best available results in the literature in Table 19. To the 

best of our knowledge, only two hyper-heuristics have been 

tested on Christofides instances (first and second methods 

in Table 19) and both report the percentage deviation only. 

Due to the large number of bespoke methods that are 

available in the literature, we have only considered those 

that have produced the best known results and some of 

recent published methods. The considered methods are 

classified into single based and population based solution 

methods (see Table 19). Table 20 shows the comparison of 

GE-HH against hyper-heuristic methods in term of 

percentage deviation from the best known results. We can 

see that, for 9 instances GE-HH matches the best known 

results in the literature and for 4 instances, GE-HH 

produced a better quality (ranked first) when compared to 

other hyper-heuristics. The computational results of GE-HH 

compared to other bespoke methods are presented in Table 

21, where for 9 out of 12 instances GE-HH has obtained the 

best known results. For the remaining instances, the quality 

of the solutions with regard to percentage deviation is 

between 1.9% and 0.11% and instance ranking varies 

between 2 and 4. According to this result, GE-HH is 

competitive with the presented bespoke methods. 

Considering the generality, it is obvious that GE-HH is able 

to produce good results across all instances and the 

percentage deviation is relatively small.
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TABLE 18 RESULTS OF GE-HH COMPARED TO GE-HH* 

 GE-HH GE-HH* 

Instances Best Average Std Time Best Average Std Time 

1 524.61 524.61 0.00 10.12 524.61 524.61 0.00 8.20 

2 835.26 835.86 0.80 21.02 835.26 836.14 1.27 16.12 

3 826.13 827.09 0.62 20.33 826.13 827.71 1.48 15.06 
4 1029.65 1034.13 0.92 30.43 1032.51 1034.71 1.37 24.43 

5 1308.54 1316.89 0.87 19.09 1310.62 1317.51 4.51 16.08 

6 555.43 555.43 0.00 9.43 555.43 555.79 0.57 7.43 
7 909.67 910.17 0.91 11.18 909.67 910.10 1.10 8.70 

8 865.94 866.10 0.35 13.44 865.94 866.19 0.41 10.06 

9 1164.98 1170.96 0.27 19.67 1164.35 1171.73 3.29 16.11 
10 1403.38 1412.49 0.96 21.83 1405.94 1414.25 3.69 18.71 

11 1042.12 1054.84 0.93 12.65 1042.11 1091.17 6.51 7.95 

12 819.55 819.55 0.00 9.95 819.55 820.21 1.96 6.34 
13 1543.05 1551.59 0.18 10.07 1543.83 1554.03 2.28 7.83 

14 866.36 866.36 0.00 12.62 866.36 866.39 0.11 8.16 

Note: GE-HH: with the adaptive memory mechanism. GE-HH*: without adaptive memory. Time: represents 

average time in minutes. Best results are highlighted in bold. 

 
TABLE 19 ACRONYMS OF COMPARED METHODS 

# Symbol References  

1 Cvrp11 [75]  HH
 

2 Cvrp12 [76] 

3 Cvrp13 [77] L
S

                   

P
O

P
 N

O
N

-H
H

 

4 Cvrp14 [78] 

5 Cvrp15 [79] 

6 Cvrp16 [80] 

7 Cvrp17 [81] 

8 Cvrp18 [82] 

9 Cvrp19 [83] 

Note: HH: hyper-heuristic methods. NON-HH: bespoke methods. LS: local 

search methods. POP: population based methods 

 

TABLE 20 RESULTS OF GE-HH COMPARED TO HYPER-HEURISTIC METHODS  

  GE-HH Hyper-heuristics 

Instances Best Average ∆(%) ∆*(%) Rank Cvrp11 Cvrp12 BK 

1 524.61 524.61 0.00 0 * 0.00 0.00 524.61 
2 835.26 835.86 0.00 0.07 * 0.05 0.62 835.26 

3 826.13 827.09 0.00 0.11 * 0.21 0.42 826.14 

4 1029.65 1034.13 0.11 0.55 1 0.52 2.50 1028.42 
5 1308.54 1316.89 1.33 1.98 1 2.05 5.07 1291.29 

6 555.43 555.43 0.00 0 * 0.00 - 555.43 

7 909.67 910.17 0.00 0.05 * 0.09 - 909.68 
8 865.94 866.10 0.00 0.01 * 0.00 - 865.94 

9 1164.98 1170.96 0.20 0.72 1 0.70 - 1162.55 

10 1403.38 1412.49 0.53 1.19 1 1.24 - 1395.85 
11 1042.11 1054.84 0.00 1.22 * 0.88 0.19 1042.11 

12 819.55 819.55 0.00 0 * 0.00 0.00 819.56 

13 1543.05 1551.59 1.90 2.47 2 1.00 - 1514.14 
14 866.36 866.36 0.00 0 * 0.00 - 866.37 

Note: ‘*’ indicates that the obtained result is the same as the best known result. BK: best known 

results in the literature. “-“ indicates no feasible solution has been found. Best results are highlighted 

in bold. ∆*(%): the percentage deviation of the average value with regard to the best known results. 

 

TABLE 21 RESULTS OF GE-HH COMPARED TO BESPOKE METHODS 

GE-HH 
Bespoke methods  

Single solutions based Population based  

Instances Best Average ∆(%) Rank Cvrp13 Cvrp14 Cvrp15 Cvrp16 Cvrp17 Cvrp18 Cvrp19 

1 524.61 524.61 0.00 * 524.61 524.61 524.61 524.61 524.61 524.61 524.71 

2 835.26 835.86 0.00 * 835.26 835.77 835.26 838.60 840.47 835.26 849.77 
3 826.13 827.09 0.00 * 826.14 829.45 826.14 828.56 826.14 826.14 844.72 

4 1029.65 1034.13 0.11 2 1028.42 1036.16 1028.42 1033.21 1032.19 1028.42 1059.03 

5 1308.54 1316.89 1.33 4 1298.79 1322.65 1291.45 1318.25 1309.72 1294.21 1302.33 
6 555.43 555.43 0.00 * 555.43 555.43 555.43 555.43 - 555.43 555.43 

7 909.67 910.17 0.00 * 909.68 913.23 909.68 920.72 - 909.68 909.68 

8 865.94 866.10 0.00 * 865.94 865.94 865.94 869.48 - 865.94 866.32 
9 1164.98 1170.96 0.20 3 1162.55 1177.76 1162.55 1173.12 - 1163.41 1181.60 

10 1403.38 1412.49 0.53 4 1397.94 1418.51 1395.85 1435.74 - 1397.51 1417.88 

11 1042.11 1054.84 0.00 * 1042.11 1073.47 1042.11 1042.87 1042.11 1042.11 1042.11 

12 819.55 819.55 0.00 * 819.56 819.56 819.56 919.56 819.56 819.56 847.56 

13 1543.05 1551.59 1.90 2 1541.14 1573.81 1541.14 1545.51 - 1544.57 1542.86 
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14 866.36 866.36 0.00 * 866.37 866.37 866.37 866.37 - 866.37 866.37 

Note: ‘*’ indicates that the obtained result is the same as the best known result. “-“ indicates no feasible solution has been found. Best results 
are highlighted in bold. 

 

2)  Test Set II: Golden Datasets 

The computational results of GE-HH and GE-HH* are 

tabulated in Table 22. The presented results clearly show 

that GE-HH outperformed GE-HH* across all instances. 

Furthermore, the average and standard deviation of GE-HH 

is much better than GE-HH*, again indicating that the 

adaptive memory mechanism has a big impact on the 

performance and generality.    

In order to assess the performance of GE-HH, the results 

of GE-HH are compared with the best available results in 

the literature. Again, due to the uncountable number of 

methods that have been tested on Golden instances, only 

those produced the best known results and few recent 

methods are considered as shown in Table 23. To the best 

of our knowledge, only one hyper-heuristic (first method in 

Table 23) has been tested on Golden instances. Table 24 

gives the comparison results. From Table 24, one can find 

that, GE-HH reached the best known results for 4 out of 20 

instances. For the other instances, the quality of solution 

(percentage deviation) is between 0.17% and 0.68% and 

instance ranking varies between 2 and 5. Compared to the 

hyper-heuristic method (first method in Table 24), GE-HH 

is able to obtain better solutions on 14 instances. When 

comparing with bespoke methods, for 4 instances GE-HH 

reached the best known results. GE-HH produces 

competitive results for the remaining 16 instances 

compared to other bespoke methods and very close to the 

best known value (percentage deviation). It should be noted 

that bespoke methods are specifically designed to produce 

the best results for one or more instances, whilst, one can 

see that GE-HH is able to obtain a much higher level of 

generality across all instances.    

 
TABLE 22 RESULTS OF GE-HH COMPARED TO GE-HH* 

 GE-HH GE-HH* 

Instances Best Average Std Time Best Average Std Time 

1 5626.81 5631.56 0.92 15.04 5703.21 5697.56 1.81 10.27 
2 8446.19 8457.16 1.24 22.13 8484.16 8457.16 1.67 18.09 

3 11081.60 11120.40 1.07 32.06 11138.44 11120.40 1.18 27.31 

4 13658.84 13673.64 1.30 37.31 13708.26 13673.64 1.46 32.19 
5 6460.98 6494.86 0.84 17.24 6468.83 6494.86 1.53 14.27 

6 8462.10 8488.93 1.03 19.11 8485.30 8488.93 1.16 16.42 

7 10202.24 10280.32 1.10 31.08 10262.43 10280.32 1.20 28.40 
8 11690.82 11795.80 1.03 41.64 11784.50 11795.80 1.11 36.08 

9 583.39 596.19 0.75 18.52 589.92 596.19 1.26 13.92 

10 740.91 769.98 1.02 22.18 758.22 789.98 1.13 18.13 
11 919.80 986.60 0.90 29.37 949.38 986.60 1.31 25.08 

12 1111.43 1126.64 1.02 40.19 1155.76 1186.64 1.10 36.10 

13 857.19 868.73 0.86 30.08 876.64 898.73 1.21 26.06 
14 1083.59 1108.12 0.96 24.40 1097.61 1108.12 1.42 19.20 

15 1350.17 1390.16 0.84 35.08 1376.42 1390.16 1.38 29.06 

16 1631.91 1682.98 0.93 42.15 1640.19 1682.98 1.29 37.12 
17 707.76 718.56 0.60 18.07 714.52 720.56 1.01 14.10 

18 1003.43 1017.13 1.08 19.11 1017.24 1057.13 1.15 16.02 

19 1368.12 1390.62 1.30 26.30 1374.11 1390.62 1.46 21.14 
20 1820.09 1855.16 0.77 32.08 1830.48 1855.16 1.09 28.06 

Note: GE-HH: with the adaptive memory mechanism. GE-HH*: without adaptive memory. Time 

represents average time in minutes. Best results are highlighted in bold. 

 
TABLE 23 ACRONYMS OF COMPAREDMETHODS 

# Symbol References 

1 Cvrp21 [84] 
2 Cvrp22 [85] 

3 Cvrp23 [86] 

4 Cvrp24 [17] 
5 Cvrp25 [82] 

6 Cvrp26 [81] 

7 Cvrp27 [87] 

 
TABLE 24 RESULTS OF GE-HH COMPARED TO BESPOKE METHODS 

  GE-HH HH Bespoke methods    

Instances Best Average ∆(%) ∆*(%) Rank Cvrp21 Cvrp21 Cvrp23 Cvrp24 Cvrp25 Cvrp26 Cvrp27 

1 5626.81 5631.56 0.00 0.08 * 5650.91 5627.54 5626.81 5759.61 5670.38 5638.42 5643.27 
2 8446.19 8457.16 0.17 0.30 2 8469.32 8447.92 8431.66 8501.67 8459.73 8457.04 8455.12 

3 11081.60 11120.40 0.43 0.76 3 11047.01 11036.22 11036.22 11364.69 11101.12 11098.93 11083.49 

4 13658.84 13673.64 048 0.59 4 13635.31 13624.52 13592.88 14136.32 13698.17 13816.35 13671.18 
5 6460.98 6494.86 0.00 0.52 * 6466.68 6460.98 6460.98 6512.27 6460.98 6460.98 6460.98 

6 8462.10 8488.93 0.68 1.00 5 8416.13 8412.88 8404.26 8553.19 8470.64 8430.66 8461.18 

7 10202.24 10280.32 0.44 1.21 5 10181.75 10195.56 10156.58 10422.65 10215.14 10209.64 10198.25 
8 11690.82 11795.80 0.23 1.13 2 11713.62 11663.55 11691.06 11986.73 11750.38 11785.11 11695.24 
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9 583.39 596.19 0.51 2.71 2 585.14 583.39 580.42 586.68 586.87 585.29 583.39 

10 740.91 769.98 0.32 4.26 2 748.89 741.56 738.49 748.89 746.56 745.25 743.19 
11 919.80 986.60 0.55 7.85 3 922.70 918.45 914.72 924.70 925.52 924.74 922.17 

12 1111.43 1126.64 0.42 1.79 4 1119.06 1107.19 1106.76 1125.71 1114.31 1123.29 1111.28 

13 857.19 868.73 0.00 1.34 * 864.68 859.11 857.19 867.29 865.19 861.94 860.17 
14 1083.59 1108.12 0.28 2.55 3 1095.40 1081.31 1080.55 1098.86 1089.21 1097.49 1085.24 

15 1350.17 1390.16 0.56 3.54 4 1359.94 1345.23 1342.53 1356.65 1355.28 1356.34 1346.18 

16 1631.91 1682.98 0.68 3.83 4 1639.11 1622.69 1620.85 1642.90 1632.21 1643.74 1625.89 
17 707.76 718.56 0.00 1.52 * 708.90 707.79 707.76 712.26 712.18 709.84 710.87 

18 1003.43 1017.13 0.83 2.21 5 1002.42 998.73 995.13 1017.91 1006.31 1005.97 1001.17 

19 1368.12 1390.62 0.15 1.80 4 1374.24 1366.86 1365.97 1384.93 1373.24 1387.93 1366.86 
20 1820.09 1855.16 0.003 1.93 2 1830.80 1820.09 1820.02 1855.91 1831.17 1872.45 1824.14 

‘*’ indicates that the obtained result is the same as the best known result. HH: hyper-heuristic method.  Best results are highlighted in bold.  

VII. DISCUSSION  

As shown throughout this work, in both problem domains 

(exam timetabling and capacitated vehicle routing 

problems), GE-HH obtained competitive results, if not 

better (on some instances), when compared against existing 

best methods in the literature. GE-HH is able to update the 

best known results for some instances (on both domains). In 

both domains, our GE-HH outperformed previously 

proposed hyper-heuristic methods. We note that, for both 

domains, the standard deviation is relatively small. Also, 

the percentage deviation demonstrates that, in both 

domains, GE-HH results are very close to the best known. 

This positive result reveals that our GE-HH is efficient, 

consistent and generalizes well over both domains. In our 

opinion, this is due to the following. (i) The capability of 

GE-HH in dealing with different problem instances by 

evolving different local search templates during the 

problem solving process. By evolving different local search 

templates, GE-HH can easily adapt to any changes that 

might occur during problem solving. (ii) Since some 

problem instances are very difficult to solve and have many 

local optima, GE-HH struggles in obtaining good quality 

solutions without getting stuck in local optima. Therefore, 

by incorporating the adaptive memory mechanism, GE-HH 

is more effective in diversifying the search of solutions by 

exploring different regions. Overall, the benefit of the 

proposed method is its ability to find the best solver from 

the supplied pool of solvers (local search acceptance 

criteria) as well as the best configuration for the selected 

solver. This alleviates the question of which solver one 

should use and what is the best configuration for it. 

Furthermore, it does not rely on complicated search 

approaches to find out how to generate a local search 

template. Rather, it provides a general mechanism 

regardless of the nature and complexity of the problems. It 

is simple to implement, and can be easily applied to other 

domains without significant effort (i.e. users only need to 

change the set of neighborhood structures). 

VIII. CONCLUSIONS 

In this work, we have proposed a new improvement based 

hyper-heuristic framework for combinatorial optimization 

problems. The proposed framework employs a grammatical 

evolution algorithm (GE-HH) to search the space of basic 

heuristic components. These are: a set of acceptance 

criteria, neighborhood structures and neighborhood 

combinations and are represented by a grammar definition. 

The proposed framework takes these heuristic components 

as input and evolves several templates of perturbation 

heuristics during problem solving. The performance of the 

GE-HH is enhanced by hybridizing it with an adaptive 

memory mechanism which contains a set of high quality 

and diverse solutions. To demonstrate the generality, 

consistency and efficiency of the proposed framework, we 

have tested the proposed framework on two different and 

challenging problem domains, exam timetabling and 

capacitated vehicle routing benchmark problems, using the 

same parameter settings. The results demonstrate that GE-

HH produces highly competitive solutions, if not better, and 

generalizes well across both problem domains. The main 

contributions of this work are: 

 

- The development of a GE-HH framework that 

automatically generates templates of perturbation 

heuristics, demonstrating that strengths of different 

search algorithms can be merged into one hyper-

heuristic framework.  

- The integration of an adaptive memory mechanism, 

which contains a collection of high quality and diverse 

solutions, within a hyper-heuristic framework, and 

which also obtained consistent results, generalized 

across different problem domains and produced high 

quality solutions which are either competitive or better 

than (on some cases) other bespoke methods.  

- The development of a hyper-heuristic framework which 

can be easily applied to different problem domains 

without much effort (i.e. the user only needs to change 

the neighborhood structures).  

 

Experimental results have demonstrated the effectiveness 

and the generality of this method on very well established 

benchmarks. In our future work, we intend to investigate 

the effectiveness of integrating GE-HH in the HyFlex 

framework (a benchmark framework for cross-domain 

heuristic search) that has been recently introduced [88, 89].  
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