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Abstract—A minimum Manhattan distance (MMD) approach
to multiple criteria decision making in multiobjective optimiza-
tion problems (MOPs) is proposed. The approach selects the
finial solution corresponding with a vector that has the MMD
from a normalized ideal vector. This procedure is equivalent to
the knee selection described by a divide and conquer approach
that involves iterations of pairwise comparisons. Being able to
systematically assign weighting coefficients to multiple criteria,
the MMD approach is equivalent to a weighted-sum approach.
Because of the equivalence, the MMD approach possesses rich
geometric interpretations that are considered essential in the
field of evolutionary computation. The MMD approach is elegant
because all evaluations can be performed by efficient matrix cal-
culations without iterations of comparisons. While the weighted-
sum approach may encounter an indeterminate situation in which
a few solutions yield almost the same weighted sum, the MMD
approach is able to determine the final solution discriminately.
Since existing multiobjective evolutionary algorithms aim for a
posteriori decision making, i.e., determining the final solution
after a set of Pareto optimal solutions is available, the proposed
MMD approach can be combined with them to form a powerful
solution method of solving MOPs. Furthermore, the approach
enables scalable definitions of the knee and knee solutions.

Index Terms—Divide and conquer (D&C) approach, knee
solutions, minimum Manhattan distance approach, multicriteria
decision making (MCDM), multiobjective evolutionary algo-
rithms (MOEAs), multiobjective optimization problems (MOPs),
multiple attribute decision making (MADM), multiple criteria
decision making (MCDM).

I. INTRODUCTION

Multiple Criteria Decision Making (also termed multicrite-

ria decision making, MCDM) or multiple attribute decision

making occurs naturally in various real-world problems, e.g.,

recruitment of employees [1], path planning of humanoid

robots [2], and factory layout selection for efficient pro-

duction [3], to name a few. MCDM is a sub-discipline of
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operations research [4]. For an MCDM process, a decision

maker (DM) needs to select a solution (sometimes termed

a design, an alternative, or a candidate) out of a set of

alternatives based on associated multiple criteria (or attributes).

This process can be critical when it involves high stakes, such

as a business investment or the sustainability of a company.

In the field of evolutionary computation, we encounter

MCDM when applying a multiobjective evolutionary algo-

rithm (MOEA) to solve a multiobjective optimization problem

(MOP) or a many-objective optimization problem (MaOP) if

more than three objectives are involved.1 By solving an MOP,

an approximate Pareto set (APS) and an approximate Pareto

front (APF) can be obtained. The APS consists of Pareto

optimal solutions (or nondominated solutions). Vectors on the

APF correspond with criterion values of Pareto solutions.

A final solution is selected out of the APS based on the

performance represented by the APF. This task could be

challenging when the size of the APS is large.

The selection of a final solution among an APS can be

referred to as MCDM in MOPs. This selection generally

depends on the use of a preference model. In the literature, a

preference model can enter the solving process of an MOP at

three different stages: before (a priori), during (progressive),

and after (a posteriori) the process [10]. For an a priori

setting, a series of single-objective formulations combined

with preference are often used to convert multiple objectives

into one objective [11]. For progressive optimization, the

preference of the DM is incorporated into the solution search

process [12]–[17]. In this case, the size of APS is reduced,

leading to a smaller set of candidates, and a further operation

is required to determine a final candidate out of the reduced

set. For an a posteriori setting, the optimization process is

separated from the decision making.

Regarding the construction of a preference model, one of

the most popular ways is to use weighting coefficients or

other numerical values that reflect the preference of the DM.

However, related methods can suffer from at least one of the

following drawbacks. They may require careful function nor-

malization and can be sensitive to the shape of APFs [18], [19].

They can heavily depend on subjective inputs (or complete

knowledge) from the DM [20] and, therefore, may devalue

information hidden in the APF. In addition, quantifying the

preference of the DM can be difficult. Even if not impossible,

1In fact, most existing MOEAs, e.g., PAES [5], PESA [6], NSGA-II [7],
SPEA2 [8], and MOEA/D [9], are designed so that the DM can make a
decision after a set of solutions is found.
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producing preference values can impose much burden on the

DM, particularly when a large number of objectives are in-

volved. Furthermore, some existing approaches lack geometric

interpretations (or visualization) that are considered essential

in the evolutionary computation field [21], [22].2

For a preference model that has a geometric interpretation,

many studies suggest the use of knees: solutions corresponding

with vectors that geometrically lie in the knee region of the

APF should be adopted [12], [14], [16], [34]–[39]. From a

geometric perspective, if the shape of the APF is bent, then

knee solutions represent those designs that can improve overall

performance while sacrificing an insignificant level of perfor-

mance in certain dimensions [38], [40]. In other words, they

can exhibit significant improvement in some objectives at the

cost of insignificant degradation in the other objectives [16].

As a preference model, knee selection has been mostly used

before or during the solving process of an MOP. In [39],

the knee was associated with the solution to a nonlinear

programming problem that was derived from normal-boundary

intersection. It was further shown that the knee is equivalent

to a solution of a weighted-sum (WS) problem. However,

this approach requires a priori information in practical imple-

mentation, and the equivalence was established based on the

differentiability of the objective functions, where the differen-

tiability is generally not guaranteed in real-world situations.

In [14], angle-based and utility-based preference models were

proposed and used during the optimization. While the angle-

based model is only suitable for two objectives, the utility-

based model can be extended to any dimensions but requires

a set of weighting parameters. Although the weights can be

assigned by sampling, it is not clear how to use the model to

uniquely define the knee in a theoretical framework. In [16],

gains of improvement and deterioration were evaluated during

pairwise comparisons of solutions, and the knee was char-

acterized as the one that maximized a ratio of improvement

over deterioration. It was argued that such characterization was

equivalent to the normal-boundary intersection, but no rigorous

proof was provided.

In this study, we primarily focus on the MCDM at the a

posteriori stage and propose a minimum Manhattan distance

(MMD) approach pertaining to knee selection, an appropriate

choice of a preference model because of its advantageous

properties. In this case a DM can make a posterior decision

and the resulting MCDM approach can be combined with

most MOEAs to form a powerful solution method. In general,

the stage at which a preference model enters the solving

process depends on the scenario a DM encounters. It is not

necessary that using a preference model at one stage, e.g., the

a posteriori stage, is better than that at the other stages, e.g.,

the a priori stage. Although MOEAs and the MMD approach

can be concatenated, the proposed approach is independent of

2The importance of geometric interpretations can be readily observed. For
example, APFs obtained from solving MOPs are often assessed in terms
of the maximum spread, generational distance, and spacing, which have
vivid geometric interpretations [23]; and for MaOPs, visualization approaches
that address high-dimensional APFs, such as parallel coordinates [24]–[26],
heatmap [27], Sammon mapping [28], radial coordinate visualization [29],
reduced polar coordinate plot [30], self organizing map [31], [32], and
isomap [33], have become increasingly popular.

the choice of MOEAs. This is because the decision making

process is separated from the optimization process. If two

different MOEAs produce the same APF, then the approach

yields the same results. In other words, it is the set of criteria

and alternatives that affects the MCDM performance.

The MMD approach determines the final solution associated

with the point that has the MMD from an ideal vector. It

can be regarded as a WS approach in which the maximum

spread of the APF in each dimension contributes to weighting

coefficients. In our analysis, we show the equivalence between

the WS approach and knee selection described by a divide

and conquer (D&C) approach. While the MMD approach,

WS approach, and D&C approach are theoretically equiva-

lent, the MMD approach is preferred in practice. In contrast

with the D&C approach that involves iterations of pairwise

comparisons for Pareto solutions, the MMD approach can be

numerically implemented using efficient matrix calculations.

The WS approach can be affected by the situation in which

one term in a weighted sum dominates the remaining terms

because of largely distinct scales in objective functions. In

that case the WS can have difficulty searching for the final

solution. By contrast, the MMD approach has each term lie

within the interval [0, 1], avoiding this difficulty.

The established equivalence and related analyses enable the

MMD approach to possess the following features: first, it needs

no prior information and avoids using heuristic preference

values prescribed by the DM; second, it has rich geometric

interpretations and can be derived from knee selection; third,

it enables a theoretical framework that connects the knee

selection with WS approaches; fourth, it can be analyzed and

applied in general situations, which implies that differentiabil-

ity of objective functions is not required; and finally, it allows

us to rigorously define the knee and knee solutions, yielding

scalable definitions in MaOPs.

The main contributions of this paper are summarized as

follows. We propose an MMD approach to MCDM that

has rich geometric interpretations and physical meanings. We

theoretically establish the equivalence between the MMD ap-

proach, WS approach, and D&C approach. Scalable definitions

of the knee and knee solutions are rigorously provided.

The rest of this paper is organized as follows. Problem

formulations and knee selection are discussed in Section II.

The D&C approach is developed in Section III. Section IV

presents the MMD approach by connecting it with the WS

and D&C approaches. Numerical results in Section V illustrate

the effectiveness and efficiency of the MMD approach. Finally,

Section VI concludes this paper by addressing the necessity

and validity of the proposed methodology.

II. PROBLEM FORMULATIONS AND KNEE SELECTION

In this section, we present mathematical formulations of an

MOP and the associated MCDM problem. We consider knee

selection as a way to realize MCDM because of its importance

and frequent use in the field of engineering. Arguments about

knee selection from a geometric perspective are offered to

facilitate further derivation of the associated algebraic formula.
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Consider an MOP

min f(x)

s.t. x ∈ Ω
(1)

where

f(x) =
[

f1(x) f2(x) ... fN (x)
]T

represents a vector of objective functions, x represents a

vector of decision variables, and Ω denotes the feasible search

space. The optimality in (1) is often defined by Pareto domi-

nance [41], [42].

Definition 1 (Pareto dominance): In the decision variable

space of (1), a point x′ ∈ Ω dominates another point x′′ ∈ Ω
if the conditions fi(x

′) ≤ fi(x
′′), i = 1, 2, ..., N, hold true

and at least one inequality is strict. In this case, we denote

x′ � x′′. A point that is not dominated by other points is

termed a nondominated point.

Definition 2 (Pareto optimal set): The Pareto optimal set

PS of (1) is defined as the set of all nondominated points,

i.e.,

PS = {x ∈ Ω : ∄x′ ∈ Ω s.t. x′ � x}.

Definition 3 (Pareto front): The Pareto front (PF) of (1)

is defined as the image of the Pareto optimal set based on the

mapping of the vector-valued objective function f , i.e., the set

f(PS) is the PF.

Without loss of generality, in (1) only minimization is

considered because maximizing an objective function can be

equivalently transformed into minimizing the negative value

of the objective function. An MCDM problem occurs when

we apply an MOEA to solve (1). After the solving process,

we can obtain an APS (PSA) and corresponding APF (PFA),

denoted by

PSA = {x1,x2, ...,xM} and

PFA = {f(x1),f(x2), ...,f(xM )}
(2)

respectively. The MCDM problem is about how to select one

solution from PSA based on information hidden in PFA. In

practice, N or M can be large and thus MCDM can be a

challenging task.

In this study, we are interested in developing a method for

determining a final solution that corresponds with a vector

in the knee region of the APF. Such a method can possess

a geometric interpretation and avoid heuristic assignment of

weighting coefficients. To begin with, we consider a simple

scenario in which only two objectives are involved, i.e., N =
2. Since finding a way to compare two solutions should be

easier than developing a method for comparing all solutions

simultaneously, the MCDM problem is divided into several

subproblems, each of which consists of only two solutions

from PSA.

In Fig. 1(a), the PF is symbolically represented by the

solid curve. Points A, B, ..., G and H are vectors marked

on the PFA. Comparing points A with B, we note that

point A gives a better f1 value but a worse f2 value. While

the difference between points A and B in terms of the f1
value is insignificant, point B has a substantially better f2
value than point A. It is thus reasonable to select point B
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Fig. 1. Demonstration of pairwise comparison between vectors on an APF.
(a) Points A,B, ...,G, and H are nondominated. (b) For M = 8 solutions,
log2 8 iterations of comparisons are performed to obtain a final solution.

when points A and B are compared. This selection can be

interpreted as follows: transition from point A to point B is

preferred because the substantial percentage improvement in

the f2 dimension can outweigh the insignificant performance

degradation in the f1 dimension. Therefore, when an APS is

available, we can divide solutions into pairs for comparison

in the objective function space. The number of candidate

solutions can be shrunk by half after each iteration of pairwise

comparisons. Ideally, the final solution can be obtained after

log2 M iterations, as illustrated in Fig. 1(b).

Geometrically, a neighborhood of point E can constitute

a region termed a knee region. Solutions corresponding with

vectors in the knee region are termed knee solutions. These

solutions are of interest because they achieve an excellent level

of overall performance while sacrificing each objective to a

small extent. The way we chose point E follows the idea of

knee selection. To extend our method to a higher dimension,

i.e., a larger N , we generalize our selection philosophy from

the case where N = 2: for a pairwise comparison, point B

is preferred to point A if transition from A to B yields

a larger improvement percentage in one dimension than the

degradation percentage in the other dimension. For a pairwise

comparison when N ≥ 3, we argue that point B is preferred

to point A if transition from A to B yields a positive net

improvement percentage.

To illustrate our selection philosophy, we consider the

case in which N = 3. Suppose that an APF is available

and that transition from point A to point B yields a triple

(−20%, 15%, 15%), where the negative sign represents the

performance degradation. In this example, we prefer B to A

because the net improvement percentage is −20% + 15% +
15% = 10%, which is positive.

We have derived a selection strategy from pairwise compar-

isons. Solutions are divided into groups, each of which consists

of only two elements. For any pairwise comparison within a

group, one is preferred if the net improvement percentage is

positive. This approach is termed the D&C and considered
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as knee selection. There are two features the approach must

possess to ensure a legitimate MCDM. First, the transition

direction should not affect the selection, which implies that

the net improvement percentage from point A to B should

equal the negative value of the net improvement percentage

from point B to A. Otherwise, we can encounter a dilemma

in which one solution is preferred in one transition direction

but not preferred in the other transition direction. Second,

the D&C approach should be able to address the situation

in which the net improvement percentage equals zero. In

this case, there is no reason to move from one point to

the other, leading to incomparability. To formalize the D&C

approach that possesses these two features, we need rigorous

mathematical definitions and a preference model.

III. DIVIDE AND CONQUER APPROACH

In this section, we define mathematically the net improve-

ment percentage, leading to a preference model for pairwise

comparisons. By using this model, two solutions can be

compared even if their associated vectors on the APF are

close to each other. The concept of equivalence class is

then introduced to address the situation in which the net

improvement percentage equals zero. Finally, we show that

the D&C approach can produce a unique and consistent class.

Therefore, the final result is independent of how pairwise

comparisons are conducted. The existence of the unique class

enables us to rigorously define the knee in the APF and knee

solution in the APS.

Referring to the notations in (1) and (2), we define the

improvement percentage and net improvement percentage as

follows.

Definition 4: For a transition from solution xi to solution

xj , denoted by xi → xj , the improvement percentage in the

nth dimension, denoted by IPn(xi → xj), is defined as

IPn(xi → xj) =
fn(xi)− fn(xj)

Ln

× 100% (3)

where

Ln = max
m

fn(xm)−min
m

fn(xm).

Definition 5: For a transition from solution xi to solution

xj , IP (xi → xj) denotes the net improvement percentage

and is defined as

IP (xi → xj) =

N
∑

n=1

IPn(xi → xj). (4)

Definitions 4 and 5 can be used to construct a preference

model for pairwise comparisons:

xj is preferred to xi if IP (xi → xj) > 0. (5)

In other words, solution xj is selected instead of solution xi

if the net improvement percentage associated with xi → xj

is positive. The following theorem shows that the transition

direction does not affect the selection.

Theorem 1: By using the preference model in (5), xj is

preferred to xi if and only if

IP (xj → xi) < 0.

Proof: This can be verified by noting that

IP (xi → xj) =

N
∑

n=1

IPn(xi → xj)

= −

N
∑

n=1

IPn(xj → xi) = −IP (xj → xi).

(6)

Therefore, IP (xi → xj) > 0 if and only if IP (xj → xi) <
0. �

Although the preference model is mostly valid, we might

encounter a situation in which two solutions xj and xi are

incomparable, i.e., IP (xi → xj) = 0. In such a case, we

cannot say that one solution is preferred to the other. To

avoid possible incomparability, we employ the concept of

an equivalence relation to classify two solutions that yield

IP (xi → xj) = 0 into a same class [43].

Definition 6: A relation in PSA is a subset of PSA×PSA,

where “×” represents the Cartesian product. Let G denote a

relation in PSA. G is reflexive if (x,x) ∈ G for all x ∈
PSA; G is symmetric if (xj ,xi) ∈ G implies (xi,xj) ∈ G;

and G is transitive if (xi,xj) ∈ G and (xj ,xk) ∈ G imply

(xi,xk) ∈ G.

Definition 7: A relation G in PSA is an equivalence relation

if it is reflexive, symmetric, and transitive. For an equivalence

relation G, we use xi ≃ xj to represent (xi,xj) ∈ G.

By using the definitions of relation, we have the following

result.

Theorem 2: Define a relation in PSA as follows: xi ≃ xj

if

IP (xi → xj) = 0. (7)

Then the relation represented by ≃ is an equivalence relation.

Proof: The relation is reflexive because

IP (xi → xi) =

N
∑

n=1

IPn(xi → xi)

=

N
∑

n=1

fn(xi)− fn(xi)

Ln

= 0.

The relation is symmetric because

xi ≃ xj

⇒ IP (xi → xj) = 0

⇒

N
∑

n=1

fn(xi)− fn(xj)

Ln

= 0

⇒

N
∑

n=1

fn(xj)− fn(xi)

Ln

= 0

⇒ IP (xj → xi) = 0

⇒ xj ≃ xi.
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Finally, the relation is transitive because

xi ≃ xj and xj ≃ xk

⇒ IP (xi → xj) = 0 and IP (xj → xk) = 0

⇒

N
∑

n=1

fn(xi)− fn(xj)

Ln

= 0 and

N
∑

n=1

fn(xj)− fn(xk)

Ln

= 0

⇒

N
∑

n=1

fn(xi)− fn(xj)

Ln

+

N
∑

n′=1

fn′(xj)− fn′(xk)

Ln′

= 0

⇒

N
∑

n=1

fn(xi)− fn(xk)

Ln

⇒ IP (xi → xk) = 0

⇒ xi ≃ xk.

Since the relation is reflexive, symmetric, and transitive, it is

an equivalence relation, which completes the proof. �

The preference model in (5) does not address the case

in which IP is equal to zero. When the case occurs, the

solutions in comparison are considered equivalent and, hence,

we classify these solutions into equivalence classes.

Definition 8: For an equivalence relation ≃ in PSA, the

equivalence class of xi, denoted by [xi], is the set

[xi] = {x ∈ PSA : xi ≃ x}. (8)

A well-known result regarding an equivalence relation in a

set is as follows [43], [44].

Proposition 1: Given an equivalence relation ≃ in PSA,

equivalence classes induced by ≃ give a partition of PSA.

By using the equivalence relation defined in Theorem 2, we

can classify a pair of solutions that yield IP (xi → xj) = 0
into the same equivalence class [xi]. A class [x] instead of a

point x ∈ PSA is considered a single mathematical object (or

element) afterwards. Since equivalence classes give a partition

according to Proposition 1, all solutions in PSA belong to

certain classes. To avoid the incomparability problem, the

preference model in (5) can be modified as follows:

[xj ] is preferred to [xi] if IP (xi → xj) > 0. (9)

The following theorem shows that the most preferred element

exists and hence, the knee in the APF and the knee solution

in the APS can be defined accordingly.

Theorem 3: Let

PSA
c = {[x] : x ∈ PSA} (10)

denote the partition induced by the equivalence relation de-

fined in Theorem 2, and [xj ] ≺k [xi] denote that [xj ] is

preferred to [xi] based on keen selection. There exists an

unique element [x∗] ∈ PSA
c such that [x∗] ≺k [z] for all

[z] ∈ PSA
c \ {[x∗]}.

Proof: Given two distinct [xi] and [xj ] ∈ PSA
c , we have

either

IP (xi → xj) > 0 or IP (xj → xi) > 0.

Therefore, each element in PSA
c is comparable. Since PSA

c

has finite elements, the existence of [x∗] holds true. The

uniqueness is verified by noting that we cannot have

[x∗] ≺k [z] and [z] ≺k [x∗]

for some [z] 6= [x∗] because conditions

IP (x∗ → z) > 0 and IP (x∗ → z) < 0

cannot hold true simultaneously. �

Based on Theorem 3, we summarize the D&C approach as

follows:

1) Input PSA and PFA.

2) Construct PSA
c .

3) Perform pairwise comparisons among [x] ∈ PSA
c ac-

cording to (9).

4) Output the element [x∗].

In addition, because of the uniqueness of [x∗], we are able to

define the knee and knee solution as follows.

Definition 9: Given PSA and PFA, the knee solution is

the unique element [x∗] in Theorem 3 and the knee is the set

f([x∗]) = {f(x) : x ∈ [x∗]} ⊂ PFA.

This section presented knee selection described by the

D&C approach. The approach is efficient because the size of

PSA can be reduced by half after each iteration of pairwise

comparisons. In practice, iterations of comparisons can be

replaced by elegant matrix calculations. We show this by

connecting the knee selection with the MMD in the next

section.

IV. MINIMUM MANHATTAN DISTANCE APPROACH

This section develops the proposed MMD approach to

MCDM: the solution that minimizes the distance from a

normalized ideal vector is selected. The MMD approach

originates from the D&C approach. First, the D&C approach

is transformed into a WS approach by rearranging terms in an

inequality that is associated with the preference model. Next,

the WS approach is transformed into the MMD approach by

adding entries of an ideal vector to the weighted sum. The

established equivalence between these approaches allows the

MMD approach to possess rich geometric interpretations.

To begin with, we show that the D&C approach is equivalent

to a WS approach that determines the final solution by adding

weighting coefficients to objectives.

Theorem 4: The WS approach

argx min
x∈PSA

N
∑

n=1

wnfn(x) (11)

where

wn =
1

Ln

(12)

is equivalent to the D&C approach using the comparison rule

in (9).

Proof: This can be readily verified by noting that

[xj ] ≺k [xi]

⇔ IP (xi → xj) > 0

⇔

N
∑

n=1

fn(xi)− fn(xj)

Ln

> 0

⇔

N
∑

n=1

fn(xj)

Ln

<

N
∑

n=1

fn(xi)

Ln



6

����

����	
��

� 1
1

1

f
y

L
=

� 2
2

2

f
y

L
=

1 2 min
WS

y y c+ = 1 2y y c+ =

opty

1 2 1y y c+ = 1 2 2y y c+ =

� 1
1

1

f
y

L
=

� 2
2

2

f
y

L
=

������

��	
��
����������

������

��	
��
����������

(a) (b)

Fig. 2. Geometric interpretation of the WS approach to MCDM. (a) The graph of a hyperplane in a 2D objective function space is a line y1 + y2 = c
with intercept c. The cWS

min is the minimum value of c such that the line has nonempty intersection with the NAPF. (b) Two different shapes of NAPFs are

considered. c1 and c2 represent the minimum values cWS
min associated with NAPF 1 and NAPF 2, respectively. A more bent NAPF can yield a smaller value

of cWS
min, i.e., c1 < c2.

for all xj ,xi ∈ PSA. �

The WS approach assigns weighting coefficients to all

objectives according to (12), and selects the solution that

corresponds with the minimum sum. It is different from

conventional WS methods in that it does not require preference

inputs of the DM. Define

y(x) =
[

y1(x) y2(x) . . . yN(x)
]T

=
[

f1(x)
L1

f2(x)
L2

. . . fN (x)
LN

]T

.

Because of the equivalence, the notation [x∗] adopted in the

D&C approach is also used here to denote the solution selected

by the WS approach, i.e.,

x∗ = argx min
x∈PSA

N
∑

n=1

fn(x)

Ln

.

From a geometric perspective, the solution can be obtained by

moving a hyperplane

y1 + y2 + ...+ yN = c

from a large c in the direction -1 (-1 represents the direction

of decreasing the value of c) until the minimum value cWS
min

ensuring nonempty intersection of the hyperplane and normal-

ized APF (NAPF) is achieved, as demonstrated in Fig. 2(a).

In this case, we have

cWS
min = min

x∈PSA

N
∑

n=1

fn(x)

Ln

.

For a smaller value of cWS
min, the shape of the NAPF can be

more bent, as shown in Fig. 2(b).

With the help of Theorem 4, we can relate knee selection

to the MMD. Let

ℓn = min
x∈PSA

fn(x)

be the minimum value in the nth dimension, and denote

yopt =
[

ℓ1
L1

ℓ2
L2

... ℓN
LN

]T

(13)

as the ideal vector after normalization. The MMD approach

to MCDM selects the point in the NAPF that is closest to the

normalized ideal vector:

x∗ = argx min
x∈PSA

||y(x)− yopt||1 (14)

where yopt is defined in (13) and || · ||1 represents the

Manhattan norm (also termed 1-norm or taxicab norm), i.e.,

||y||1 =
∑N

n=1 |yn|.

The use of the Manhattan norm in the MMD approach

described by (14) establishes the connection with the weighted

sum approach as shown in the following theorem.

Theorem 5: The MMD approach is equivalent to the WS

approach. In other words, we have

min
x∈PSA

||y(x)− yopt||1 ∼ min
x∈PSA

N
∑

n=1

fn(x)

Ln

(15)

where “∼” denotes “equivalent to.”
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Fig. 3. Geometric interpretation of the MMD approach to MCDM. (a) The graph of ||y − yopt||1 = c in a 2D objective function space is a rhombus with
center yopt defined in (13) and radius c, represented by the inner rhombus that has dashed edges. When c = 0, the graph reduces to the point yopt. By
enlarging c, the size of the rhombus increases, as indicated by the arrow. The minimum value of c that yields nonempty intersection between the rhombus
||y − yopt||1 = c and the NAPF is denoted by c = cMMD

min , and the resulting rhombus is ||y − yopt||1 = cMMD
min , i.e., the outer rhombus that has

dash-dot edges. This intersection is represented by y([x∗]) and [x∗] is the solution set selected by the MMD approach. (b) Two different shapes of NAPFs
are considered. c1 and c2 represent the minimum values cMMD

min associated with NAPF 1 and NAPF 2, respectively. Since the shape of NAPF 1 is more bent
than that of NAPF 2, we have c1 < c2.

Proof: This can be readily verified by noting that

||y(x)− yopt||1 =

N
∑

n=1

|
fn(x)− ℓn

Ln

| =

N
∑

n=1

{
fn(x)

Ln

−
ℓn
Ln

}

=

N
∑

n=1

fn(x)

Ln

−

N
∑

n=1

ℓn
Ln

where the second equality comes from the fact that fn(x) ≥
ℓn for all x ∈ PSA. Therefore, we have

min
x∈PSA

||y(x)− yopt||1 ∼ min
x∈PSA

{
N
∑

n=1

fn(x)

Ln

−
N
∑

n=1

ℓn
Ln

}

∼ min
x∈PSA

N
∑

n=1

fn(x)

Ln

because the term
∑N

n=1 ℓn/Ln is a constant. �

From an algebraic perspective, two observations can be

made from Theorem 5. First, the MMD approach is efficient

because evaluating the Manhattan norm can be realized by

efficient matrix calculations:

||y(x)− yopt||1 =
N
∑

n=1

{
fn(x)

Ln

−
ℓn
Ln

} = 1
T (y(x)− yopt)

where 1 represents the vector with all-one entries. Second,

although the MMD and WS approaches are equivalent, the

MMD approach is generally preferred. When a term fn(x)/Ln

in (11) is too large compared to the remaining terms, the WS

approach neglects the remaining ones, which may yield diffi-

culty searching for the final solution. Note that this difficulty

cannot be avoided by simply normalizing objectives. This is

because any normalizing constant αn in the nth dimension

will enter the maximum spread so that the normalizing effect

is cancelled in the ratio, i.e.,

f̃n

L̃n

=
(fn/αn)

(Ln/αn)
=

fn
Ln

where f̃n = fn/αn and L̃n = Ln/αn represent the normal-

ized objective and associated maximum spread, respectively.

By contrast, all the terms (fn(x) − ℓn)/Ln belong to [0, 1]
in the MMD approach, avoiding the problem of one term

dominating the remaining terms.

For a geometric interpretation, we consider the graph of

||y − yopt||1 = c

which in R2 is a rhombus with center yopt and radius c. The

selected y([x∗]) can be obtained by gradually enlarging c until

the graph intersects normalized PFA. The value

cMMD
min = min

x∈PSA

||y(x)− yopt||1

is the minimal value for nonempty intersection of the rhombus

and normalized PFA, as explained in Fig. 3(a). In addition

to indicating how close the selected y([x∗]) is to the ideal
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Fig. 4. The knee y([x∗]) contains two points, i.e., y([x∗]) = {A,B}. (a) Nondominated vectors outside the rhombus yield ||y(x) − yopt||1 > cMMD
min .

(b) Nondominated vectors located on the right-hand side of the line y1(x) + y2(x) = cWS
min yield y1(x) + y2(x) > cWS

min. (c) Transition from middle
nondominated vectors to end vectors is preferred because a positive net improvement percentage, denoted by IP > 0, can be achieved.

vector yopt, the value of cMMD
min may reveal how objectives

affect each other. Similarly to the role of cWS
min, a smaller value

of cMMD
min implies a more bent NAPF, as illustrated in Fig. 3(b).

Theorems 4 and 5 provide the proposed MMD approach

with rich geometric and algebraic interpretations because

of the overall equivalence established. In summary, from a

geometric perspective, the proposed approach selects x∗ that

has the MMD from the normalized ideal vector yopt; x
∗ can

also be obtained by either enlarging the radius of the rhombus

with the normalized ideal vector as the center or moving the

hyperplane toward the direction of decreasing the value of

intercept until nonempty intersection with the NAPF cannot be

achieved; and the approach is equivalent to the knee selection

method described by the D&C approach. Computationally, the

MMD approach is more efficient and elegant than the D&C

approach that requires iterations of pairwise comparisons to

yield x∗; it is more effective than the WS approach in certain

situations in which the WS approach has difficulty searching

for the final solution; and the approach can be considered as a

systematic way to assign weighting coefficients to objectives,

which is generally difficult when a large number of objectives

are involved.

Visualizing knee selection has been examined solely in the

case where the APF is convex. We examine the knee selection

for other shapes of fronts. Fig. 4 shows a concave APF in a

2-D objective function space. Suppose that

A = [ A1 A2 ]T = y(x1) and B = [ B1 B2 ]T = y(x2)

are the two extreme vectors. According to (13), we have

yopt =
[

A1 B2

]T
=

[

ℓ1
L1

ℓ2
L2

]T

.

For the MMD approach, we have

||y(x)− yopt||1 =
f1(x)− ℓ1

L1
+

f2(x)− ℓ2
L2

=

{

0 + 1 = 1, if x = x1

1 + 0 = 1, if x = x2
.

(16)

Other vectors in the APF yield ||y(x)− yopt||1 > 1 and thus

y([x∗]) = {A,B}. By rearranging terms in (16), we have

y1(x) + y2(x) =
f1(x)

L1
+

f2(x)

L2
= 1 + ℓ1 + ℓ2

for x ∈ [x∗]. Therefore, when the WS approach is used,

points A and B are on the same line, leading to the minimum

weighted sum. We see that the D&C approach produces the

same result: transition from extreme point A or B to middle

points is not allowed because the improvement percentage in

one dimension is less than the degradation percentage in the

other dimension.

Selection of extreme vectors when the shape of an APF is

a concave curve has further implication. In a 2-D space, if

the shape of an APF can be represented by a line segment,

then all vectors on the line will be selected by the proposed

methodology. This is because a line can be regarded as a

degenerate case of a concave curve so that all vectors on

the line become extreme vectors. Since a line in a 2-D space

generalizes to a plane in a 3-D space, if the shape of an APF

can be contained within a plane in a 3-D space, then vectors

on the plane will be chosen. After normalization, the chosen

vectors yield the same MMD from the ideal vector. For any

APFs represented by concave surfaces in a 3-D space, extreme

vectors on the concave surfaces are to be selected. This can

be understood by noting that a concave curve in a 2-D space

generalizes to a concave surface in a 3-D space.

Finally, we discuss how a vector is selected by the MMD ap-

proach when a discontinuous front in a 2-D space is involved.

After normalizing all vectors in the front, we can construct

a line segment by connecting the two extreme vectors, i.e.,

the vector with the smallest value in y1 and the vector with

the smallest value in y2. Similar to the scenario considered in

Fig. 4(a), the following observations can be made: normalized

vectors y on the line segment, on the right-hand side of the line

segment, and on the left-hand side of the line segment yield

||y − yopt||1 = 1, ||y − yopt||1 > 1, and ||y − yopt||1 < 1,
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respectively. Therefore, the MMD approach selects a vector

that is on the left-hand side of the line segment. If all the non-

extreme vectors are on the right-hand side of the line segment,

then extreme vectors are to be selected.

Remark 1: Compromise programming to MCDM deter-

mines the final solution that is associated with the least dis-

tance from an ideal vector [45], [46]. The distance is measured

in terms of p-norms combined with weighting coefficients

prescribed by the DM. The distance function in compromise

programming reduces to the Manhattan distance used in our

approach when p = 1 is assigned and equal weighting

coefficients are adopted. Therefore, to some extent our analysis

has connects not only knee selection with WS methods, but

also WS methods with compromise programming.

V. NUMERICAL RESULTS

In this section, we examine various MCDM problems

derived from MOPs to illustrate the proposed methodology.

The section is divided into three subsections. The established

equivalence is examined using 2-D, 3-D, and 5-D APFs in

Section V-A. In Section V-B, practical concerns about these

equivalent approaches are investigated. In Section V-C, several

benchmark MOPs are employed to demonstrate the effective-

ness of the MMD approach. Finally, an MCDM problem with

real-world data is considered in Section V-D. All simulations

have been performed using a desktop with Intel i7-4770, 3.40

GHz CPU, and 3.16 GB RAM.

A. Equivalence Analysis

The MOP1, MOP5, and DTLZ1 [41] were solved by the

multiobjective artificial immune algorithm in [40] to obtain

APFs. For an illustrative purpose, a small population size

of 16 was adopted. For a 2-D illustration, i.e., N = 2, we

considered the MCDM in MOP1. As shown in Figs. 5(a)

and 5(b), the MMD and WS approaches are associated with

a rhombus and a line, respectively. In Fig. 5(a), the rhombus

||y − yopt||1 = c reduces to the point yopt when c = 0. The

inner rhombus with dashed edges has a value of c = 0.33443,

yielding empty intersection with the NAPF. By enlarging the

value of c, the rhombus size increases. The outer rhombus with

dash-dot edges that has a value of c = 0.66885 is obtained

by enlarging c from c = 0 until nonempty intersection with

the NAPF is achieved. This intersection is represented by

y(x7) and, therefore, the MMD selects the point x7. It should

be noted that although we used a geometric interpretation

to realize the MMD approach, the algebraic formula in (14)

should be used in practice. Fig. 5(c) shows a random order of

pairwise comparisons based on the D&C approach. All three

approaches yield the same result, as proven in our analysis

of their equivalence. The vector associated with the final

solution x7 geometrically lies in the knee region of the APF,

corresponding with knee selection and coinciding with our

geometric intuition for a knee.

For a 3-D case, i.e., N = 3, a line and a rhombus for

the WS and MMD approaches become a plane and a regular

octahedron, respectively. Fig. 6 presents the MCDM in MOP5.

In Fig. 6(a), the MMD approach is interpreted as enlarging
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Fig. 5. MCDM in MOP1 by (a) MMD approach; (b) WS approach; and (c)
D&C approach. Solutions are labeled based on the associated objective values
of f1. In (c), IP = IP (xi → xj) where xi and xj represent the upper
and lower solutions in a pairwise comparison, respectively.



10

−0.5
0

0.5
1

1.5

6.5

7

7.5

8

8.5
−1

−0.5

0

0.5

1

 

y
1
=f

1
/L

1

16

4

y
2
=f

2
/L

2

1

 

y 3=
f 3/L

3
NAPF
y([x*])
 y

opt

|| y −  y
opt

 ||
1
= 0.48297

|| y −  y
opt

 ||
1
= 0.24149

(a)

0
0.5

1
1.5

7
7.5

8
8.5

−2

−1

0

1

2

 

y
1
=f

1
/L

1

16

4

y
1
+y

2
+y

3
= 7.5461

y
1
+y

2
+y

3
= 7.0631

y
2
=f

2
/L

2

1

 

y 3=
f 3/L

3

NAPF
y([x*])

(b)

1x

2x

3x

5x

6x

7x

8x

10x

12x

13x

14x

16x

4x

9x

11x

15x

����������

�������	��

������
�
�

������
���

����
������

�������	��

����
������

����
���	��

����
���
�


����
������

����
���
��

����������

�������	��

����
����
�

��������
�

4x

(c)

Fig. 6. MCDM in MOP5 by (a) MMD approach; (b) WS approach; and (c)
D&C approach. Solutions are labeled based on the associated objective values
of f1. In (c), IP = IP (xi → xj) where xi and xj represent the upper
and lower solutions in a pairwise comparison, respectively.

the radius of a regular octahedron centered at the ideal vector

yopt until nonempty intersection with the NAPF is achieved.

In Fig. 6(b), the WS approach is interpreted as moving a plane

in the direction of its normal vector -1 while intersection with

the NAPF must be ensured, leading to the minimum value

of the weighted sum. In Fig. 6(c), the D&C approach with a

random order of pairwise comparisons is applied, producing

the same solution as the MMD and WS approaches do.

For a 5-D scenario, the MCDM in scalable DTLZ1 is

considered. While geometric visualization becomes impossi-

ble, our algebraic formulas for MCDM can still be applied.

The MMD and WS approaches yield the same solution, bold

marked in Table I. Four random trials of pairwise comparisons

using the D&C approach are performed to demonstrate that

the approach is independent of the comparing order, shown in

Fig 7.

B. Practical Concerns

We showed that the MMD, WS, and D&C approaches

yielded the same final solutions in 2-D, 3-D, and 5-D MCDM

problems. Although these approaches are theoretically equiv-

alent, in practice there are some situations in which the WS

approach can have difficulty searching for the final solution

and the D&C approach can consume relatively more compu-

tational time.

In Fig. 8(a), the values in f1 are much larger than the

associated maximum spread L1, but the differences between

the values in f2 and the associated maximum spread L2 are

relatively small. We have f1/L1 ≫ f2/L2 and hence, the

term f1/L1 dominates the term f2/L2 in the weighted sum.

As shown in Table II and Fig. 8(b), all solutions have almost

the same weighted sum, but the MMD and D&C approaches

can readily distinguish among the solutions. In this situation

the WS approach has difficulty in finding the final solution.

To evaluate the corresponding computational time, we ex-

amine the MCDM in DTLZ1, DTLZ2, MOP1–7, MOP-C1

Binh, MOP-C1 Osyczka, MOP-C1 Viennet, MOP-C1 Tanaka,

and ZDT1–3 [41]. Larger population sizes are adopted for

statistical analysis. Table III summarizes the comparisons.

To facilitate ensuing discussions, we label three groups of

simulation results as category 1 (C1), category 2 (C2), and

category 3 (C3). In C1 comparisons, 3000 simulation runs

seem to allow for relatively stable evaluation of average

computational time. Among these comparisons, the D&C

approach consume more computational time than the other

approaches. The population size of the employed MOEA is

related to the number of solutions (or problem size) in the

MCDM process, and a larger size implies more computational

efforts. C2 comparisons illustrate that computational time of

the D&C approach increases more rapidly than the MMD and

WS approaches upon increasing the problem size. This is be-

cause the D&C approach must perform pairwise comparisons

iteratively and the number of comparisons is directly related

to the problem size. Various MCDM problems are examined

in C3 comparisons, demonstrating that the MMD and WS

approaches are more computationally efficient than the D&C

approach.
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Fig. 7. Four random trials of pairwise comparisons using the D&C approach to MCDM in DTLZ1. Different comparing orders in (a)–(d) lead to the same
solution, where IP = IP (xi → xj) with xi and xj representing the upper and lower solutions in a pairwise comparison, respectively.

C. Further Exploration

For the purpose of a better understanding, the MMD ap-

proach is applied to the MCDM in commonly used ZDT

and DTLZ test suites. Since a few of these MOPs yield

the same PFs, they are combined. In addition, MOP4 and

MOP6 from [41] are included for comparison. Fig. 9 presents

the results in which the MCDM is performed on population

sampled from the true PFs. Normalized samples closest to

the ideal vector in the sense of the Manhattan distance are to

be selected. For convex shapes of PFs in ZDT1 and ZDT4,

samples located in the knee region are selected as expected.

Because the PF in ZDT2 and ZDT6 (2-D problems) has the

shape of a concave curve and that in DTLZ2–4 (3-D problems)

has the shape of a concave surface, extreme samples in each

dimension are selected. Since samples of the PF in DTLZ1

are contained within a plane, all of them are chosen and

considered as equivalent.

For discontinuous PFs, we refer to ZDT3, DTLZ7, MOP4,

and MOP6. It is informative to compare ZDT3, MOP4, and

MOP6. Consider the line segment that connects the extreme

vectors. For ZDT3, most samples are on the left-hand side of

the line, and the one that is most distant from the line in the

sense of the Manhattan norm is selected. By contrast, MOP4

and MOP6 have most samples on the right-hand side of the

line; however, the selected samples are an exception that is on

the left-hand side but close to the line.

D. Real-World Application

The MMD approach is further used to solve a real-world

MCDM problem about a future plant layout of a leading

IC packaging company in Taiwan [47]. It is desired that

the plant layout can have certain features measured by the

flow distance (f1), adjacency score (−f2 where the negative

sign indicates a larger-the-better quantity), shape ratio (f3),

flexibility (−f4), accessibility (−f5), and maintenance (−f6).

In this problem, there are 18 layout alternatives (x1–x18),

generated by a commercial software program termed Spiral.

Existing MCDM approaches are included for comparison:

grey relational analysis (GRA), data envelopment analysis

(DEA),3 the technique for order preference by similarity to an

ideal solution (TOPSIS), and simple additive weighting (SAW)

[47]–[49].

In practice a DM uses various analysis tools, compares the

results, and then selects the final alternative when addressing

an MCDM problem. Table IV presents the ranking of the

alternatives.4 It is worth mentioning that while state-of-the-art

MCDM approaches have different mechanisms, most of them

put alternatives x11,x15, and x17 in the top-3 list. Alternative

x15 should be selected because it has the top ranking among

most MCDM approaches. The proposed MMD approach is

consistent with this selection.

Although most existing MCDM approaches yield the same

final result, the proposed MMD approach is relatively simple

and elegant. For the GRA method, a parameter termed the dis-

tinguishing coefficient must be prescribed. This parameter can

affect its performance; however, specific rules for assigning a

value to the parameter are not available and hence, additional

sensitivity analysis must be conducted. For the DEA method,

three alternatives, i.e., x11,x15, and x18, are suggested, but

further efforts are required to reach the final decision. For the

TOPSIS method, it leads to alternative x11 that is inconsistent

with the consensus. Regarding the SAW method, although it is

effective in this example, limited applications have been found

in the literature because it sometimes produces results that are

not logical [50].

3The DEA approach is further combined with an analytical hierarchy
process.

4Due to space consideration, only the top 10 alternatives are listed.
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TABLE I
MCDM IN DTLZ1 BY MMD AND WS APPROACHES

Solutions y([xi]) MMD WS

x1 [ 0.0074 0.0026 0.0152 0.1500 1.0080]T 1.1113 1.1833

x2 [ 0.0084 0.0281 0.0476 0.0830 0.7508]T 0.8462 0.9181

x3 [ 0.0397 0.0009 0.2390 0.5895 0.3838]T 1.1813 1.2533

x4 [ 0.0786 0.1104 0.9212 0.3954 0.3643]T 1.7981 1.8701

x5 [ 0.1045 0.2175 0.2645 0.8646 0.2316]T 1.6109 1.6828

x6 [ 0.1075 0.1562 0.0634 0.0403 0.5492]T 0.8448 0.9167

x7 [ 0.1081 0.0656 0.4108 1.0403 0.2550]T 1.8081 1.8800

x8 [ 0.1494 0.2953 0.1129 0.4294 0.0080]T 0.9232 0.9952

x9 [ 0.1845 1.0010 0.0744 0.3853 0.2971]T 1.8704 1.9424

x10 [ 0.1915 0.2743 1.0152 0.1228 0.3714]T 1.9035 1.9754

x11 [ 0.3801 0.1362 0.0425 0.7685 0.0800]T 1.3355 1.4075

x12 [ 0.4236 0.1452 0.5504 0.5501 0.1205]T 1.7180 1.7899

x13 [ 0.5124 0.7438 0.0866 0.0797 0.0101]T 1.3610 1.4330

x14 [ 0.6835 0.2687 0.1543 0.2769 0.1571]T 1.4688 1.5407

x15 [ 0.8185 0.4825 0.3371 0.2555 0.1091]T 1.9310 2.0029

x16 [ 1.0074 0.3698 0.1104 0.2089 0.0911]T 1.7158 1.7878

TABLE II
MCDM IN FIG. 8 BY MMD AND WS APPROACHES

Solutions MMD WS

x1 1 6.6667e+08

x2 0.9248 6.6667e+08

x3 0.7675 6.6667e+08

x4 0.6238 6.6667e+08

x5 0.4988 6.6667e+08

x6 0.4259 6.6667e+08

x7 0.4418 6.6667e+08

x8 0.4767 6.6667e+08

x9 0.5117 6.6667e+08

x10 0.5466 6.6667e+08

x11 0.6316 6.6667e+08

x12 0.6959 6.6667e+08

x13 0.7530 6.6667e+08

x14 0.8435 6.6667e+08

x15 0.9038 6.6667e+08

x16 1 6.6667e+08

VI. CONCLUSION

In existing studies, a large number of MOEAs have been

developed to solve MOPs. In the end a final solution must be

selected out of obtained Pareto optimal solutions. Although

many MCDM approaches from the field of operations research

can be adopted, they mostly require weighting coefficients

prescribed by the DM and some of them lack geometric

interpretations. In the field of evolutionary computation that

values geometric interpretations, few approaches to MCDM

in MOPs have been developed. In this paper, we proposed

a MMD approach to MCDM in MOPs. The approach has

rich geometric interpretations and avoids subjective preference

inputs from the DM. In contrast with conventional WS ap-

proaches, the MMD approach provides a systematic way to

generate weighting coefficients without a priori preference

from the DM. Our analysis showed that the approach is

equivalent to knee selection described by the D&C approach.

Simulations have been performed to illustrate the effectiveness

of the proposed methodology.
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Fig. 8. A scenario in which all solutions yield almost the same weighted
sum. (a) The x-axis is marked by the same graduation because the values of
f1 are much larger than the associated maximum spread (L1 is relatively
small as compared to the values of f1). (b) Pairwise comparisons using
the D&C approach to MCDM, where IP = IP (xi → xj) with xi and
xj representing the upper and lower solutions in a pairwise comparison,
respectively.
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TABLE III
COMPARISON OF COMPUTATIONAL TIME

Problem names N Population Size Num. of Simulation Runs
MMD WS D&C

total time average time total time average time total time average time

C1

DTLZ1 5 50 100 0.0082 8.1858e-05 0.0039 3.9041e-05 0.0256 2.6559e-04

DTLZ1 5 50 1000 0.0482 4.8211e-05 0.0345 3.4521e-05 0.2319 2.3191e-04

DTLZ1 5 50 3000 0.1114 3.7148e-05 0.0906 3.0207e-05 0.6964 2.3213e-04



























DTLZ1 5 50 5000 0.1746 3.4914e-05 0.1469 2.9379e-05 1.1403 2.2806e-04

DTLZ1 5 50 8000 0.3005 3.7562e-05 0.2303 2.8784e-05 1.6512 2.0640e-04

DTLZ1 5 50 10000 0.3800 3.8001e-05 0.2881 2.8807e-05 2.3347 2.3347e-04

C2

DTLZ1 5 25 3000 0.1009 3.3633e-05 0.0846 2.8203e-05 0.5965 1.9883e-04

DTLZ1 5 50 3000 0.1114 3.7148e-05 0.0906 3.0207e-05 0.6964 2.3213e-04











DTLZ1 5 100 3000 0.1201 4.0021e-05 0.1036 3.4538e-05 1.6449 5.4831e-04

DTLZ1 5 200 3000 0.1400 4.6652e-05 0.1148 3.8281e-05 1.9489 6.4962e-04

C3

DTLZ1 5 50 3000 0.1114 3.7148e-05 0.0906 3.0207e-05 0.6964 2.3213e-04

DTLZ2 5 50 3000 0.1258 4.1927e-05 0.0967 3.2295e-05 0.9329 3.1097e-04

MOP1 2 50 3000 0.2593 8.6417e-05 0.0930 3.1001e-05 0.9492 3.1639e-04

MOP2 2 50 3000 0.1163 3.8777e-05 0.0842 2.8083e-05 0.5967 1.9890e-04

MOP3 2 50 3000 0.1122 3.7411e-05 0.0835 2.7841e-05 0.5923 1.9744e-04

MOP4 2 50 3000 0.1212 4.0411e-05 0.0885 2.9494e-05 0.9326 3.1088e-04

MOP5 3 50 3000 0.1230 4.1010e-05 0.0907 3.0228e-05 0.9384 3.1279e-04

MOP6 2 50 3000 0.1177 3.9237e-05 0.0857 2.8555e-05 0.8660 2.8866e-04











































































































MOP7 3 50 3000 0.1272 4.2416e-05 0.0915 3.0503e-05 0.9529 3.1764e-04

MOP-C1 Binh 2 50 3000 0.1222 4.0738e-05 0.0875 2.9157e-05 0.9222 3.0741e-04

MOP-C1 Osyczka 2 50 3000 0.1209 4.0304e-05 0.0880 2.9339e-05 0.9032 3.0105e-04

MOP-C1 Viennet 3 50 3000 0.1242 4.1414e-05 0.0929 3.0951e-05 0.9237 3.0789e-04

MOP-C1 Tanaka 2 50 3000 0.1216 4.0531e-05 0.0873 2.9100e-05 0.9115 3.0383e-04

ZDT1 2 50 3000 0.1433 4.7776e-05 0.1009 3.3644e-05 0.7088 2.3626e-04

ZDT2 2 50 3000 0.1155 3.8508e-05 0.0825 2.7515e-05 0.5166 1.7219e-04

ZDT3 2 50 3000 0.1113 3.7102e-05 0.0830 2.7669e-05 0.5619 1.8729e-04
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Fig. 9. MCDM in ZDT and DTLZ test suites, MOP4, and MOP6 using the MMD approach. In a 2-D space, the PF in (a) has the shape of a convex curve,
and the PF in (b) has the shape of a concave curve. In a 3-D space, the PF in (d) is on a plane, and the PF in (e) has the shape of a concave surface.
Discontinuous PFs appear in (c), (g), (h), and (i). The selection process can be readily visualized because of the front shapes except for the PFs in (f) and (g).



14

TABLE IV
MCDM FOR FACILITY LAYOUT

Ranking GRA DEA TOPSIS SAW MMD
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