
Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, October 2013 1



Abstract— Designing generic problem solvers that perform

well across a diverse set of problems is a challenging task. In this

work, we propose a hyper-heuristic framework to automatically

generate an effective and generic solution method by utilizing

grammatical evolution. In the proposed framework, grammatical

evolution is used as an online solver builder, which takes several

heuristic components (e.g. different acceptance criteria and

different neighborhood structures) as inputs and evolves

templates of perturbation heuristics. The evolved templates are

improvement heuristics which represent a complete search

method to solve the problem at hand. To test the generality and

the performance of the proposed method, we consider two well-

known combinatorial optimization problems; exam timetabling

(Carter and ITC 2007 instances) and the capacitated vehicle

routing problem (Christofides and Golden instances). We

demonstrate that the proposed method is competitive, if not

superior, when compared to state of the art hyper-heuristics, as

well as bespoke methods for these different problem domains. In

order to further improve the performance of the proposed

framework we utilize an adaptive memory mechanism which

contains a collection of both high quality and diverse solutions

and is updated during the problem solving process. Experimental

results show that the grammatical evolution hyper-heuristic, with

an adaptive memory, performs better than the grammatical

evolution hyper-heuristic without a memory. The improved

framework also outperforms some bespoke methodologies which

have reported best known results for some instances in both

problem domains.

Index Terms—Grammatical Evolution, Hyper-heuristics,

Timetabling, Vehicle Routing

I. INTRODUCTION

ombinatorial optimization can be defined as the problem

of finding the best solution(s) among all those available

for a given problem [1]. These problems are encountered

in many real world applications such as scheduling,

production planning, routing, economic systems and

management [1]. Many real world optimization problems are

complex and very difficult to solve. This is due to the large,

Nasser R. Sabar and Masri Ayob are with Data Mining and Optimisation

Research Group (DMO), Centre for Artificial Intelligent (CAIT), Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.

email:naserdolayme@yahoo.com, masri@ftsm.ukm.my

Graham Kendall and Rong Qu are with ASAP Research Group, School of
Computer Science, The University of Nottingham, Nottingham NG8 1BB,

UK.email:gxk@cs.nott.ac.uk, rxq@cs.nott.ac.uk

and often heavily constrained, search spaces which make their

modeling (let alone solving) a very complex task [2]. Usually,

heuristic methods are used to solve these problems, as exact

methods often fail to obtain an optimal solution in reasonable

times. The main aim of heuristic methods, which provide no

guarantee of returning an optimal solution (or even near

optimal solution), is to find a reasonably good solution within

a realistic amount of time [3, 4]. Meta-heuristic algorithms

provide some high level control strategy in order to provide

effective navigation of the search space. A vast number of

meta-heuristic algorithms, and their hybridizations, have been

presented to solve optimization problems. Examples of meta-

heuristic algorithms include scatter search, tabu search,

genetic algorithms, genetic programming, memetic

algorithms, variable neighborhood search, guided local search,

GRASP, ant colony optimization, simulated annealing,

iterated local search, multi-start methods and parallel

strategies [3],[4].

Given a problem, an interesting question that comes to mind

is:

Which algorithm is the most suitable for the problem at

hand and what are the optimal structures and

parameter values?

The most straightforward answer to the above question might

be to employ trial-and-error to find the most suitable meta-

heuristic from the large variety of those available, and then

employ trial-and-error to determine the appropriate structures

and parameter values. While these answers seem reasonable,

in terms of the computational time involved, it is impractical

in many real world applications. Many bespoke meta-heuristic

algorithms that have been proposed over the years are

manually designed and tuned, focusing on producing good

results for specific problem instances. The manually designed

algorithms (customized by the user and not changed during

problem solving) that have been developed over the years are

problem specific, i.e. they are able to obtain high quality

results for just a few problem instances, but usually fail on

other instances even of the same problem and cannot be

directly applied to other optimization problems. Of course, the

No Free Lunch Theorem [5] states that a general search

method does not exist, but it does not mean that we cannot

investigate more general search algorithms to explore the

limits of such an algorithm [6-8].

Numerous attempts have been made to develop automated

search methodologies that are able to produce good results

Grammatical Evolution Hyper-heuristic for Combinatorial

Optimization problems

Nasser R. Sabar, Masri Ayob, Graham Kendall, Senior Member, IEEE and Rong Qu, Senior Member,

IEEE

C

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, October 2013 2

across several problem domains and/or instances. Hyper-

heuristics [6], meta-learning [9], parameter tuning [10],

reactive search [11], adaptive memetic algorithms [12] and

multi-method [13], are just some examples. The performance

of any search method critically depends on its structures and

parameter values [6]. Furthermore, different search

methodologies, coupled with different structures and

parameter settings may be needed to cope with problem

instances or different problem domains [9],[10]. A search may

even benefit from adapting as it attempts to solve a given

instance. Therefore, the performance of any search method

may be enhanced by automatically adjusting their structures or

parameter values during the problem solving process. Thus,

the ultimate goal of automated heuristic design is to develop

search methodologies that are able to adjust their structures or

parameter values during the problem solving process and work

well, not only across different instances of the same problem,

but also across a diverse set of problem domains [6], [9], [10].

Motivated by these aspects, particularly the hyper-heuristic

framework [6], in this work, we propose a grammatical

evolution hyper-heuristic framework (GE-HH) to generate

local search templates during the problem instance solving

process, as depicted in Fig 1.

Fig.1.The GE-HH framework

The evolved templates represent a complete local search

method which contains the acceptance criteria of the local

search algorithm (to determine away of escaping from local

optima), the local search structures (neighborhoods), and their

combination. The GE-HH operates on the search space of

heuristic components, instead of the solution space. In

addition, GE-HH also maintains a set of diverse solutions,

utilizing an adaptive memory mechanism which updates the

solution quality and diversity as the search progresses. We

choose grammatical evolution to search the space of heuristic

components due to its ability to represent heuristic

components and it being able to avoid the problem of code

bloat that is often encountered in traditional genetic

programming. Our objectives are:

- To design an automatic algorithm that works well

across different instances of the same problem and also

across two different problem domains.

- To merge the strengths of different search algorithms in

one framework.

- To test the generality and consistency of the proposed

method on two different problem domains.

The performance and generality of the GE-HH is assessed

using two well-known NP-hard combinatorial optimization

problems; examination timetabling (Carter [14] and ITC 2007

[15] instances) and the capacitated vehicle routing problem

(Christofides [16] and Golden [17] instances). Although both

domains have been extensively studied by the research

community, the reasons of choosing them are twofold. Firstly,

they represent real world applications and the state of the art

results, we believe, can still be improved. Currently, a variety

of algorithms have achieved very good results for some

instances. However, most methodologies fail on generality and

consistency. Secondly, these two domains have been widely

studied in the scientific literature and we would like to

evaluate our algorithm across two different domains that other

researchers have studied. Although our intention is not to

present an algorithm that can beat the state of the art, but

rather can work well across different domains, our results

demonstrate that GE-HH is able to update the best known

results for some instances.

 The remainder of the paper is organized as follows: the

generic hyper-heuristic framework and its classification are

presented in Section II. The grammatical evolution algorithm

is presented in Section III, followed by our proposed GE-HH

framework in Section IV. The experimental results and result

comparisons are presented in Section V and VI, respectively.

Finally discussions and concluding remarks are presented in

Sections VII and VIII.

II. HYPER-HEURISTICS

Meta-heuristics are generic search methods that can be applied

to solve combinatorial optimization problems. However, to

find high quality solutions, meta-heuristics often need to be

designed and tuned (as do many classes of algorithms,

including those in this paper) and they are also often limited to

one problem domain or even just a single problem instance.

The objective for a solution methodology that is independent

of the problem domain, serves as one of the main motivations

for designing hyper-heuristic approaches [6],[18].

Recently, significant research attention has been focused on

hyper-heuristics. Burke et al. [6] defined hyper-heuristics as

An automated methodology for selecting or generating

heuristics to solve hard computational search problems.

One possible hyper-heuristic framework is composed of two

levels, known as high and low level heuristics (see Fig.2).

The high level heuristic is problem independent. It has no

knowledge of the domain, only the number of heuristics that

are available and (non-domain) statistical information that is

allowed to pass through the domain barrier. Only the lower

part of the framework has access to the objective function, the

problem representation and the low level heuristics that have

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, October 2013 3

been provided for the problem. During the problem solving

process, the high level strategy decides which heuristic is

called (without knowing what specific function it performs) at

each decision point in the search process. Unlike meta-

heuristics, hyper-heuristics operate over a search space of

heuristics, rather than directly searching the solution space.

Fig.2. A generic hyper-heuristic framework

The low level heuristics correspond to a pool of candidates

of problem dependent human-designed heuristics or

components of existing heuristics which operate directly on

the solution space for a given problem instance. Based on their

past performance, heuristics compete with each other through

learning, selection or generating mechanisms at a particular

point to construct or improve a solution for a given problem

instance.

The fact that the high level strategy is problem independent

means that it can be applied to different problem domains with

little development effort. Indeed, one of the goals of hyper-

heuristics is to raise the level of generality of search

methodologies and to build systems which are more generic

than other methods [6].

Burke et al. [6] classified hyper-heuristics into two

dimensions, based on the nature of the heuristic search space

and the source of feedback during learning (see Fig.3).The

nature of the heuristic search space can either be heuristics to

choose heuristics or heuristics to generate heuristics.

Heuristics can be called from a given pool of heuristics. For

example, Burke et al. [19] used tabu search with reinforcement

learning as a heuristic selection mechanism to solve nurse

rostering and timetabling problems. Heuristics can also be

generated by combining existing heuristic components. For

example, Burke et al. [20],[21] employed genetic

programming to evolve new low level heuristics to solve the

bin packing problem.

The nature of the heuristic search space can be further

classified depending on the type of low level heuristics as

either constructive or perturbative. Constructive based hyper-

heuristics start with an empty solution, and select low level

heuristics to build a solution step by step. Perturbation based

hyper-heuristics start with an initial solution and, at each

decision point, select an appropriate improvement low level

heuristic to perturb the solution. Based on the employed

learning methods, two subclasses are distinguished: on-line or

off-line.

Fig.3. A classifications of hyper-heuristic approaches, according to two

dimensions: (i) the nature of the heuristic search space and (ii) the source of
feedback during learning [6].

In on-line hyper-heuristics, the learning takes place during the

problem solving. Examples of online approaches include those

based on genetic algorithms [22], tabu search[19], and local

based search [23]. In off-line hyper-heuristics, learning occurs

during the training phase before solving other problem

instances, examples include those based on genetic

programming [20] and learning classifier systems [24].

Recently, GE was utilized in [21] as an off-line heuristic

builder to solve the bin packing problem. Our work differs

from [21], where we use GE as an online solver builder, and is

a much more general methodology that is able to address two

problem domains, and produce best known results. In addition,

the GE in [21] has been specifically designed and tested on the

bin packing problem only (i.e. the grammar has been

specifically designed for the bin packing problem only).
Our proposed GE-HH framework can be classified as an on-

line generational hyper-heuristic. In this respect, it is the same

as a genetic programming hyper-heuristic which generates

heuristics. Genetic programming hyper-heuristics have been

utilized to solve many combinatorial optimization problems

including SAT [25],[26], scheduling [27] and bin packing

[20],[28]. A recent, and comprehensive, review on hyper-

heuristics is available in [29].

Most of the proposed genetic programming based hyper-

heuristic approaches, however, are constructive heuristics.

Their general limitation is that they are tailored to solve

specific problems (e.g. SAT, bin packing, and TSP) using a

restricted constructive heuristic component. This limitation

restricts their applicability to cope with different problem

domains without any redevelopment (e.g. redefine the

terminals and functions). In addition, previous genetic

programming based hyper-heuristics were only applied to one

single domain, which raises the question to what extent they

will generalize to other domains.

Motivated by the above, this work proposes an

improvement based hyper-heuristic using grammatical

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, October 2013 4

evolution. The proposed framework takes several heuristic

components (e.g. acceptance criteria and neighborhood

structures) as input and automatically generates a local search

template by selecting the appropriate combination of these

heuristic components. The differences between our approach

and the previous genetic programming based hyper-heuristics

in the literature are:

1. The proposed framework generates a perturbation local

search template rather than constructive heuristics.

2. The proposed framework is not tailored to a particular

problem domain e.g. it can be applied to several domains

(the user only needs to change the neighborhood

structures when applying it to another problem domain).

3. The proposed framework utilizes an adaptive memory

mechanism to maintain solution diversity.

III. GRAMMATICAL EVOLUTION

Grammatical evolution (GE) [30] is a variant of genetic

programming (GP) [31]. It is a grammar based GP that can

evolve a variable-length program in an arbitrary language.

Unlike GP, GE uses a linear genome representation rather than

a tree. The clear distinction between the genotype and

phenotype in GE allows the evolutionary process (e.g.

crossover) to be performed on the search space (variable

length linear genotypic) without needing to tailor the

diversity-generating operator to the nature of the

phenotype[30],[31]. The mapping process of genotype and

phenotype to generate a program is governed by a grammar

which contains domain knowledge [30]. The grammar is

represented by Backus Naur Form (BNF). The program is

generated by using a binary string (genome) to determine

which production rule in the BNF definition will be used. The

GE general framework is composed of three procedures:

grammar, search engine and a mapper procedure (see Fig.4).

Fig.4.Grammatical evolution

A. The BNF Grammar

GE utilizes BNF to generate the output program [30],[31].

A suitable BNF grammar must be defined when solving a

problem, and the definitions vary from one problem to

another. The BNF grammar can be represented by a tuple <T,

N, S, P> where T is the terminal set, N is the set of non

terminals, S is the start symbol (a member of N) and P is a set

of production rules. If more than one production rule is used

within a particular N, the choice is delimited with the ‘|’

symbol. Below is an example of BNF grammar (adopted from

[30]):

T= {Sin, Cos, Tan, Log, +, -, /, *, (,)} // set of terminal

N= {expr, op, pre_op} // set of non-terminal

S= <expr>// starting symbol

and P can be represented as // production rules

(1) <expr>::= <expr><op><expr> (0)

 | (<expr><op><expr>) (1)

 |<pre-op>(<expr>) (2)

 |<var> (3)

(2) <op>::= + (0)

 | - (1)

 | / (2)

 | * (3)

B. The Search Engine

GE uses a standard genetic algorithm as its search engine[30].

A candidate solution (genotype or chromosome) is represented

by a one dimensional variable length string array. The gene in

each chromosome is called a codon. Each codon is an 8-bit

binary number (see Fig.5).

Fig.5. An example of genotype

The codon values are used in the mapper procedure to

determine which rule to be selected for the non-terminal

symbol when it is converted [30] (see Section III-C). The GA

starts with a population of chromosomes, which are randomly

generated. The fitness of each chromosome is calculated by

executing its corresponding program. The fitness function

varies from one domain to another. GA operators (selection,

crossover, mutation and replacement) are then applied. At

each generation, the evolved solutions (children) from the

crossover and mutation operators are evaluated by converting

them into its corresponding program via the mapper function.

If the fitness of the new solution is better than the worst

solution in the population, it will replace it. The process is

repeated until a stopping condition is satisfied (e.g. number of

generations).

C. The Mapper Procedure

The mapper function converts the genotype into a

phenotype (i.e. a program). The function takes two inputs, the

binary string (genotype) and the BNF grammar [30]. The

 (3) <var> ::= X (0)

 (4) <pre_op> ::= Sin (0)

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, October 2013 5

conversion from genotype to phenotype is carried out using

the following rule:

Rule= (codon integer value) MOD (number of rules for

the current non-terminal)

The mapper function begins by mapping the starting symbol

into terminals. It converts each codon to its corresponding

integer value. Assume we have the above BNF grammar (See

Section III-A) and genotype (see Fig.5). First of all, convert all

codon values to integers (with reference to Fig 4, this will be

220, 203, 17, 3, 109, 215, 104, 30). Then, starting from the

starting symbol, apply the mapping rule to convert the

leftmost non-terminal into a terminal until all non-terminals

have been converted into terminals. The genotype-to-

phenotype mapping process of the above BNF grammar and

the solution (genotype) is illustrated in Table 1.

TABLE 1AN EXAMPLE OF THE MAPPING PROCESS

Input
No. of

Choices
Rule Result

<expr> 4 220 MOD 4= 0 <expr><op><expr>

<expr><op><expr> 4 203 MOD 4= 3 <var><op><expr>
X <op><expr> 4 17 MOD 4= 1 X -<expr>

X -<expr> 4 3 MOD 4= 3 X -<var>

X-X

The mapper begins (see Table 1) with the starting symbol

<expr>, and then reads the first codon (220). The starting

symbol <expr> has four production rules to select from (see

Section III-A). Following the mapping rules, the codon value

and the number of production rules are used with the modular

function to decide which rule to select, i.e. 220 MOD 4= 0,

which means we select the first production rule

(<expr><op><expr>). Since this production rule is not a

complete expression (it has at least one non-terminal), rules

will be applied again. The process will continue from the

leftmost non-terminal in the current production rule.

Continuing with <expr><op><expr>, take the next codon

value (203), the next production rule will be (203 MOD 4= 3)

<var><op><expr>. Since <var> has only one choice, <var>

will be replaced by X and the production rules will be

X<op><expr>. Continuing with the same mapper rules until

all non-terminals are converted to terminals, the complete

expression will be X-X.

During the conversion process, not all codons may be

used, or after using all codon values not all non-terminals have

been replaced by terminals. In the case where non-terminals

have been replaced with terminals but not all codon values

have been used, the mapper process will simply ignore the

rest. If all codon values have been used but the expression is

still invalid, a wrapper procedure is invoked. The wrapper

procedure reads the codon value from the left to right for a

predefined number of iterations. If the wrapper procedure is

finished but the complete expression is still not available, the

genotype is given the lowest fitness value.

IV. THE GRAMMATICAL EVOLUTION HYPER-HEURISTIC

FRAMEWORK

In this section we present the grammatical evolution hyper-

heuristic (GE-HH) framework. Then, we introduce the

adaptive memory mechanism, hybridizing it with GE-HH.

A. The Proposed Framework

It is well established that the efficiency of any problem solver

relies on its ability to explore regions of the search space,

which is strongly influenced by its structures and parameter

values [7],[10],[12]. Therefore, the performance of any search

methodology can potentially be enhanced by automatically

adjusting its structures and/or parameter values. In this work,

we propose a grammatical evolution hyper-heuristic (GE-HH)

framework that generates a different local search template

(problem solver) to suit the given problem instance. The

proposed framework takes several basic heuristic components

as input and generates a local search template by combining

these basic components. The process of combining heuristic

components will be carried out automatically. Thus, the

benefit of this framework is not only to generate different

local search templates by combining basic heuristic

components, but also to discover new kinds of heuristics,

without relying on human interference.

As we mentioned earlier (Section III), there are three

essential procedures of grammatical evolution algorithm: a

grammar, a search engine and a mapper function. Our search

engine (genetic algorithm), and the mapper function are

implemented as in the original algorithm [30]. The BNF

grammar, which is problem dependent, must be defined in

order to suit the problem at hand. Generally, the design of the

BNF grammar, which decides which production rule will be

selected, has a significant impact on the output, i.e. the

programs. In our GE-HH framework, the basic heuristic

components are represented by BNF. To design a complete

BNF grammar one needs to carry out the following steps [30]:

 Determine the terminals, non-terminals and starting

symbol.

 Design the BNF syntax which may have problem specific

function(s).

In this work, three different heuristic components (acceptance

criteria (Ac), neighborhood structures (Ns) and neighborhood

combinations (Nc)) are used as basic elements of the BNF

grammar. We have selected these three components because

they are recognized as crucial components in designing

problem solvers [3],[18]. These are explained as follows:

1. The acceptance criteria (Ac) decides whether to accept or

reject a solution. A number of acceptance criteria have

been proposed in the literature and each one has its own

strengths and weaknesses. The strength of one acceptance

criterion can compensate for the weakness of another if

they can be integrated into one framework. In this work,

we have employed several acceptance criteria. The

acceptance criteria that are used in our GE-HH framework

have been widely used in the literature [3],[6],[18],[29],

and are presented below.

Ac Description

IO

Improving or equal only: The generated solution is accepted if
the objective value is equal or better than the previous one. The

local search template that uses this acceptance criterion will be

executed for a pre-defined number of iterations. In this work, we

have experimentally set the pre-defined number of iterations

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, October 2013 6

to100 non-improvement iterations [18].

AM

All Moves: All generated solutions are accepted without taking

into consideration their quality. This criterion can be seen as a

mutational operator which aims to diversify the search. The local

search template that uses this acceptance criterion will be run for

a pre-defined number of iterations. In this work, we have
experimentally set the pre-defined number of iterations to

50[18].

SA

Simulated Annealing: A move to a neighbor of the current
solution is always accepted if it improves (or is equal to) the

current objective value. However, non-improving moves are

accepted based on a probability acceptance function, R<exp (-
δ/t), where R is a random number between [0, 1] and δ is the

change in the objective value. The ratio of accepted moves to

worse solutions is controlled by a temperature t which gradually
decreases by β during the search process. In this work, β= 0.85

and the initial temperature t is 50% of the value of the initial

solution, as suggested in [32],[33]. The local search template that
uses the SA acceptance criteria is terminated when t= 0.

EMC

Exponential Monte Carlo: Improving solutions are always

accepted. Worse solutions are accepted with a probability of

R<exp (-δ), where R is a random number between [0, 1] and δ is
the change in the objective value. The probability of accepting

worse solutions will decrease as δ increases [34]. The local

search template that uses this acceptance criterion will be run for
a pre-defined number of iterations. In this work, we have

experimentally set the pre-defined number of iterations to 100.

RR

Record-to-Record Travel: A move to a neighbor solution is
always accepted if it improves (or is equal to) the current

objective value. Worse solutions are accepted if the objective

value is less than R+D, where R is the value of the initial solution
and D is a deviation. In this work, we set D= 0.03 and R is

updated every iteration to equal the current solution. The local

search template that uses the RR acceptance criteria is repeated
until the stopping condition is met, set to 100 iterations [3].

GD

Great Deluge: Improving solutions are always accepted. A non-

improving solution is accepted if its objective value is less than

the level initially set to the value of the initial solution. The value
of level is gradually decreased by β. β is calculated by β =

(f(initial solutions) - estimated(lower bound) / number of

iterations). In this work, we set the number of iterations to 1000.
The local search template that uses the great deluge acceptance

criteria will terminate when the level is equal to, or less than, the

best known solution found so far [3],[33].

NV

Naive acceptance: accepts all improving moves. Non improving

moves are accepted with 50% probability. The local search

template that uses this acceptance criterion is executed for a pre-
defined number of iterations (100 iterations) [35].

AA

Adaptive Acceptance: accepts all improving moves. Non

improving moves are accepted according to an acceptance Rate,

which is updated during the search. Initially, acceptance Rate is
set to zero. However, if the solutions cannot be improved for a

certain number of non improvement iterations (i.e. 10

consecutive non improvement iterations), then acceptance Rate

is increased by 5%. Whenever a solution is accepted, acceptance

Rate is reduced by 5%. The local search template that uses this

acceptance criterion will be run for a pre-defined number of
iterations, experimentally set in this work as 100 iterations [35].

2. The second heuristic component that is used in our GE-HH

framework are the neighborhoods structures (Ns) or move

operators. The aim of any neighborhood structure is to

explore the neighbor of current solutions or to generate a

neighborhood solution. The neighborhood solution is

generated by performing a small perturbation or changing

some attribute(s) of the current solution. The neighborhood

structures are critical in the design of any local search

method [36]. Traditionally, each neighborhood structure

has its own characteristics (weaknesses and strengths),

thus, several types of neighborhood structures may be

needed to cope with changes in the problem landscape as

the search progresses. In this work, we have employed

several neighborhoods which are problem dependent. The

descriptions of the neighborhood structures that have been

used in our work, which are different from one domain to

another, are presented in problem description sections (see

Sections V-B4 and V-C4).

3. The third heuristic component employed in our framework

is the neighborhood combinations/operators (Nc). The aim

of the neighborhood combinations/operators is to combine

the strength of two or more neighborhood structures into

one structure. Such combination has been shown to be very

efficient in solving many optimization problems [37]. The

benefit of such an idea was first demonstrated using

strategic oscillation in tabu search [38]. Recently, Lu et al.

[37] conducted a comprehensive analysis to assess the

performance of neighborhood combinations within several

local search methods (tabu search, iterated local search and

steepest decent algorithm) in solving university course

timetabling problems. Their aim was to answer why some

neighborhood structures can produce better results than

others and what characteristics constitute a good

neighborhood structure. They concluded that the use of

neighborhood combinations can dramatically improve

local search performance. Other works which have also

studied the benefit of using neighborhood combinations

include [39],[40],[41]. In this work, three kinds of

neighborhood combinations/operators are used

[37],[40],[18], which are described below.

Nc Description

+ Neighborhood Union: involves the moves that can be generated by

using two or more different neighborhoods structures. For example,

consider two different neighborhoods N1 and N2, which can be

represented as N1∪N2 or N1+N2, then the union move includes the

solution that can be obtained by consecutively applying N1 followed
by N2 then calling the acceptance criterion to decide whether to

accept or reject the generated solution. Besides combining the

strength of different neighborhoods [37], when the search space is
highly disconnected, such a combination might help escape from

disconnected search spaces, that may not happen when using N1

alone. For example, in exam timetabling, the single move
neighborhood structure which moves one exam from one timeslot to

another one might lead the search to a disconnected search space

when all exams which clash with another exam in every other

timeslot often cannot be moved at all [42]. Thus, combining a single

move neighborhood with another neighborhood i.e. swap two

exams, can help to find a clash free timeslot for the selected exam to
be moved to. The same issue can also be observed in capacitated

vehicle routing problems when using a single move neighborhood

that moves a customer from one route to another.

 Random Gradient: A neighborhood structure is repeatedly applied

until no improvement is possible. This is followed by applying

other neighborhood structures. For example, consider two different
neighborhoods; N1 and N2 are random gradient operators which can

be represented as
21 N N  . The local search template will keep

applying N1 as long as the generated solution is accepted by the

local search acceptance criteria. When no improvement is possible
the local search template stops applying N1 and restarts from the

local optimum obtained by N1, but with neighborhood N2 [6],[18].

T-R-S Token-Ring Search: The neighborhood structures of the generated
template are consecutively applied one after another until the end of

sequence. When the generated template moves to the next

neighborhood structure in the sequence, it restarts from the local

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, October 2013 7

optimum obtained by the previous neighborhood structure. If the

generated template reaches the end of the sequence, it restarts the
search from the first neighborhood in the sequence using the local

optimum obtained by the last neighborhood structure in the

sequence [37],[40],[43]. In this work, the token-ring search is set as
a default in all generated local search template (there is no special

symbol for it in the BNF grammar). Note that if there is no operator

between neighborhood structures e.g. N1 N2, each neighborhood is
applied only one time. For example, if we have N1 N2 N3 the local

search template will apply N1 one time only, and then move to N2

which will also be applied once, and then move to N3. This is
because there is no combination operator between these sequences

of neighborhood structures.

After determining the basic elements of the BNF grammar, we

now need to specify the starting symbol (S), terminals (T),

non-terminals (N) and the production rules (P) that will

represent the heuristic components. These are as follows:

Objective Symbols Description
starting symbol (S) LST Local Search Template

non-terminal (N)

Ac Acceptance Criteria

Lc LST Configurations

Ns Neighborhood Structures

Nc Neighborhood Combinations

terminal (T)

IO Improving Only or equal

AM All Moves

SA Simulated Annealing

EMC Exponential Monte Carlo

RR Record-to-Record Travel

GD Great Deluge

NA Naive Acceptance

AA Adaptive Acceptance

+ Neighborhood Union

 Random Gradient

Nb1 First neighborhood e.g. 2-opt

Nb2 Second neighborhood e.g. Swap

.

.

.

.
Nbn Neighborhood n

production rules (P)

(1) <LST>::= AcLc (0) Starting symbol rule. Number of choices available for LST =0

(2) <Ac>::= IO (0)

 |AM (1)
 |SA (2)

 |EMC (3)

 | RR (4)
 | GD (5)

 | NA (6)

 | AA (7)

Acceptance Criteria production rules

Number of choices available for Ac =8

(3) <Lc>::= NsLc (0)

 | NsNcNs (1)

 | NsNsLc (2)

 | NcNsNs (3)
 | NsNsNcNs (4)

 | Lc (5)

LST Configurations production rules.

Number of choices available for Lc =6

(4) <Ns>::= Nb1 (0)

 | Nb2 (1)

 | . (2)

 | . (3)

 | . (4)

 | . (5)

 | . (6)
 | Nbn (n)

Neighborhood structures production rules.

Number of choices available for Nb =1 to n

Note that n represent the number of neighborhood structures that are
used for each problem domain (see SectionsV-B4 and V-C4).

(5) <Nc>::= + (0)

 | (1)

Neighborhoods combination production rules.

Number of choices available for Nc =2

The above BNF grammar is valid for every local search

template (LST) for both problem domains in the work. This

is because each local search template (LST) has different

rules and characteristics. Finding the best BNF grammar for

every local search template (LST) would be problem

dependent, if not problem instance dependent. Please note

that not all local search templates will improve the solution

because the employed acceptance criteria might accept

worse solutions with a certain probability. For example, the

local search that uses all moves acceptance criterion (AM)

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, October 2013 8

will accept any solution that does not violate any hard

constraints regardless of its quality.

The programs in our GE-HH represent local search

templates or problem solvers. The local search template

starts with an initial solution and then iteratively improves

it. The initial solution can be randomly generated or by

using heuristic methods (see Sections V-B3 and V-C3).

Please note that the initial solution generation method is not

a part of the GE-HH. In this work, we use two fitness

functions. The first one, penalty cost, is problem dependent,

and is used by the inner loop of the generated local search

template in deciding whether to accept or reject the

perturbed solution (see Sections V-B and V-C for more

details about the penalty cost). The second fitness function

is problem independent and it measures the quality of the

generated program (local search template) after executing

it. At every iteration, if the generated programs are

syntactically correct (all non-terminals can be converted

into terminals), the programs are executed and their fitness

is computed from their output. In this work, the fitness

function of the generated programs is calculated as a

percentage of improvement (PI). Assume f1is the fitness of

the initial solution and f2 is the fitness of the solution after

executing the generated programs, then PI= | (f1-f2)/ f1| *

100, if f2<= f1. If f2 > f1 discard the generated program.

With all the GE-HH elements (grammar, search engine,

mapper procedure and fitness function) defined, the

proposed GE-HH framework is carried out as depicted in

Fig.6.

Fig.6.The proposed GE-HH framework

B. Hybrid Grammatical Evolution Hyper-heuristic and

Adaptive Memory Mechanism

Traditionally, previous hyper-heuristic frameworks that

have been proposed in the literature operate on a single

solution [6],[18],[29]. Single solution based perturbative

hyper-heuristics start with an initial solution and iteratively

move from the current solution to another one by applying

an operator such as 2-opt. Although single solution based

methods have been widely used to solve several kinds of

problems, it is accepted that pure single solution based

methods are not well suited to fine tuning for large search

spaces and heavily constrained problems [44],[45]. As a

result, single solution based methods have been hybridized

with other techniques to improve their efficiency [45].

Generally, it is widely believed that a good search

methodology must have the ability of exploiting and

exploring different regions of the solution search space

rather than focusing on a particular region. That is, we must

address the problem of exploitation vs. diversification,

which is a key feature in designing efficient search

methodologies [44].

 In order to enhance the efficiency of the GE-HH

framework and to diversify the search process, we

hybridize it with an adaptive memory mechanism. This

method has been widely used with several meta-heuristic

algorithms such as tabu search, ant colonies, genetic

algorithms and scatter search [46]. The main idea is to

enhance the diversification by maintaining a population of

solutions. For example, the reference set in scatter search

[46] which includes a collection of both high quality and

diverse solutions.

 In this work, the adaptive memory mechanism

(following the approach in [47],[48]) contains a collection

of both high quality and diverse solutions, which are

updated as the algorithm progresses. The size of the

memory is fixed (equal to the number of acceptance

criteria, which is 8). Our adaptive memory works as

follows:

 Generate a set of diverse solutions. The set of solutions

can be generated randomly or by using a heuristic

method. In this work, the solutions are generated using a

heuristic method (see SectionsV-B3 and V-C3).

 For each solution, associate a frequency matrix which

will be used to measure solution diversity. The

frequency matrix saves the frequency of assigning an

object (exam or customer) to the same location. For

example, in exam timetabling, the frequency matrix

stores how many times the exam has been assigned to

the same timeslot. Whilst, in the capacitated vehicle

routing problem, it stores how many times a customer

has been assigned to the same route. Fig.7 shows an

example of a solution and its corresponding frequency

matrix. The frequency matrix is initialized to zero. We

can see five objects (represented by rows) and there are

five available locations (represented by columns). The

solution on the left of Fig.7 can be read as follows:

object1 is assigned to location 1, object 2 is assigned to

location 3, etc. The frequency matrix on the right side of

the Fig.7 can be read as follows: object 1 has been

assigned to location 1 twice, to location 2 three times, to

location 3 once, to location 4 four times and to location

5 once; and so on for the other objects.
Location

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, October 2013 9

O
b

je
ct

s
1 2 3 4 5 1 2 3 4 5

1 1 0 0 0 0

O
b

je
ct

s

1 2 3 1 4 1

2 0 0 1 0 0 2 1 1 1 2 2

3 0 0 0 0 1 3 2 2 2 2 1

4 0 0 0 1 0 4 2 1 3 1 1

5 0 1 0 0 0 5 2 1 2 1 3

 solution frequency matrix

Fig.7. Solution and it is corresponding frequency matrix.

 If any solution is improved by the GE-HH framework,

we update the frequency matrix.

 Calculate the quality and the diversity of the improved

solution. In this work, the quality represents the penalty

cost which calculates the number of soft constraint

violations (see Sections V-B and V-C). The diversity is

measured using entropy information theory (1), (2) as

follows [47],[48]:

e

m

e

m

ee

j

ijij

i
log

log.
1



 

 …. (1)

e

e

i i  1


 ………. (2)

Where

- eij is the frequency of allocating object i to location j.

- m is the number of objects.

- εi is the entropy for object i.

- ε is the entropy for one solution (0 ≤ εi≤ 1).

 Add the new solution to the adaptive memory by

considering the solution quality and diversity.

Fig.8 shows the hybrid GE-HH framework with an adaptive

memory mechanism. Algorithm 1 presents the pseudo-code

of GE-HH.

Fig.8.Hybrid grammatical hyper-heuristic framework and adaptive

memory mechanism

The algorithm starts by generating a set of initial solutions

for the adaptive memory mechanism (see SectionsV-B3 and

V-C3) and defining the BNF grammar (see Section IV-A).

It then initializes the genetic algorithm parameters and

creates a population of solutions by assigning a random

value between 0 and 255 for each chromosome gene

(codons) [30].

For each solution (chromosome) in the population, the

corresponding program is generated by invoking the

mapping function. In order to ensure that there is no

duplication in the generated program (i.e. the program does

not have two consecutive operators) the program is checked

by the edit function. For example, if the generated program

is SA: N1N2++N2+N4, with consecutive ++ operators, the

edit function will remove one of the + operators and the

program will be SA: N1N2+N2+N4. One solution from the

adaptive memory mechanism is then selected, to which the

generated programs are applied. The adaptive memory is

then updated.

Subsequently, the genetic algorithm is executed for a

pre-defined number of generations. At every generation,

offspring are generated by applying selection, crossover and

mutation. The generated offspring (programs) are then

executed. If the offspring is better than the worst

chromosome, it is added to the population and the adaptive

memory mechanism is updated.

 Algorithm 1: Pseudo-code of grammatical evolution hyper-heuristic
 framework

In
it

ia
li

za
ti

o
n
 s

te
p

Generate a set of initial solutions and initialize the adaptive

memory, adaptivememory

Defined the BNFgrammar, BNFgrammar

Set number of generations, populationsize, chromosomnumbits, pcrossover,
pmuataion

population← initializepopulation(populationsize, chromosomnumbits)

foreach soli population do

 soli-integer ←convert (chromosomnumbits)
 soli-program ←map (BNFgrammar, soli-integer)

 edit(soli-program)

 initialsol ←selectsoltuion(adaptivememory)
 soli-cost ←execute (soli-program, initialsol)

 update adaptivememory

end

G
en

er
a
te

 i
n
it

ia
l

p
o
p
u
la

ti
o
n

while not stopping condition () do

 parenti← SelectParents(populationsize)

 parentj← SelectParents(populationsize)

se
le

ct
io

n

cr
o
ss

o
ve

r

 child1←Crossover (parenti, parentj, pcrossover)

 child2←Crossover (parenti, parentj, pcrossover)

 child1m← Mutation (child1, pmuataion)

 child2m←Mutation (child2, pmuataion)

m
u
ta

ti
o
n

co
n
ve

rt
in

g

 child1m -integer ←convert (child1m)

 child2m -integer ←convert (child2m)

m
a
p
p
in

g

 child1m –program ← map (child1m -integer, BNFgrammar)
 edit(child 1m –program)

 child2m -program ←map (child2m -integer, BNFgrammar)

 edit(child 2m –program)

ex
ec

u
ti

n
g

 initialsol ←selectsoltuion(adaptivememory)
 child1m -cost ←execute (child1m –program, initialsol)

 child2m -cost ←execute (child2m –program, initialsol)

u
p
d
a
ti

n
g

 population ← populationUpdate(child1, child2)
 update adaptivememory

end

return the best solution

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, October 2013 10

V. EXPERIMENTAL RESULTS

In this section, we evaluate and compare the proposed GE-

HH with the state of the art of hyper-heuristics, and other

search methodologies.

A. GE-HH Parameters Setting

In order to find appropriate parameter values for GE-HH,

we utilize the Relevance Estimation and Value Calibration

method (REVAC) [49]. REVAC is a steady state genetic

algorithm that uses entropy theory to determine the

parameter values for algorithms. Our aim is not to find the

optimal parameter values for each domain, but to find

generic values that can be used for both domains. To use

the same parameter settings across instances of both

domains, we tuned GE-HH for each domain separately and

then used the average of them in value obtained by REVAC

for all tested instances. In order to have a reasonable trade-

off between solution quality and the computational time

needed to reach good quality solutions, the execution time

for each instance is fixed to 20 seconds. The number of

iterations performed by REVAC is fixed at 100 iterations

(see [49] for more details). For each domain, the average

values over all tested instances for each parameter are

recorded. Then, the average values over all parameters are

set as the generic values for GE-HH. The parameter settings

of GE-HH that have been used for both domains are listed

in Table 2.
TABLE 2 GE-HH PARAMETERS

Parameters Value

Population Size 100
Number of Generations 20

One point Crossover Probability 0.8

Point Mutation Probability 0.01
Chromosome Length 60

Probability of Swapping 0.01

Probability of Duplication 0.01
Maximum number of Wraps 5

Selection Mechanism Roulette Wheel

Generational Model Steady State

B. Problem Domain I: Exam Timetabling Problems

Exam timetabling is a well known NP-hard combinatorial

optimization problem [50] and is faced by all academic

institutions. The exam timetabling problem can be defined

as the process of allocating a set of exams into a limited

number of timeslots and rooms so as not to violate any hard

constraints and to minimize soft constraint violations as

much as possible[51]. In this work, we carried out

experiments on the most widely used un-capacitated Carter

benchmarks (Toronto b type I in [51]) and also on the

recently introduced exam timetable dataset from the 2007

International Timetabling Competition, ITC 2007 [15].

1) Test Set I: Carter Uncapacitated Datasets

The Carter datasets have been widely used in the scientific

literature[14],[51]. They are un-capacitated exam

timetabling problems where room capacities are ignored.

The constraints are shown in Table 3.

TABLE 3 CARTER HARD AND SOFT CONSTRAINTS

Symbols Description

Hard Constraints

H1Carter: No student can sit more than one exam at the same time.

Soft Constraints

S1Carter: Conflicting exams (with common enrolled students) should
be spread as far apart as possible to allow sufficient

revision time between exams for students.

The quality of a timetable is measured based on how well

the soft constraints have been satisfied. The proximity cost

is used to calculate the penalty cost (equation 3) [14].

}4,3,2,1,0{,/)(
1

1

1

 






iSswSoft kl

m

kl

i

m

k

carter

... (3)

Where:

 wi=2|4-i| is the cost of scheduling two conflicting exams el and ek (which

have common enrolled students) with i timeslots apart, if i=|tl-tk|<5, i.e.

w0=16, w1=8, w2=4, w3=2 and w4=1; tl and tk as the timeslot of exam el

and ek, respectively.

 skl is the number of students taking both exams ek and el, if i=|tl-tk| <5;

 m is the number of exams in the problem

 S is the number of students in the problems

Table 4 gives the characteristics of the un-capacitated exam

timetabling benchmark problem (Toronto b type I in [51])

which comprises 13 real-world derived instances.

TABLE 4 CARTER’S UN-CAPACITATED BENCHMARK EXAM TIMETABLING

DATASET

Datasets
No. of

timeslots

No. of

exams

No. of

Students

Conflict

Density

Car-f-92-I 32 543 18419 0.14

Car-s-91-I 35 682 16925 0.13

Ear-f-83-I 24 190 1125 0.27

Hec-s-92-I 18 81 2823 0.42
Kfu-s-93 20 461 5349 0.06

Lse-f-91 18 381 2726 0.06

Pur-s-93-I 43 2419 30032 0.03
Rye-s-93 23 486 11483 0.07

Sta-f-83-I 13 139 611 0.14

Tre-s-92 23 261 4360 0.18
Uta-s-92-I 35 622 21267 0.13

Ute-s-92 10 184 2750 0.08

Yor-f-83-I 21 181 941 0.29

Note: conflict density = number of conflicts / (number of exams)2

2) Test Set II: ITC 2007 Datasets

The second dataset was introduced in the second

International Timetabling Competition, ITC 2007, aiming

to facilitate a better understanding of real world timetabling

problems and to reduce the gap between research and

practice [15]. It is a capacitated problem and has several

hard and soft constraints (see Tables 5&6, respectively).

The objective function from [15] is used (see equation 4).

The ITC 2007 problem has 8 instances. Table 7shows the

main characteristics of these instances.

SwSwSw

SwSwSwSw
RRPpFLFL

NMDNMD

Ss

PS

S

PSD

S

DR

S

R

ITCSoft






22222

2007)(

… (4)

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, October 2013 11

TABLE 5 ITC 2007 HARD CONSTRAINTS

Symbols Description

H1ITC2007: No student can sit more than one exam at the same time.

H2 ITC2007: There must be a sufficient number of seats to accommodate the exams being scheduled in a given room.

H3 ITC2007: The length of exams assigned to each timeslot should not violate the timeslot length.

H4 ITC2007: Some sequences of exams have to be satisfied. e.g. Exam_B must be scheduled after Exam_E.

H5 ITC2007: Room related hard constraints must be respected e.g. Exam_B must be scheduled in Room 3.

TABLE 6 ITC 2007 SOFT CONSTRAINTS

Symbols
Mathematical

Symbols
Description

S1ITC2007: S
R

S

2
Two exams in a row: Minimize the number of students that have consecutive exams in a row.

S2ITC2007: S
D

S

2 Two exams in a day: Student should not be assigned to sit more than two exams in a day. Of course, this constraint
only becomes important when there are more than two exam periods in the same day.

S3ITC2007: S
PS

S

 Exams spread: Conflicting exams should be spread as far apart as possible to allow sufficient revision time between

exams for students.

S4ITC2007: S
NMD

S

2
Mixed durations: Minimize exams that have different durations but assigned into the same timeslot and room.

S5ITC2007: S
FL

Larger exams: Minimize the number of exams of large size that appear later in the exam timetable.

S6ITC2007: S
P

Period Penalty: Some periods have an associated penalty. Minimize the number of exams assigned into these periods.

S7ITC2007: S
R

Room Penalty: Some rooms have an associated penalty; Minimize the number of exams allocated in penalized rooms.

TABLE 7 THE ITC 2007 BENCHMARK EXAM TIMETABLING DATASETS

Datasets A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13

Dataset 1 7891 607 54 7 5 7 5 10 100 30 5 7833 5.05

Dataset 2 12743 870 40 49 5 15 1 25 250 30 5 12484 1.17

Dataset 3 16439 934 36 48 10 15 4 20 200 20 10 16365 2.62
Dataset 4 5045 273 21 1 5 9 2 10 50 10 5 4421 15.0

Dataset 5 9253 1018 42 3 15 40 5 0 250 30 10 8719 0.87
Dataset 6 7909 242 16 8 5 20 20 25 25 30 15 7909 6.16

Dataset 7 14676 1096 80 15 5 25 10 15 250 30 10 13795 1.93

Dataset 8 7718 598 80 8 0 150 15 25 250 30 5 7718 4.55

Note:

A1: No. of students reported in [15]. A8: No mixed duration penalty, SNMD

A2: Number of exams. A9: Number of largest exams, SFL

A3: Number of timeslots. A10: Number of last timeslots to avoid, SP

A4: Number of rooms. A11: Front load penalty, SR, soft constraints weight[15]
A5: Two in a day penalty, S2D A12: Number of actual students in the datasets.

A6: Two in a row penalty, S2R A13: Conflict density

A7: Timeslots spread penalty, SPS

3) Problem Domain I: Initial Solutions

As mentioned in Section IV-A, GE-HH starts by

initializing the adaptive memory mechanism which contains

a population of solutions. In this work, we employ hybrid

graph coloring heuristics [52] to generate an initial

population of feasible solutions for both the Carter and the

ITC 2007 instances. The three graph coloring heuristics we

utilize are:

 Least Saturation Degree First (SD): exams are ordered

dynamically, in an ascending order, by the number of

remaining timeslots.

 Largest Degree First (LD): exams are ordered, in a

decreasing order, by the number of conflicts they have

with all other exams.

 Largest Enrolment First (LE): exams are ordered by the

number of students enrolled, in decreasing order.

The solution construction method starts with an empty

timetable and applies the hybridized heuristics to select and

assign the unscheduled exams one by one until all exams

have been scheduled. To select an exam, the hybridized

heuristic (SD+LD+LE) firstly sorts the unscheduled exams

in a non-decreasing order of the number of available

timeslots (SD). Those with equal SD evaluations are then

arranged in a non-increasing order of the number of

conflicts they have with other exams (LD) and those with

equal LD evaluations are then arranged in a non-increasing

order of the number of student enrolments (LE). The first

exam in the final order is assigned to the timetable. We

assign exams to a random timeslot when it has no conflict

with those that have already been scheduled (in case of ITC

2007, an exam is assigned to best fit a room), ensuring that

all hard constraints are satisfied. If some exams cannot be

assigned to any available timeslot, we stop the process and

start again. Although there is no guarantee that a feasible

solution can be generated, for all the instances used in this

work, we were always able to obtain a feasible solution.

4) Problem Domain I: Neighborhood Structures

The neighborhood structures that we employed in the GE-

HH framework for both Carter and ITC 2007, which are

commonly used in the literature [42], are as follows:

Nbe1: Select one exam at random and move it to any feasible

timeslot-room.

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, October 2013 12

Nbe2: Select two exams at random and swap their timeslots (if

feasible).
Nbe3: Select two timeslots at random and swap all their exams.

Nbe4: Select three exams at random and exchanges their timeslots at

random (if feasible).
Nbe5: Move the exam causing the highest soft constraint violation to

any feasible timeslot.

Nbe6: Select two exams at random and move them to another
random feasible timeslots.

Nbe7: Select one exam at random, select a timeslot at random

(distinct from the one that was assigned to the selected exam)
and then apply the Kempe chain neighborhood operator.

Nbe8: Select one exam at random, select a room at random (distinct

from the one that was assigned to the selected exam) and then
move the exam to the room (if feasible).

Nbe9: Select two exams at random and swap their rooms (if

feasible).

Note that neighborhoods Nbe8 and Nbe9 are applied to ITC

2007 datasets only because they consider rooms. The

neighborhood solution is accepted if it does not violate any

hard constraints. Thus, the search space of GE-HH is

limited to feasible solutions only.

C. Problem Domain II: Capacitated Vehicle Routing

Problems

The capacitated vehicle routing problem (CVRP) is a well-

known challenging combinatorial optimization problem

[53]. The CVRP can be defined as the process of designing

a least cost set of routes to serve a set of customers [53]. In

this work, we test GE-HH on two sets of benchmark

capacitated vehicle routing problem datasets. These are the

14 instances introduced by Christofides [16] and 20 large

scale instances introduced by Golden [17]. The CVRP can

be represented as an undirected graph G (V, E), where V=

{v0, v1…vn} is a set of vertices which represents a set of

fixed locations (customers) and E= {(vi, vj): vi, vjV, i<j}

represents the arc between locations (customers). E is

associated with non-negative costs or travel time defined by

matrix C= (cij), where cij represents the travel distance

between customers vi and vj. Vertex v0represents the depot

which is associated with m vehicles of capacity Q1…Qm to

start their routes R1…Rm. The remaining vertices v1 … vn

represent the set of customers and each customer

requestsq1…qn goods and serving time δi. The aim is to find

a set of tours that do not violate any hard constraints and

minimize the distance. The hard constraints that must be

respected are:

 Each vehicle starts and ends at the depot

 The total demand of each route does not exceed the

vehicle capacity

 Each customer is visited exactly once by exactly one

vehicle

 The duration of each route does not exceed a global

upper bound.

The cost of each route is calculated using (5) [53]:





n

j

n

j
jii cRC

0

i

1

)( ……….. (5)

and the cost for one solution is calculated using (6):





m

i

iRCf
1

)(

…….. (6)

The two sets of benchmark problems that we have

considered in this work have similar constraints and

objective function. However, the complexity, instance sizes

and customer distributions are different from one set to

another.

1) Test Set I: Christofides Datasets

The first set comprises of 14 instances and was introduced

by Christofides [16]. The main characteristics of the

problem are summarized in Table 8. The instance size

varies from 51 to 200 customers, including the depot. Each

instance has a capacity constraint. Instances 6-10, 13 and 14

also have a maximum route length restriction and non-zero

service times. The problem instances can be divided into

two types: in instances 1-10, the customers are randomly

located, whilst, in instances 11-14 the customers are in

clusters.
TABLE 8 CHRISTOFIDES INSTANCES

Datasets Customers Capacity
Max. tour

length

Service

time

No. of

vehicles

1 51 160 ∞ 0 5

2 76 140 ∞ 0 10
3 101 200 ∞ 0 8

4 151 200 ∞ 0 12

5 200 200 ∞ 0 17
6 51 160 200 10 6

7 76 140 160 10 11

8 101 200 230 10 9
9 151 200 200 10 14

10 200 200 200 10 18

11 121 200 ∞ 0 7

12 101 200 ∞ 0 10

13 121 200 720 50 11

14 101 200 1040 90 11

2) Test Set II: Golden Datasets

The second CVRP dataset involves 20 large scale instances

presented by Golden [17] (see Table 9). The instances have

between 200 and 483 customers, including the depot.

Instances 1-8 have route length restrictions.

TABLE 9 GOLDEN INSTANCES

Datasets Customers Capacity
Max. tour

length

Service

time

No. of

vehicles

1 240 550 650 0 10

2 320 700 900 0 10
3 400 900 1200 0 10

4 480 1000 1600 0 12

5 200 900 1800 0 5
6 280 900 1500 0 8

7 360 900 1300 0 9

8 440 900 1200 0 11
9 255 1000 ∞ 0 14

10 323 1000 ∞ 0 16

11 399 1000 ∞ 0 18
12 483 1000 ∞ 0 19

13 252 1000 ∞ 0 27
14 320 1000 ∞ 0 30

15 396 1000 ∞ 0 34

16 480 1000 ∞ 0 38
17 240 200 ∞ 0 22

18 300 200 ∞ 0 28

19 360 200 ∞ 0 33
20 420 200 ∞ 0 41

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, October 2013 13

3) Problem Domain II: Initial Solutions

For both the Christofides and the Golden instances, the

initial population of feasible solutions is constructed

utilizing the savings algorithm [54].

4) Problem Domain II: Neighborhoods Structures

The neighborhood structures that we employ in GE-HH for

both the Christofides and the Golden instances are the most

common ones used to solve the capacitated vehicle routing

problems in the literature. They are as follows:

Nbv1: Select one customer at random and move it to any feasible route.

Nbv2: Select two customers at random and swap their routes.

Nbv3: Select one route at random and reverse a part of a tour between
two selected customers.

Nbv4: Select three customers at random and exchanges their routes at

random.

Nbv5: Select one route at random and perform the 2-opt procedure.

Nbv6: Perform the 2-opt procedure on all routes.

Nbv7: Select two distinct routes at random and swap a portion of the
first route with the first portion and second route.

Nbv8: Select two distinct routes at random and from each route select

one customer. Swap the adjacent customer of the selected one for
both routes.

Nbv9: Select two distinct routes at random and swap the first portion
with the last portion.

Nbv10 Select one customer at random and move it to another position in

the same route.

The neighborhood solution is accepted if it does not break

any hard constraints. Thus, the search space of GE-HH is

limited to feasible solutions only.

VI. COMPUTATIONAL RESULTS AND COMPARISON

To assess the benefit of incorporating an adaptive memory

mechanism in GE-HH, for each domain, we have carried

out two sets of experiments. The first one compares the

performance of the grammatical evolution hyper-heuristic

with an adaptive memory (GE-HH) and the grammatical

evolution hyper-heuristic without an adaptive memory (GE-

HH*) using the same parameter values and computational

resources. The second test compares and analyses the

performance of GE-HH against the state of the art of hyper-

heuristics and bespoke methods. For both experimental

tests, we report the best, average, standard deviation and

average time over 51 independent runs with different

random seeds. By executing 51 runs, instead of 50, we can

easily calculate the median value without the need for

interpolation. The aim of executing the proposed hyper-

heuristic framework 51 runs is to get more information and

to have a good indication regarding the algorithm

consistency and generality, as it’s highly recommended in

the literature to have more than 30 runs in statistical

analysis on algorithm performance [3]. The results

represent the cost of soft constraint violations. In addition,

we also report, for each instance, the percentage deviation

from the best known value found in the literature,

calculated as follows (7):

%
*

*
(%)

best

bestbest HHGE 
  ………. (7)

Where bestGE-HH is the best result obtained over 51

independent runs by GE-HH and best* represents the best

known value found in the literature.

We evaluate the performance of GE-HH by considering

the following three criteria:

 Generality: We define generality as the ability of GE-

HH to work well, not only across different instances of

the same problem, but also across two different problem

domains.

 Consistency: This is the ability of GE-HH to produce

stable results when executed several times for every

instance. Typically, consistency is one of the most

important criteria in evaluating any algorithm. This is

because many search algorithms have a stochastic

component, which leads to different solutions over

multiple runs even if the initial solution is the same. We

measure the consistency of GE-HH based on the

average and the standard deviation over 51 independent

runs.

 Efficiency: This is the ability of GE-HH to produce

good results that are close or better than the best known

value in the literature. We measure the efficiency of GE-

HH by reporting, for each instance, the best and the

percentage deviation, see ∆(%) in (7), from the best

known results in the literature.

For all tested instances, except the ITC 2007 problem

instances, we compare the GE-HH results with the state of

the art in terms of solution quality rather than

computational time. This is because the different computer

resources researchers use which make the comparison

difficult, if not impossible [39],[55]. Therefore, we set the

number of generations as the termination criteria. As for the

ITC 2007 datasets, the organizer provided benchmark

software to determine the allowed execution time [15]. We

have used this software to determine the execution time

using our computer resources (i.e. 10 minutes). We have

given extra time to GE-HH, due to the use of the adaptive

memory (i.e. 10.83 minutes). As a result, the execution time

of our method is within the range of those published in the

literature.

A. Problems Domain I: Computational Results on Exam

Timetabling Problems

1) Test Set I: Carter Uncapacitated Datasets

Table 10 lists, for each instance, the best, average, standard

deviation and average time obtained by GE-HH and GE-

HH*.

From Table 10, one can clearly see that GE-HH

outperforms GE-HH* across all instances. Furthermore,

both the best and average results obtained by GE-HH are

better than GE-HH* on all instances. We can also see that

in GE-HH, on twelve of the thirteen instances, the standard

deviation is lower than GE-HH*. However, the

computational time is different where GE-HH* is lower

than GE-HH. This is mainly due to the use of population of

solutions and diversity updating mechanism in the GE-HH

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, October 2013 14

framework. The results reveal that the use of the adaptive

memory mechanism has an effect on the ability of the GE-

HH in producing good quality and consistent results over

all instances.

We compare the performance of GE-HH against hyper-

heuristics and other bespoke methods (see Table 11).

 Table 12 shows the comparison of the best and average

results of GE-HH and other hyper-heuristic methods. We

also report, for each instance, the percentage deviation (∆

(%)) from the best result obtained by other hyper-heuristics

and instance ranking. As can be seen from Table 12, GE-

HH finds better solutions for 7 out of 13 instances

compared to other hyper-heuristic methods and obtained the

second best results for the other 5 instances (except Rye-s-

93 which obtained third best results).

Table 13 presents, for all instances, the best, average,

percentage deviation (∆(%)) and instance ranking by GE-

HH along with a comparison with respect to the best known

results (shown in bold) in the literature obtained by bespoke

methods. It can be seen that, even though GE-HH does not

obtain the best solutions for all instances, over all, it obtains

competitive results especially when considering the

percentage deviation (∆(%)) from the best known value

found in the literature. If we consider an individual

comparison, GE-HH is able to obtain better solutions on

instances 8, 12, 11, 6, 7 and 2 compared to Mc7, Mc8, Mc9,

Mc10, Mc11, and Mc12, respectively. Furthermore, only Mc10

reported results for Pur-s-93 and Rye-s-93 instances, Mc7

andMc11reported result for Rye-s-93 instance (we suspect,

due to the complexity and inconsistencies in these

instances).

Results in Tables 12 and 13 demonstrate that, across all

instances, GE-HH outperforms other hyper-heuristic

methodologies and obtained competitive results compared

to other bespoke methods. Except instance Ute-s-92 (ranked

6), the instance ranking varies between 2 to 4. Also, the

percentage deviation indicates that GE-HH results are very

close to the best known results. This demonstrates that GE-

HH is able to generalize well over a set of problem

instances rather than only producing good results for one or

more of the problem instances.

TABLE 10 RESULTS OF GE-HH COMPARED TO GE-HH*

 GE-HH GE-HH*

Instances Best Average Std Time Best Average Std Time

Car-f-92-I 4.00 4.44 0.36 200.2 4.12 4.73 0.48 170.18
Car-s-91-I 4.62 4.87 0.17 441.32 4.62 5.15 0.25 410.23

Ear-f-83-I 34.71 36.50 0.71 52.03 35.92 36.64 0.81 38.56

Hec-s-92-I 10.68 11.57 0.54 65.41 10.96 11.54 0.52 49.41
Kfu-s-93 13.00 13.58 0.36 92.22 13.06 13.58 0.36 76.17

Lse-f-91 10.11 11.35 0.91 58.11 10.21 11.36 0.90 45.37

Pur-s-93-I 4.80 6.29 1.10 610.07 6.31 7.41 1.68 580.16

Rye-s-93 10.79 11.09 0.69 546.66 11.00 12.10 0.85 495.11

Sta-f-83-I 158.02 158.47 0.43 32.24 158.21 159.52 0.76 25.04
Tre-s-92 7.90 8.46 0.41 93.17 7.96 8.49 0.83 81.28

Uta-s-92-I 3.12 3.70 0.32 189.24 3.18 3.72 0.41 168.19

Ute-s-92 26.00 27.1 0.69 48.11 26.02 27.15 0.78 40.30
Yor-f-83-I 36.20 36.91 0.47 181.25 36.20 36.93 0.56 95.08

Note: GE-HH: GE-HH employing adaptive memory mechanism. GE-HH*: without using adaptive

memory. The time represents average time in minutes. Best results in the literature are highlighted in bold.

The bold italic indicates that both methods produce the same result.

TABLE 11 ACRONYMS OF COMPARED METHODS
Symbol References

1 Mc1 [56]

H
yp

er-

h
eu

ristics

2 Mc2 [57]

3 Mc3 [23]

4 Mc4 [58]

5 Mc5 [42]

6 Mc6 [59]

7 Mc7 [60]

B
esp

o
ke

m
eth

o
d

s

8 Mc8 [61]

9 Mc9 [62]

10 Mc10 [63]

11 Mc11 [64]

12 Mc12 [65]

TABLE 12 RESULTS OF GE-HH COMPARED TO HYPER-HEURISTIC APPROACHES

GE-HH Hyper-heuristic

Instances Best Average ∆ (%) ∆*(%)
Rank Mc1 Mc2 Mc3 Mc4 Mc5 Mc6

Car-f-92-I 4.00 4.44 * 8.29 1 4.52 4.53 4.16 4.28 4.1 4.26

Car-s-91-I 4.62 4.87 * * 1 5.2 5.36 5.16 4.97 4.9 5.09
Ear-f-83-I 34.71 36.50 4.54 9.93 2 37.02 37.92 35.86 36.86 33.2 35.48

Hec-s-92-I 10.68 11.57 3.68 12.3 2 11.78 12.25 11.94 11.85 10.3 11.46

Kfu-s-93 13.00 13.58 * 2.87 1 15.81 15.2 14.79 14.62 13.2 14.68

Lse-f-91 10.11 11.35 * 9.13 1 12.09 11.33 11.15 11.14 10.4 11. 2

Pur-s-93-I 4.80 6.29 9.83 43.9 2 - - - 4.37 - -

Rye-s-93 10.79 11.09 11.81 14.9 3 10.35 - - 9.65 - -

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, October 2013 15

Sta-f-83-I 158.02 158.47 0.71 1.00 2 160.42 158.19 159.00 158.33 156.9 158.28

Tre-s-92 7.90 8.46 * 1.92 1 8.67 8.92 8.6 8.48 8.3 8.51
Uta-s-92-I 3.12 3.70 * 12.12 1 3.57 3.88 3.59 3.4 3.3 3.15

Ute-s-92 26.00 27.1 4.41 8.83 2 27.78 28.01 28.3 28.88 24.9 27.9

Yor-f-83-I 36.20 36.91 * 1.68 1 40.66 41.37 41.81 40.74 36.3 40.49

TP(13) 323.95 334.33

TP(12) 319.15 328.04

TP(11) 308.36 316.95

- - - 337.57 - -

337.87 - - 333.2 - -

327.52 326.96 324.36 323.55 305.8 309.3

Note: TP(13): total penalty of 13 instances. TP(12): Total penalty of 12 datasets (excluding Pur-s-93-I). TP(11): Total penalty of 11

datasets (excluding Pur-s-93-I and Rye-s-93). “*” means GE-HH result is better than other methods. “-“indicates no feasible
solution has been found. Best results are highlighted in bold.∆*(%): the percentage deviation of the average value with regard to the

best known results.

TABLE 13 RESULTS OF GE-HH COMPARED TO BESPOKE METHODS

 GE-HH Bespoke methods

Instances Best Average ∆ (%) ∆* (%) Rank Mc7 Mc8 Mc9 Mc10 Mc11 Mc12

Car-f-92-I 4.00 4.44 6.95 18.71 3 4.3 4.10 4.1 6.0 3.93 3.74

Car-s-91-I 4.62 4.87 4.52 10.18 3 5.1 4.65 4.8 6.6 4.50 4.42

Ear-f-83-I 34.71 36.50 18.46 24.57 4 35.1 37.05 36.0 29.3 33.7 32.76

Hec-s-92-I 10.68 11.57 16.08 25.76 3 10.6 11.54 10.8 9.2 10.83 10.15

Kfu-s-93 13.00 13.58 0.30 4.78 2 13.5 13.90 15.2 13.8 13.82 12.96

Lse-f-91 10.11 11.35 5.31 18.22 3 10.5 10.82 11.9 9.6 10.35 9.83

Pur-s-93-I 4.80 6.29 29.72 70.00 2 - - - 3.7 - -

Rye-s-93 10.79 11.09 58.67 63.08 4 8.4 - - 6.8 8.53 -
Sta-f-83-I 158.02 158.47 0.63 0.91 3 157.3 168.73 159.0 158.2 158.3 157.03

Tre-s-92 7.90 8.46 1.93 9.16 2 8.4 8.35 8.5 9.4 7.92 7.75

Uta-s-92-I 3.12 3.70 1.96 20.91 2 3.5 3.20 3.6 3.5 3.14 3.06

Ute-s-92 26.00 27.1 6.55 11.06 6 25.1 25.83 26.0 24.4 25.39 24.82

Yor-f-83-I 36.20 36.91 3.90 5.94 2 37.4 37.28 36.2 36.2 36.35 34.84

TP(13) 323.95 334.33
TP(12) 319.15 328.04

TP(11) 308.36 316.95

- - - 316.7 - -

319.2 - - 313.0 316.76 -

310.8 325.45 316.1 306.2 308.23 301.36

Note: TP(13): total penalty of 13 instances. TP(12): Total penalty of 12 instances(excluding Pur-s-93-I). TP(11): Total penalty of

11 instances(excluding Pur-s-93-I and Rye-s-93). “-“means no feasible solution has been found. Best results in the literature are
highlighted in bold. ∆*(%): the percentage deviation of the average value with regard to the best known results.

2) Test Set II: ITC 2007 Datasets

The first set of experiments presents a comparison between

GE-HH and GE-HH* as well as the results of GE-HH

without the extra computational time (GE-HH**), i.e. the

computational time is fixed the same as GE-HH*. The best,

average, standard deviation of the results and the average

time are reported in Table 14. It can be seen that, across all

instances, GE-HH outperforms GE-HH* and GE-HH** (in

most cases), not only on solution quality, but also on the

average and the standard deviation. Comparing the results

of GE-HH* with GE-HH**, the results demonstrate that

GE-HH** outperforms GE-HH* on five out of eight

instances. The average and standard deviation of GE-HH**

are better than GE-HH* for all tested instances. The results

demonstrate the importance of incorporating the adaptive

memory mechanism within GE-HH as well as implying that

GE-HH is more general and consistent.

We now compare the performance of GE-HH with the best

available results in the literature which are divided into two

groups (see Table 15): ITC 2007 winners (Table 16) and

Post-ITC 2007 (Table 17 hyper-heuristic and bespoke

methods). In addition, we also included the results of GE-

HH** in the comparison to assess its ability in producing

good quality solutions compared to ITC 2007 winners as

well as post ITC 2007 methods. It is clear from Tables 16

and 17 that GE-HH is the overall best. The presented results

demonstrate that GE-HH not only generalizes well over a

set of problem instances, but also produces much higher

quality solutions. One can also see that GE-HH**

outperformed the ITC 2007 winners on 7 instances and post

ITC 2007 methods on 4 out of 8 tested instances (see

Tables 16 and 17).

TABLE 14 RESULTS OF GE-HH COMPARED TO GE-HH* AND GE-HH**
 GE-HH GE-HH* GE-HH**

Instances Best Average Std Time Best Average Std Time Best Average Std Time

Dataset 1 4362 4394.10 29.18 10.83 4370 4439.31 71.71 10 4370 4401.12 44.24 10

Dataset 2 380 399.80 12.56 10.83 395 413.17 22.33 10 380 405.12 13.94 10

Dataset 3 8991 9072.35 112.06 10.83 8998 9140.67 206.48 10 8995 9120.67 180.15 10
Dataset 4 15094 15483.42 402.25 10.83 15394 16433.71 996.42 10 15184 15824.87 564.74 10

Dataset 5 2912 3010.15 28.298 10.83 2990 3042.06 57.53 10 2993 3018.27 43.62 10

Dataset 6 25735 25792.35 56.247 10.83 25818 25930.17 294.57 10 25786 25860.24 94.28 10
Dataset 7 4025 4062.85 45.74 10.83 4037 4083.92 54.68 10 4041 4068.15 44.93 10

Dataset 8 7452 7500.48 64.99 10.83 7465 7525.77 78.01 10 7472 7581.10 63.85 10

Note: GE-HH: with the adaptive memory mechanism. GE-HH*: without adaptive memory. GE-HH**: with adaptive memory but the computational time fixed

same as GE-HH* (10 minutes). Times represent average time in minutes. Best results are highlighted in bold.

TABLE 15 ACRONYMS OF COMPARED METHODS

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, October 2013 16

Symbol References

1 Mitc1 [66]

IT
C

 2
0
0

7

w
in

n
ers

2 Mitc2 [67]

3 Mitc3 [68]

4 Mitc4 [69]

5 Mitc5 [70]

6 Mitc6 [71] H
H

P
o

st-IT
C

2
0
0
7

7 Mitc7 [72]

8 Mitc8 [73] N
O

N
-

H
H

 9 Mitc9 Post- Müller

10 Mitc10 [74]

Note: HH: hyper-heuristic. NON-HH: bespoke methods

TABLE 16 RESULTS OF GE-HH AND GE-HH** ON THE ITC 2007 EXAM TIMETABLING DATASETS
COMPARED TO ITC 2007 WINNERS

 GE-HH GE-HH** ITC 2007 Winners

Instances Best Average ∆ (%) ∆* (%) Rank Best Mitc1 Mitc2 Mitc3 Mitc4 Mitc5

Dataset 1 4362 4394.10 * 0.55 1 4370 4370 5905 8006 6670 12035
Dataset 2 380 399.80 * * 1 380 400 1008 3470 623 3074

Dataset 3 8991 9072.35 * * 1 8995 10049 13862 18622 - 15917

Dataset 4 15094 15483.42 * * 1 15184 18141 18674 22559 - 23582
Dataset 5 2912 3010.15 * 0.74 1 2993 2988 4139 4714 3847 6860
Dataset 6 25735 25792.35 * * 1 25786 26950 27640 29155 27815 32250

Dataset 7 4025 4062.85 * * 1 4041 4213 6683 10473 5420 17666
Dataset 8 7452 7500.48 * * 1 7472 7861 10521 14317 - 16184

“*” means GE-HH result is better than other methods. “-“ indicates no feasible solution has been found. Best results are highlighted in bold.
∆*(%): the percentage deviation of the average value with regard to the best known results.

TABLE 17 RESULTS OF GE-HH ON THE ITC 2007 EXAM TIMETABLING DATASETS
 COMPARED TO POST-ITC 2007 APPROACHES

GE-HH GE-HH**
Post ITC 2007

Hyper-heuristic Bespoke methods

Instances Best Average ∆ (%) ∆* (%) Rank Bets Mitc6 Mitc7 Mitc8 Mitc9 Mitc10

Dataset 1 4362 4394.10 * * 1 4370 6235 8559 4775 4370 4633
Dataset 2 380 399.80 * 3.84 1 380 2974 830 385 385 405

Dataset 3 8991 9072.35 * 0.84 1 8995 15832 11576 8996 9378 9064

Dataset 4 15094 15483.42 * 0.75 1 15184 35106 21901 16204 15368 15663
Dataset 5 2912 3010.15 * 0.74 1 2993 4873 3969 2929 2988 3042
Dataset 6 25735 25792.35 * 0.20 1 25786 31756 28340 25740 26365 25880

Dataset 7 4025 4062.85 * * 1 4041 11562 8167 4087 4138 4037
Dataset 8 7452 7500.48 * * 1 7472 20994 12658 7777 7516 7461

“*” means GE-HH result is better than other methods. Best results are highlighted in bold. ∆*(%): the percentage deviation of the average
value with regard to the best known results.

B. Problems Domain II: Computational Results on

Capacitated Vehicle Routing Problems

1) Test Set I: Christofides Datasets

The experimental results of GE-HH and GE-HH* are

reported in Table 18, where for 4 out of 14 instances, GE-

HH achieved better results than GE-HH* (tie on7

instances). The average results obtained by GE-HH on all

instances are better than GE-HH* and the standard

deviation is relatively small (varies between 0.00 and 0.93).

Even though GE-HH did not outperform GE-HH* across all

instances, however, the standard deviation reveals that GE-

HH generalized well overall instances. Overall, the result

implies that hybridizing the adaptive memory mechanism

with GE-HH has made a significant improvement.

We compare the experimental results of GE-HH with the

best available results in the literature in Table 19. To the

best of our knowledge, only two hyper-heuristics have been

tested on Christofides instances (first and second methods

in Table 19) and both report the percentage deviation only.

Due to the large number of bespoke methods that are

available in the literature, we have only considered those

that have produced the best known results and some of

recent published methods. The considered methods are

classified into single based and population based solution

methods (see Table 19). Table 20 shows the comparison of

GE-HH against hyper-heuristic methods in term of

percentage deviation from the best known results. We can

see that, for 9 instances GE-HH matches the best known

results in the literature and for 4 instances, GE-HH

produced a better quality (ranked first) when compared to

other hyper-heuristics. The computational results of GE-HH

compared to other bespoke methods are presented in Table

21, where for 9 out of 12 instances GE-HH has obtained the

best known results. For the remaining instances, the quality

of the solutions with regard to percentage deviation is

between 1.9% and 0.11% and instance ranking varies

between 2 and 4. According to this result, GE-HH is

competitive with the presented bespoke methods.

Considering the generality, it is obvious that GE-HH is able

to produce good results across all instances and the

percentage deviation is relatively small.

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, October 2013 17

TABLE 18 RESULTS OF GE-HH COMPARED TO GE-HH*

 GE-HH GE-HH*

Instances Best Average Std Time Best Average Std Time

1 524.61 524.61 0.00 10.12 524.61 524.61 0.00 8.20

2 835.26 835.86 0.80 21.02 835.26 836.14 1.27 16.12

3 826.13 827.09 0.62 20.33 826.13 827.71 1.48 15.06
4 1029.65 1034.13 0.92 30.43 1032.51 1034.71 1.37 24.43

5 1308.54 1316.89 0.87 19.09 1310.62 1317.51 4.51 16.08

6 555.43 555.43 0.00 9.43 555.43 555.79 0.57 7.43
7 909.67 910.17 0.91 11.18 909.67 910.10 1.10 8.70

8 865.94 866.10 0.35 13.44 865.94 866.19 0.41 10.06

9 1164.98 1170.96 0.27 19.67 1164.35 1171.73 3.29 16.11
10 1403.38 1412.49 0.96 21.83 1405.94 1414.25 3.69 18.71

11 1042.12 1054.84 0.93 12.65 1042.11 1091.17 6.51 7.95

12 819.55 819.55 0.00 9.95 819.55 820.21 1.96 6.34
13 1543.05 1551.59 0.18 10.07 1543.83 1554.03 2.28 7.83

14 866.36 866.36 0.00 12.62 866.36 866.39 0.11 8.16

Note: GE-HH: with the adaptive memory mechanism. GE-HH*: without adaptive memory. Time: represents

average time in minutes. Best results are highlighted in bold.

TABLE 19 ACRONYMS OF COMPARED METHODS

Symbol References

1 Cvrp11 [75] HH

2 Cvrp12 [76]

3 Cvrp13 [77] L
S

P
O

P
 N

O
N

-H
H

4 Cvrp14 [78]

5 Cvrp15 [79]

6 Cvrp16 [80]

7 Cvrp17 [81]

8 Cvrp18 [82]

9 Cvrp19 [83]

Note: HH: hyper-heuristic methods. NON-HH: bespoke methods. LS: local

search methods. POP: population based methods

TABLE 20 RESULTS OF GE-HH COMPARED TO HYPER-HEURISTIC METHODS

 GE-HH Hyper-heuristics

Instances Best Average ∆(%) ∆*(%) Rank Cvrp11 Cvrp12 BK

1 524.61 524.61 0.00 0 * 0.00 0.00 524.61
2 835.26 835.86 0.00 0.07 * 0.05 0.62 835.26

3 826.13 827.09 0.00 0.11 * 0.21 0.42 826.14

4 1029.65 1034.13 0.11 0.55 1 0.52 2.50 1028.42
5 1308.54 1316.89 1.33 1.98 1 2.05 5.07 1291.29

6 555.43 555.43 0.00 0 * 0.00 - 555.43

7 909.67 910.17 0.00 0.05 * 0.09 - 909.68
8 865.94 866.10 0.00 0.01 * 0.00 - 865.94

9 1164.98 1170.96 0.20 0.72 1 0.70 - 1162.55

10 1403.38 1412.49 0.53 1.19 1 1.24 - 1395.85
11 1042.11 1054.84 0.00 1.22 * 0.88 0.19 1042.11

12 819.55 819.55 0.00 0 * 0.00 0.00 819.56

13 1543.05 1551.59 1.90 2.47 2 1.00 - 1514.14
14 866.36 866.36 0.00 0 * 0.00 - 866.37

Note: ‘*’ indicates that the obtained result is the same as the best known result. BK: best known

results in the literature. “-“ indicates no feasible solution has been found. Best results are highlighted

in bold. ∆*(%): the percentage deviation of the average value with regard to the best known results.

TABLE 21 RESULTS OF GE-HH COMPARED TO BESPOKE METHODS

GE-HH
Bespoke methods

Single solutions based Population based

Instances Best Average ∆(%) Rank Cvrp13 Cvrp14 Cvrp15 Cvrp16 Cvrp17 Cvrp18 Cvrp19

1 524.61 524.61 0.00 * 524.61 524.61 524.61 524.61 524.61 524.61 524.71

2 835.26 835.86 0.00 * 835.26 835.77 835.26 838.60 840.47 835.26 849.77
3 826.13 827.09 0.00 * 826.14 829.45 826.14 828.56 826.14 826.14 844.72

4 1029.65 1034.13 0.11 2 1028.42 1036.16 1028.42 1033.21 1032.19 1028.42 1059.03

5 1308.54 1316.89 1.33 4 1298.79 1322.65 1291.45 1318.25 1309.72 1294.21 1302.33
6 555.43 555.43 0.00 * 555.43 555.43 555.43 555.43 - 555.43 555.43

7 909.67 910.17 0.00 * 909.68 913.23 909.68 920.72 - 909.68 909.68

8 865.94 866.10 0.00 * 865.94 865.94 865.94 869.48 - 865.94 866.32
9 1164.98 1170.96 0.20 3 1162.55 1177.76 1162.55 1173.12 - 1163.41 1181.60

10 1403.38 1412.49 0.53 4 1397.94 1418.51 1395.85 1435.74 - 1397.51 1417.88

11 1042.11 1054.84 0.00 * 1042.11 1073.47 1042.11 1042.87 1042.11 1042.11 1042.11

12 819.55 819.55 0.00 * 819.56 819.56 819.56 919.56 819.56 819.56 847.56

13 1543.05 1551.59 1.90 2 1541.14 1573.81 1541.14 1545.51 - 1544.57 1542.86

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, October 2013 18

14 866.36 866.36 0.00 * 866.37 866.37 866.37 866.37 - 866.37 866.37

Note: ‘*’ indicates that the obtained result is the same as the best known result. “-“ indicates no feasible solution has been found. Best results
are highlighted in bold.

2) Test Set II: Golden Datasets

The computational results of GE-HH and GE-HH* are

tabulated in Table 22. The presented results clearly show

that GE-HH outperformed GE-HH* across all instances.

Furthermore, the average and standard deviation of GE-HH

is much better than GE-HH*, again indicating that the

adaptive memory mechanism has a big impact on the

performance and generality.

In order to assess the performance of GE-HH, the results

of GE-HH are compared with the best available results in

the literature. Again, due to the uncountable number of

methods that have been tested on Golden instances, only

those produced the best known results and few recent

methods are considered as shown in Table 23. To the best

of our knowledge, only one hyper-heuristic (first method in

Table 23) has been tested on Golden instances. Table 24

gives the comparison results. From Table 24, one can find

that, GE-HH reached the best known results for 4 out of 20

instances. For the other instances, the quality of solution

(percentage deviation) is between 0.17% and 0.68% and

instance ranking varies between 2 and 5. Compared to the

hyper-heuristic method (first method in Table 24), GE-HH

is able to obtain better solutions on 14 instances. When

comparing with bespoke methods, for 4 instances GE-HH

reached the best known results. GE-HH produces

competitive results for the remaining 16 instances

compared to other bespoke methods and very close to the

best known value (percentage deviation). It should be noted

that bespoke methods are specifically designed to produce

the best results for one or more instances, whilst, one can

see that GE-HH is able to obtain a much higher level of

generality across all instances.

TABLE 22 RESULTS OF GE-HH COMPARED TO GE-HH*

 GE-HH GE-HH*

Instances Best Average Std Time Best Average Std Time

1 5626.81 5631.56 0.92 15.04 5703.21 5697.56 1.81 10.27
2 8446.19 8457.16 1.24 22.13 8484.16 8457.16 1.67 18.09

3 11081.60 11120.40 1.07 32.06 11138.44 11120.40 1.18 27.31

4 13658.84 13673.64 1.30 37.31 13708.26 13673.64 1.46 32.19
5 6460.98 6494.86 0.84 17.24 6468.83 6494.86 1.53 14.27

6 8462.10 8488.93 1.03 19.11 8485.30 8488.93 1.16 16.42

7 10202.24 10280.32 1.10 31.08 10262.43 10280.32 1.20 28.40
8 11690.82 11795.80 1.03 41.64 11784.50 11795.80 1.11 36.08

9 583.39 596.19 0.75 18.52 589.92 596.19 1.26 13.92

10 740.91 769.98 1.02 22.18 758.22 789.98 1.13 18.13
11 919.80 986.60 0.90 29.37 949.38 986.60 1.31 25.08

12 1111.43 1126.64 1.02 40.19 1155.76 1186.64 1.10 36.10

13 857.19 868.73 0.86 30.08 876.64 898.73 1.21 26.06
14 1083.59 1108.12 0.96 24.40 1097.61 1108.12 1.42 19.20

15 1350.17 1390.16 0.84 35.08 1376.42 1390.16 1.38 29.06

16 1631.91 1682.98 0.93 42.15 1640.19 1682.98 1.29 37.12
17 707.76 718.56 0.60 18.07 714.52 720.56 1.01 14.10

18 1003.43 1017.13 1.08 19.11 1017.24 1057.13 1.15 16.02

19 1368.12 1390.62 1.30 26.30 1374.11 1390.62 1.46 21.14
20 1820.09 1855.16 0.77 32.08 1830.48 1855.16 1.09 28.06

Note: GE-HH: with the adaptive memory mechanism. GE-HH*: without adaptive memory. Time

represents average time in minutes. Best results are highlighted in bold.

TABLE 23 ACRONYMS OF COMPAREDMETHODS

Symbol References

1 Cvrp21 [84]
2 Cvrp22 [85]

3 Cvrp23 [86]

4 Cvrp24 [17]
5 Cvrp25 [82]

6 Cvrp26 [81]

7 Cvrp27 [87]

TABLE 24 RESULTS OF GE-HH COMPARED TO BESPOKE METHODS

 GE-HH HH Bespoke methods

Instances Best Average ∆(%) ∆*(%) Rank Cvrp21 Cvrp21 Cvrp23 Cvrp24 Cvrp25 Cvrp26 Cvrp27

1 5626.81 5631.56 0.00 0.08 * 5650.91 5627.54 5626.81 5759.61 5670.38 5638.42 5643.27
2 8446.19 8457.16 0.17 0.30 2 8469.32 8447.92 8431.66 8501.67 8459.73 8457.04 8455.12

3 11081.60 11120.40 0.43 0.76 3 11047.01 11036.22 11036.22 11364.69 11101.12 11098.93 11083.49

4 13658.84 13673.64 048 0.59 4 13635.31 13624.52 13592.88 14136.32 13698.17 13816.35 13671.18
5 6460.98 6494.86 0.00 0.52 * 6466.68 6460.98 6460.98 6512.27 6460.98 6460.98 6460.98

6 8462.10 8488.93 0.68 1.00 5 8416.13 8412.88 8404.26 8553.19 8470.64 8430.66 8461.18

7 10202.24 10280.32 0.44 1.21 5 10181.75 10195.56 10156.58 10422.65 10215.14 10209.64 10198.25
8 11690.82 11795.80 0.23 1.13 2 11713.62 11663.55 11691.06 11986.73 11750.38 11785.11 11695.24

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, October 2013 19

9 583.39 596.19 0.51 2.71 2 585.14 583.39 580.42 586.68 586.87 585.29 583.39

10 740.91 769.98 0.32 4.26 2 748.89 741.56 738.49 748.89 746.56 745.25 743.19
11 919.80 986.60 0.55 7.85 3 922.70 918.45 914.72 924.70 925.52 924.74 922.17

12 1111.43 1126.64 0.42 1.79 4 1119.06 1107.19 1106.76 1125.71 1114.31 1123.29 1111.28

13 857.19 868.73 0.00 1.34 * 864.68 859.11 857.19 867.29 865.19 861.94 860.17
14 1083.59 1108.12 0.28 2.55 3 1095.40 1081.31 1080.55 1098.86 1089.21 1097.49 1085.24

15 1350.17 1390.16 0.56 3.54 4 1359.94 1345.23 1342.53 1356.65 1355.28 1356.34 1346.18

16 1631.91 1682.98 0.68 3.83 4 1639.11 1622.69 1620.85 1642.90 1632.21 1643.74 1625.89
17 707.76 718.56 0.00 1.52 * 708.90 707.79 707.76 712.26 712.18 709.84 710.87

18 1003.43 1017.13 0.83 2.21 5 1002.42 998.73 995.13 1017.91 1006.31 1005.97 1001.17

19 1368.12 1390.62 0.15 1.80 4 1374.24 1366.86 1365.97 1384.93 1373.24 1387.93 1366.86
20 1820.09 1855.16 0.003 1.93 2 1830.80 1820.09 1820.02 1855.91 1831.17 1872.45 1824.14

‘*’ indicates that the obtained result is the same as the best known result. HH: hyper-heuristic method. Best results are highlighted in bold.

VII. DISCUSSION

As shown throughout this work, in both problem domains

(exam timetabling and capacitated vehicle routing

problems), GE-HH obtained competitive results, if not

better (on some instances), when compared against existing

best methods in the literature. GE-HH is able to update the

best known results for some instances (on both domains). In

both domains, our GE-HH outperformed previously

proposed hyper-heuristic methods. We note that, for both

domains, the standard deviation is relatively small. Also,

the percentage deviation demonstrates that, in both

domains, GE-HH results are very close to the best known.

This positive result reveals that our GE-HH is efficient,

consistent and generalizes well over both domains. In our

opinion, this is due to the following. (i) The capability of

GE-HH in dealing with different problem instances by

evolving different local search templates during the

problem solving process. By evolving different local search

templates, GE-HH can easily adapt to any changes that

might occur during problem solving. (ii) Since some

problem instances are very difficult to solve and have many

local optima, GE-HH struggles in obtaining good quality

solutions without getting stuck in local optima. Therefore,

by incorporating the adaptive memory mechanism, GE-HH

is more effective in diversifying the search of solutions by

exploring different regions. Overall, the benefit of the

proposed method is its ability to find the best solver from

the supplied pool of solvers (local search acceptance

criteria) as well as the best configuration for the selected

solver. This alleviates the question of which solver one

should use and what is the best configuration for it.

Furthermore, it does not rely on complicated search

approaches to find out how to generate a local search

template. Rather, it provides a general mechanism

regardless of the nature and complexity of the problems. It

is simple to implement, and can be easily applied to other

domains without significant effort (i.e. users only need to

change the set of neighborhood structures).

VIII. CONCLUSIONS

In this work, we have proposed a new improvement based

hyper-heuristic framework for combinatorial optimization

problems. The proposed framework employs a grammatical

evolution algorithm (GE-HH) to search the space of basic

heuristic components. These are: a set of acceptance

criteria, neighborhood structures and neighborhood

combinations and are represented by a grammar definition.

The proposed framework takes these heuristic components

as input and evolves several templates of perturbation

heuristics during problem solving. The performance of the

GE-HH is enhanced by hybridizing it with an adaptive

memory mechanism which contains a set of high quality

and diverse solutions. To demonstrate the generality,

consistency and efficiency of the proposed framework, we

have tested the proposed framework on two different and

challenging problem domains, exam timetabling and

capacitated vehicle routing benchmark problems, using the

same parameter settings. The results demonstrate that GE-

HH produces highly competitive solutions, if not better, and

generalizes well across both problem domains. The main

contributions of this work are:

- The development of a GE-HH framework that

automatically generates templates of perturbation

heuristics, demonstrating that strengths of different

search algorithms can be merged into one hyper-

heuristic framework.

- The integration of an adaptive memory mechanism,

which contains a collection of high quality and diverse

solutions, within a hyper-heuristic framework, and

which also obtained consistent results, generalized

across different problem domains and produced high

quality solutions which are either competitive or better

than (on some cases) other bespoke methods.

- The development of a hyper-heuristic framework which

can be easily applied to different problem domains

without much effort (i.e. the user only needs to change

the neighborhood structures).

Experimental results have demonstrated the effectiveness

and the generality of this method on very well established

benchmarks. In our future work, we intend to investigate

the effectiveness of integrating GE-HH in the HyFlex

framework (a benchmark framework for cross-domain

heuristic search) that has been recently introduced [88, 89].

ACKNOWLEDGMENT

The authors wish to thank Universiti Kebangsaan

Malaysia for supporting this work under the UKM Action

Research Grant Scheme (UKM-PTS-011-2009) and

Fundamental Research Grant Scheme (UKM-TT-02- FRGS

0121- 2009).

REFERENCES

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, October 2013 20

[1] H. H. Hoos and T. Stützle, Stochastic local search:

Foundations and applications: Morgan Kaufmann, 2005.
[2] T. Weise, M. Zapf, R. Chiong, and A. Nebro, "Why is

optimization difficult?," Nature-Inspired Algorithms for

Optimisation, pp. 1-50, 2009.
[3] E. G. Talbi, Metaheuristics From design to implementation:

Wiley Online Library, 2009.

[4] M. Gendreau and J. Y. Potvin, Handbook of Metaheuristics:
Springer Verlag, 2010.

[5] D. H. Wolpert and W. G. Macready, "No free lunch theorems

for optimization," IEEE Transactions on Evolutionary
Computation, vol. 1, pp. 67-82, 1997.

[6] E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, and J.

R. Woodward, "A Classification of Hyper-heuristic
Approaches," in Handbook of Metaheuristics. vol. 146, M.

Gendreau and J. Potvin, Eds., 2nd ed: Springer, 2010, pp. 449-

468.
[7] Y. Hamadi, E. Monfroy, and F. Saubion, "What is Autonomous

Search?," Hybrid Optimization, pp. 357-391, 2011.

[8] R. Poli and M. Graff, "There is a free lunch for hyper-

heuristics, genetic programming and computer scientists," in

Genetic Programming, 2009, pp. 195-207.

[9] K. A. Smith-Miles, "Cross-disciplinary perspectives on meta-
learning for algorithm selection," ACM Computing Surveys

(CSUR), vol. 41, pp. 1-25, 2008.

[10] A. E. Eiben, R. Hinterding, and Z. Michalewicz, "Parameter
control in evolutionary algorithms," Evolutionary Computation,

IEEE Transactions on, vol. 3, pp. 124-141, 1999.
[11] R. Battiti and M. Brunato, "Reactive search optimization:

learning while optimizing," Handbook of Metaheuristics, pp.

543-571, 2010.
[12] Y. S. Ong and A. J. Keane, "Meta-Lamarckian learning in

memetic algorithms," IEEE Transactions on Evolutionary

Computation,, vol. 8, pp. 99-110, 2004.
[13] J. A. Vrugt, B. A. Robinson, and J. M. Hyman, "Self-adaptive

multimethod search for global optimization in real-parameter

spaces," IEEE Transactions on Evolutionary Computation,, vol.
13, pp. 243-259, 2009.

[14] M. W. Carter, G. Laporte, and S. Y. Lee, "Examination

timetabling: Algorithmic strategies and applications," The
Journal of the Operational Research Society, vol. 47, pp. 373-

383, 1996.

[15] B. McCollum, A. Schaerf, B. Paechter, P. McMullan, R. Lewis,
A. J. Parkes, L. D. Gaspero, R. Qu, and E. K. Burke, "Setting

the research agenda in automated timetabling: The second

international timetabling competition," INFORMS Journal on
Computing, vol. 22, pp. 120-130, 2010.

[16] N. Christofides, A. Mingozzi, and P. Toth, "The vehicle routing

problem," Combinatorial optimization, vol. 11, p. 315338,
1979.

[17] F. Li, B. Golden, and E. Wasil, "Very large-scale vehicle

routing: new test problems, algorithms, and results," Computers
& Operations Research, vol. 32, pp. 1165-1179, 2005.

[18] K. Chakhlevitch and P. Cowling, "Hyperheuristics: recent

developments," Adaptive and Multilevel Metaheuristics, pp. 3-

29, 2008.

[19] E. K. Burke, G. Kendall, and E. Soubeiga, "A tabu-search

hyperheuristic for timetabling and rostering," Journal of
Heuristics, vol. 9, pp. 451-470, 2003.

[20] E. K. Burke, M. Hyde, G. Kendall, and J. Woodward, "A

genetic programming hyper-heuristic approach for evolving 2-
D strip packing heuristics," IEEE Transactions on Evolutionary

Computation, vol. 14, pp. 942-958, 2010.

[21] E. K. Burke, M. R. Hyde, and G. Kendall, "Grammatical
Evolution of Local Search Heuristics," IEEE Transactions on

Evolutionary Computation, 2011.

[22] P. Garrido and M. C. Riff, "DVRP: a hard dynamic
combinatorial optimisation problem tackled by an evolutionary

hyper-heuristic," Journal of Heuristics, pp. 1-40, 2010.

[23] R. Qu and E. K. Burke, "Hybridizations within a graph-based
hyper-heuristic framework for university timetabling

problems," Journal of the Operational Research Society, vol.

60, pp. 1273-1285, 2008.
[24] P. Ross, S. Schulenburg, J. G. Marín-Blázquez, and E. Hart,

"Hyper-heuristics: learning to combine simple heuristics in bin-

packing problems," in In Proceedings of GECCO'2002, 2002,

pp. 942–948.
[25] A. S. Fukunaga, "Automated discovery of local search

heuristics for satisfiability testing," Evolutionary Computation,

vol. 16, pp. 31-61, 2008.
[26] M. Bader-El-Den and R. Poli, "Generating SAT local-search

heuristics using a GP hyper-heuristic framework," 2008, pp.

37-49.
[27] J. C. Tay and N. B. Ho, "Evolving dispatching rules using

genetic programming for solving multi-objective flexible job-

shop problems," Computers & Industrial Engineering, vol. 54,
pp. 453-473, 2008.

[28] R. Poli, J. Woodward, and E. K. Burke, "A histogram-matching

approach to the evolution of bin-packing strategies," in
Proceedings of the IEEE Congress of Evolutionary

Computation (CEC 2007), 2007, pp. 3500-3507.

[29] E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and R.
Qu, "Hyper-heuristics: A Survey of the State of the Art,"

Journal of the Operational Research Society, to appear, 2012.

[30] M. O'Neill and C. Ryan, "Grammatical evolution," IEEE

Transactions on Evolutionary Computation, vol. 5, pp. 349-

358, 2001.

[31] R. I. McKay, N. X. Hoai, P. A. Whigham, Y. Shan, and M.
O’Neill, "Grammar-based Genetic Programming: a survey,"

Genetic Programming and Evolvable Machines, vol. 11, pp.

365-396, 2010.
[32] E. Soubeiga, "Development and application of hyperheuristics

to personnel scheduling," PhD thesis, School of Computer
Science and Information Technology, The University of

Nottingham, 2003.

[33] D. Ouelhadj and S. Petrovic, "A cooperative hyper-heuristic
search framework," Journal of Heuristics, vol. 16, pp. 835-857,

2010.

[34] M. Ayob and G. Kendall, "A monte carlo hyper-heuristic to
optimise component placement sequencing for multi head

placement machine," in Proceedings of the International

Conference on Intelligent Technologies, InTech'03, 2003, pp.
132-141.

[35] E. Burke, T. Curtois, M. Hyde, G. Kendall, G. Ochoa, S.

Petrovic, J. Vazquez-Rodriguez, and M. Gendreau, "Iterated
local search vs. hyper-heuristics: Towards general-purpose

search algorithms," in IEEE Congress on Evolutionary

Computation (CEC 2010), Barcelona, Spain, 2010, pp. 1-8.
[36] P. Hansen, N. Mladenović, and J. A. Moreno Pérez, "Variable

neighbourhood search: methods and applications," Annals of

Operations Research, vol. 175, pp. 367-407, 2010.
[37] Z. Lü, J. K. Hao, and F. Glover, "Neighborhood analysis: a case

study on curriculum-based course timetabling," Journal of

Heuristics, pp. 1-22, 2011.
[38] F. Glover, "Tabu search and adaptive memory programming-

advances, applications and challenges," Interfaces in computer

science and operations research, vol. 1, 1996.
[39] D. S. Johnson, "A theoretician’s guide to the experimental

analysis of algorithms," American Mathematical Society, vol.

220, pp. 215-250, 2002.

[40] L. Di Gaspero and A. Schaerf, "Neighborhood portfolio

approach for local search applied to timetabling problems,"

Journal of Mathematical Modelling and Algorithms, vol. 5, pp.
65-89, 2006.

[41] A. Goëffon, J. M. Richer, and J. K. Hao, "Progressive tree

neighborhood applied to the maximum parsimony problem,"
IEEE/ACM Transactions on Computational Biology and

Bioinformatics, pp. 136-145, 2008.

[42] E. K. Burke, A. J. Eckersley, B. McCollum, S. Petrovic, and R.
Qu, "Hybrid variable neighbourhood approaches to university

exam timetabling," European Journal of Operational Research,

vol. 206, pp. 46-53, 2010.
[43] R. Bellio, L. Di Gaspero, and A. Schaerf, "Design and

statistical analysis of a hybrid local search algorithm for course

timetabling," Journal of Scheduling, pp. 1-13, 2011.
[44] C. Blum, J. Puchinger, G. Raidl, and A. Roli, "Hybrid

metaheuristics," Hybrid Optimization, pp. 305-335, 2011.

[45] E. G. Talbi, "A taxonomy of hybrid metaheuristics," Journal of
Heuristics, vol. 8, pp. 541-564, 2002.

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, October 2013 21

[46] E. D. Taillard, L. M. Gambardella, M. Gendreau, and J. Y.

Potvin, "Adaptive memory programming: A unified view of
metaheuristics," European Journal of Operational Research,

vol. 135, pp. 1-16, 2001.

[47] E. G. Talbi and V. Bachelet, "Cosearch: A parallel cooperative
metaheuristic," Journal of Mathematical Modelling and

Algorithms, vol. 5, pp. 5-22, 2006.

[48] C. Fleurent and J. Ferland, "Genetic hybrids for the quadratic
assignment problem," American Mathematical Society, vol. 16,

pp. 173-187, 1993.

[49] V. Nannen and A. Eiben, "Efficient relevance estimation and
value calibration of evolutionary algorithm parameters," in

Proceedings of the IEEE Congress of Evolutionary

Computation (CEC 2007), 2007, pp. 103-110.
[50] A. Schaerf, "A survey of automated timetabling," Artificial

Intelligence Review, vol. 13, pp. 87-127, 1999.

[51] R. Qu, E. K. Burke, B. McCollum, L. T. G. Merlot, and S. Y.
Lee, "A survey of search methodologies and automated system

development for examination timetabling," Journal of

Scheduling, vol. 12, pp. 55-89, 2009.

[52] M. Ayob, A. Malik, S. Abdullah, A. Hamdan, G. Kendall, and

R. Qu, "Solving a practical examination timetabling problem: a

case study," Computational Science and Its Applications–
ICCSA 2007, pp. 611-624, 2007.

[53] P. Toth and D. Vigo, The vehicle routing problem vol. 9:

Society for Industrial Mathematics, 2002.
[54] G. Clarke and J. Wright, "Scheduling of vehicles from a central

depot to a number of delivery points," Operations research,
vol. 12, pp. 568-581, 1964.

[55] J. Silberholz and B. Golden, "Comparison of metaheuristics,"

Handbook of Metaheuristics, pp. 625-640, 2010.
[56] H. Asmuni, E. Burke, J. Garibaldi, and B. McCollum, "Fuzzy

multiple heuristic orderings for examination timetabling,"

Practice and Theory of Automated Timetabling V, pp. 334-353,
2005.

[57] E. K. Burke, B. McCollum, A. Meisels, S. Petrovic, and R. Qu,

"A graph-based hyper-heuristic for educational timetabling
problems," European Journal of Operational Research, vol.

176, pp. 177-192, 2007.

[58] N. Pillay and W. Banzhaf, "A study of heuristic combinations
for hyper-heuristic systems for the uncapacitated examination

timetabling problem," European Journal of Operational

Research, vol. 197, pp. 482-491, 2009.
[59] R. Qu, E. K. Burke, and B. McCollum, "Adaptive automated

construction of hybrid heuristics for exam timetabling and

graph colouring problems," European Journal of Operational
Research, vol. 198, pp. 392-404, 2009.

[60] L. Merlot, N. Boland, B. Hughes, and P. Stuckey, "A hybrid

algorithm for the examination timetabling problem," Practice
and Theory of AutomatedTimetabling IV, pp. 207-231, 2003.

[61] E. Burke and J. Newall, "Enhancing timetable solutions with

local search methods," Practice and Theory of
AutomatedTimetabling IV, pp. 195-206, 2003.

[62] S. Abdullah and E. Burke, "A Multi-start large neighbourhood

search approach with local search methods for examination

timetabling," 2006, pp. 6-10.

[63] M. Caramia, P. Dell'Olmo, and G. F. Italiano, "Novel local-

search-based approaches to university examination
timetabling," INFORMS Journal on Computing, vol. 20, p. 86,

2008.

[64] Y. Yang and S. Petrovic, "A novel similarity measure for
heuristic selection in examination timetabling," Practice and

Theory of Automated Timetabling V, pp. 247-269, 2005.

[65] E. K. Burke and Y. Bykov, "Solving exam timetabling
problems with the flex-deluge algorithm," in Proceedings of the

Sixth International Conference on the Practice and Theory of

Automated Timetabling, 2006, pp. 370–372.
[66] T. Müller, "ITC2007 solver description: a hybrid approach,"

Annals of Operations Research, vol. 172, pp. 429-446, 2009.

[67] C. Gogos, P. Alefragis, and E. Housos, "A multi-staged
algorithmic process for the solution of the examination

timetabling problem," Practice and Theory of Automated

Timetabling (PATAT 2008), Montreal, pp. 19-22, 2008.

[68] M. Atsuta, K. Nonobe, and T. Ibaraki, "ITC2007 Track 2, an

approach using general csp solver," Practice and Theory of
Automated Timetabling (PATAT 2008), pp. 19–22, 2008.

[69] G. De Smet, "Itc2007-examination track," Practice and Theory

of Automated Timetabling (PATAT 2008), Montreal, pp. 19-22,
2008.

[70] A. Pillay, "Developmental Approach to the Examination

timetabling Problem," Practice and Theory of Automated
Timetabling (PATAT 2008), pp. 19–22, 2008.

[71] E. Burke, R. Qu, and A. Soghier, "Adaptive Selection of

Heuristics for Improving Constructed Exam Timetables," in
proceedings of PATAT10, 2010, pp. 136-151.

[72] N. Pillay, "Evolving Hyper-Heuristics for a Highly Constrained

Examination " in In proceedings of PATAT10, 2010, pp. 336-
346

[73] C. Gogos, P. Alefragis, and E. Housos, "An improved multi-

staged algorithmic process for the solution of the examination
timetabling problem," Annals of Operations Research, pp. 1-

19, 2010.

[74] B. McCollum, P. McMullan, A. Parkes, E. Burke, and S.

Abdullah, "An extended great deluge approach to the

examination timetabling problem," in Proceedings of the 4th

Multidisciplinary International Conference on Scheduling:
Theory and Applications, 2009, pp. 424–434.

[75] P. Garrido and C. Castro, "Stable solving of CVRPs using

hyperheuristics," in Proceeding GECCO '09, 2009, pp. 255-
262.

[76] D. Meignan, A. Koukam, and J. C. Créput, "Coalition-based
metaheuristic: a self-adaptive metaheuristic using

reinforcement learning and mimetism," Journal of Heuristics,

pp. 1-21, 2010.
[77] É. Taillard, "Parallel iterative search methods for vehicle

routing problems," Networks, vol. 23, pp. 661-673, 1993.

[78] M. Gendreau, A. Hertz, and G. Laporte, "A tabu search
heuristic for the vehicle routing problem," Management

Science, vol. 40, pp. 1276-1290, 1994.

[79] Y. Rochat and É. D. Taillard, "Probabilistic diversification and
intensification in local search for vehicle routing," Journal of

Heuristics, vol. 1, pp. 147-167, 1995.

[80] P. Toth and D. Vigo, "The granular tabu search and its
application to the vehicle-routing problem," INFORMS Journal

on Computing, vol. 15, p. 333, 2003.

[81] C. Alabas-Uslu and B. Dengiz, "A self-adaptive local search
algorithm for the classical vehicle routing problem," Expert

Systems With Applications, 2011.

[82] Y. Marinakis and M. Marinaki, "A hybrid genetic-Particle
Swarm Optimization Algorithm for the vehicle routing

problem," Expert Systems With Applications, vol. 37, pp. 1446-

1455, 2010.
[83] A. I. Yurtkuran and E. Emel, "A new Hybrid

Electromagnetism-like Algorithm for capacitated vehicle

routing problems," Expert Systems With Applications, vol. 37,
pp. 3427-3433, 2010.

[84] D. Pisinger and S. Ropke, "A general heuristic for vehicle

routing problems," Computers & Operations Research, vol. 34,

pp. 2403-2435, 2007.

[85] D. Mester and O. Braysy, "Active-guided evolution strategies

for large-scale capacitated vehicle routing problems,"
Computers & Operations Research, vol. 34, pp. 2964-2975,

2007.

[86] Y. Nagata, "Edge assembly crossover for the capacitated
vehicle routing problem," in Evolutionary Computation in

Combinatorial Optimization, 2007, pp. 142-153.

[87] Y. Marinakis and M. Marinaki, "Bumble Bees Mating
Optimization Algorithm for the Vehicle Routing Problem,"

Handbook of Swarm Intelligence, pp. 347-369, 2010.

[88] G. Ochoa, M. Hyde, T. Curtois, J. Vazquez-Rodriguez, J.
Walker, M. Gendreau, G. Kendall, B. McCollum, A. Parkes, S.

Petrovic, and E. Burke, "HyFlex: A Benchmark Framework for

Cross-Domain Heuristic Search Evolutionary Computation in
Combinatorial Optimization," in EVOLUTIONARY

COMPUTATION IN COMBINATORIAL OPTIMIZATION,

2012, pp. 136-147.
[89] E. Burke, M. Gendreau, M. Hyde, G. Kendall, B. McCollum,

G. Ochoa, A. Parkes, and S. Petrovic, "The Cross-Domain

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, October 2013 22

Heuristic Search Challenge – An International Research

Competition " in Learning and Intelligent Optimization, 2011,
pp. 631-634.

Nasser R. Sabar received the B.Sc. degree in

Computer Science from University of Al-

Anbar, Iraq and M.Sc. degree in Computer
Science from National University of Malaysia

(UKM), in 2005 and 2010, respectively.

Currently, he is working toward the PhD degree
in Computer Science at Data Mining and

Optimization Research Group (DMO), Centre

for Artificial Intelligent (CAIT), National
University of Malaysia. He has published 3 papers at international journals

and 7 papers at peer-reviewed international conferences. His research

interests include the design and development of hyper-heuristic
framework, adaptive algorithm, evolutionary computation, meta-heuristics

with a specific interest in combinatorial optimization problems, dynamic

optimization and data mining problems.

Dr. Masri Ayob is a lecturer in the Faculty of
Information Science and Technology, the

National University of Malaysia (UKM). She

obtained her PhD in Computer Science at The
University of Nottingham in 2005. Her main

research areas include meta-heuristics, hyper-
heuristics, scheduling and timetabling,

especially educational timetabling, healthcare

personnel scheduling and routing problems. She
has published more than 10 papers at international journals and 40 papers

at peer-reviewed international conferences. She was a member of ASAP

research group at The University of Nottingham. Currently, she is a
principle researcher in Data Mining and Optimization Research Group

(DMO), Centre for Artificial Intelligent (CAIT), UKM.

Graham Kendall is a Professor of Computer

Science. He is currently based at the
University of Nottingham’s Malaysia campus,

where he is serving as Vive-Provost (Research

and Knowledge Transfer). He is a member of
the Automated Scheduling, Optimisation and

Planning Research Group, School of

Computer Science. Graham was awarded a
BSc (Hons) First Class in Computation from

the University of Manchester Institute of Science and Technology

(UMIST), UK in 1997 and received his PhD from The University of
Nottingham (School of Computer Science) in 2000. He is a Fellow of the

Operational Research Society. Before entering academia he spent almost 20

years in the IT industry, working for various UK companies (including the
Co-operative Wholesale Society and Provincial Insurance), undertaking a

variety of roles including Computer Operator, Technical Support Manager

and Service Manager. He has edited and authored 9 books and has

published almost 50 refereed journal papers (the vast majority in ISI ranked

journals) and over 90 papers in peer reviewed conferences. He is an

Associate Editor of 8 international journals (including two IEEE
Transactions). He chairs the Steering Committee of the Multidisciplinary

International Conference on Scheduling: Theory and Applications, in

addition to chairing several other international conferences in recent years.
He has been awarded externally funded grants worth over £5.5M from a

variety of sources including the Engineering and Physical Sciences

Research Council and commercial organizations. Professor Kendall’s
expertise lies in Operational Research, Meta- and Hyper-Heuristics,

Evolutionary Computation and Artificial Intelligence, with a specific

interest in scheduling, including timetabling, sports scheduling, cutting and
packing and rostering.

Dr. Rong Qu is an Associate Professor in the School of Computer Science at
the University of Nottingham. She obtained her PhD in Computer Science at

The University of Nottingham in 2002. Her main research areas include

meta-heuristics, constraint programming,

mathematical programming, case based
reasoning and knowledge discovery techniques

on scheduling, especially educational

timetabling, healthcare personnel scheduling and
network routing problems, and a range of

combination optimization problems including

portfolio optimization. She has published more
than 30 papers at international journals and 30

papers at peer-reviewed international conferences. Dr Qu is a guest editor of

the special issue on "Artificial Intelligence Planning and Scheduling" at the
Journal of Scheduling, and the special issue on "Evolutionary Computation

in Scheduling" at IEEE Transactions on Evolutionary Computation. She has

been the program chair of six workshops, special sessions or IEEE
symposiums.

