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Abstract—Most existing work on evolutionary optimization
assumes that there are analytic functions for evaluating the
objectives and constraints. In the real-world, however, the ob-
jective or constraint values of many optimization problems can
be evaluated solely based on data and solving such optimization
problems is often known as data-driven optimization. In this
paper, we divide data-driven optimization problems into two
categories, i.e., off-line and on-line data-driven optimization, and
discuss the main challenges involved therein. An evolutionary
algorithm is then presented to optimize the design of a trauma
system, which is a typical off-line data-driven multi-objective
optimization problem, where the objectives and constraints can
be evaluated using incidents only. As each single function
evaluation involves large amount of patient data, we develop
a multi-fidelity surrogate management strategy to reduce the
computation time of the evolutionary optimization. The main idea
is to adaptively tune the approximation fidelity by clustering the
original data into different numbers of clusters and a regression
model is constructed to estimate the required minimum fidelity.
Experimental results show that the proposed algorithm is able
to save up to 90% of computation time without much sacrifice
of the solution quality.

Index Terms—data-driven optimization, multi-objective op-
timization, evolutionary algorithm, surrogate, trauma system
design.

I. INTRODUCTION

Evolutionary algorithms (EAs) are a class of nature-inspired
global optimization algorithms. They distinguish themselves
with traditional mathematical programming algorithms in that
they do not require analytical models of the objective and
constraint functions of the problem to be optimized and are
less vulnerable to local optimums. For these reasons, EAs have
enjoyed great success in solving a wide range of industrial
problems [1], [2].

Although they do not require analytical objective or con-
straint functions, most EAs assume that analytical mathemat-
ical functions are available for evaluating the objectives and
assess the constraints. Unfortunately, many real-world opti-
mization problems do not have analytic objective or constraints
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functions and optimization can be pursued only based on data
collected from physical experiments, real events, or complex
numerical simulations. Solving optimization problems solely
based on data is known as data-driven optimization.

Most existing work on data-driven evolutionary optimiza-
tion has actually been carried out in the area of surrogate-
assisted evolutionary optimization, where fitness evaluations
reply on very expensive physical experiments or highly time-
consuming computer simulations, such as in drug design [3]
and aerodynamic shape optimization [4], [5]. In addition, evo-
lutionary optimization involving subjective human evaluations,
which is known as interactive evolutionary optimization [6],
[7], also falls in this type of data-driven optimization. We term
this type of data-driven optimization on-line data-driven opti-
mization. One main feature of on-line data-driven optimization
is that during the optimization, it is still possible to acquire new
data, though this might be costly or computationally expensive.
For on-line data-driven optimisation, most existing surrogate-
assisted EAs [8] are applicable.

By contrast, another type of data-driven optimization prob-
lems have largely been overlooked so far. In this type of
optimization problems, no data can be collected per conducting
additional experiments or computer simulations during the
optimization, as each data sample may be an event that acci-
dentally occurs. For example, the design of trauma systems can
theoretically be based on comprehensive geospatial analysis.
In practice, however, optimization of trauma system design
can be accomplished using incidents in the previous years as
an approximate geospatial guidance, as reported in [9], [10],
where a multi-objective evolutionary algorithm (MOEA) has
been employed to optimize the trauma system of Scotland.
In such problems, the objective values may vary with the
number of incidents and a larger number of the incidents
can lead to richer geospatial information, and consequently
more accurate optimization. Note however, that new records
cannot be actively collected during the optimization process.
We term such data-driven optimization off-line data-driven
optimization.

Data-driven optimization usually needs to address mul-
tiple conflicting objectives, like in most real-world opti-
mization problems. Such problems are known as multi-
objective optimization problems (MOPs) [11]. Over the past
two decades, a large number of multi-objective evolution-
ary algorithms (MOEAs) have been developed [12], which
can be largely classified into three groups, i.e., dominance-
based, aggregation-based, and performance indicator-based.
Dominance-based MOEAs [13], [14] rely mainly on dom-
inance comparisons for selecting parents [15]; aggregation-
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based MOEAs, also known as decomposition-based methods,
optimize a set of single-objective sub-problems with a pre-
assigned weight set [16], [17]; and indicator-based MOEAs
employ a performance indicator as their selection criterion
[18], [19]. However, little research work dedicated to ad-
dressing challenges in data-driven multi-objective evolutionary
optimization has been reported so far, in particular off-line
data-driven evolutionary optimization in the presence of huge
amount of data.

This paper firstly provides a categorization of data-driven
optimization problems and discusses challenges and opportu-
nities in solving these problems using EAs. To the best of
our knowledge, an elaborated categorization and discussion
of data-driven evolutionary optimization are still missing in
the literature. Then, the paper focuses on evolutionary design
of a trauma system, a typical off-line data-driven bi-objective
optimization problem in the presence of large amount of
data [9]. Such optimization problems are computationally very
intensive, since the objective as well as the constraint functions
are evaluated based on a large number of incidents in the
previous year. As it has been shown that the incidents are
often distributed in special patterns [20], this work aims to
reduce the amount of computation time by grouping the data
into clusters and then using the cluster centers as representative
data points for function evaluations. Consequently, the fewer
clusters the data is grouped into, the faster the calculation
will be, and the less accurate the evaluations are. Thus, the
key challenge is how to adaptively balance the reduction of
computation time and the accuracy of the estimated function
values based on the clustered data.

The rest of this paper is organized as follows. We discuss
in more detail the challenges in data-driven evolutionary
optimization in Section II. The data-driven trauma system
design optimization problem is introduced in Section III, fol-
lowed by a description of an adaptive multi-fidelity surrogate
management technique in Section IV. Empirical results are
presented and discussed in Section V. Section VI concludes
the paper.

II. DATA-DRIVEN EVOLUTIONARY OPTIMIZATION

A generic framework for data-driven evolutionary opti-
mization is in Fig. 1. At each generation, EAs start with
a population of candidate solutions (parents), and generate
offspring solutions by applying variation operators, such as
crossover, mutation, local search to the parent solutions. All
offspring solutions are evaluated according to the objective
and constraint functions before the parent individuals for the
next generation can be selected. For data-driven evolutionary
optimization, evaluation of the objectives and constraints are
based on data.

As can be seen in Fig. 1, the main difference between data-
driven evolutionary optimization and evolutionary optimiza-
tion using analytical objective and constraint functions lies in
function evaluations. In some cases, experimental or simula-
tion data need to be preprocessed before they can be applied to
function evaluations. More often than not, acquisition of data
is either costly or computationally intensive, seriously limiting

Fig. 1. A generic framework of data-driven evolutionary algorithms.

the number of function evaluations. One widely adopted
technique to achieve acceptable solutions using a small number
of function evaluations is to use surrogates, also known as
metamodels or approximate function evaluations [8], [21] to
replace in part the exact function evaluations in optimization.
Management of the surrogate, including when to use and
update the surrogates, plays a key role in surrogate-assisted
optimization [22].

In the following, we elaborate the differences in managing
surrogates in off-line and on-line data-driven evolutionary
optimization.

A. Off-line and On-line Data-driven Optimization

Because only a very small number of exact function e-
valuations can be afforded, data-driven EAs usually resort to
surrogates to reduce the needed number of expensive function
evaluations. Depending on whether it is off-line or on-line
data-driven optimization, the surrogate management strategies
can vary, as illustrated in Figs. 2 and 3, respectively.

Fig. 2. Surrogate management in off-line data-driven evolutionary optimiza-
tion.

Fig. 3. Surrogate management in on-line data-driven evolutionary optimiza-
tion.
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From Fig. 2, we can see that in off-line data-driven opti-
mization, data is acquired before evolutionary optimization.
During the optimization, the EA can explore the given data
as much as possible, but no new data will be made available
during the optimization. By contrast, in on-line data-driven
evolutionary optimization, new data can be generated during
optimization, as shown in Fig. 3. However, the incremental
data, those obtained during the on-line data-driven evolution-
ary optimization, may or may not be controlled by surrogate
management. If the surrogate management strategy can ac-
tively sample new data at the desired points, the accuracy of
the surrogates can be most effectively enhanced. However, in
some specific cases, the surrogate management strategy does
not have any control on the incremental data. This difference
in controlling the incremental data generation is manifested
by the dash line connecting the surrogate management block
and the incremental data in Fig. 3.

As a whole, data-driven evolutionary optimization can be
largely divided into three categories, namely, off-line data-
driven optimization where no new data can be generated
during optimization, on-line data-driven optimization with
uncontrolled incremental data, and on-line data-driven opti-
mization with controlled incremental data.

B. Surrogate Models and Surrogate Management
To reduce the needed number of expensive function eval-

uations, surrogate-assisted evolutionary algorithms (SAEAs)
[22], [8], [21] can be used, where the main idea is to use one
[23], [24] or multiple surrogates [25], [26], [27] to approximate
the expensive function evaluation globally or locally [28],
[29], [30]. Note that an implicit assumption here is that the
computational cost for constructing and using the surrogates
is much less than that for fitness evaluations using the original
expensive function.

Many machine learning models can be used for surrogates,
such as linear, nonlinear or polynomial repression models [31],
Kriging or Gaussian processes [32], [33], [34], [35], [36],
[37], [38], support vector machines (SVMs) [39], radial basis
function (RBF) networks [40], [41], [42], and many other
neural networks [43], [44], [45], [46], [47]. Several ideas have
been proposed for choosing individuals to be re-evaluated
using the original objective functions, which is one key issue
in surrogate management. These include selecting potentially
good solutions [48], [47], [49], selecting representative solu-
tions [25], [50], or selecting solutions with a large amount
of uncertainty [51], [52]. As an approximation of the original
objective function, surrogate models are subject to errors. It
has been indicated that errors introduced by surrogates are
acceptable so long as they do not mislead the search [53], and
in some cases they can even be exploited [53], [27]. Therefore,
how to manage the trade-off between the accuracy and the
number of exact function evaluations is the main issue in
SAEAs. Metrics for measuring the quality of surrogates have
been proposed in [53], [54].

It should be noted that most surrogate management tech-
niques in the literature are proposed for on-line data-driven
evolutionary optimization where the model management strat-
egy has control over the incremental data.

C. Challenges

In the following, we discuss the main challenges to data-
driven evolutionary optimization from the perspectives of com-
putational cost, data quantity, data quality, and heterogeneity
of the data, all of which are related to surrogate construction.

• Computational cost: Exact function evaluations in most
data-driven optimization problems are expensive due to
various reasons. For instance, the problems based on
physical experiments or computational simulations, each
function evaluation either reply on expensive physical
experiments such as wind tunnel tests or crash test, or
complex and highly time-consuming numerical simula-
tions such as computational fluid dynamics simulations
[5]. For most off-line data-driven optimization problems,
such as design of trauma systems [9], [10], it often
takes huge amount of time to collect a sufficient and
representative amount of clinical and incident location
data, to permit a precise evaluation of candidate designs.
Evolutionary optimization of such problems will not
be able to afford thousands of function evaluations as
required by most existing EAs.

• Data quantity: Construction of surrogates, either com-
putational models or any estimate of the exact function
evaluations, is indispensable in data-driven optimization
due to the high computational cost as mentioned above.
However, construction of surrogates is often challenged
by the amount, quality and distribution. Either a too small
size or a very large size of training data samples will
create difficulties for training surrogates. Lack of training
data will make it impossible to build accurate surrogates
when the dimension of the decision space is high [5],
while large amounts of training may result in increasing
computational cost [55], [56].

• Data quality: Quality of the data includes the distribution
of the data and the amount of uncertainty in the data. It is
very likely that the data is ill-distributed, imbalanced [57],
incomplete [58], [59], and is contaminated by noise [60],
[61]. In some cases, search for robust optimal solutions
will be of great practical significance [62], [63].

• Heterogeneity of data: Finally, surrogate construction
can be further complicated by the nature of the data.
In other words, training data might come from multiple
sources, presenting in a combination of heterogeneous
forms such as numerical data, texts and images [64]. How
to fuse the heterogeneous data may considerably affect
the quality of the function evaluations and consequently
the quality of the constructed surrogates [65].

To alleviate the difficulties resulting from the quality and
heterogeneity of the data, properly pre-processing the data
may be helpful. Most machine learning and data mining
techniques can be adopted in the pre-processing data, such
as data clustering [66], [67] for reducing the size of data,
principal component analysis [68] and feature selection [69]
for dimension reduction, and regression techniques [70] for
learning the relationship in the data.
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III. DATA-DRIVEN MULTI-OBJECTIVE OPTIMIZATION OF
A TRAUMA SYSTEM

A trauma system is a network of hospitals, stratified by
their clinical capability, and supported by emergency medical
services [71]. The aim of a trauma system is to reduce death
and disability from injury, by matching patients’ needs with
hospital resources. This concept is sometimes referred to as
“right care, right time, right place” [72]. A well-designed
trauma system should be both efficient and economical, i.e.,
providing the most effective treatment with the lowest resource
cost [73]. On one hand, every patient should receive optimal
care, as close to the point of injury as possible. On the
other hand, the resources including trauma centers, surgeons,
ambulances, and medicines are finite. Therefore, facilities and
locations of trauma centers and the geospatial injury density
affect the behavior of the whole trauma system [9]. Thus,
the trauma system design problem becomes an optimization
problem based on the geospatial information to search for the
optimal configuration of trauma centers.

However, the geospatial information is difficult to measure
directly. The incidents over a long time period can play that
role indirectly, because the distribution of incidents implicitly
shows the geospatially injury density. The incidents can be
used to simulate the trauma system that is presented by one
configuration, which can be evaluated by the simulated output
(both clinical and resource) of those incidents. Thus, the
function evaluation of the trauma system design problem relies
on data, which makes it a data-driven optimization problem.

A. Allocation Algorithm for Patients

The trauma system of Scotland will have three types of
trauma centers with different levels of capability [74], in-
cluding major trauma centres (MTCs), trauma units (TUs),
and local emergency hospitals (LEHs). An MTC provides
clinical services for patients with major trauma. A TU handles
less severely injured patients. An LEH manages patients with
minor injuries. In the data, patients are classified into two
groups, i.e., patients triaged to MTC or to TU. A patient will
be sent to a center with suitable capability according to the
patent’s injury [75]. The priority of the patient allocation is
shown as Fig. 4.

Fig. 4. Priority in the allocation algorithm for patients triaged to TU or
MTC.

For a patient who is triaged to a TU, the allocation algorithm
first considers travelling by land and chooses the center with
the shortest drive time (either a TU or an MTC). If the

time of the shortest land transport is not acceptable, the
allocation algorithm considers travelling by air and chooses
the center with the shortest flight time (either a TU or an
MTC). However, if the flight time is longer than the drive
time, the allocation algorithm chooses to travel by land.

For a patient who is triaged to an MTC, the allocation
algorithm considers the nearest MTC by land at first. If the
drive time to the MTC is not acceptable, it considers travelling
to the MTC by air. If the flight time to the MTC is still not
acceptable, the allocation algorithm will consider a TU with
shorter travel time by land, thus the level of facilities in the
TU will be lowered for that patient.

In the data, the location and injury of every patient are
recorded. Using the allocation algorithm, patients are assigned
to a suitable trauma center. Taking a particular patient (patient
i) as an example, the patient is assigned to a matched trauma
center according to the accident location and severity of injury.
The allocation algorithm will accordingly output information
such as the travel time, assigned center, and helicopter usage,
as shown in Fig. 5, where Ti is the traveling time from the
location of the i-th patient to the assigned center. There is
an exceptional situation where the patient should have been
triaged to an MTC but had to be sent to a TU because of an
unaccepted long travel time to MTC. This is indicated by the
i-th bit (Li) of a binary string L (1 for an MTC exception and
0 for not). The binary string Hi is of length of nd (the number
of helicopter depots) and the j-th (1 ≤ j ≤ nd) bit of Hi is set
to 1 if the i-th patient is assigned to the j-th helicopter depot.
In other words, all bits of Hi are set to 0 if patient i is sent
by land. The binary string Gi is of length nMTC (the number
of MTCs in the configuration), and the l-th (1 ≤ l ≤ nMTC

will be set to 1 if the i-th patient is sent to the l-th MTC,
otherwise to 0. Thus, all bits of Gi are set as 0 if the patient
is sent to a TU. Table I shows an example of the output of
the allocation algorithm for patient i, from which we can see
that this patient was sent to the 4-th MTC by air from the 2nd
helicopter depot, which took 25 minutes.

Fig. 5. Outputs of the allocation algorithm for one patient

B. Problem Formulation

The basic aim of a trauma system is to provide the best
possible treatment for all patients, as quickly as possible.
However, it is impossible to build a large number of trauma
centers or send all patients by air given the limited resource.
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TABLE I
EXAMPLE OUTPUTS OF THE ALLOCATION ALGORITHM FOR PATIENT i.

Output Length Value Meaning
Ti NA 25 min Travel time equals to 25 min
Li 1 0 Non-MTC exception
Hi nd = 3 010 The 2nd depot is used
Gi nMTC = 4 0001 Patient i is sent to the 4th MTC

There are conflicts between the resource and clinical outcomes
in the design of a trauma system. From the perspective of a
patient, the travel time from the location of the accident to
the trauma center is important, the time should be as short as
possible. However, it is also recognized that transport directly
to a facility capable or providing definitive care, even if associ-
ated with slightly longer access times, is associated with better
outcomes. Increasing the numbers of TU and MTC decreases
the travel time of patients. However, the resources available
for a trauma system are limited. In addition, MTC should
handle as many patients as possible to gain the institutional
expertise to effect improvements in outcome. Finally, to reduce
the transport cost and risks, the helicopter usage should also
be reduced. From the above discussions, we can see that many
targets in designing a trauma system are conflicting with each
other.

To date, 18 trauma centers in total have been built in
Scotland. The design problem is to search for the optimal
configurations of these centers to achieve both good use of
resources and clinic outcomes. Different configurations result
in different situations for these conflicting targets discussed
above and it is usually hard to find a configuration that can
simultaneously satisfy all these targets. Essentially, the aim of
designing a geospatially optimized trauma system in Scotland
is to find an optimized configuration of centers achieving
the preferred trade-off between the conflicting targets [9].
In other words, the task is to assign different levels (MTC,
TU, and LEH) to the existing centers, which can be seen
as a combinatorial MOP [11] as described in the following
subsections.

1) Objectives: As discussed above, design of a trauma sys-
tem involves in many conflicting objectives. For simplicity, the
problem is formulated as a bi-objective optimization problems,
both related to the interest of patients. The first is to minimize
the total travel time of all the patients, the other one is to
minimize the number of exceptions, where a patient should
have been sent to an MTC but was eventually sent to a TU
because of the unaccepted long travel time needed to an MTC.
The total travel time of all patients in the records can be
described by Equation (1), where Ti is the travel time of
patient i and N is the number of patient in the data:

f1 =
N∑
i=1

Ti (1)

The second objective, i.e., the number of exceptions can be
calculated by Equation (2), where Li records whether patient
i is an exception, as shown in Fig. 5:

f2 =

N∑
i=1

Li. (2)

2) Constraints: Although the financial aspects are not as
important as patients, they impose the main limits for design-
ing the trauma system. Therefore, helicopter usage, MTC case
volume, and TU proximity are set as the constraints of the
trauma system design problem.

The capacity of the j-th emergency depot is nj
h helicopter

transfers everyday. Therefore, the constraint of helicopter
usage of the j-th helicopter depot should satisfy Equation (3),
where D is the number of days and Hj

i is the j-th bit of Hi

recording the usage helicopter depot for the i-th patient.

hj =
N∑
i=1

Hj
i ≤ Dnj

h, 1 ≤ j ≤ nd (3)

In a trauma system, an MTC has more facilities than a
TU and therefore is expected to deal with more cases to gain
experiences [76]. The number of patients sent to the l-th MTC
everyday in the configuration should be higher than a threshold
V . Thus, the constraints of the case volume of the l-th MTC
is set as Equation (4), where Gl

i is the l-th bit of Gi recorded
for the i-th patient as shown in Fig. 5.

gl =

N∑
i=1

Gl
i ≥ DV, 1 ≤ l ≤ nMTC . (4)

To control the number of TUs in the trauma system, the
TUs should not locate too close to each other. Therefore, the
distance between any two TUs should not be smaller than a
predefined minimum distance dTU :

Dispq ≥ dTU , 1 ≤ p ≤ nTu, 1 ≤ q ≤ nTu, p ̸= q (5)

where Dispq is the distance between the p-th and q-th TU,
1 ≤ p, q ≤ nTU .

In summary, for the configuration with nMTC MTCs and
nTU TUs, there would be nd + nMTC +C2

nTU
constraints in

total. Of them, nd + nMTC constraints (h and g) are data-
driven.

C. Multi-Objective Evolutionary Algorithm

According to the discussions in Section II, we can see that
design of the trauma system is an off-line data-driven bi-
objective optimization problem, as no incremental data can
be made available during the optimization.

In the following, we present the representation of the con-
figuration of a trauma system for evolutionary optimization.

1) Genetic Coding: The 18 candidate hospitals in Scot-
land are encoded in the following order: Glasgow Roy-
al Infirmary, Aberdeen Royal Infirmary, Ninewells Hospital
(Dundee), Dumfries and Galloway Royal Infirmary, Edinburgh
Royal Infirmary, Forth Valley hospital, Hairmyres hospital
(East Kilbride), Raigmore hospital (Inverness), Crosshouse
hospital (Kilmarnock), Wishaw hospital, Royal Alexandra hos-
pital (Paisley), Borders General hospital (Melrose), Southern
General hospital (Glasgow), Ayr hospital, Victoria hospital
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(Kirkcaldy), Monklands hospital (Airdrie), Inverclyde hospital
(Greenock), and Perth Royal Infirmary. We use an integer
between 0 and 2 to encode whether a particular center
should be set as an MTC, a TU, or an LEH, encoded by
”2”, ”1”, or ”0”, respectively. Since there are 18 centers in
the current trauma system, the length of the chromosome
(representing one candidate configuration) is 18. For example,
the chromosome [111112011100100101] means that Glasgow
Royal Infirmary is set to an MTC, Aberdeen Royal Infirmary,
Ninewells Hospital (Dundee), Dumfries and Galloway Royal
Infirmary, Edinburgh Royal Infirmary, Forth Valley hospital,
Hairmyres hospital (East Kilbride), Raigmore hospital (In-
verness), Crosshouse hospital (Kilmarnock), Wishaw hospi-
tal, Royal Alexandra hospital (Paisley), and Borders General
hospital (Melrose) are set to TUs, and Southern General
hospital (Glasgow), Ayr hospital, Victoria hospital (Kirkcaldy),
Monklands hospital (Airdrie), Inverclyde hospital (Greenock),
and Perth Royal Infirmary are set to LEHs.

Based on the above coding for evolutionary design of
the trauma system, NSGA-II is adopted for optimizing the
bi-objective optimization problem. For reproduction, 3-point
crossover with a probability of 1 and point mutations with a
probability of 0.2 are employed.

2) Local Search: In addition to the genetic variations, vari-
able neighborhood search (VNS) [77], a local search strategy
particularly developed for solving combinatorial optimization
problems, has also been employed.

The main idea of VNS is to search in a neighborhood
starting from a local optimum of another neighborhood. The
main reason is that for combinatorial optimization problems,
it is easy to get trapped in a local optimum if the local search
is performed only in one neighborhood. It has been shown
that a large variety of neighborhoods helps improve diversity
in local search [78]. Therefore in VNS [79], several different
neighborhoods are used. Starting from a local optimum, VNS
searches through one neighborhood to obtain a new local
optimum, from where it searches within another neighborhood.

VNS is applied only to the non-dominated solutions at
every generation. To adapt VNS to trauma system design,
three neighborhoods NB1, NB2, and NB3 have been defined.
Neighborhood NB1 is defined as all the feasible solutions
varied by swapping a fixed gene to other genes. Neighborhood
NB2 is defined as all the feasible solutions varied by changing
the value of a fixed gene. Neighborhood NB3 is defined as all
the feasible solutions varied by changing the values of two
fixed genes.

Figure 6 provides an illustrative example of VNS for design
of a trauma system with four centers, each candidate design
consisting of four genes whose value can be ”0”, ”1”, or
”2”. Of the three neighborhoods, NB1 contains four feasible
solutions, NB2 contains three feasible solutions, and NB3

contains nine solutions. Assume solution [2011] is a non-
dominated solution in the current population and the 2-nd
gene of this solution is randomly chosen. Then all the feasible
solutions in NB1 are searched starting from this one. Now
assume [2101] dominates [2011], which makes it the starting
point to perform local search in NB2. In NB2, assume the last
gene is chosen at random, after performing the local search in

Fig. 6. An illustrative example of VNS for design of a trauma system with
four centers.

NB2, no solution is able to dominate [2101]. Consequently,
[2101] remains the starting point for performing search in
NB3. According to the local search strategy for NB3, two
genes, e.g., the 1st and 2nd genes are chosen at random. If
among those solutions in NB3, solution [2001] dominates all
other solutions, it will be the final output of the VNS.

IV. DATA-DRIVEN MULTI-FIDELITY SURROGATES FOR
MULTI-OBJECTIVE OPTIMIZATION

Data-driven optimization of the trauma system using
NSGA-II has been reported in [10]. In that work, each
objective and constraint evaluation involves all patients in the
data, which makes the evolutionary optimization very time-
consuming. In fact, one evolutionary run using NSGA-II based
on the data collected within one year takes about one day
and if more data are to be used, the computation time will
become prohibitive. In this work, we propose a multi-fidelity
surrogate management strategy dedicated to a class of off-line
data-driven optimization problems involving huge amount of
data to reduce the computation time without degrading the
performance of the solutions. Note that by surrogates in this
work, we mean estimated function values calculated using
part of the data records instead of using all. This is different
from most surrogates that are computational models such as
artificial neural networks or polynomials.

Fig. 7. Density maps of patients triaged to MTC and TU.

Optimization of the trauma system studied in this work
relies on about 40,000 incidents (ambulance service patients)
collected over a period of one year. Each record includes
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information about whether the patient was triaged to MTC
or TU care, the location of the incident and the travel time
to all the centers by land and air. It previously been shown
that the geographical distribution of the incidents shows a
high degree of spatial correlation [20], which is related to
the population density as shown in Fig. 7. Intuitively, if we
cluster the incidents into K groups, where 1 ≤ K ≤ N ,
where N is the number of records (patients) in total. Let Ci

and Ni denote the center of the i-th cluster and the number
of incidents in the cluster, respectively, where 1 ≤ i ≤ K.
Once the data is clustered, only one incident closest to Ci,
instead of all Ni incidents in the i-th cluster will be used
for objective and constraint evaluations. Thus, the number of
clusters (K) will determine the fidelity of the objective and
constraint evaluations, and the smaller K is, the less accurate
the evaluations will be. In this case, the two objectives and the
first two constraints in Equations (1)-(4) can be approximated
calculated as follows.

f̂1 =

K∑
i=1

NiTi (6)

f̂2 =
K∑
i=1

NiLi (7)

ĥj =
K∑
i=1

NiH
j
i , 1 ≤ j ≤ nd (8)

ĝl =
K∑
i=1

NiG
l
i, 1 ≤ l ≤ nMTC (9)

A. Hierarchical Clustering for Discrete-Continuous Data

The data for each patient contains information on injury
severity, both land and air travel time to all the centers, and
air travel time from the helicopter depots to the patient, which
means that the data is a mixture of binary and real-valued
numbers. As Section III-A shows, the assigned center depends
on the injury and location of the patient. The injury severity is
a binary value (triaged to MTC or TU), and the location can
be presented by the land travel time to all the centers, which
is a real vector.

To handle the discrete-continuous data, a hierarchy cluster-
ing technique [80] is adopted in this work. In the first hierarchy
clustering, only the location of patients are considered. The
dimension of the vector of land travel time equals to the
number of centers, which is much higher than the dimension
of a location. Therefore, principal components analysis (PCA)
[68] is employed to reduce the dimension. Then, patients
are divided into two classes inside each cluster in the first
hierarchy according to the severity of injuries, which forms
the second hierarchy of clusters. Finally, the center of every
cluster is used as the representative patient.

Fig. 8 is an example with 12 patients to illustrate the
hierarchical clustering. We first divide the data into K clus-
ters based on the location, where K = 2 in the example.
Then, a further classification is applied inside the K clusters
based on the injury severity, i.e. patients triaged to MTC are

classified into one sub-cluster, and those triaged to TU are
classified into another sub-cluster. The center of every sub-
cluster, represented by a pentagram in Fig. 8, will be used as
one representative patient in the approximated objective and
constraint evaluations using Equations (6)-(9).

Fig. 8. An illustrative example of hierarchical clustering.

B. Analysis of Surrogates with Various Fidelities

As mentioned above, the geographical distribution of the
data shows clearly spatial, which makes it possible to group the
data into a number of clusters. Intuitively, the cluster number,
K, influences not only the fidelity of the estimated objectives
and constraints, but the computational expense as well. In
order to better understand the influence of K on environmental
selection and the accuracy of the estimated objective and
constraint, we generate a reference set by running NSGA-II
using exact function evaluations (i.e., using all patients in the
data) using Equations (1) - (4) for 100 generations, where the
population size is set to 100.

To examine the influence of the cluster number on selection,
we compare the parents selected according to the objectives
and constraints calculated using Equations (6) to (9) at each
generation with those selected in the reference set and cal-
culate the percentage of the correctly selected solutions out
of 100 selected parents. This percentage is averaged over
100 generations and is used as an indicator for accuracy of
selection. The change of the averaged accuracy of selection
over the number of clusters is plotted in the left panel of Fig.
9.

Similarly, we calculate the mean absolute percentage error
(MAPE) averaged over 200 individuals (the combined popula-
tion before selection) at each generation for the two objectives
and two constraints, respectively. Finally, these errors are again
averaged over 100 generations and plotted in the right panel in
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Fig. 9. Since the constraint on TU proximity is not data-driven,
it is not considered here.

From the results in Fig. 9, we can see that as K increases,
the average MAPE of the objectives and constraints decrease
rapidly. Accordingly, the accuracy of selection increases.
When K reaches 2000, the approximation errors do not
decrease significantly and the selection accuracy no longer
improves. This indicates that the EA will not benefit further
when the number of clusters is larger than 2000, although the
cost of computational expense. Thus, the key issue in saving
computation time without sacrificing too much on the solution
quality will be to properly tune the number of clusters so
that the evolutionary algorithm is still able to find the optimal
solutions at a much lower computational cost.

Fig. 9. Accuracy of selection and approximation error of the objectives and
constraints over the change of the number of clusters Ks.

C. Management of Multi-Fidelity Surrogates
The surrogate management by adjusting the fidelity of the

estimated objectives and constraints by tuning the number of
clusters K. One intuitive assumption here is the approximation
is good enough if the estimated objective functions can ensure
that the same individuals are selected as the exact objective
functions. For this reason, let us take a look at the relationship
between the approximation error on the two objectives and
sorted no-dominated fronts. Fig. 10 shows the solutions in
the first front (denoted by circles) and the last front (denoted
by dots) that will be selected as parents based on the exact
function evaluations. Now if a solution on the first front is
evaluated using the approximated objectives and the MAPEs
on the two objectives are ER1 and ER2, respectively. As
a result, the location of this solution evaluated based on
the clustered data using Equations in (6) to (9) may locate
anywhere in the shaded box defined by 2ER1 × 2ER2.
When there is no overlap between two grey rectangles of the
solutions from the first and last fronts, the selection will not be
affected by the approximated errors. Therefore, the acceptable
maximum error on the two objectives, ER∗

i , i = 1, 2, can be
calculated by Equation (10), where F1 is the set of solutions
on the first front and Fl is the set of solutions on the last front
that will be selected as parent solutions for the next generation.

ER∗
i =

1

2
min{fk

i − f j
i }, 1 ≤ k ≤ |Fl|, 1 ≤ j ≤ |F1| (10)

Given the acceptable maximum errors ER∗
1 and ER∗

2, the
desired minimum number of clusters K can be determined if

Fig. 10. Influence of the approximation errors on non-dominated sorting in
a population.

the relationship between the maximum acceptable errors and
the minimum K can be obtained. To achieve this, we construct
a regression model with the historical data pairs between the
cluster number and the approximation errors. For the trauma
system design problem, f1 is continuous and f2 is discrete,
the error on f1 is continuous and that on f2 is discrete. To
benefit the regression model and simplify the management, we
choose to use the errors on f1 to estimate the needed number
of clusters. In addition, as observed in Fig. 9, the relationship
between the error and the number of clusters is nonlinear.
Therefore, we use the following model to estimate the error
from a given K:

ER =
1

β1 + β2K
, (11)

where β1 and β2 are two parameters.
Errors can be evaluated by comparing the approximated

objective values with the exact evaluations. To reduce compu-
tational cost, we only evaluate the non-dominated solutions at
each generation using exact function evaluations and calculate
the approximation errors on the first objective. The approxi-
mation errors ER and the cluster numbers K are recorded to
estimate the parameters in the regression model in Equation
(11).

Fig. 11 illustrates one scenario of the proposed surrogate
management strategy based on the regression model. Given
the current cluster number K1, the maximum error caused
by the approximate functions is larger than the acceptable
error ER1, which means that K1 is too small and should
be increased. Based on the regression model, a new cluster
number, K2 is obtained. For K2, the new approximation error
is calculated, which is still larger than the acceptable error
ER2. This procedure continues until a cluster number K4 is
adopted, where results in an approximation error smaller than
the acceptable error. Therefore, K4 will be adopted as the
cluster number for further evolutionary optimization.

The main steps of the algorithm for adapting K are pre-
sented in Algorithm 1. In the algorithm, K starts with a small
number, typically the number of trauma centers. For a given
K, the evolutionary optimization will be run for a number
of generations no improvement can be achieved. This is re-
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Fig. 11. An example of the surrogate management, where K is changed from
K1 to K4. When the approximation error for the current K is larger than
the acceptable error, a new K will be calculated according to the regression
model in an effort to reduce the approximation error to an accepted level.

Algorithm 1 Adaptive multi-fidelity surrogate using a regres-
sion model.
Input: K-the number of clusters, Kmax-maximal K, ER∗-

the acceptable error of f1, S-historical pairs of (K,ER).
Output: Kn.

1: if no improvement in the non-dominated set then
2: Evaluate the non-dominated solutions using all records

(exact evaluations).
3: Calculate ER.
4: Add the pair (K,ER) to S.
5: if |S| < 2 then
6: Kn = 2K.
7: else
8: Regression on S by Equation (11).
9: Calculate ER∗ by Equation (10).

10: if ER∗ < ER/2 then
11: ER∗ = ER/2.
12: end if
13: Kn = 1

β2
( 1
ER∗ − β1).

14: end if
15: if Kn > Kmax then
16: Kn = Kmax.
17: end if
18: else
19: Kn = K.
20: end if

alised by comparing the obtained non-dominated sets between
consecutive generations. When there is no improvement, the
algorithm considers the current K too small and then adapt
the number K using the regression model.

A few special situations need to be taken into account. For
example, if the historical data pairs (K,ER) are insufficient
for building the regression model, K is simply doubled to add
a new data pair. In addition, dramatic increase in K should be
avoided, which is realized by limiting the maximum decrease
in the acceptable error to the half of the current error, as
described in lines 10-12 in Algorithm 1. Finally, we set the
maximum of K to Kmax to limit the computational cost.

V. EXPERIMENTAL RESULTS

A. Experimental Settings

To evaluate effectiveness of the proposed multi-fidelity
surrogate management strategy, we compare the performance
of three variants of the NSGA-II for the trauma system
design, i.e., NSGA-II assisted with the adaptive multi-fidelity
surrogate management strategy, NSGA-II with a fixed clus-
ter number with K being fixed to 20, and NSGA-II using
exact function evaluations. The population size of the three
compared algorithms is set to 100 and the maximum of
generations is 200. 20 independent runs are performed for
the two variants using clustered data while five independent
runs are performed for the NSGA-II using exact functions
evaluations. Note that each run of the NSGA-II using exact
function evaluations (i.e., using all 40,000 records) takes about
45 hours. The non-dominated solution sets obtained from the
five independent runs of the NSGA-II using exact fitness
evaluations are combined and the non-dominated solutions
of these combined solutions are used as the reference set
for calculating performance indicators such as the inverted
generational distance (IGD) [81]. Note that we normalize the
objectives by the extreme solutions in the reference set because
of the different scale of two objectives. Furthermore, we use
the number of calls to the patient allocation algorithm to
evaluate the computational expense. For each exact function
evaluations, the number of calls equals to the number of
patients, while for clustered data, the number of calls equals
to the number of data clusters.

B. Non-Adaptive Surrogate Management

We first examine the performance of the NSGA-II using
clustered data with the cluster number K being fixed during
the evolutionary optimization. To investigate the influence of
the cluster number K on the performance, K has been set to
from 100 to 2000 with an increment of 100. For each fixed
K, 20 independent runs are performed. The average IGD value
and the number of allocated patients over the change of K are
shown in Fig. 12.

Fig. 12. Average IGD values and the number of allocated patients for
different Ks.
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From Fig. 12, we can see that the number of allocated
patients linearly increases with the growing K, which rep-
resents the computation time. As K increases, more patients
(represented by the cluster centers) need to be allocated in
objective evaluations, leading to increases in the computation
time. At the same time, the approximation accuracy of the
surrogates as the cluster number increases resulting in a better
IGD. However, the improvement of the IGD is minor when
K is larger than 1500 in comparison to the increases in the
computational cost.

C. Adaptive Surrogate Management

1) Maximal Number of Clusters: For the surrogate manage-
ment algorithm with an adaptive cluster number, the lower and
upper bounds of K need to be predefined. As we mentioned
before, the lower bound of K is usually set to the number
of trauma centers (18 in this example), while the upper
bound Kmax is a parameter to be specified. In the following,
we first test the sensitivity of the performance to different
specifications of Kmax.

For this purpose, we run the proposed algorithm with Kmax

being set to 500, 1000, 1500, and 2000, respectively, and each
case is run for 20 independent times. The trade-off between the
performance and computation time is plotted in Fig. 13, where
purity (the rate of non-dominated solutions in the union set
of the compared algorithms) [82] is used as the performance
indicator.

Fig. 13. Trade-off between the performance in terms of purity and
computation time in the the proposed multi-fidelity surrogate management
scheme.

From Fig. 13, it is clear that a larger Kmax can bring
about better performance but also increases computation time.
Interestingly, we notice there is a knee point in the trade-off
between purity and computational cost when Kmax = 1000.

2) Adaptive Number of Clusters Based on Regression:
To better understand the behavior the proposed algorithm,
we perform additional runs of the proposed algorithm with
Kmax = 1000 for 20 independent times in order to take a look
into the details in adaptive surrogate management, including
the changes of the acceptable error, the parameters in the
regression model, and the number of clusters K during the
whole evolutionary optimization.

The average ER (the real approximation error of the
surrogate) and ER∗ (the maximum acceptable error) as K
adapts are presented in Fig. 14. We can see that both ER
and ER∗ decrease as K increases, which is very similar to
the changes shown in Fig. 9. However, the decrease of ER∗

is not as significant ER. ER is larger than ER∗, which is
the reason why K keeps being changed. Once ER is smaller
than ER∗, K stops changing. Another observation we can
make is that at the end of the evolutionary run, the difference
between ER and ER∗ becomes very small as K approaches
to Kmax = 1000.

Fig. 14. Average ER and ER∗ over different Ks.

To check whether the estimation of the parameters in the
regression model described in Equation (11) converge, Fig.
15 records the change of the parameters β1 and β2 over the
change of K during the evolutionary optimization. The results
are averaged over 20 runs. From these results we can see that
the estimation of the parameters in the regression model is
able to converge.

Fig. 15. The convergence profile of β1 and β2 as the cluster number K
increases during the evolutionary optimization. Results are averaged over 20
runs.

Furthermore, we record in Fig. 16 the changes of K as the
evolution proceeds and compare the difference in the change
of K with and without the smoothness control strategy as
implemented in lines 10-12 in Algorithm 1. From these results
can see that without the smoothness control, K increased dra-
matically and altogether 11 changes are needed, whereas with
the change smoothness control, K increases more smoothly
and only 10 changes are needed. Also, we will show in the
next section that the smoothness control in change of K results
in slightly better performance.
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Fig. 16. Changes of K in the adaptive surrogate management schemes with
and without the change smoothness.

D. Comparison of Computational Cost

In this subsection, we compare the computational cost of
the NSGA-II using proposed adaptive surrogate management
scheme with the NSGA-II using exact function evaluations
(NSGA-II for short). Here, we also consider two minor
variants of the proposed algorithm, one with smoothness
control in change of K, termed SA-NSGA-II with CS, one
without, termed SA-NSGA-II without CS. The three compared
algorithms are all tun for 100 generations, however, NSGA-II
is repeated for five times due to its high computational cost,
while the two variants of SA-NSGA-II are repeated for 20
times. Here, we use the non-dominated set of the combined
results from the five runs of the NSGA-II as the reference
set for calculating the IGD. The IGD values and computation
times (in seconds) of these three algorithms are presented in
Table II. From these results, the IGD values of both SA-
NSGA-II variants are very close to 0, which means that the
solution sets they obtained are very similar to the reference set.
However, the computation time needed for the two variants
of SA-NSGA-II is much shorter than NSGA-II and with the
smoothness control of changes in K, the computation time is
further reduced with even slightly better performance. SA-
NSGA-II without CS takes longer time than SA-NSGA-II
with CS, because the former algorithm calls the hierarchy
clustering approach more times than SA-NSGA-II with CS
as shown in Fig. 16, where the hierarchy clustering approach
costs extra computational time. However, the consuming time
by the hierarchy clustering approach is much shorter than its
saving time from a large number of evaluations, which can
be observed by the large difference between the time of SA-
NSGA-II and NSGA-II.

TABLE II
COMPARISON OF PERFORMANCE AND COMPUTATIONAL COST

IGD Time (s)
SA-NSGA-II with CS 2.47e-02±1.96e-02 6.54e+03±3.57e+03

SA-NSGA-II without CS 2.51e-02±2.79e-02 10.31e+03±5.00e+03
NSGA-II 0.00e+00±0.00e+00 8.14e+04±5.36e+02

While the above comparison is based on the same number of
generations, it is also of interest to compare the performance

of the algorithms using the computation time as the baseline.
For this purpose, we set the stopping criterion to be 1 hour for
each of the three compared and then calculate the IGD value
of the solution set using the same reference set as the above
experiment. The results averaged over 20 independent runs
are presented in Table III. By using the Wilcoxon signed-rank
test [83], it has been found that the IGD values of the two
SA-NSGA-II variants are significantly better than that of the
NSGA-II. In addition, we can see that the IGD value of SA-
NSGA-II with CS is again better than SA-NSGA-II without
CS control. The non-dominated solution sets obtained the three
algorithms in the run with the median IGD value are plotted
in Fig. 17.

TABLE III
THE IGD VALUES OF THE SA-NSGA-II VARIANTS AND NSGA-II USING

1 HOUR RUNTIME AS THE STOPPING CRITERION.

IGD
SA-NSGA-II with CS 2.69e-02±1.93e-02

SA-NSGA-II without CS 4.31e-02±1.01e-01
NSGA-II 9.57e-02±5.08e-02

Fig. 17. Non-dominated solution sets of the SA-NSGA-II variants and
NSGA-II obtained by stopping the algorithms after 1 hour.

It is of interest to take a look at a few designs selected
from the non-dominated solution set to understand the optimal
designs obtained by SA-NSGA-II with CS. The resulting
configurations of the four solutions, as indicated by A, B, C,
and D in Fig. 17, are shown in the map in Fig. 18. It is clear
that those solutions can be classified into two categories, where
in solutions A and B one MTC is established in Aberdeen,
and in solutions C and D one MTC in Glasgow. These two
different choices for MTC actually match the patient density
in Fig. 7, where Aberdeen and Glasgow are two centers of
high incidence areas. Since Aberdeen is located closer to the
middle of Scotland than Glasgow, the total traveling time of
solutions A and B is less than that of C and D. However, in A
and B, patients triaged to MTC in the south of Scotland cannot
be timely sent to the MTC in Aberdeen, which increases the
number of MTC exceptions. Therefore, C and D are better than
A and B in terms of MTC exceptions. Compared with A and
C, B and D have a smaller number of TUs, which significantly
increases the traveling time. It is also noticed that the obtained
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Fig. 18. Different solutions (A-D) on the map, where triangles are MTCs,
circles are TUs, and plus signs are LEHs.

solutions requires only one MTC, which is smaller than the
currently proposed configuration in Scotland, which has four
MTCs.

The currently proposed configuration of the network in S-
cotland is not efficient, it cannot satisfy the constraint in Equa-
tion (4) because the case volume of several of the MTCs would
be too low. Therefore, the currently proposed configuration
cannot be compared directly with the configurations obtained
by the proposed algorithm. To show the effectiveness of the
proposed algorithm, we relax the constraints until the currently
proposed configuration becomes feasible, even though the
new constraints are not clinically reasonable. Then, with the
relaxed constraints, we perform 20 independent runs, using
SA-NSGA-II with CS. In each run, SA-NSGA-II stops after 1
hour. The obtained solutions and the current configuration are
shown in Fig. 19. Some of the obtained solutions dominate
the currently proposed configuration. Also, other solutions in
the obtained solution set can be options for decision markers.
Therefore, our proposed algorithm can improve the clinical
and resource output of the trauma system within an acceptable
time.

VI. CONCLUDING REMARKS

This paper discusses data-driven optimization problems and
categorizes them into two large groups, one termed off-line
data-driven optimization problems where no incremental data

Fig. 19. Non-dominated solution sets of the SA-NSGA-II obtained by
stopping the algorithm after 1 hour.

is available during optimization, and the other on-line data-
driven optimization problems where new data can be collected
during the optimization. The latter can further be divided into
two types of problems, one of which can control the position
of the newly sampled data, while the other cannot. One of the
principal challenges in data-driven evolutionary optimization,
in addition to the high cost of collecting the data, lies in the
quantity, quality and other nature of the data. As data-driven
evolutionary optimization typically needs to be assisted by
surrogates, most challenges in surrogate-assisted evolutionary
optimization will also need to be addressed. However, not
much work on surrogate-assisted evolutionary optimization
has considered difficulties in the presence of huge amount of
data, or imbalanced, ill-distributed, or heterogeneous data.

In this work, we have addressed the challenges inherent
in designing a trauma systems, which is a real-world off-line
data-driven evolutionary optimization that involving very large
amounts of data. The main idea is to group the data into a
number of clusters using a hierarchical clustering algorithm,
thereby reducing the amount of computation time. To achieve
an optimal balance between computation time and the so-
lution quality, we propose a surrogate management scheme
by establishing a regression model that can estimate the
number of clusters required based on the maximum acceptable
approximation error. The experimental results demonstrate
that the proposed algorithm is able to considerably reduce
computational time of the data-driven EA using all data for
function evaluations.

Although the proposed multi-fidelity surrogate management
strategy was specifically developed for the design of trauma
systems, the main ideas in this algorithm are likely to be
applicable to other data-driven optimization problems relying
on huge amount of data for function evaluations. However,
the clustering algorithm used and the regression model for
estimating the needed number of clusters may need to be
tailored. Future efforts should also address the other challenges
imposed by the particular nature of the data, e.g., by combining
advanced learning and evolutionary techniques for dealing
with big data [56], [84].
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