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An Effective Method for Evolving Reaction
Networks in Synthetic Biochemical Systems

Quang Huy Dinh, Nathanael Aubert, Nasimul Noman, Teruo Fujii, Senior Member, IEEE, Yannick Rondelez, and
Hitoshi Iba, Member, IEEE,

Abstract—In this paper we introduce our approach for evolving
reaction networks. It is an efficient derivative of the Neu-
roEvolution of Augmenting Topologies algorithm directed at
the evolution of biochemical systems or molecular programs.
Our method addresses the problem of meaningful crossovers
between two chemical reaction networks of different topologies.
It also builds on features such as speciation to speed up the
search, to the point where it can deal with complete, realistic
mathematical models of the biochemical processes. We demon-
strate this framework by evolving credible biochemical answers
to challenging autonomous molecular problems: in vitro batch
oscillatory networks that match specific oscillation shapes. Our
experimental results suggest that the search space is efficiently
covered and that, by using crossover and preserving topological
innovations, significant improvements in performance can be
obtained for the automatic design of molecular programs.

Index Terms—Evolutionary Algorithm, Molecular Program-
ming, NEAT, Biochemical Oscillators, Crossover.

I. INTRODUCTION

THE emerging field of Molecular Programming explores
the possibility of using chemical systems to encode

complex information processing in a molecular medium. The
in vivo version of this idea, also known as synthetic biology
[1], harnesses the molecular processes of living cells, notably
the genetic expression machinery, to drive artificially inserted
genetic circuits. For the in vitro case, on which we focus here,
various forms of simplified biochemistry have been proposed
to allow the rational building of scalar [2]–[9] or spatial [10]
molecular circuits. These universal (in a computational sense
[11]) schemes are based on both activatory and inhibitory
processes between chemical compounds. Those processes can
be combined in a modular way to achieve the building of
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arbitrary network structures, and hence arbitrary computations.
One advantage of this in vitro approach is that the artificial
circuits are not subjected to the interferences from the cellular
host. Moreover, such systems are based on a limited set of
molecular interactions and may be subjected to quantitative
modeling [2], [3].

However, as in the in vivo case [12], it is not clear how best
to harness the available in vitro molecular primitives to achieve
a given information processing task. In most cases, Boolean
logic is used as a framework to guide the engineering of
complex operations [6], [13]. However, mass-action molecular
kinetics is intrinsically an analog process and therefore an
analog design has been proposed as a possible, more potent
alternative [12], [14]. Hence, for example, this has led to the
description [15], [16] or actual implementation [4] of various
neural network architectures using for instance DNA-based
reaction networks.

Whatever the framework, there are significant difficulties
remaining in the design of molecular circuits (the process
that leads from the desired behavior to the actual wet imple-
mentation). Generally, trial-and-error procedures are applied in
parallel with the use of mathematical models [17], [18], and
experimental engineering rules inferred from natural examples
[19], [20]. These approaches are not efficient for optimization
and implementation of complex systems that may require years
and hundreds of experiments to complete. Hence for this
reason, the automation of some steps becomes necessary.

Evolutionary Algorithms (EA) have already been applied to
the problem of searching the space of possible biochemical
networks implementing a given function [21]–[31]. However,
due to computational issues, as well as the unavailability of
accurate models [32], these approaches have always been
applied to highly idealized mathematical representations of
the underlying chemistry or biochemistry. While the reduction
in the number of variables can maintain some qualitative
prediction, quantitative prediction is generally lost. This means
that the result of the search process may suggest general design
guidelines, but will not provide directly a realistic candidate
for the wet implementation [33]. In this work, we build on
the existence of quantitative mathematical models describing
a particular in vitro molecular programming scheme known as
the DNA (Dynamic Network Assembly)-toolbox [2], [3], [5],
[34]. These quantitative models could theoretically permit the
automation of the full design of biochemical circuits, starting
from the target function and up to the actual concentration
of each chemical compound. However, they impose the use
of realistic, hence computationally costly, models. Moreover,
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the increased number of variables yields inflation in the size
of the search space, making simple optimization strategies
unlikely to find a solution within a reasonable time. This calls
for the development of an optimized and resource-efficient
evolutionary method.

In recent years, new ideas have been put forward to improve
the efficiency of EA, e.g. in evolving controllers for robots
[35]. For example, NEAT [36] has been proposed to evolve
the structure and parameters of Artificial Neural Networks
(ANN), and showed better performance than the best fixed-
topology methods on challenging problems. The increased
efficiency has been ascribed to an effective crossover strategy
and structural innovation protection, combined with a parsi-
monious addition of new nodes. The molecular networking of
the DNA-toolbox, outlined in Fig. 1, rests on a combination of
activatory or inhibitory chemical processes linking chemical
compounds considered as the nodes of a network. In this
sense, they bear a structural resemblance to neural networks.
Therefore, we apprehend that it might be possible to adapt
modern ANN construction strategies to in silico evolution of
biochemical systems, with a potentially large improvement in
search efficiency.

The rest of the paper is organized as follows. In section II
we describe the overview of the previous works done to fully
or partially automate the design of biochemical circuits and
how it is related to the presented work. Section III provides
a short primer on the in vitro biochemistry we are dealing
with. Moving on, in section IV we describe our method in
detail. Section V shows the experimental results and finally
discussion is given in section VI.

II. RELATED WORK

There have been several previous attempts to automate
the design of genetic or chemical circuits by using simple
versions of Genetic Algorithms (GAs). Francois and Hakim
[21] pioneered this idea with the use of a mutation-only GA
to evolve both the structure and the reaction rates of idealized
abstractions of genetic regulatory networks. They showed that
the resulting circuits provide a variety of functional designs
relevant to the organization of known biological networks.
Despite the simplicity of the evolutionary scheme, promising
results were achieved, encouraging the use of evolutionary
computations on such problems. A similar algorithm was used
by Fujimoto et al. [22] to evolve gene regulatory networks that
produce striped patterns of gene expression. They analyzed the
evolved networks and discovered 3 classes, reproducing the
various segmentation strategies observed among arthropods.
Similarly, Kobayashi et al. [23] applied an algorithm with
only structural rewiring mutations to find genetic networks
that exhibit stable periodic oscillations with a prescribed
temporal period. Deckard and Sauro [24] used a simple genetic
algorithm without crossover to search for chemical reaction
networks with particular signal processing capabilities. They
did try crossover and noticed worse performance. Their work
was later successfully extended by Paladugu et al. [25] to
evolve oscillators, bistable switches, homeostatic systems and
frequency filters. Crossover was not included, as they argued
it would be disruptive.

Fig. 1: DNA toolbox’s components. DNA strands are represented
as harpoons with colors coding for domains. Templates are 22-base
long single stranded oligonucleotides whereas signals are their partial
complements. In Activation (a), a signal sequence A comes in contact
with the template A→B and is elongated by a polymerase. Next, a
nickase nicks the newly extended strand, releases the input signal
sequence A and an output signal sequence B. In the inhibiting process
(b), the inhibiting sequence (yellow head arrow) is designed to bind
strongly to the template but cannot be elongated. It prevents the signal
sequence C from activating the template, thus inhibits the process
encoded by the template (here C→C). In addition, signal sequences
and inhibiting sequences can be degraded by the exonuclease. The
process is shown in (c). Note that the template strands cannot be
degraded by the exonuclease because they are chemically protected.

Simple GAs with mutation as the only genetic operator are
not efficient to solve difficult problems or deal with complex
models that require heavy computation, and several work
arounds have been suggested. A recent example is the work by
Marchisio and Stelling [26]. In their study, the target Boolean
function is defined by a truth table, and solutions (structures
of the network) could be computed without any optimization
procedure. Then, only the most feasible solution undergoes
a parameter optimization aiming for reliable performance in
vivo. Separating the structure design from parameter optimiza-
tion obviously saves computation time. However, their method
relies on the existence of a rational solution, which cannot
always be expected, especially in complex tasks. In addition,
a correct solution might require a precise combination of both
structure and parameters, advocating for their co-evolution.
This issue was highlighted by the approach of Cao et al. [27],
who used a nested evolutionary algorithm for the sequential
structure identification of the target system and parameter
optimization of the selected modules. Other works simply
freeze the structure, and make use of an efficient Evolution
Strategy (ES), to optimize the parameters only. Notable ex-
amples are Jin and Sendhoff [28] who used an ES to optimize
the parameters of regulatory motifs with a given structure,
and Hallinan et al. [29] who combined an ES and stochastic
simulation of genetic circuits, to design regulatory systems
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based on the Bacillus subtilis sin operon.
A complete GA, including genetic operators of mutation,

elitist selection, and crossover, was used by Drennan and
Beer [30] successfully to evolve the oscillatory network called
repressilator [31]. In their algorithm, pseudo-DNA sequences
are used directly as individuals’ encoding and genetic oper-
ations can be applied in a pseudo-biological way. Although
these genetic operators are applied at the sequence level of
the genomes, the network graph is described by a connection
matrix, leading to a high probability that connection will be
broken in the genetic operators. Thus, it is hard to pass on
connectivity innovation (or a block of key genes) to later
generations, making the algorithm possibly less effective on
problems that require precise combination of connections [36].

As can be seen, most GA approaches avoided using
crossover, for the reason that meaningful structural crossover
strategies are not obvious and worse performance is usually
experienced when crossing over non-homologous networks.
Moreover, all the previously described systems used highly
idealized models of the underlying chemical or biochemi-
cal processes. This idealization generally results in a dras-
tic decrease in the computational cost associated with the
numerical integration of the temporal behavior, which can
compensate for the relative inefficiency of the evolutionary
search. Neuroevolution, the evolution of ANN using EAs
has similar problems, which were effectively addressed by
a method called NEAT [36]. NEAT uses historical marking,
facilitating speciation and crossover, and is reported to be very
efficient on challenging benchmarks. Indeed, ANNs are very
similar to reaction networks and both can be represented as
graphs. In addition, NEAT was shown to be able to evolve non-
ANN systems efficiently, e.g. in physics [37]. This suggests
that NEAT could be a starting point for building an efficient
framework for the evolution of realistic molecular circuits
targeting a given dynamic function.

III. MODELING OF BIOCHEMICAL SYSTEMS

Our work is based on the DNA-toolbox [2], [3], [5], [34],
a generic set of DNA-based catalytic activating or repressive
reactions that can be cascaded in arbitrary networks. These net-
works are maintained out of equilibrium and can thus perform
complex dynamics. Experimentally demonstrated examples
include relaxation oscillators [2], bistable systems and toggle
switches [3]. The biochemical functioning has been described
in detail and is summarized in Fig. 1. The reactions are based
on three thermophilic enzymes, namely an exonuclease, a
polymerase, and a nickase. This enzymatic hardware is used to
run a circuit whose connectivity is encoded by the sequence
of DNA templates (the software). Building on this analogy,
the data correspond to unstable DNA oligomers, that mediate
the communication between the templates and are constantly
flowing to a chemical sink embodied by the exonuclease.
These data oligomers can possess one of two roles: signal
sequence or inhibiting sequence. Signal sequences provide
the activation by acting as primers on templates, whereas
inhibiting sequences behave as inhibitors by sequestering a
given template (hence blocking the production of signals by

this template). These activating or inhibiting modules can be
cascaded in arbitrary networks by simply designing templates
with the correct input and output sequences. These templates
instruct the mass-action kinetics of the system and thus control
the collective dynamic behavior of the system.

In the DNA-toolbox each reaction network corresponds
to i) an experimentally constructible biochemical system, ii)
a graphical representation and iii) a quantitative mathemat-
ical model based on mass action kinetic description of the
underlying molecular processes. Fig. 2 shows the graphical
representation of the Oligator [2], an experimentally validated
oscillator based on three sequences and three templates: each
node corresponds to a sequence, and each arrow corresponds to
a template (positive interaction); bar-headed arrows represent
inhibition (negative interaction), and should target a template
(an arrow). The weight of these links corresponds, at the
chemical level, to the concentration of the templates and the
thermodynamic stability of the sequence. The actual temporal
behavior of such a circuit results from the combination of
the structure (topology of the network) and a set of chemical
parameters including kinetic constants and concentrations.
Since we focus here on autonomous systems, there is no
input node. In other words, every node must have at least
one incoming link from another node (or else it would not
contribute to the dynamics).

This paper focuses on the in silico design of DNA-toolbox
network systems and is based on the quantitative modeling
proposed by Padirac et al. [3], reviewed in [38]. These models
are complete representations where every chemical compound
is considered and all the relevant kinetic parameters have
been independently tabulated. These models produce realistic
predictions of the time traces, at the cost of using large systems
of ordinary differential equations (ODE). For example, the 3-
node network shown in Fig. 2 is simulated by a 19-variable
ODE system. In the present evolution runs, the parts being
evolved are the topology, dissociation rates (which are directly
linked to the thermodynamic stability of the sequence, i.e. its
melting temperature) and template concentrations, while the
concentrations of the three enzymes are held fixed. A single
arbitrary set of initial concentrations is also used for all the
individuals.

IV. FRAMEWORK FOR EVOLVING REACTION NETWORK
(ERNE)

The main differences between ANN and reaction networks
are the addition of inhibition links and biochemical parameters.
Thus, ERNe encoding allows representation of inhibition, and
has added parameters. In addition, mutation and crossover
operators are also modified from the original NEAT. In this
section, the algorithm is described in detail, reviewing the
encoding, the genetic operators for mutation and crossover,
and the speciation process.

A. Encoding

Our genome consists of sequence genes and template genes.
Different from NEAT’s node genes, each sequence gene can
represent either a signal sequence or an inhibiting sequence
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Fig. 2: A graph representation and corresponding ERNe encoding
of the Oligator. Nodes represent sequences while arrows represent
templates; bar-headed arrows represent inhibition. a and b are signal
sequences, whereas the green node Iaa is an inhibiting sequence; it
inhibits the template a→a (i.e. the self-activation of a). The system
has three sequences and three templates. Thus, there are three node
genes and three connection genes in its ERNe encoding.

in the system, and consists of a name, a kinetic parameter,
and an initial concentration. Each template gene specifies the
from-node, the to-node, the template concentration, an enable
bit that indicates whether or not the template is enabled, and
an innovation number that uniquely identifies each template
in the system. This innovation number plays an important
role in the implementation of the crossover and speciation
and is set for template genes based on the following rule.
During the evolution, whenever a template is added to the
system, we check if that specific link exists in the evolution
history, in which case it takes the original link’s innovation
number. Otherwise, the next available innovation number will
be assigned to the template gene. To make this historical
marking effective, a naming mechanism for newly added
sequences should be carefully designed. Ideally, in different
systems, sequences with same name should carry the same
role. It is, however, almost impossible to keep that ideal
condition as later mutations might change the role of any
sequence. However, a simple naming mechanism can partly
deal with this matter. We use a list to map node names with
the way they are created, for example, an entry A→A to B
shows that whenever a new node is added in the middle of the
template A→A, it must be named B. An example of genetic
encoding describing the Oligator is shown in Fig. 2.

B. Mutations

Mutations can be applied to change both the parameters and
the network structure. We have the following mutation oper-
ators: parameter only, disable template, switch template, add
sequence, add activation, and add inhibition. Their relationship
and effects on the network are shown in Fig. 3.

In parameter mutation, every parameter has a probability to
be mutated to a new random value calculated as

newV alue = oldV alue× (1 + f1 × rand1) + f2 × rand2

where f1 and f2 are fixed (set to 0.2 and 2.0 respectively
in the following experiments), and rand are standard normal
deviates. To maintain the biochemical relevance, the available

Fig. 3: Different types of mutation used in ERNe. Note that although
Mutate Disable Template and Mutate Switch Template belong to
Parameter Mutation, they actually change the structure as well.

parameter range is bounded within physically reasonable val-
ues, and two further checks are performed on the mutated
concentration: first, if that value is below zero, a Switch
Template Mutation happens. Indeed, negative concentrations
do not exist, so we physically interpret this change as a switch
to an inhibitory template. An example of switch template
mutation is shown in Fig. 4(ii). Assuming template b→a’s
concentration is mutated to a negative value, the changes
described by Algorithm 1 are applied to the system. Second,
if the new value of a template concentration is above zero but
below a threshold (here set to 1.0 nM), it has a probability
to be disabled through a Disable Template Mutation. These
mutations are based on the idea that, once a connection has
no meaning (template concentration close to zero), it should
be removed (disabled), or even changed to a reverse polarity.
Also, because each template brings some variables to the ODE
model, these steps help to maintain structure as simple as
possible by enabling the removal of templates with a very
low concentration, whose relevance to the target function is
presumably low.

In Add Sequence Mutation, a new signal sequence is added
to the system. There are two ways to perform this type of
mutation, as described in Fig. 4. The first is to select an
existing template, split it and place the new sequence in the
middle (Fig. 4(iii)). The second is to add a new sequence with
a self-activatory connection (remember that nodes without
incoming link are forbidden) to inhibit an existing template
(Fig. 4(iv)) or to activate an existing sequence (Fig. 4(v)).

In Add Activation Mutation, two unconnected sequences are
chosen randomly and a new template is added between them
(Fig. 4(vi)).
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disable template b→a;
if no existing template that creates a then

add the template a→a;
select the template a→a;

else
select any template that creates a;

end
add the inhibiting sequence Ixa that inhibits the template
x→a selected previously;
add the template b→Ixa;

Algorithm 1: Switch Template Mutation

The Add Inhibition Mutation’s example is described in Fig.
4(vii). A random template is selected (a→a in the exam-
ple) and the corresponding inhibition node (Iaa) is created.
Then, the mutation selects a random start node (b) and adds
the template b→Iaa, completing the module. A special case
arises when there is already an activating template between
sequences a and b, in which case it is simply disabled (the
mutation is then equivalent to a Switch Template Mutation).

C. Crossover

The ERNe encoding and the use of innovation number
make crossover straightforward. Using innovation numbers,
the template genes in both parents are lined up, then crossover
techniques such as one-point and two-point crossover can
be easily applied. Fig. 5 shows an example of a two-point
crossover operation, which leads to an interesting increase in
loop size. We also need to decide how to create node genes for
the child. Currently we simply reconstruct it by reading the
template genome in order of innovation number, and select
the parameters of the corresponding node in the parent that
provided the connection.

D. Speciation

When evolving complex systems, it is important to protect
topological innovations. Indeed, smaller structures tend to
optimize faster than larger ones. Moreover, in many cases,
adding new nodes and connections to the system initially
decreases the fitness. Thus, newly evolved structures seldom
survive more than one generation, even though the innovations
they introduce might be crucial towards solving the task in
the end [36]. Therefore, we utilize the concept of species in
which individuals with similar topologies are sub-grouped in
the same species. Consequently, individuals compete primarily
within their own niches instead of with the whole population.
This way, topological innovations are protected and get a
chance to optimize. For each species, we call the first indi-
vidual that discovers the species its representative. We use a
topological compatibility distance δ calculated as

δ =
M

N

with M the number of mismatched template genes between the
two individuals and N the number of total template genes in
the larger genome. If δ is below the speciation threshold δt we

Fig. 4: Mutations from original structure (i). Switch Template
Mutation creates the structure (ii) in which the template b→a is
disabled, an inhibition node Iaa is added, then a template b→Iaa
is added with a new innovation number. Add Sequence Mutation
creates the structure (iii) in which a sequence c added in the middle
of existing template a→a, the structure (iv) in which a sequence
c added to inhibit template a→b, and the structure (v) in which a
sequence c is added to activate sequence b. Add Activation Mutation
creates the structure (vi) in which the template b→b is added. Add
Inhibition Mutation creates the structure (vii) in which the template
b→a is disabled, an inhibiting sequence Iaa is added, and a template
b→Iaa is added.

say that the two individuals can be placed in the same species.
We then use the following method to determine species
for a newly created individual. We calculate its distance to
all species’ best individuals in the previous generation. The
first match (having distance below the speciation threshold
δt) decides its species. If no suitable species are found,
all individuals in previous generations are considered. If no
suitable species could still be found, then all species from
the evolution history will be considered, in which case, the
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Fig. 5: Two-point crossover of the two individuals Parent 1 and Parent
2. The template genes are lined up in the order of innovation number.
The red lines show the two crossover points. The child takes the genes
number 1, 2, 5, 6, 7, 8 from Parent 1, and genes number 3, 4 from
Parent 2. As a result we have a new topology that has some parts of
both parents.

distance is calculated between the individual and the species’
representative. If the species cannot be decided after all those
steps, then a new species is created, having the individual as
the representative.

Every species at the current generation is then assigned a
different number of offspring in proportion to the average fit-
ness of its individuals. Using the average fitness, individuals in
the same species must share the fitness of their niche. In other
words, a species is considered better if it has higher average
fitness from all the individuals. In addition, we implement
a capping mechanism that limits the growth of a species to
at most 10% of the whole population. This prevents some
temporally good species from growing too fast and taking over
the population, leaving other species less chance to optimize.

Another problem introduced by speciation is the number
of species at each generation. If we have too many species,
each might not have enough space to evolve. In contrast, low
number of species means low diversity. Actually, the number
of species depends on the speciation threshold δt. With a
high compatibility threshold, we tend to have less species.
In our initial attempts, the performance of the run crucially
depended on the value of this parameter. To bypass this issue,
we implemented a dynamic adjustment of speciation threshold
so that the number of species will move toward a specific target

Ns:

δt =

{
δt + ε if number of species > Ns

δt − ε if number of species < Ns

ε is called the modification step.

Fig. 6: Best time traces obtained for (a) sine, (b) rectangular, and
(c) sawtooth oscillations by applying standard DE on optimizing the
Oligator’s parameters.

V. RESULT

Our initial tests confirmed that the algorithm could readily
find already known oscillatory [2] or bistable [3] networks.
Starting from a single node, it needs only a few generations
to find these structures and optimize their parameters. We thus
went on to more challenging benchmarks and we tried to find
oscillating biochemical systems matching specific periodic
functions: sine, rectangular and sawtooth oscillations. The
target outputs are generated with reasonable amplitude and
period. We use a lexicographic fitness function that first checks
the presence of oscillations and then calculates the fitness as

fitness =
1000

MSE
× limitcycle

where MSE is the Mean Square Error between the concentra-
tion of signal sequence a and the target function (the geometric
MSE was used for the two discontinuous functions) and
limitcycle evaluates the proximity a limit cycle by comparing
the amplitude of the first and last peaks of the signal sequence
a’s concentration in the looking interval (set to 300-1500
minutes in our experiments).

There has been no research showing or giving hints about
how such precisely shaped oscillations could be obtained.
Thus, our initial attempts were to perform parameter opti-
mization on a recently reported and controllable oscillatory
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(e) at generation 50
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(f) at generation 100

Fig. 7: Performance results for rectangular oscillation problem. Best fitness values over generations are displayed in box-plot for (a) ERNe
without speciation, (b) ERNe with original NEAT crossover, (c) ERNe without crossover, (d) Full ERNe, (e) snapshot of all the runs at
generation 50, and (f) snapshot of all the runs at generation 100.
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structure built out of the DNA-toolbox, the Oligator. The
method used was standard differential evolution [39] with
population size of 40 and generation number of 1000. Our
best attempts to match the sine, rectangular, and sawtooth
oscillations which resulted in MSE of 31.6079, 34.3577, and
25.3381, respectively (time courses shown in Fig. 6), were
unsatisfactory. It appears that, without changes in topological
structure, the optimizer cannot simultaneously meet the re-
quired oscillation in terms of period, amplitude, and shapes.
Thus, we believe these targeted time traces could only be
generated by more complex structures, that are impossible or at
least very difficult to predict in advance. Later in this section,
our discovered systems are shown to match these oscillations
much better. Their structures are, indeed, much more complex,
and in many cases, unrelated to the oscillator.

All our runs use the parameter settings shown in Table
I. These parameter settings were decided upon after some
tuning on different problems and might not be the best set.
However, we found it to be efficient for the benchmark runs.
For elitism, the best individual of each species is copied to
the next generation unchanged. All the runs started from an
initial individual that contains only one signal sequence (and
hence its self-activatory connection). The rest of this section
represents the experiment results in the following order. First,
we introduce the performance comparisons between different
settings to prove the algorithm’s effectiveness. We then show
the analysis of biochemical networks evolved relative to the
proposed benchmarks. Finally, evolutionary pathways of some
interesting runs are given.

TABLE I: Parameters used in experiments

General Parameters

Population size 200
Number of generations 100
Selection method Tournament (size 5)
Crossover technique One-point crossover

Speciation Parameters

Preferred number of species 10
Starting speciation threshold 0.6
Minimum speciation threshold 0.1
Speciation modification step ε 0.03

Crossover & Mutation Parameters

P(Mutation only) 0.5
P(Interspecies mating) 0.01
P(Mutation after Crossover) 0.75

Mutation Parameters

P(Parameter Only) 0.9
P(Single Gene Mutation) 0.8
P(Structure-Add Node) 0.2
P(Structure-Add Activation) 0.2

A. Performance Results

To evaluate which features of ERNe are the most important
we performed an experiment using the hardest problem, rect-
angular oscillation. This experiment compared 4 algorithms,
each of which was run 50 times. The first two algorithms were

ERNe with and without crossover. The third used crossover,
but without speciation (like the simple GA that has been used
widely in related approaches). The last test is ERNe with
the original NEAT crossover technique. The detailed result
is given in Fig. 7, showing the performance over generations
of all the runs. In addition, we defined a satisfactory fitness of
500, with which outputs of some example systems are shown
in Fig. 8. Then, the average generations required to discover
a solution with satisfactory fitness are shown in Table II, and
their statistical Students t -test results are shown in Table III.
These p-values indicate that there are significant differences
between full ERNe and others’ averages number of generations
required to achieve a satisfactory solution. It could be observed
from Fig. 7 that the full ERNe with crossover plus speciation
is the best. Performance drops significantly in the runs without
speciation. Original NEAT crossover performed poorly, even
worse than when no crossover is involved. However, with
ERNe one-point crossover applied, a solution with satisfactory
fitness was found about 50% faster than without crossover on
average. These results suggest that crossover, if used properly,
plays an important role to speed up the evolution, but those
good solutions can also be found without crossover, with the
cost of larger runs. Moreover, the fact that the original NEAT
crossover - which was efficient in evolving ANN - is disruptive
in this problem, suggests that differences between ANN and
biochemical reaction networks are significant and should not
be overlooked.

Fig. 8: Example outputs of systems with fitness just above 500, for
the rectangular oscillation problem.

B. Analysis of Reaction Networks Evolved

As the performance result suggests, ERNe with crossover
showed highest performance. Thus, we use ERNe with
crossover for the rest of the experiments. For each of the



IEEE TRANSACTION ON EVOLUTIONARY COMPUTATION, VOL. XX, NO X.XXXX 9

TABLE II: Generations required to achieve fitness above 500 for the
rectangular oscillation problem

ERNe without speciation 145.6±22.1
ERNe with NEAT crossover 125.2±45.9
ERNe without crossover 84.2±61.1
Full ERNe 59.6±50.7

TABLE III: p-values of t-Distribution calculated from Table II

Full ERNe vs ERNe without speciation 1.48E-09
Full ERNe vs ERNe with NEAT crossover 2.59E-5
Full ERNe vs ERNe without crossover 0.0310

three oscillation shapes, the algorithm was run for 50 times.
Importantly, the three problems were addressed with the exact
same settings, shown in Table I.

Fig. 9 shows a typical result for the sine oscillation problem.
The observed output and the target output are matching almost
perfectly. The structure is based on a extended version of the
Oligator structure (Fig. 2) with a longer delay line in the
negative feedback loop. Side feedforward loops are grafted
to this structure and probably serve to fine-tune the shape of
the time trace.

Fig. 9: Typical solution for the sine oscillation problem, with
structures based on an elongated Oligator (the structure in the red
dotted rectangle), and their corresponding output.

Fig. 10 shows results for the rectangular oscillation. As
expected, the fit is not as good as that observed previously
for continuous functions. Interestingly, most runs (40/50)
converged toward an unreported and unrelated oscillatory
topology involving three self-activating sequences linked to-
gether by three inhibition reactions. We called this topology
the switch oscillator in reference to its tendency to produce
fast switching separated by flat plateaus (Fig. 10(i)). Within
these 40 runs, 34 were found to contain the extended variant
where signal sequence a (the one that we are tracking) is
not self-activating but serves as an intermediate compound
(Fig. 10(ii)) while the remaining 6 had an additional counter-
rotating activation also originating from a (Fig. 10(iii)). This
robust convergence to precise topological features suggests
that the framework is effective in exploring the search space.
The remaining 20% of the runs fell into the long Oligator
family (Fig. 10(iv)). Even after intensive tuning, this class of
oscillators was unable to accurately match the constant parts
of the target function and produced lower fitness.

Fig. 10: The new switch oscillator (i) and typical results for the
rectangular oscillation problem. 40/50 of the runs converged to
a topology derived from (i) where three self-activating sequences
linked together by three inhibition reactions and including either an
extension (ii, 34 runs) or a self-inhibition (iii, 6 runs) located at the
a stage. The rest (10/50 runs) fell into the long Oligator category (iv)
and did not match well.

Fig. 11 shows the results for sawtooth oscillations. As
expected given the relaxation form of the target function, all
runs converged to a topology based again on the long Oligator
(which is a relaxation oscillator). We could again observe the
repetitive convergence to precise topological details, such as
the target sequence being either self-activating (7/50 runs with
average MSE of 5.2004±1.3651, Fig. 11(i)) or the last one
of the negative feedback loop (43/50, producing significantly
better individuals with average MSE of 1.9422±0.5343, Fig.
11(ii)). In this case, also, side branches serve to fine-tune the
shape of the temporal evolution.

C. Evolutionary Pathway

One example of the evolution to match the rectangular os-
cillation is shown in Fig. 12. The initial network (i, generation
-1) mutated to (ii, generation 0) by adding a new node d in
the middle of the self-activation a→a, with no improvement in
fitness (no oscillation means zero fitness). Later, the activation
a→d was switched to inhibition, creating the Oligator motif
(iii, generation 1). This structure is compatible with oscillation,
however the parameters are not yet optimized. Later, it mutated
to a long Oligator (iv, generation 3) - which is a more
robust oscillator - by adding a new node h. The system (iv)
optimized its parameter for several generations and could reach
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Fig. 11: Typical structures and their sample outputs for the sawtooth
oscillation problem. All the runs converged to the topology of
elongated Oligator, in which 7/50 topologies have sequence a as self-
activating sequence (i), and 43/50 have sequence a as the last of the
negative feedback loop (ii). The latter provides better solutions.

a strong oscillation with a fitness of 40.8673 at generation 8.
At generation 9, another new node k is added to the system to
elongate the feedback loop of the system and results in system
(v). This mutation decreased the fitness slightly. The final
structure - which is a derivative of the switch oscillator (Fig.
10(i)) could be obtained at generation 10, when two switch
mutations happened at the same time to the activation d→k,
and k→h. Interestingly, a huge fitness drop (to 12.2585) was
experienced with the new structure. Although the oscillation
it produces are more similar to rectangular oscillation, the
mismatch in both amplitude and period led to high MSE.
Thanks to the speciation, this structure could be kept in the
population and optimized and finally became the best solution
with fitness of 668.1365. Here we only focus on the mutations
that changed the structure. There were, in fact, many parameter
mutations coming along that also played important roles.

For this specific run, also, the speciation process is depicted
in Fig. 13, where the generations are shown from the left to
right, with the species depicted vertically for each generation.
The height of each species is proportional to its population
in that generation. It can be clearly seen that the switch
oscillator species appeared early with a small population, then
became dominating later. The long Oligator species, on the
other hand, always performed well and occupied a stable
portion of the population. It is also interesting that most
initial species disappeared before generation 10, indicating
that simple structures are not suitable to solve this complex
problem.

VI. DISCUSSION

The results for the three oscillation problems show the
efficiency of the proposed framework. In each case, we
could discover not only the structure but also the set of
parameters to provide excellent matching. This proves that
the framework can be used to optimize simultaneously the
structure and parameters of realistic models of biochemical
networks. The algorithm showed some signs of generalization
as all the three problems were successfully solved using the
same algorithmic setup. The repetitive convergence to the

Fig. 12: Evolution of a network for the rectangular oscillation. Only
the changes to the topology are shown. There were, in fact, many
parameter optimizations during the evolution.

same problem-dependent topological features indicates that the
search space was effectively explored even in these relatively
small runs (about 2 hours each on a desktop machine). Finally
the convergence rate was much faster than that of a basic GA
without crossover or speciation (Fig. 7). These efficiency and
robustness result from some important algorithmic features.

First, biochemical reaction networks normally require sev-
eral synergistic topological mutations to progress to a better
solution, and a single change may initially decrease the fitness.
We have shown that speciation based on topology allows struc-
tural innovations to be preserved and improved during later
generations. Template innovation numbers are instrumental in
this regard. However, a specific issue emerged from the use
of the DNA-toolbox where nonlinear behaviors are stabilized
primarily by delays created by long activation chains [40].
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Fig. 13: Species visualization for a sample run of the rectangular oscillation problem.

Fig. 14 shows an example of such chains and the naming
problem that they create: although the topology of (ii) and
(iii) are the same, they have different node names that might
lead to the creation of two species exploring the same area
- hence a decrease in search efficiency. We implemented a
mechanism to detect whether or not the template receiving the
added sequence is in the middle of an unbranched activation
chain (in Fig. 14 system (i) has the unbranched activation chain
of a→b→c), in which case the template in the beginning of
the chain will be selected instead. In the example, if a new
node is to be inserted to the chain a→b→c, the template
a→b is always chosen. This mechanism only partly solved
the issue, so encouraging behavioral diversity [41] might be a
more general and possible future work.

In evolving computationally heavy models, ERNe also
has some advantages over general GAs. Indeed ERNe starts
from minimal individuals and evolves by adding nodes and
connections, so that the search direction is from simpler to
more complex topologies. Thus, less computation is needed
in comparisons with other methods starting e.g. from ran-
dom populations [36]. In addition, we tend to find minimal
structures without the need of implementing any penalty on
structural complexity. However, in some cases, we observed
that the best individual found was not the simplest structure
able to produce an equivalent fitness. This minimal structure,
however, always existed in the run at some stage, but could
not optimize as efficiently as other more complex structures.
Because the ultimate goal of this work is to actually implement
the results of the in silico process into wet experiments, we
are primarily interested in the simplest possible networks.
Therefore the correct allocation of resources between the
local (parameter) and the global (structure) search remains an
important goal [42]. We note, however, that the model used
in the present proof of concept did not include competitive
inhibition of the enzymes [16], [43], [44]. We anticipate that
the inclusion of this mechanism will naturally contribute to
limit the total concentration of templates, hence the complexity
of the network.

Fig. 14: Chaining problem. From the system (i), system (ii) was
created by inserting a new sequence in the middle of the link b→c,
whereas system (iii) was created by adding a new sequence in the
middle of the link a→b. System (ii) and system (iii) have the same
topological structure but their different naming may lead to erroneous
speciation.

Having correct and relevant mutation rules is also crucial,
and the set of mutation operators should ensure evolvability,
i.e. the genome’s ability to organize adaptively how mutations
affect the phenotype. Disabling the Switch Template Mutation,
for example, lowers the probability that the Switch Oscillator
could be found, to roughly 10%. We assume that this mutation
provides important bridges in the search space, because in
the biochemical implementation, activation and inhibition are
represented by two very different processes, whereas in the
original neural framework they correspond to a continuous
drift from positive to negative values. The large performance
improvement brought by this mutation shows that the physical
nature of the information processing medium should be taken
into account in the definition of relevant mutation operators.

VII. CONCLUSION

We have successfully adapted recent algorithmic innova-
tions from neuro-evolution to the search for realistic bio-
chemical systems. The differences between ANN and re-
action networks, e.g. the additional connection type, could
be efficiently encoded in ERNe. The experimental results
showed that speciation, and an efficient crossover strategy,
provide a dramatic increase in search effectiveness and hence
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reduction in search time. In our future research, we will apply
this work to solve more challenging problems including the
possibility for the network to interact with an external, time
varying outside environment (i.e., non autonomous systems).
We will also explore concepts such as robustness [45] or non-
regulatory couplings [34]. Moreover, other possible directions
are to embed the ideas of effective local search [39], multi-
objective optimization [46], [47], and automatic parameter
tuning [48], [49] to improve the framework’s efficiency. We
hope that this work will encourage further research into the in
silico design of molecular programs of increasing complexity.
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