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Abstract—The current literature of evolutionary many-
objective optimization is merely focused on the scalability
to the number of objectives, while little work has considered
the scalability to the number of decision variables. Never-
theless, many real-world problems can involve both many
objectives and large-scale decision variables. To tackle such
large-scale many-objective optimization problems, this paper
proposes a specially tailored evolutionary algorithm based
on a decision variable clustering method. To begin with,
the decision variable clustering method divides the decision
variables into two types: convergence-related variables and
diversity-related variables. Afterwards, to optimize the two
types of decision variables, a convergence optimization s-
trategy and a diversity optimization strategy are adopted. In
addition, a fast non-dominated sorting approach is developed
to further improve the computational efficiency of the pro-
posed algorithm. To assess the performance of the proposed
algorithm, empirical experiments have been conducted on a
variety of large-scale many-objective optimization problems
with up to 10 objectives and 5000 decision variables. Our
experimental results demonstrate that the proposed algo-
rithm has significant advantages over several state-of-the-art
evolutionary algorithms in terms of the scalability to decision
variables on many-objective optimization problems.

Index Terms—Evolutionary multi-objective optimization,
many-objective optimization, large-scale optimization, clus-
tering, non-dominated sorting, tree

I. INTRODUCTION

MANY-objective optimization problems (MaOPs)
refer to the problems that involve more than three

conflicting objectives to be optimized simultaneously,
which widely exist in real-world applications, such as
engineering design [1], air traffic control [2], groundwa-
ter monitoring [3] and molecular design [4]. Generally
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speaking, MaOPs can not be easily solved by most multi-
objective evolutionary algorithms (MOEAs) designed
for dealing with traditional multi-objective optimization
problems (MOPs) which involve only two or three objec-
tives due to two major issues [5]–[9]. The first issue is the
loss of convergence pressure, which is mainly caused by
the phenomenon called dominance resistance [10]. This is
due to the fact that in many-objective optimization, most
candidate solutions become non-dominated with each
other, thus causing failure of dominance based selection
strategies in traditional MOEAs. The other issue is the
difficulty in diversity management. In many-objective
optimization, the candidate solutions are sparsely dis-
tributed in the high-dimensional objective space, which
leads to the ineffectiveness of traditional diversity man-
agement strategies. To tackle the above two issues, a
number of approaches have been proposed [11], [12],
which can be roughly divided into four categories.

The first category covers various convergence en-
hancement based approaches. To enhance the conver-
gence pressure, the most intuitive idea is to directly
modify the definition of traditional Pareto dominance,
such as ε-dominance [13], [14], L-optimality [15], fuzzy
dominance [16], preference order ranking [17] and θ-
dominance [18]. Another idea belonging to this cat-
egory is to combine the traditional dominance with
an additional convergence-related metric, and MOEAs
belonging to this category include the substitute distance
assignment based NSGA-II [19], grid-based evolutionary
algorithm (GrEA) [20], preference-inspired coevolution-
ary algorithm (PICEA-g) [21], many-objective evolution-
ary algorithm based on directional diversity and favor-
able convergence (MaOEA-DDFC) [22], and knee point
driven evolutionary algorithm (KnEA) [23].

The second category directly adopts performance
indicators as selection criterion to distinguish non-
dominated solutions which can not be distinguished
by traditional Pareto dominance. Among many oth-
ers [24]–[27], some representative approaches of this
catetory are indicator based evolutionary algorithm
(IBEA) [28], S-metric selection based evolutionary multi-
objective optimization algorithm (SMS-EMOA) [29] and
hypervolume-based evolutionary algorithm (HypE) [30].

The third category is known as the decomposition
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based approaches, where the idea is to decompose an
MaOP into a group of simple sub-problems and then
solve them in a collaborative manner. To be specific,
one type of decomposition is to decompose an MaOP
into a group of single-objective problems (SOPs). One
popular decomposition based approach of this type is
the MOEA/D algorithm [31], as well as its variants, such
as stable matching model based MOEA/D (MOEA/D-
STM) [32], MOEA/D with adaptive weight vector ad-
justment (MOEA/D-AWA) [33], external archive guid-
ed MOEA/D (EAG-MOEA/D) [34], MOEA/D with a
distance based updating (MOEA/D-DU) [35] and online
diversity metric based MOEA/D [36]. Another type of
decomposition is to decompose an MaOP into a group of
simple MOPs. Some representative MOEAs of this type
are MOEA/D-M2M [37], reference-point based many-
objective NSGA-II (NSGA-III) [38], dominance and de-
composition based MOEA (MOEA/DD) [39], and the
recently proposed reference vector guided evolutionary
algorithm (RVEA) [40].

The main idea of the fourth category is to convert an
MaOP into an MOP, so that it can be directly solved
using existing MOEAs. There are two major branches
along this direction. One branch is to use the objective
reduction approaches to eliminate redundant or irrel-
evant objectives, such as dominance relation preserva-
tion based algorithms [41], [42], unsupervised feature
selection based algorithms [43], Pareto corner search
based algorithms [44], machine learning based objective
reduction [45]–[47], and the recently proposed nonlinear
correlation information entropy based objective reduc-
tion [48]. The other branch is to replace the original
objectives with two or three newly defined objectives.
Representative approaches of this type include bi-goal
evolution (BiGE) [49] and summation of normalized
objective values and diversified selection based MOEA
(SNOV-DS) [50].

Apart from the approaches proposed to enhance the
search abilities of MOEAs in many-objective optimiza-
tion, there is also some work motivated to improve the
computational efficiency. For example, Bringmann et al.
suggested to use the Monte Carlo method to improve
the computational efficiency of hypervolume calculation-
s in the multi-objective covariance matrix adaptation
evolution strategy (MO-CMA-ES) [51]. Some fast non-
dominated sorting approaches were also developed to
reduce the computational cost of Pareto-based MOEAs
for solving MaOPs, such as deductive sort [52], cor-
ner sort [53], M-front [54], efficient non-dominated sort
(ENS) [55] and approximate non-dominated sort (A-
ENS) [56].

However, in spite of the various approaches that are
focused on the scalability of MOEAs to the number of
objectives, little work has been reported to consider the
large number of decision variables in multi-objective
optimization. While large-scale optimization has already
attracted certain interests in the single-objective liter-
ature [57]–[63], the development of large-scale multi-

objective optimization is still in the infancy [64].
Recently, Ma et al. have proposed a decision vari-

able analysis based MOEA, known as MOEA/DVA,
for solving large-scale MOPs [65]. In MOEA/DVA, a
decision variable analysis method based on dominance
relationships is designed to divide the decision vari-
ables into three groups: convergence-related variables,
diversity-related variables and variables related to both
convergence and diversity. The convergence-related vari-
ables and diversity-related variables are optimized with
different strategies separately, while the variables related
to both convergence and diversity are simply treated as
diversity-related variables. It has been shown that such
a decision variable analysis method works efficiently on
large-scale MOPs with two or three objectives, although
its performance has not yet been assessed on any MaOP.

Following the basic idea of MOEA/DVA proposed
in [65], in this work, we propose an evolutionary algo-
rithm for tackling large-scale MaOPs based on a decision
variable clustering method, where the main new contri-
butions are summarized as follows.

1) A decision variable clustering method is proposed
to divide the decision variables into convergence-
related and diversity-related ones. While the deci-
sion variable analysis method in MOEA/DVA [65]
is based on dominance based relationships, the pro-
posed decision variable clustering method adopts
the k-means method with features measured by the
angles between the sample solutions and the direc-
tion of convergence, where smaller angles indicate
more contributions to convergence and larger an-
gles to diversity. Consequently, a decision variable
can only be divided as either convergence-related
or diversity-related, thus addressing the open issue
that decision variables related to both convergence
and diversity can not be further distinguished [65].

2) An evolutionary algorithm for large-scale many-
objective optimization (LMEA) is proposed based
on the decision variable clustering method. In
LMEA, two optimization strategies, i.e., the con-
vergence optimization strategy and the diversity
optimization strategy, are proposed to deal with
the two types of decision variables separately. Both
strategies adopt non-dominated sorting as the first
selection criterion but differ in the secondary se-
lection criterion: to enhance convergence, the sec-
ondary selection in the convergence optimization
strategy is based on the Euclidean distances from
the candidate solutions to the ideal point; to man-
age diversity, the secondary selection in the diver-
sity optimization strategy is based on the angles
between the candidate solutions.

3) To reduce the computational cost of the two opti-
mization strategies in LMEA, a computational effi-
cient tree-based non-dominated sorting approach,
termed T-ENS, is developed on the basis of the
recently proposed ENS [55]. In T-ENS, the informa-
tion for identifying the non-dominance relationship
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is recorded in the nodes of a tree, with which
a large number of non-dominance comparisons
between solutions can be inferred. As a result, only
a sub-set of the solutions, rather than all, that have
been assigned to a non-dominated front needs to
be compared. Theoretical analysis indicates that
the developed T-ENS holds a time complexity of
O(MNlogN/logM), where N denotes the popula-
tion size and M denotes the number of objectives,
which is more efficient than the average complexity
of O(MN2) held by most existing approaches for
solving MaOPs where most solutions in the popu-
lations are non-dominated with each other.

4) To assess the performance of the proposed LMEA,
empirical evaluations have been conducted on a
variety of benchmark problems in comparison with
several state-of-the-art MOEAs for solving MaOPs
as well as large-scale MOPs. Our experimental
results demonstrate that LMEA is well suited for
solving large-scale MaOPs having up to 5000 deci-
sion variables.

The rest of the paper is organized as follows. In
Section II, we briefly recall some related work on MOEAs
for solving large-scale MOPs. The motivation of this
work is also elaborated in Section II, mainly with respect
to the recently proposed MOEA/DVA. In Section III, we
describe the details of the proposed LMEA for large-scale
MaOPs. Simulation results are presented in Section IV to
empirically assess performance of the LMEA on large-
scale MaOPs. Finally, conclusions and future work are
drawn in Section V.

II. RELATED WORK AND MOTIVATION

In this section, we first review several representative
MOEAs for solving large-scale MOPs, and then elab-
orate the motivation of this work by two illustrative
examples. Note that, the current literature only covers
a very limited number of MOEAs that can achieve a
good performance on large-scale MOPs, some of which
were even not explicitly designed for solving large-scale
MOPs.

Antonio and Coello suggested a cooperative coevo-
lution framework for solving large-scale MOPs in [64].
The main idea of this algorithm is to randomly divide
the large number of decision variables into several s-
mall subcomponents of equal size and coevolve these
subcomponents cooperatively for a predefined number
of cycles. Experimental results confirmed the competi-
tiveness of the algorithm on large-scale MOPs with two
and three objectives. Following this line, in [66], the idea
of cooperative coevolution was also adopted to deal
with large-scale multi-objective capacitated arc routing
problems.

Most recently, an MOEA for solving large-scale MOPs,
termed MOEA/DVA, has been suggested by Ma et al.
in [65], where a decision variable analysis strategy is
adopted to divide the decision variables into different

f
1

0 0.5 1 1.5 2

f 2

0

0.5

1

1.5

2
Only pertubing x

1

Only pertubing x
2

Pareto Front

Fig. 1. The sampling points obtained on the MOP formulated in (1) by
perturbing one variable and fixing the other to 0, 0.5 and 1, respectively.

groups by checking the dominance relationships be-
tween solutions generated by perturbing the values of
variables. To be specific, a decision variable is considered
to be:

1) convergence-related, if and only if the solutions
generated by the perturbed decision variable val-
ues are dominated one by one;

2) diversity-related, if and only if the solutions gener-
ated by the perturbed decision variable values are
non-dominated with each other;

3) related to both convergence and diversity, other-
wise.

Once the decision variables are successfully divided
into different groups, MOEA/DVA performs a two-stage
optimization process: firstly, the convergence-related
variables are optimized until the candidate solutions
reach the Pareto front; afterwards, the diversity-related
variables are optimized to achieve a wide distribution of
the candidate solutions on the Pareto front.

For the variables related to both convergence and
diversity, MOEA/DVA simply treats them as diversity-
related variables, as the variable analysis strategy is
not able to further distinguish them [65]. Nevertheless,
our empirical observation indicates that, these decision
variables still can be further divided into two groups,
as some of them contribute more to convergence while
others contribute more to diversity. To illustrate such an
observation, let us consider the following bi-objective
MOP:  minf1 = x1 + x2

minf2 = (1− x1) + x2 + sin(20πx2)/20
subject to: xi ∈ [0, 1], i = 1, 2

(1)

Fig. 1 shows the sampling points obtained on the MOP
formulated in (1) by perturbing one variable between
[0, 1] while fixing the other to 0, 0.5 and 1, respectively.
According to the variable analysis strategy introduced
above, MOEA/DVA labels x1 and x2 as a diversity-
related variable and a variable related to both conver-
gence and diversity, respectively. Nevertheless, since x2

contributes more to convergence than diversity, it will be
more beneficial to optimize x2 as a convergence-related
variable rather than a diversity-related one.

It should be noted that, even for certain diversity-
related variables, sometime it is also essential to consider
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Fig. 2. The sampling points obtained on the MOP formulated in (2)
by perturbing one variable between [0, 1] while fixing the other as 0.2,
0.6 and 1, respectively.

them as convergence-related to guarantee convergence
of the population. Let us take the following bi-objective
MOP as an example: minf1 = x1x2

minf2 = (1− x1x2) + 1− x2

subject to: xi ∈ [0, 1], i = 1, 2
(2)

Fig. 2 shows the sampling points obtained on the MOP
formulated in (2) by perturbing one variable between
[0, 1] while fixing the other to 0.2, 0.6 and 1, respectively.
According to the variable analysis strategy introduced
above, MOEA/DVA labels both x1 and x2 as diversity-
related variables. Nevertheless, in this case, it is more
beneficial to label x2 as a convergence-related variable
due to the fact that optimizing x2 will guide the popu-
lation towards the Pareto front.

To address the above issue, this paper suggests a deci-
sion variable clustering based MOEA, termed LMEA, for
large-scale MaOPs. In LMEA, a decision variable clus-
tering method is proposed to distinguish convergence-
related and diversity-related variables by measuring
their contributions to convergence and diversity, respec-
tively. With the proposed decision variable clustering
method, variables similar to x2 in the above two exam-
ples can be properly categorized.

III. THE PROPOSED ALGORITHM: LMEA
In this section, we first present the main framework of

the proposed LMEA, then detail two important compo-
nents in it, i.e., the decision variable clustering method
and the fast tree-based non-dominated sorting approach.

A. The Main Framework of LMEA
Algorithm 1 presents the main framework of LMEA,

which consists of the following five components. First, a
population of N candidate solutions is randomly initial-
ized. Second, the developed decision variable clustering
method is applied to divide the variables into two group-
s, convergence-related variables and diversity-related
variables. Third, the convergence-related variables are
further divided into several subgroups based on the
interaction between these variables, where the variables
are interacted with each other inside one subgroup but

Algorithm 1: The Main Framework of LMEA
Input: N (population size), nSel (number of

selected solutions for decision variable
clustering), nPer (number of perturbations
on each solution for decision variable
clustering), nCor (number of selected
solutions for decision variable interaction
analysis)

Output: P (final population)
1 P ← Initialize(N);
2 [DV,CV ]← V ariableClustering(P, nSel, nPer);
3 subCV s ← InteractionAnalysis(P,CV, nCor);
4 while termination criterion not fulfilled do
5 P ← ConvergenceOptimization(P, subCV s);
6 P ← DiversityOptimization(P,DV );

not interacted with those in any other subgroups. The
variables in each subgroup are also known as interact-
ing variables, as they can not be optimized separately
due to the interactions between each other. Algorith-
m 2 presents the details of the interaction analysis for
convergence-related variables, which adopts the strategy
developed in [65]. Note that similar strategies have also
been widely used for variable interaction detection in
single-objective large-scale optimization [57], [67].

Algorithm 2 first initializes an empty set subCV s
of interacted variable subgroups, and afterwards, the
convergence-related variables in CV are assigned to
different subgroups based on the pairwise interactions
between them, where the interactions are defined as
follows: given an MOP min f = min(f1, f2, . . . , fm),
if there exist x, a1, a2, b1, b2 and at least one fk,
1 ≤ k ≤ m, such that fk(x)|xi=a2,xj=b1 < fk(x)|xi=a1,xj=b1

and fk(x)|xi=a2,xj=b2 > fk(x)|xi=a1,xj=b2 , then the
two decision variables xi and xj are regarded
to be interacted, where fk(x)|xi=a2,xj=b1 =
fk(x1, . . . , xi−1, a2, . . . , xj−1, b1, . . . , xn). To be specific,
if a variable has interaction with at least one existing
variable in subCV s, then the two variables are assigned
into the same subgroup; otherwise, it is assigned to a
new subgroup. This operation is repeated until each
convergence-related variable has been assigned to a
subgroup. Therefore, in the extreme cases, there will be
at most a number of |CV | subgroups, which means that
the convergence-related variables are fully separable;
while if the variables are fully non-separable, there will
be only one subgroup.

Once the interaction analysis is done in Algorithm
2, LMEA starts to optimize each subgroup of variables
one by one using a convergence optimization strategy
as detailed in Algorithm 3, while the diversity-related
variables are optimized using a diversity optimization
strategy as detailed in Algorithm 4.

In the convergence optimization strategy, the proposed
T-ENS is used to perform non-dominated sorting on
the parent population, and the Euclidean distance from
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Algorithm 2: InteractionAnalysis(P,CV, nCor)

Input: P (current population), CV (set of
convergence-related variables), nCor
(number of selected solutions)

Output: subCV s (set of subgroups of interacted
decision variables in CV )

1 subCV s← ∅;
2 forall the v ∈ CV do
3 CorSet← ∅;
4 forall the Group ∈ subCV s do
5 forall the u ∈ Group do
6 flag ← false;
7 for i = 1 to nCor do
8 Randomly select a solution p from P ;
9 if v is interacted with u in p then

10 flag ← true;
11 CorSet← CorSet

∪
{Group};

12 break;

13 if flag then
14 break;

15 if CorSet == ∅ then
16 subCV s← subCV s

∪
{{v}};

17 else
18 subCV s← subCV s/CorSet;
19 Group← all variables in CorSet and v;
20 subCV s← subCV s

∪
{Group};

each candidate solution to the ideal point1 is calculated.
Afterwards, the offspring candidate solutions are gen-
erated by optimizing the convergence-related variables
inside each subgroup independently. For the variables
in each subgroup, two candidate solutions are randomly
chosen from population P using the binary tournament,
and afterwards, an offspring candidate solution is gen-
erated by replacing the values of the variables in the
same subgroup with those generated by recombination
operators, while leaving the rest variables unchanged. If
an offspring candidate solution has a better convergence
than its parent, it will be selected to be passed to the
next generation; otherwise, the offspring candidate solu-
tion is discarded and the parent candidate solution will
survive. To be specific, an offspring candidate solution
is considered to have better convergence quality than
its parent solution if and only if it has a smaller non-
dominate front number in the non-dominated sorting,
or it has the same non-dominated front number but a
smaller Euclidean distance to the ideal point.

In the diversity optimization strategy, |P | offsprings
are first generated from population P by optimizing all
diversity-related variables as a whole using the recombi-
nation operators, then the offspring population is com-

1In this work, the candidate solutions are all transformed to be inside
the first quadrant of the objective space, such that the ideal point is
always the axis origin.

Algorithm 3: ConvergenceOptimization(P, subCV s)

Input: P (current population), subCV s (set of
groups of convergence-related variables)

Output: P (next population)
1 Front← NondominatedSort(P );
2 Calculate the distance between each solution in P

and the origin in objective space;
3 forall the Group ∈ subCV s do
4 nEvaluated← 0;
5 while nEvaluated < |P | do
6 S ← ∅;
7 for i = 1 to |P | do
8 if rand() < Front[i]/max(Front) then
9 S ← S

∪
{i};

10 O ← ∅;
11 for s ∈ S do
12 Choose p1 and p2 from P by binary

tournament, where the front number and
the distance of each solution are used as
the first and second criteria;

13 /*s′(Group) denotes a vector consisting
of values of s′ on decision variables in
Group*/

14 s′(Group)←
recombination(p1(Group), p2(Group));

15 s′′ ← s;
16 s′′(Group)← s′(Group);
17 O ← O

∪
{s′′};

18 nEvaluated← nEvaluated+ |O|;
19 Front← NondominatedSort(P

∪
O);

20 Calculate the distance between each solution
in O and the origin in objective space;

21 Use each solution in O to replace the
corresponding solution in P according to the
front number and the distance;

bined with the parent population and the environmental
selection performed on the combined population consist-
s of two stages: to begin with, the candidate solutions
from the first k − 1 fronts are selected, such that k is
the smallest value satisfying |F1

∪
F2

∪
...
∪
Fk| > |P |;

afterwards, the remaining candidate solutions of the best
diversity are selected one by one from front Fk until
the population size |P | is reached, where the diversity is
measured by the angles between the candidate solutions
in the objective space. As reported by Cheng et al. in
[40], angle is a more efficient diversity measurement
compared to Euclidean distance in many-objective op-
timization. Algorithm 3 and Algorithm 4 are repeated
until a termination condition is met.

It should be noted that, in both optimization strategies,
any commonly adopted recombination operators such
as simulated binary crossover [68], polynomial muta-
tion [69] and differential evolution [22], [70], [71] can be
used to generate offspring candidate solutions.
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Algorithm 4: DiversityOptimization(P,DV )

Input: P (current population), DV (diversity-related
variables);

Output: Q (next population);
1 O ← ∅;
2 forall the p ∈ P do
3 Randomly choose p1 and p2 from P ;
4 p′(DV )← recombination(p1(DV ), p2(DV ));
5 p′′ ← p;
6 p′′(DV )← p′(DV );
7 O ← O

∪
{p′′};

8 F ← NondominatedSort(P
∪
O);

9 Q← F1

∪
F2

∪
...

∪
Fk−1, where k is the smallest

value satisfying |F1

∪
F2

∪
...
∪
Fk| > |P |;

10 if Q = ∅ then
11 Q← all the extreme solutions in Fk;
12 Fk ← Fk/Q;

13 Calculate the angle Angle in objective space
between each two solutions in Q

∪
Fk;

14 while |Q| < |P | do
15 p← argmaxx∈Fk

miny∈QAngle[x][y];
16 Q← Q

∪
{p};

In the following subsections, we will describe in detail
the decision variable clustering method and fast tree-
based non-dominated sorting approach, which are two
most important components in the proposed LMEA.

B. Decision Variable Clustering Method

Fig. 3 presents an example to illustrate the main idea
of the proposed decision variable clustering method,
where a bi-objective minimization problem with four
decision variables x1, x2, x3 and x4 is considered. To
identify if the decision variables are convergence-related
or diversity-related, a number of nSel (two in this ex-
ample) candidate solutions are first randomly selected
from the population. Then, a number of nPer (eight in
this example) perturbations are performed on each of
the four variables of the selected candidate solutions.
Fig. 3 (a) plots the objective values of sample solutions
generated by the perturbations.

Afterwards, the sample solutions generated by per-
turbing the values of each variable are normalized, and
a line L is generated to fit each set of normalized sample
solutions. With the normalized sample solutions and the
fitted line L, the angle between each fitted line L and the
normal line of hyperplane f1+ . . .+fM = 1 is calculated,
where the normal line represents the direction of conver-
gence and M is the number of objectives. In this way,
each variable is associated with several angles, where
the number is dependent on the number of selected
candidate solutions for the decision variable clustering.
Fig. 3 (b) depicts the angles between the fitted lines and
the normal line of the hyperplane. Since two candidate
solutions are used for decision variable clustering in the

Algorithm 5: V ariableClustering(P, nSel, nPer)

Input: P (current population), nSel (number of
selected solutions for decision variable
clustering), nPer (number of perturbations
on each solution for decision variable
clustering)

Output: DV (diversity-related variables), CV
(convergence-related variables)

1 D ← the length of decision variables;
2 for i = 1 to D do
3 S ← randomly select nSel solutions from P ;
4 for j = 1 to nSel do
5 Perturb the i-th decision variable of S[j] for

nPer times to generate a population SP ;
6 Normalize SP ;
7 fit a line L in the objective space for SP ;
8 Angle[i][j]← angle between L and the

normal line of hyperplane f1 + . . .+ fM = 1,
M is the number of objectives of MaOPs;

9 MSE[i][j]← mean square error of the fitting;

10 CV ← {i = 1, ..., D|mean(MSE[i]) < 1e− 2};
11 [S1, S2]← use k-means to cluster the decision

variables into two sets based on Angle;
12 if CV

∩
S1 ̸= ∅ and CV

∩
S2 ̸= ∅ then

13 CV ← CV
∩

S, S is the one of S1 and S2 which
has a smaller mean of Angle;

14 DV ← {j = 1, ..., D|j ̸∈ CV };

example, each variable xi, 1 ≤ i ≤ 4, is associated with
two angles, denoted as θi1 and θi2 as shown in Fig. 3 (b).
In the proposed decision variable clustering method, the
angles associated with each variable are measurements
that indicate its contributions to convergence and diver-
sity. To be specific, a larger angle means that the associat-
ed variable contributes more to diversity, while a smaller
angle indicates more contribution to convergence. The
more solutions are used for decision variable clustering,
the more angles are associated with each variable, thus
providing more precise measurements.

Finally, the k-means clustering method is adopted to
divide the decision variables into two clusters based
on the features of each variable. As a consequence,
the variables in the cluster having a smaller mean of
angles are identified as convergence-related, while those
in the other cluster are identified as diversity-related.
Fig. 3 (c) presents the clustering results on the four
decision variables x1, x2, x3 and x4. As a consequence,
x1 and x2 are identified as diversity-related variables
whereas x3 and x4 are identified as convergence-related
variables, which is consistent with the observations in
Fig. 3 (a). Algorithm 5 presents the detailed procedure
of the proposed decision variable clustering method.

It should be noted that, compared to the variable
analysis method suggested in MOEA/DVA [65], the de-
cision variable clustering method proposed in this work
is significantly different in the following two aspects:
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Fig. 3. An example to illustrate how to identify the convergence-related variables and diversity-related variables in LMEA for a bi-objective
minimization problem with four decision variables, denoted as x1, x2, x3 and x4. In this example, x1 and x2 are identified as diversity-related
variables, and x3 and x4 are identified as convergence-related variables in LMEA.

1) The decision variable analysis method in
MOEA/DVA divides the variables into three
categories, namely, convergence-related variables,
diversity-related variables, and variables related
to both convergence and diversity. By contrast,
the decision variable clustering method proposed
in this work divides the variables into only two
categories, namely, convergence-related variables
and diversity-related variables. With the proposed
strategy, on the one hand, the variables identified
as related to both convergence and diversity in
MOEA/DVA are identified as either convergence-
related or diversity-related in LMEA; on the other
hand, part of the variables identified as diversity-
related in MOEA/DVA are also identified as
convergence-related in LMEA, as illustrated in
Fig. 2.

2) The decision variable analysis method in
MOEA/DVA determines the category of each
variable based on the dominance relationship. By
contrast, the proposed decision variable clustering
method adopts the k-means method to determine
the category of each variable. Compared to the
decision variable analysis method in MOEA/DVA,
the proposed decision variable clustering method
is more robust as its performance is independent
of the dominance based relationships which
may probably be ineffective in many-objective
optimization due to the issue of dominance
resistance.

Table I presents the decision variable grouping re-
sults obtained by the decision variable analysis method
in MOEA/DVA and the decision variable clustering
method in LMEA on DTLZ1 to DTLZ7, WFG3, UF9 and
UF10, where 16 decision variables are considered for
each 5-objective DTLZ and WFG problem and all UF
problems, and 15 decision variables for each 10-objective
DTLZ and WFG problem. For the UF and WFG test
suites, here we only list the grouping results on three
representative test problems, i.e., UF9, UF10 and WFG3.
The grouping results on the other WFG test problems
are similar to those obtained on DTLZ1 to DTLZ4 and
DTLZ7, and the results obtained on all UF problems are

the same. As is evidenced in Table I, the proposed deci-
sion variable clustering method is able to further divide
the variables related to both convergence and diversity
as labeled by the decision variable analysis method
in MOEA/DVA into convergence-related variables and
diversity-related variables, respectively. In Section IV,
we will empirically illustrate that the proposed decision
variable clustering method in LMEA helps improve the
performance of MOEAs for solving large-scale MaOPs. It
is worth noting that, in practice, a decision variable can
be convergence-related in a region but diversity-related
in another, and vice versa. In LMEA, the convergence
and diversity property of a decision variable is identified
based on the perturbation results on a number of nSel
solutions randomly selected from the initial population.
The larger value of nSel is used, the more regions will
be likely to be sampled, but it does not fully guarantee
the global consistency of the identification results.

C. Fast Tree-based Non-dominated Sorting Approach

As illustrated in Algorithms 3 and 4, non-dominated
sorting is adopted during the optimization of both
convergence-related variables and diversity-related vari-
ables in LMEA. Therefore, the computational efficiency
of LMEA is considerably influenced by non-dominated
sorting approach thus applied. In multi-objective opti-
mization literature, there are a number of approaches
that have been suggested for reducing the complexity of
non-dominated sorting [52]–[55], [72]. Most of these ap-
proaches, however, are not applicable to MaOPs because
they hold an average complexity of O(MN2) (M is the
number of objectives and N is the population size) if
the majority of candidate solutions in a population are
non-dominated with each other, which is very common
in many-objective optimization though.

To reduce the computational cost of LMEA for solving
large-scale MaOPs, we present a computational efficien-
t tree-based non-dominated sorting approach, termed
T-ENS, on the basis of the ENS recently proposed
in [55]. The proposed T-ENS holds a time complexi-
ty of O(MNlogN/logM) for populations where most
candidate solutions are non-dominated with each other.
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TABLE I
DECISION VARIABLE GROUPING RESULTS OBTAINED BY THE DECISION VARIABLE ANALYSIS METHOD IN MOEA/DVA AND THE DECISION

VARIABLE CLUSTERING METHOD IN LMEA ON DTLZ1 TO DTLZ7, WFG3, UF9 AND UF10.

Problem Obj.
MOEA/DVA LMEA

Remark
Diversity Convergence Both Diversity Convergence

DTLZ1
5 {x1, x2, x3, x4} {x5, . . . , x16} ∅ {x1, x2, x3, x4} {x5, . . . , x16}
10 {x1, . . . , x9} {x10, . . . , x15} ∅ {x1, . . . , x9} {x10, . . . , x15}

DTLZ2
5 {x1, x2, x3, x4} {x5, . . . , x16} ∅ {x1, x2, x3, x4} {x5, . . . , x16}
10 {x1, . . . , x9} {x10, . . . , x15} ∅ {x1, . . . , x9} {x10, . . . , x15}

DTLZ3
5 {x1, x2, x3, x4} {x5, . . . , x16} ∅ {x1, x2, x3, , x4} {x5, . . . , x16} Same
10 {x1, . . . , x9} {x10, . . . , x15} ∅ {x1, . . . , x9} {x10, . . . , x15} results

DTLZ4
5 {x1, x2, x3, x4} {x5, . . . , x16} ∅ {x1, x2, x3, x4} {x5, . . . , x16}
10 {x1, . . . , x9} {x10, . . . , x15} ∅ {x1, . . . , x9} {x10, . . . , x15}

DTLZ7
5 {x1, x2, x3, x4} {x5, . . . , x16} ∅ {x1, x2, x3, x4} {x5, . . . , x16}
10 {x1, . . . , x9} {x10, . . . , x15} ∅ {x1, . . . , x9} {x10, . . . , x15}

DTLZ5
5 {x1, x2, x3, x4}

{x7, x9, x10, x11, {x5, x6, x8, x12, x16} {x1, x2, x3, x4} {x5, . . . , x16}
The variables

x13, x14, x15} related to both
10 {x1, . . . , x9} {x11} {x10, x12, . . . , x15} {x1, . . . , x9} {x10, . . . , x15} convergence

DTLZ6
5 {x1, x2, x3, , x4}

{x5, . . . , x11, {x12, x14} {x1, x2, x3, x4} {x5, . . . , x16}
and diversity

x13, x15, x16} are labeled
10 {x1, . . . , x9} {x12, x13} {x10, x11, x14, x15} {x1, . . . , x9} {x10, . . . , x15} as convergence

WFG3
5 {x1, x2, x3, x4}

{x8, . . . , x13, {x5, x6, x7, x14} {x1, x2, x3, x4} {x5, . . . , x16}
related variables

x15, x16}
10 {x1, . . . , x9} {x14, x15} {x10, x11, x12, x13} {x1, . . . , x9} {x10, . . . , x15}

UF9 3 ∅ {x3, . . . , x16} {x1, x2} {x1, x2} {x3, . . . , x16} Labeled as
UF10 3 ∅ {x3, . . . , x16} {x1, x2} {x1, x2} {x3, . . . , x16} diversity related

It is worth noting that, there are also some other tree-
structure based non-dominated sorting approaches. For
example, the sorting algorithm proposed in [73] stores
the non-dominated solutions in a M -d tree (M is the
number of objectives), and adds new solution via insert-
ing and deleting nodes from the tree; another sorting
algorithm proposed in [74] uses a binary tree to store the
dominance relationships between solutions, by adjusting
the binary tree the solutions in each front can be identi-
fied; and the recently proposed M-front [54] keeps an K-
d tree to perform approximate nearest neighbor search
for determining whether a new solution is dominated
by the existing non-dominated solutions. Compared to
these existing tree-structure based approaches, the pro-
posed T-ENS holds a considerably less computational
complexity as it benefits from the framework of EN-
S [55], which allows candidate solutions to be inserted
into the tree one by one without adjusting the structure
of it.

The main idea of T-ENS is to use a tree to represent
the solutions in each non-dominated front, where the
information about the objectives determining the non-
dominance relationship between solutions are recorded
by the position of nodes in the tree in which the solutions
are stored. As a result, many non-dominance relation-
ships between solutions can be inferred from those that
have been assigned to the front (stored in the tree),
thereby considerably reducing the number of compar-
isons between solutions belonging to the same front. This
leads to considerable enhancement of the computational
efficiency of T-ENS over ENS, in particular for solving

MaOPs. Algorithms 6, 7 and 8 present the detailed steps
of T-ENS in pseudo code.

To be specific, as done in ENS, T-ENS first sorts
the solutions in the population according to an as-
cending order of the first objective for M -objective
minimization problems, M ≥ 2. Let us assume
that the sorted population consists of the following
N solutions: p1(f

1
1 , f

1
2 , . . . , f

1
M ), p2(f

2
1 , f

2
2 , . . . , f

2
M ), . . . ,

pN (fN
1 , fN

2 , . . . , fN
M ), where f i

j is the j-th objective value
of the i-th solution, 1 ≤ j ≤ M and 1 ≤ i ≤ N . Then,
T-ENS starts to construct a tree for each non-dominated
front. T-ENS adopts the first solution p1 as the root of
the tree for the first non-dominated front F1 and all other
solutions in the population belonging to F1 will be stored
as the descendants of p1. The position of solution pi,
2 ≤ i ≤ N , in the tree is determined by the minimum j
(j > 1) satisfying that f i

objSeq[1][j] < f1
objSeq[1][j], where

objSeq[1][j] is the j-th element of a sequence that is
randomly generated from 2 to M for solution p1. More
precisely, a solution pi with the objSeq[1][j]-th objective
satisfying the above condition will be stored as the j-
th child of the root. If there is more than one solution
that satisfies the above condition, the next solution will
be stored as a child of pi, i.e., a grandchild of p1. This
procedure repeats until all solutions in the population
are checked. After the construction of tree for the first
non-dominated front F1 is complete, T-ENS starts to
construct a tree for the second front F2 until all solutions
in the population are assigned to a tree.

With the above tree constructed to represent solutions
in a front, if a solution p to be assigned to the front is
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Algorithm 6: The main steps of T-ENS
Input: P (population), M (number of objectives)
Output: F (set of fronts, each front is represented

by a tree)
1 Sort P in an ascending order according to the first

objective;
2 F ← ∅;
3 k ← 0;
4 while not empty(P ) do
5 k ← k + 1 ; /*start to construct a new

tree*/
6 for all the p ∈ P do
7 objSeq[p]← random sequence from 2 to M ;
8 update tree(p, F [k], objSeq);

9 return F ;

Algorithm 7: update tree(p, tree, objSeq)

Input: p (the solution to be checked), tree (the tree
to be checked), objSeq (the sequence of
objectives for each solution)

Output: -
1 if empty(tree) then
2 tree← p ; /*p is used as the root of

the tree*/

3 else if check tree(p, tree, objSeq,true) then
4 P ← P \ {p};
5 return;

non-dominated with a solution q in the tree, where p has
a smaller value than q on the objSeq[q][j]-th objective (p
has a larger value than q on the first objective since q
is ranked before p in the sorted population), then the
non-dominance relationship between p and the solution
stored as the k-th (k > j) child of node q and all
descendants of this child can be inferred from the non-
dominance relationship between q and p, since for each
of these solutions s we have fp

objSeq[q][j] < fq
objSeq[q][j] <

fs
objSeq[q][j], j ∈ {1, 2, . . . ,M − 1}. Therefore, p does not

need to be compared with these solutions in determining
the front of p, which enables T-ENS work very efficiently
for MaOPs.

To investigate the computational efficiency of the
proposed T-ENS, we have conducted theoretical time
complexity analysis and empirical evaluation which can
be found in the supplementary materials. Compared to
most existing non-dominated approaches, which hold a
time complexity of O(MN2) on non-dominated popula-
tions, T-ENS is computationally more efficient, holding a
time complexity of O(MNlogN/logM), which enables
the proposed LMEA to work faster for solving large-
scale MaOPs.

Algorithm 8: check tree(p, tree, objSeq, add pos)

Input: p (the solution to be checked), tree (the tree
to be checked), objSeq (the sequence of
objectives for each solution), add pos
(indicates whether p can be added to a node
of tree as a ray)

Output: nd (indicates whether p is non-dominated
with all solutions that have been assigned
to the tree)

1 if empty(tree) then
2 return true ; /*tree is an empty tree*/

3 Find the minimal index m satisfying that
p[objSeq[tree.root][m]] <
tree.root[objSeq[tree.root][m]];

4 if m not found then
5 return false ; /*p is dominated by the

solution at the root*/

6 else
7 for i← 1 to m do
8 if check tree(p, tree.branch[i], objSeq,

i == m && add pos)==false then
9 return false ; /*p is dominated by a

solution in the branch of the
tree*/

10 if empty(tree.branch[m]) && add pos then
11 tree.branch[m] = p ; /*add p to the

branch of the tree*/

12 return true;

IV. SIMULATION EXPERIMENTS AND ANALYSIS

In this section, we verify the performance of LMEA
in solving large-scale MaOPs by empirically com-
paring it with four state-of-the-art MOEAs, name-
ly, MOEA/D [31], NSGA-III [38], KnEA [23] and
MOEA/DVA [65]. The MOEA/D, NSGA-III and KnEA
are three well-known MOEAs for solving MaOPs, and
MOEA/DVA is the first decision variable analysis based
MOEA recently proposed in [65] to solve large-scale
MOPs.

The experiments are conducted on 10 test problems
shown in Table I, which are taken from three widely
used test suites, DTLZ [75], WFG [76] and UF [77]. These
test problems include DTLZ1 to DTLZ7, WFG3, UF9 and
UF10, which can be categorized into three groups accord-
ing to the decision variable grouping results in Table I.
The first group contains DTLZ1 to DTLZ4 and DTLZ7,
on which the proposed LMEA and MOEA/DVA have
the same grouping results. The second group consists of
DTLZ5, DTLZ6 and WFG3, on which the variables re-
lated to both convergence and diversity in MOEA/DVA
are identified as convergence-related variables in LMEA.
The third group contains UF9 and UF10, on which the
variables related to both convergence and diversity in
MOEA/DVA are identified as diversity-related variables
in LMEA. Due to the limitation of pages, we have not
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presented the experimental results on other WFG and UF
test problems. Further experiments indicate that all WFG
test problems except WFG3 belong to the first group,
and all UF test problems belong to the third group.
Regarding the number of decision variables, 100, 500
and 1000 decision variables are considered for each test
problem, respectively. Regarding the number of objec-
tives, for each DTLZ and WFG test problem, 5 and 10
objectives are considered, respectively, while both UF9
and UF10 are 3-objective. Moreover, the proposed LMEA
is further challenged on the test problems with 2000
and 5000 decision variables. In this case, all the test
problems used in our simulation experiments are large-
scale MaOPs, except UF9 and UF10, which are large-
scale MOPs.

A. Experimental Setting

For fair comparisons, all compared algorithms adopt
the recommended parameter values to achieve the best
performance. To be specific, the parameter settings for
all conducted experiments are as follows.

1) Crossover and mutation: All compared algorithms
adopt the simulated binary crossover (SBX) [68] to create
offspring for DTLZ and WFG test problems, and differ-
ential evolution (DE) [70], [71], [78] for UF test problems.
For each test problem, the polynomial mutation [69]
is also performed in all algorithms. The distribution
indexes of crossover and mutation are all set to 20. The
crossover probability and mutation probability are set to
pc = 1.0 and pm = 1/D, respectively, where D denotes
the number of decision variables. The control parameters
F and CR in DE are set to F = 0.5 and CR = 1.0, as
recommended in [78].

2) Population sizing: The population size of NSGA-III
and MOEA/D can not be arbitrarily specified, which is
equal to the number of uniformly distributed reference
points (or weight vectors) generated with the simplex
lattice design. As recommended in [38]–[40], the two-
layer reference point generation strategy is adopted here.
Table II presents the setting of population size in NSGA-
III and MOEA/D, where p1 and p2 are parameters
controlling the numbers of reference points along the
outer and inner layers of the Pareto front, respectively.
To be consistent with NSGA-III and MOEA/D, KnEA,
MOEA/DVA and LMEA adopt the same population size
settings with respect to the number of objectives.

3) Stopping condition and number of runs: The number
of evaluations is used as the termination criterion for all
considered algorithms. For each test instance with 100,
500, 1000, 2000 and 5000 decision variables, the maxi-
mum number of evaluations is set to 1,000,000, 6,800,000,
17,000,000, 50,000,000 and 230,000,000, respectively. On
each test instance, 20 independent runs are performed
for each algorithm to obtain statistical results.

4) Other parameters: The range of neighborhood, the
maximal number of solutions replaced by each child
solution and the probability that parent solutions are

TABLE II
SETTING OF POPULATION SIZE IN NSGA-III AND MOEA/D, WHERE

p1 AND p2 ARE PARAMETERS CONTROLLING THE NUMBERS OF
REFERENCE POINTS ALONG THE BOUNDARY OF THE PARETO FRONT

AND INSIDE IT, RESPECTIVELY.

Number of
Parameter (p1, p2) Population size

objectives

3 (13, 0) 105
5 (5, 0) 126
10 (3, 2) 275

selected from the neighborhood in MOEA/D (as well
as MOEA/DVA) are set to T = 0.1N , nr = 0.01N and
δ = 0.9 for all test problems, respectively, where N is the
population size. The Tchebycheff approach is employed
as the aggregation function in MOEA/D. For KnEA, the
parameter T for controlling the ratio of knee points is
set to 0.3 for 5-objective DTLZ1 and DTLZ3, 0.4 for 5-
objective DTLZ5 and DTLZ6, 0.5 for 5-objective DTLZ2,
DTLZ4 and DTLZ7, as well as UF9 and UF10; T is set
to the recommended values for 10-objective DTLZ and
WFG test problems [23]. For MOEA/DVA, the number of
interaction analysis and the number of control property
analysis are set to the recommended values, namely,
NIA = 6 and NCA = 50. For LMEA, the number
of selected solutions and the number of perturbations
for each selected solution in decision variable clustering
are set to nSel = 2 and nPer = 4, respectively, and
the number of selected solutions in decision variable
interaction analysis is set to nCor = 6. A detailed
sensitivity analysis of LMEA to parameters nSel and
nPer can be found in the supplementary materials.

4) Performance metric: Two widely used performance
indicators, the inverted generational distance (IGD) [79]
and the hypervolume (HV) [80], [81] are adopted to
evaluate the performance of the compared algorithms.
As recommended in [38], [40], the reference point sets
required for IGD calculations are generated by sampling
uniformly distributed points using the Das and Dennis
method [82], and a set size closest to 5000 is used in this
work for all test instances. For the calculation of HV,
we first discard the solutions that are outside the box
bounded by the ideal point and nadir point of the true
Pareto front, and then normalize the remaining solutions
inside. Since the same reference point (1, 1, . . . , 1) is used
for all test instances, it is guaranteed that all the obtained
HV values will be inside the interval [0, 1]. Besides, we
adopt the exact calculation for test problems with 3
objectives and the Monte Carlo estimation method when
the number of objective is larger than 3. Note that both
IGD and HV can account for the convergence as well
as the distribution of a solution set. A smaller value of
IGD indicates a better quality of the obtained solution
set, while a larger value of HV signals a better quality.
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TABLE III
IGD METRIC VALUES OF THE FIVE ALGORITHMS ON DTLZ1, DTLZ2, DTLZ3, DTLZ4 AND DTLZ7, WHERE THE BEST RESULT ON EACH TEST

INSTANCE IS SHOWN IN A GRAY BACKGROUND.

Problem Obj. Dec. MOEA/D NSGA-III KnEA MOEA/DVA LMEA

DTLZ1

100 1.1859e-1(1.63e-3)− 3.9340e+0(1.72e+0)− 6.6202e+0(1.83e+0)− 6.2932e-2(5.72e-5)− 5.9982e-2(4.22e-4)

5 500 1.4648e-1(4.30e-2)− 5.2597e+1(5.63e+0)− 7.6436e+1(6.86e+0)− 6.3284e-2(1.63e-4)− 6.1124e-2(5.16e-4)

1000 1.6833e-1(4.29e-2)− 1.1669e+2(5.08e+0)− 1.3392e+2(1.28e+1)− 6.3442e-2(1.26e-4)− 6.0423e-2(4.09e-4)

100 2.2187e+0(4.72e+0)− 1.1944e+2(2.72e+1)− 5.5749e+0(1.53e+0)− 1.4356e-1(1.79e-2)≈ 1.6302e-1(4.87e-3)

10 500 1.6987e+2(1.01e+2)− 3.9829e+2(2.77e+1)− 5.0951e+1(1.25e+1)− 1.7047e-1(1.14e-2)≈ 1.5995e-1(4.05e-3)

1000 4.8922e+2(2.04e+2)− 7.9841e+2(4.16e+1)− 1.4841e+2(1.93e+1)− 1.3805e-1(2.18e-2)≈ 1.6002e-1(5.24e-3)

DTLZ2

100 3.2006e-1(2.26e-8)− 1.9494e-1(7.98e-7)− 2.2045e-1(1.18e-2)− 1.9493e-1(9.26e-8)− 1.8825e-1(2.14e-3)

5 500 3.2006e-1(5.31e-8)− 1.9494e-1(5.62e-8)− 2.3629e-1(7.63e-3)− 1.9494e-1(3.17e-8)− 1.8832e-1(2.29e-3)

1000 3.2006e-1(1.12e-7)− 1.9494e-1(9.86e-7)− 2.2844e-1(1.00e-2)− 1.9494e-1(6.25e-8)− 1.8816e-1(2.53e-3)

100 7.1528e-1(1.81e-2)− 4.2141e-1(1.58e-4)+ 4.1230e-1(2.24e-3)+ 4.5923e-1(5.13e-2)≈ 5.0905e-1(1.48e-2)

10 500 7.2369e-1(8.63e-3)− 4.2152e-1(4.79e-5)+ 4.1402e-1(5.07e-3)+ 4.1976e-1(3.53e-4)+ 5.0617e-1(1.78e-2)

1000 7.3217e-1(1.90e-2)− 4.2172e-1(5.76e-5)+ 4.1222e-1(1.85e-3)+ 4.2065e-1(1.19e-4)+ 5.0689e-1(2.84e-2)

DTLZ3

100 3.2877e-1(2.49e-3)− 2.2868e+1(6.14e+0)− 7.6962e-1(4.18e-1)− 1.9505e-1(5.92e-5)− 1.8985e-1(2.14e-3)

5 500 4.1776e-1(1.97e-1)− 2.9421e+2(3.34e+1)− 6.1228e-1(1.26e-1)− 1.9536e-1(1.01e-4)≈ 1.9035e-1(4.44e-3)

1000 4.4681e-1(1.40e-2)− 6.8229e+2(5.50e+1)− 8.2477e-1(2.42e-1)− 1.9563e-1(3.70e-4)≈ 1.8812e-1(4.10e-3)

100 8.0019e-1(4.87e-2)− 8.2193e+2(1.37e+2)− 6.3652e+0(3.88e+0)− 5.0747e-1(3.77e-2)≈ 5.5352e-1(3.56e-2)

10 500 1.2941e+2(2.78e+2)− 2.2891e+3(1.35e+2)− 9.4498e+0(4.57e+0)− 5.2820e-1(9.88e-2)≈ 5.5126e-1(1.66e-2)

1000 2.5643e+2(3.27e+2)− 4.4071e+3(1.91e+2)− 4.4621e+0(2.34e+0)− 4.7728e-1(4.26e-2)+ 5.4964e-1(1.85e-2)

DTLZ4

100 6.2588e-1(2.50e-1)− 2.7298e-1(1.31e-1)+ 2.1434e-1(4.33e-3)+ 2.6957e-1(1.29e-1)≈ 2.6411e-1(1.55e-2)

5 500 5.2727e-1(1.18e-1)− 1.9496e-1(2.64e-5)+ 2.1571e-1(9.97e-3)+ 3.4421e-1(1.29e-1)≈ 2.7256e-1(2.46e-2)

1000 4.3848e-1(1.80e-1)− 2.2829e-1(1.09e-1)≈ 2.1380e-1(4.21e-3)+ 3.4420e-1(1.29e-1)≈ 2.7071e-1(2.36e-2)

100 8.3550e-1(3.18e-2)− 4.2123e-1(1.95e-4)+ 4.2764e-1(2.53e-2)+ 4.3772e-1(3.33e-2)+ 5.0820e-1(2.47e-2)

10 500 8.3052e-1(2.93e-2)− 4.2154e-1(1.02e-4)+ 4.0104e-1(4.57e-3)+ 4.1970e-1(5.83e-5)+ 5.2786e-1(3.98e-3)

1000 8.2082e-1(2.40e-2)− 4.2173e-1(7.92e-5)+ 4.0081e-1(2.61e-3)+ 4.5695e-1(3.18e-2)+ 5.2345e-1(9.26e-3)

DTLZ7

100 5.2987e-1(2.57e-2)− 5.2849e-1(1.56e-1)− 2.4790e-1(1.14e-2)+ 5.2044e-1(2.51e-6)− 3.0913e-1(1.10e-2)

5 500 5.1542e-1(3.73e-7)− 2.3928e+0(1.60e-1)− 2.3191e-1(7.58e-3)+ 5.2043e-1(4.57e-7)− 3.2032e-1(8.53e-3)

1000 5.2120e-1(1.78e-2)− 2.6633e+0(1.38e-1)− 2.3408e-1(1.44e-2)+ 5.2043e-1(7.54e-7)− 3.1051e-1(7.59e-3)

100 4.4020e+0(1.37e+0)− 4.6684e+0(4.21e-1)− 1.3854e+0(3.48e-2)− 1.6385e+0(7.84e-2)− 1.0749e+0(6.40e-3)

10 500 5.3581e+0(6.94e-1)− 1.1875e+1(8.36e-1)− 1.3572e+0(1.65e-2)− 1.6320e+0(1.02e-1)− 1.0752e+0(3.29e-3)

1000 5.7150e+0(2.69e-1)− 1.5027e+1(9.39e-1)− 1.3300e+0(9.50e-3)− 1.5249e+0(4.16e-2)− 1.0781e+0(4.58e-3)

+/− / ≈ 0/30/0 8/21/1 12/18/0 6/13/11

’+’, ’−’ and ’≈’ indicate that the result is significantly better, significantly worse and statistically similar to that of LMEA, respectively.

B. Performance Comparison Between LMEA and Existing
MOEAs on Large-Scale MaOPs

Tables III and IV present the statistical results of the
IGD metric values of the five compared algorithms on
the 10 test problems with 100, 500 and 1000 decision
variables obtained via 20 independent runs, where the
best result on each test instance is shown in a gray
background. The Wilcoxon rank sum test is also adopted
at a significance level of 0.05, where the symbols ’+,
’-’ and ’≈’ indicate that the result is significantly bet-
ter, significantly worse and statistically similar to that
obtained by LMEA, respectively. From the tables, the
following three observations can be made. First, the
MOEA/D, NSGA-III and KnEA can achieve a promising

performance on some of the large-scale test instances
under consideration, but their general performance will
be worse than that of MOEA/DVA and the proposed
LMEA that are specifically designed for solving large-
scale problems. As can be seen from the tables, the IGD
values obtained by MOEA/DVA and LMEA on each test
problem are consistently good as the number of decision
variables increases from 100 to 1000, which confirms a
promising scalability of MOEA/DVA and LMEA.

Second, on the group of test problems DTLZ1 to
DTLZ4 and DTLZ7 where MOEA/DVA and LMEA
obtain the same decision variable grouping results, the
proposed LMEA has achieved a similar performance as
that of MOEA/DVA with the only exception of DTLZ7.
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TABLE IV
IGD METRIC VALUES OF THE FIVE ALGORITHMS ON DTLZ5, DTLZ6, WFG3, UF9 AND UF10, WHERE THE BEST RESULT ON EACH TEST

INSTANCE IS SHOWN IN A GRAY BACKGROUND.

Problem Obj. Dec. MOEA/D NSGA-III KnEA MOEA/DVA LMEA

DTLZ5

100 4.5161e-2(9.31e-7)− 1.4957e-1(2.58e-2)− 2.7185e-1(4.11e-2)− 2.0440e-1(5.06e-4)− 4.1162e-3(1.44e-4)

5 500 4.5161e-2(1.04e-6)− 1.9413e-1(1.78e-2)− 3.1740e-1(6.11e-2)− 2.0469e-1(5.20e-8)− 4.0861e-3(1.48e-4)

1000 4.5162e-2(3.32e-7)− 2.0606e-1(1.10e-2)− 3.8913e-1(6.77e-2)− 2.0461e-1(1.36e-4)− 4.0729e-3(9.90e-5)

100 4.9994e-2(2.41e-4)− 3.1946e-1(2.03e-2)− 3.6432e-1(5.71e-2)− 1.8877e-1(1.87e-4)− 2.3954e-3(6.95e-5)

10 500 5.0407e-2(4.16e-4)− 5.2642e-1(2.04e-2)− 3.6389e-1(5.43e-2)− 1.8866e-1(3.30e-4)− 2.2721e-3(4.47e-5)

1000 5.0759e-2(2.12e-5)− 6.2093e-1(1.14e-2)− 4.1806e-1(5.07e-2)− 1.8880e-1(2.03e-4)− 2.0713e-3(6.98e-5)

DTLZ6

100 1.4970e-1(3.14e-2)− 2.5642e-1(2.29e-2)− 5.8811e-1(1.34e-1)− 1.8236e-1(2.43e-6)− 3.9943e-3(2.14e-4)

5 500 1.3010e+0(1.04e-1)− 4.9939e-1(1.89e-2)− 7.2754e-1(1.43e-1)− 1.8236e-1(4.25e-7)− 4.5127e-3(1.22e-3)

1000 2.7140e+0(1.97e-1)− 6.5774e-1(2.19e-2)− 1.5085e+0(4.53e-1)− 1.8236e-1(5.91e-7)− 3.9747e-3(2.29e-4)

100 6.7510e-2(1.85e-2)− 7.2120e+0(1.35e+0)− 3.7560e+0(9.56e-1)− 1.6531e-1(4.09e-2)− 2.4477e-3(5.11e-4)

10 500 1.1735e+0(2.52e-1)− 8.7171e+1(4.88e+0)− 6.3085e+0(2.18e+0)− 1.2750e-1(5.33e-2)− 3.0711e-3(7.20e-4)

1000 2.6191e+0(5.73e-1)− 1.9202e+2(9.83e+0)− 4.8989e+0(2.54e+0)− 1.1844e-1(2.26e-2)− 3.7077e-3(1.66e-3)

WFG3

100 2.0705e+0(8.91e-2)− 7.7137e-1(3.83e-2)− 6.2696e-1(4.24e-1)− 2.3769e+0(7.55e-3)− 1.2581e-1(2.91e-2)

5 500 2.2789e+0(6.03e-2)− 8.6982e-1(2.37e-2)− 2.2284e-1(2.56e-2)− 2.4699e+0(9.15e-3)− 1.1736e-1(3.58e-2)

1000 2.3370e+0(8.10e-2)− 8.8753e-1(2.53e-2)− 4.6414e-1(1.49e-1)− 2.4410e+0(3.52e-2)− 1.2493e-1(2.41e-2)

100 3.4569e+0(1.29e-1)− 3.0344e+0(5.71e-2)− 2.2907e+0(7.93e-1)− 3.4846e+0(2.45e-2)− 1.8542e-1(5.96e-2)

10 500 3.8106e+0(8.24e-2)− 3.1112e+0(5.04e-2)− 1.6148e+0(5.53e-1)− 3.5264e+0(9.75e-2)− 4.8685e-1(5.49e-2)

1000 3.9456e+0(7.23e-2)− 3.1454e+0(4.20e-2)− 1.9861e+0(1.27e+0)− 3.5070e+0(1.17e-1)− 6.9330e-1(1.16e-1)

100 2.9851e-1(1.58e-2)− 2.2030e-1(9.19e-2)− 5.3546e-1(1.39e-1)− 4.3517e-2(2.50e-6)+ 5.7008e-2(8.91e-3)

UF9 3 500 3.1975e-1(2.92e-2)− 3.1029e-1(7.27e-2)− 4.6017e-1(1.19e-1)− 4.3516e-2(9.76e-7)+ 5.3626e-2(6.94e-3)

1000 3.0557e-1(8.39e-2)− 3.7850e-1(4.21e-2)− 5.3607e-1(8.03e-2)− 4.3516e-2(7.00e-7)+ 5.1231e-2(4.50e-3)

100 5.9354e-1(1.50e-1)− 3.3482e-1(8.13e-2)− 7.5510e-1(1.49e-1)− 1.1024e-1(2.92e-3)+ 1.6632e-1(1.45e-2)

UF10 3 500 6.3119e-1(1.92e-1)− 3.6779e-1(8.36e-2)− 1.3142e+0(8.69e-1)− 1.0158e-1(8.55e-4)+ 1.5547e-1(4.99e-3)

1000 5.6232e-1(2.48e-1)− 4.2148e-1(1.10e-1)− 9.1794e-1(1.35e-1)− 1.0277e-1(1.01e-3)+ 1.6924e-1(9.48e-3)

+/− / ≈ 0/24/0 0/24/0 0/24/0 6/18/0

’+’, ’−’ and ’≈’ indicate that the result is significantly better, significantly worse and statistically similar to that of LMEA, respectively.

On all the DTLZ7 test instances, the proposed LMEA
always obtains a smaller IGD value than MOEA/DVA.
This is attributed to the fact that MOEA/DVA adopts
MOEA/D for optimizing the diversity-related variables,
while such decomposition based MOEAs are not well
suited for solving MOPs or MaOPs with irregular (dis-
connected or degenerate) Pareto optimal fronts [38], [40],
[83]. By contrast, the distribution management strategy
as detailed in Algorithm 4 is capable of handling such
irregular Pareto optimal fronts as that of DTLZ7.

Finally, on the group of test problems DTLZ5,
DTLZ6, WFG3, UF9 and UF10 where MOEA/DVA and
LMEA obtain different decision variable grouping re-
sults, LMEA shows generally better performance than
MOEA/DVA in terms of IGD. As can be seen from
Table IV, on DTLZ5, DTLZ6 and WFG3, the variables re-
lated to both convergence and diversity in MOEA/DVA
are identified as convergence-related variables in LMEA,
thus resulting in significantly smaller IGD values. This
observation confirms that the proposed variable cluster-
ing strategy in LMEA is able to reasonably identify the

decision variables related to both convergence and diver-
sity, which can not be distinguished by MOEA/DVA.

It is worth noting that, MOEA/DVA and LMEA still
achieve similar performance on UF9 and UF10, although
different decision variable grouping results have been
obtained by both algorithms. This is due to the fact
that MOEA/DVA optimizes all variables related to both
convergence and diversity, e.g., x1 and x2 in UF9 and
UF10, in the same way as diversity-related variables.
As shown in Table I, the variables x1 and x2 in UF9
and UF10 are identified as diversity-related variables in
LMEA. The slightly better performance of MOEA/DVA
than LMEA on UF9 and UF10 is due to the fact that
MOEA/DVA adopts a uniform sampling method de-
veloped in [84] to initialize the population of diversity-
related variables, which is well suited for maintaining
the distribution of the candidate solutions when applied
to the UF problems.

For further observations, Fig. 4 plots the non-
dominated solutions with the best IGD metric values
obtained by the five algorithms among 20 runs in
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TABLE V
RUNTIME (S) OF THE FIVE ALGORITHMS AVERAGING OVER ALL TEST INSTANCES WITH 100, 500 AND 1000 VARIABLES.

Number of MOEA/D NSGA-III KnEA
MOEA/DVA LMEA

Control Interaction Search Variable Interaction Searchproperty analysis clustering analysisvariables analysis

100 1.0499e+2 9.2768e+1 2.2953e+2 2.0693e-1 2.0669e+1 1.4598e+2 1.4638e-1 1.4218e+1 3.7283e+1

500 7.4233e+2 2.5760e+3 1.6144e+3 1.2292e+0 5.3845e+2 7.6295e+2 7.9235e-1 4.0784e+2 1.7208e+2

1000 1.8008e+3 7.4880e+3 4.2560e+3 2.9508e+0 2.3653e+3 1.2397e+3 1.4735e+0 1.9820e+3 4.0282e+2
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Fig. 4. The non-dominated solutions with the lowest IGD metric
values obtained by each algorithm among 20 runs in the objective space
on 10-objective DTLZ6 problem with 1000 decision variables.

the objective space on 10-objective DTLZ6 with 1000
decision variables, respectively. It can clearly be seen
that the proposed LMEA and MOEA/DVA outperform
MOEA/D, NSGA-III and KnEA on 10-objective DTLZ6
with 1000 decision variables in terms of both conver-
gence and diversity, and the LMEA achieves much more
non-dominated solutions in the Pareto optimal front
than MOEA/DVA, which confirms the effectiveness of
decision variable clustering method developed in LMEA.

To verify the computational efficiency of LMEA, Ta-
ble V summarizes the runtime(s) of the five compared
algorithms averaged over all the runs on test instances
with 100, 500 and 1000 variables, respectively. Note that
the proposed T-ENS is employed as the non-dominated
approach in all compared algorithms except MOEA/D.

The runtime of LMEA and MOEA/DVA consists of three
parts, namely, runtime of decision variable clustering
(known as control property analysis in MOEA/DVA),
runtime of decision variable interaction analysis and
runtime of search stage. It can be observed from the
table that LMEA is computationally more efficient than
MOEA/D, NSGA-III, KnEA and MOEA/DVA on test
problems with 100 and 500 variables, while MOEA/D
performs the best on problems with 1000 variables. For
LMEA, the variable clustering component is less time-
consuming than the other two components, namely deci-
sion variable interaction analysis and the search stage. In
addition, on the one hand, the runtime of search stage in
LMEA is almost linear scaling to the number of decision
variables; on the other hand, however, the runtime of
variable interaction analysis rapidly increases with the
number of decision variables, which is due to the fact
that this component holds a time complexity of O(D2) in
the worst case, where D denotes the number of variables.

Based on the above empirical results, we can conclude
that the proposed LMEA is more effective and efficient to
handle large-scale MaOPs than state-of-the-art MOEAs
designed for solving MaOPs or large-scale MOPs.

C. Performance of LMEA on Large-scale MaOPs with 2000
and 5000 Decision Variables

In the previous subsection, we have demonstrated
the competitive performance of the proposed LMEA
on benchmark MaOPs with the number of decision
variables ranged from 100 to 1000. In this subsection, we
further challenge the proposed LMEA on MaOPs with
larger scales.

Table VI presents the HV metric values obtained by the
proposed LMEA on DTLZ1 to DTLZ7, WFG3, UF9 and
UF10 with 2000 and 5000 decision variables, via 20 runs,
showing that the proposed LMEA obtained a similar
HV metric value on each test problem with both 2000
and 5000 variables. For further observations, Fig. 5 plots
the IGD metric values of LMEA on 5-objective DTLZ3,
10-objective DTLZ6 and UF9 with different number of
decision variables averaged over 20 runs. As evidenced
in Fig. 5, the IGD metric values obtained by LMEA
shows little deterioration on the three test problems as
the number of decision variables increases from 100
to 5000, which indicates a promising scalability of the
algorithm.
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TABLE VI
HV METRIC VALUES OF LMEA ON DTLZ1 TO DTLZ7, WFG3, UF9
AND UF10 WITH 2000 AND 5000 DECISION VARIABLES, AVERAGING

OVER 20 RUNS.

Problem Obj. 2000-variable 5000-variable

DTLZ1
5 9.3601e-1(6.41e-3) 9.3782e-1(4.81e-3)
10 8.9433e-1(1.38e-2) 8.7102e-1(1.31e-2)

DTLZ2
5 6.1363e-1(5.08e-3) 6.1221e-1(4.75e-3)
10 6.4035e-1(2.19e-2) 6.5006e-1(1.41e-2)

DTLZ3
5 6.1373e-1(4.85e-3) 6.1270e-1(1.33e-2)
10 3.0131e-1(4.37e-2) 1.5543e-1(2.88e-2)

DTLZ4
5 5.8063e-1(4.39e-2) 5.9056e-1(2.04e-2)
10 7.3539e-1(3.52e-2) 6.6224e-1(3.64e-2)

DTLZ5
5 3.4370e-2(2.75e-4) 3.4090e-2(3.37e-4)
10 8.3512e-3(2.66e-4) 7.8917e-3(5.19e-4)

DTLZ6
5 3.3410e-2(1.22e-3) 3.4350e-2(1.10e-4)
10 6.6238e-3(1.49e-3) 6.2831e-3(1.15e-3)

DTLZ7
5 1.2758e-1(4.62e-3) 1.3263e-1(2.81e-3)
10 5.5823e-2(4.15e-3) 5.7065e-2(7.94e-3)

WFG3
5 5.8731e-1(2.03e-3) 5.8971e-1(3.06e-3)
10 6.0799e-1(2.75e-3) 5.8697e-1(2.14e-3)

UF9 3 7.0473e-1(1.29e-2) 7.1139e-1(1.05e-2)
UF10 3 1.7095e-1(7.70e-3) 1.8247e-1(1.40e-2)
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Fig. 5. IGD metric values of LMEA on 5-objective DTLZ3, 10-
objective DTLZ6 and UF9 with different numbers of decision variables,
averaging over 20 runs.

D. Performance Comparisons Between LMEA and Existing
MOEAs on LSMOP Test Suit

To further assess the performance of LMEA on more
challenging large-scale MaOPs, more empirical exeperi-
ments are conducted on a recently developed test suite
for large-scale multi-objective and many-objective op-
timization, known as the LSMOP test suite [85]. The
LSMOP test suite consists of nine test problems (i.e.
LSMOP1–LSMOP9), which are constructed based on six
widely used large-scale single-objective problems, name-
ly, Sphere function, Schwefel’s problem, Rosenbrock’s
function, Rastrigin’s function, Griewank’s function and
Ackley’s function. This class of test problems have the
following main characteristics: 1) complicated variable
linkages on the Pareto sets, 2) mixed separabilities be-
tween decision variables, 3) non-uniform non-separable
variable groups, 4) non-uniform correlations between de-
cision variables and objective functions, some of which
are borrowed from the literature of large-scale single-

objective optimization. Hence, LSMOP test problems can
better reflect the challenges in large-scale MaOPs than
existing test suits.

Table VII presents the statistical results of the IGD
values obtained by the five algorithms on LSMOP1 to
LSMOP9 with 5 objectives and 500 decision variables
via 20 independent runs, where the parameter T for
controlling the ratio of knee points in KnEA is set to
0.5, and all the other parameters are set to the same as
in Section IV-A. It can be seen that the proposed LMEA
is still able to achieve a competitive performance on the
LSMOP test problems, which confirms the effectiveness
of LMEA in solving challenging large-scale MaOPs.

V. CONCLUSIONS AND REMARKS

In this work, a decision variable clustering based evo-
lutionary algorithm, termed LMEA, has been suggested
for solving large-scale MaOPs. In LMEA, a decision vari-
able clustering method has been developed to divide the
decision variables into two groups, namely convergence-
related variables and diversity-related variables, accord-
ing to their contributions to the convergence and diver-
sity, respectively. Based on the grouping results, the two
groups of variables are optimized separately. Moreover, a
fast non-dominated sorting approach with a time com-
plexity of O(MN logN/logM), called T-ENS, has been
proposed to improve the computational efficiency of
LMEA, where M is the number of objectives and N is the
size of population to perform non-dominated sorting.
Empirical results on a variety of large-scale benchmark
MaOPs that have up to 5000 decision variables demon-
strate the promising scalability of LMEA in comparison
with several sate-of-the-art MOEAs.

It has been shown that decision variable clustering
is effective for solving large-scale MaOPs. While the
proposed clustering method in this work only considers
the decision variables to be convergence-related and
diversity-related, in the future, we would like to inves-
tigate if it is possible to make more classifications of
the decision variables, because decision variables in the
same group may still have different (strong or weak)
correlations with the objectives even if they are only re-
lated to convergence or diversity. In addition, we would
also like to further improve the computational efficiency
of the decision variable interaction analysis procedure,
which is the main computational cost of the proposed
LMEA.
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TABLE VII
IGD METRIC VALUES OF THE FIVE ALGORITHMS ON LSMOP1–LSMOP9, WHERE THE BEST RESULT ON EACH TEST INSTANCE IS SHOWN IN A

GRAY BACKGROUND.

Problem MOEA/D NSGA-III KnEA MOEA/DVA LMEA

LSMOP1 3.6215e-1(2.77e-2)− 2.0411e-1(3.05e-3)− 6.5295e-1(3.88e-1)− 1.7219e-1(7.47e-3)− 1.5151e-1(9.99e-3)

LSMOP2 2.4541e-1(8.98e-4)− 1.4727e-1(1.67e-3)− 2.3724e-1(7.06e-2)− 1.4212e-1(2.16e-3)− 1.2644e-1(1.45e-3)

LSMOP3 7.0884e-1(4.00e-2)− 4.4176e-1(1.30e-1)≈ 7.0241e-1(9.37e-2)− 6.9024e-1(4.55e-2)− 4.1242e-1(4.68e-2)

LSMOP4 2.7326e-1(4.55e-3)− 1.8222e-1(9.13e-3)− 6.0172e-1(1.44e-1)− 1.5548e-1(4.40e-3)≈ 1.5585e-1(2.04e-3)

LSMOP5 5.7900e-1(6.32e-2)− 3.2983e-1(1.23e-1)− 1.1584e+0(4.06e-1)− 3.8667e-1(3.92e-2)− 2.6932e-1(1.65e-2)

LSMOP6 1.2119e+0(2.44e-1)+ 1.1094e+0(1.22e-1)+ 1.8486e+0(1.39e+0)+ 2.0992e+0(1.79e-1)+ 1.3820e+4(3.91e+3)
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