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How to Pack Trapezoids:

Exact and Evolutionary Algorithms
Rhyd Lewis and Penny Holborn

Abstract—The purposes of this paper are twofold. In the first,
we describe an exact polynomial-time algorithm for the pair
sequencing problem and show how this method can be used to
pack fixed-height trapezoids into a single bin such that inter-
item wastage is minimised. We then go on to examine how
this algorithm can be combined with bespoke evolutionary and
local search methods for tackling the multiple-bin version of
this problem—one that is closely related to one-dimensional
bin packing. In the course of doing this, a number of ideas
surrounding recombination, diversity, and genetic repair are also
introduced and analysed.

Index Terms—Trapezoid Packing, Bin Packing, Pair Sequenc-
ing Problem, Recombination, Diversity.

I. INTRODUCTION

The Pair Sequencing Problem (PSP) is defined as follows:

Definition 1. Let P be a multiset of unordered pairs of

nonnegative integers P = {{x1, y1}, {x2, y2}, . . . , {xn, yn}},
and let X be an ordering of the elements of P in which each

element is also expressed as an ordered pair. The PSP involves

identifying the solution X which minimises the objective

function

f(X ) =

(

n−1
∑

i=1

D
(

rhs(i), lhs(i+ 1)
)

)

(1)

+D
(

rhs(n), lhs(1)
)

where lhs(i) and rhs(i) denote the values on the left- and

right-hand sides of the ith ordered pair in X , and where

D(x, y) = |x− y| denotes the difference between two values

x, y ∈ N0.

The PSP can be used in the game of dominoes to determine

whether a set of tiles can be laid out legally in a single

(non-branching) line of play. This is achieved by using each

{xi, yi} ∈ P to represent a tile with “end” values xi and yi,
with a legal line of play then corresponding to a solution X
in which at most one of the terms in the objective function

has a non-zero value (see Fig. 1). Indeed, if the cost of X
is zero then the ends of the two terminal dominoes can also

be joined to form a circuit. In a similar fashion, the PSP can

also be used to determine whether a set of n matrices with

dimensions xi, yi (i = 1, . . . , n) can be ordered and transposed

so that they might be properly multiplied together (though, of
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Fig. 1. A legal line of play in dominoes. Here, P = {{1, 4}, {1, 6}, {2, 4},
{2, 5}, {3, 5}} and the solution is written X = 〈(6, 1), (1, 4), (4, 2), (2, 5),
(5, 3)〉, giving f(X ) = 3.
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Fig. 2. (a) Examples of form-1 (left) and form-2 (right) trapezoids; and (b)
two example packings of the same four trapezoids into an H×W bin. Inter-
item wastage is shown in white.

course, different solutions may bring about different answers

to the resultant calculation).

Our main motivation for studying the PSP, however, comes

from a variant of the one-dimensional bin packing problem

that was originally considered by Lewis et al. in 2011 [1].

In their work the items to be packed have a fixed height,

vary in width, and are trapezoidal in shape. The problem

is of particular interest in the construction industry, where

we are interested in cutting trapezoidal-shaped roof trusses

from fixed-length rectangular stocks; however, it also has

other applications, such as when laying decked flooring (see

Section V).

Consider a set U of trapezoidal items of a fixed height H .

Each item i ∈ U is defined as having a “base width” bi,
and two “projections” xi and yi that determine the angles of

its lateral sides. An item’s “central width” is simply ci =
bi − (xi + yi). Each trapezoid can also be one of two forms:

form-1, where projections occur on the same side of the shape,

or form-2, where they occur on alternate sides. In both cases

the area of an item i is simply A(i) = 1
2H(bi + ci) (see

Fig. 2(a)).

Definition 2. Given a set U of trapezoidal items of height

H and base widths bi ≤ W, ∀i ∈ U , the trapezoid packing

problem (TPP) involves packing the items of U into a minimal

number of H ×W bins such that no bin is over-filled.
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Note that the classical one-dimensional bin packing problem

is a special case of the TPP in which xi = yi = 0, ∀i ∈ U ;

hence the TPP is NP-hard.

In addition to the bin packing task of deciding which items

should be assigned to which bins, the TPP involves deciding

how items should be packed into each bin such that wastage

between successive items is minimised. This task can be

formally defined as follows.

Definition 3. Let S ⊆ U be a set of trapezoidal items

whose total area is less than or equal to a bin’s area (i.e.,

A(S) =
∑

i∈S A(i) ≤ HW ). The trapezoid packing sub-

problem (TPSP), involves determining whether an arrange-

ment of the items in S exists such that the “inter-item wastage”

is less than or equal to HW −A(S).

Here, inter-item wastage is defined as the total area of all

triangular spaces between each pair of adjacent items, plus

the left- and right-most triangles of wastage, as illustrated in

Fig. 2(b). If the inter-item wastage is indeed less than or equal

to HW −A(S), then it is obvious that an arrangement of the

items exists that allows them to be packed into a single bin.

In [1], the TPSP was noted as being a special type of

travelling salesman problem and was conjectured to be NP-

complete. These observations were then used to justify a

greedy approximation algorithm for the subproblem (discussed

further in Section III-B). An exact IP-based model was also

used when their greedy algorithm was too inaccurate, though

this often turned out to be restrictively slow in their experi-

ments.

In this present work we show that the TPSP can be

expressed as a type of PSP. In Section II, we then show that

the PSP, and therefore the TPSP itself, can in fact be exactly

solved using a polynomially bounded algorithm, therefore

disproving Lewis et al.’s conjecture [1]. After presenting this

algorithm, in Sections III and IV we then go on to show

how this exact method can be combined with state of the

art packing heuristics to produce high-quality results for the

TPP. Section V then concludes the paper and makes some

suggestions for further work.

A. Expressing the TPSP as a PSP

Let us start by making the following observations about the

TPSP. First, since we are only attempting to minimise inter-

item wastage, the values bi and ci can be ignored as they have

no bearing on the calculation. Second, although each trapezoid

in a sequence can be aligned according to four orientations (by

flipping on none, either, or both of its horizontal and vertical

axes), only two of these orientations need to be considered

due to the following theorem.

Theorem 1 ( [1]). When minimising wastage between succes-

sive trapezoids in a defined sequence, we only need to decide

whether each trapezoid should be flipped on its vertical axis.

Proof. Suppose a set S of trapezoids have been placed in

a particular sequence from left to right, together with a

specification, for each trapezoid, of which projection should

be on the left. If the orientations are such that the inter-item

wastage for this particular arrangement is minimised, then

the adjacent projections will be aligned so that they “nest”.

That is, “�” angles will be adjacent to other “�” angles

and “�”angles will be adjacent to other “�” angles (as is

the case in Fig. 2(b)). Now suppose the contrary, and that

two adjacent trapezoids in this arrangement do not nest. If we

now take all trapezoids to the right of this join and flip them

on their horizontal axis, this join will be nested, decreasing

this wastage, and leaving the remaining joins in the sequence

unchanged. Hence, the original orientation of the items could

not have given the minimal wastage.

The task of arranging a set S of trapezoids into a single

bin can now be seen as involving two things: (a) determining

their ordering from left to right, and (b) deciding for each

trapezoid i ∈ S whether projection xi or yi should occur on

the left. Joins between adjacent trapezoids can then be easily

nested due to Theorem 1. Note that this allows us to disregard

the differences between form-1 and form-2 trapezoids. It also

means that the area of wastage between any two projections

xi and xj can be calculated as 1
2H(|xi − xj |). This can be

further simplified to |xi− xj | by assuming H = 2, which has

no effect on the problem or its solutions.

It is now clear that the task of optimally arranging a set

S of trapezoids into a H × W bin can be expressed as an

instance of the PSP using P = {{xi, yi} : i ∈ S} ∪ {{0, 0}}.
Here, the additional element {0, 0} is used for calculating the

left- and right-hand triangles of wastage and can be viewed as

a trapezoid i for which xi = bi = yi = 0. Our task is to now

identify a PSP solution X whose cost f(X ) ≤ HW −A(S).

II. SOLVING THE PSP

In this section we give a polynomially bounded exact

algorithm for the PSP. In proving the correctness of this

algorithm it is useful to consider the problem from a graph-

theoretic point-of-view.

Definition 4. Let P be an instance of the PSP, and let

G = (V,E) be an undirected multigraph defined by an edge

multiset E = P , giving |E| = n. The vertex set V is defined

using one vertex for each of the different values occurring

in P . That is, V =
⋃n

i=1{xi, yi}. For convenience, let the

subscript j of a vertex vj correspond to its numerical value

in P; hence the degree of vj , written deg(vj), corresponds to

the number of occurrences of the value j in P .

Considering a graph G constructed in this manner, the task

of forming a solution to the PSP might be viewed as a special

type of undirected rural postman problem (RPP). In the RPP

we are given an arbitrary edge-weighted graph for which some

edges are marked as compulsory. The task is then to form a

cycle that traverses all compulsory edges at least once. In cases

where all edges are marked as compulsory, the RPP becomes

equivalent to the well-known Chinese postman problem, which

is solvable in polynomial time [2]; however, the RPP is known

to be NP-hard in general [3].

For the PSP, all edges in G are compulsory. Like the RPP,

we are interested in forming a cycle containing all compulsory

edges, though these must be traversed exactly once. Note that



3

v0 v1 v2 v3 v4 v5 v6 v7

7
1 1 1

(a)

(b)

Fig. 3. (a) The graph G formed by the example problem P = {{0, 0},
{0, 6}, {1, 5}, {2, 3}, {4, 7}}; and (b) an example (sub-optimal) solution
X = 〈(0, 0), (0, 6), (5, 1), (2, 3), (4, 7)〉, with f(X ) = 10. Solid edges
corresponds to the trapezoidal items and are therefore compulsory. Dotted
edges incur a cost (indicated).

this may require additional edges to be added to G, as Fig. 3

demonstrates. These additional edges will each incur a cost,

defined as w(vi, vj) = D(i, j) = |i − j|. The graph G can

therefore be seen as a special type of Euclidean graph in which

all vertices lie on a straight line. In particular, given vertices

vi, vj , vk with i < j < k, this implies w(vi, vk) = w(vi, vj)+
w(vj , vk). Solving the PSP using G can therefore be viewed

as the task of identifying the set of additional edges whose

total cost is minimal, but which allows all edges in G to be

traversed exactly once.

We now recall the following definition from classical graph

theory:

Definition 5. A graph is Eulerian if and only if it has no

vertices of odd degree (that is, all vertices are of even degree).

An Eulerian cycle (or Eulerian tour) of a graph is defined as

a cycle that visits every edge exactly once and that starts and

ends at the same vertex. Eulerian cycles were introduced by

Leonard Euler in the mid-seventeenth century in his solution

to the famous Seven Bridges of Königsberg problem [4]. In

this work, the following theorem was also stated, a proof of

which was later published by Hierholzer and Wiener [5].

Theorem 2 ( [4], [5]). A graph contains an Eulerian cycle if

and only if it is both connected and Eulerian.

Theorem 2 now allows us to state the following for the PSP.

Theorem 3. There exists a zero cost solution X to an instance

P of the PSP if and only if its corresponding graph G =
(V,E) features an Eulerian cycle.

Proof. Let C = 〈(vx1
, vx2

), (vx2
, vx3

), (vx3
, vx4

), . . . ,
(vxn

, vx1
)〉 be an Eularian cycle in G. In each vertex vxi

encountered along this cycle, we “enter” vxi
via the edge

(vxi−1
, vxi

), and “exit” via the edge (vxi
, vxi+1

). Since

D(xi, xi) = 0, the corresponding PSP solution X = 〈(x1, x2),
(x2, x3), (x3, x4), . . . , (xn, x1)〉 has a cost of zero.

Alternatively, let X be the zero-cost PSP solution X =
〈(x1, x2), (x2, x3), (x3, x4), . . . , (xn, x1)〉. Because P =
E and the elements of X have a one to one correspon-

dence to elements in P , then C = 〈(vx1
, vx2

), (vx2
, vx3

),
(vx3

, vx4
), . . . , (vxn

, vx1
)〉 defines an Eulerian cycle.

Eulerian cycles can be constructed from connected Eulerian

graphs using Hierholzer’s algorithm, which is of complexity

v0 v1 v2 v3 v5 v6 v7 

(a) 

(b) 

1 4 1 

Fig. 4. (a) Graph G formed by the problem P = {{0, 3}, {1, 5}, {2, 3},
{3, 3}, {3, 6},{3,7}}. Odd-degree vertices are shown in white. (b) shows
the resultant Eulerian graph when the matching M∗ (dotted lines) has been
added.

O(n) (see [5], [6]). For the PSP an optional step is also avail-

able in which we might reduce n by removing certain edges

from G before identifying the Eulerian cycles. Specifically,

• If there exist two edges {vx, vx} and {vx, vy}, these can

be replaced by the single edge {vx, vy}. Note that this

condition also allows the possibility that x = y, in which

case multiple loops of the form {vx, vx} can be replaced

by a single loop {vx, vx}.
• If there exist three edges {vx, vy}, {vx, vy}, and {vx, vy}

(where x 6= y), these can be replaced by the single edge

{vx, vy}.

These opportunities arise from the fact that the above edge

combinations can always be adjacent in any Eulerian cycle.

For example, in the second bullet above we can always form an

Eulerian cycle containing 〈. . . (vx, vy), (vy, vx), (vx, vy) . . .〉;
hence, in a graph in which two of these edges have been

removed, an Eulerian cycle containing just one occurrence of

(vx, vy) obviously still exists.

In instances of the PSP for which the corresponding graph

G does not feature an Eulerian cycle, it is necessary to add

additional edges, each of which will attract an additional cost.

This leads to an optimal solution X for which f(X ) > 0. Let

G′ = (V ′, E′) be a complete edge-weighted subgraph com-

prising only the odd-degree vertices of G and edge weights

w(vi, vj) = D(i, j) for all vi, vj ∈ V ′. According to the hand-

shaking theorem, |V ′| must be even [4]. In addition, because

the vertices of V ′ lie on a straight line, a minimum-weight

perfect matching M∗ can be achieved by considering the

vertices from left to right and simply taking the edge that joins

each successive pair (as is the case in Fig. 4). The appropriate

FIND-MATCHING procedure for this task is shown in Fig. 5.

Note that a more expensive weighted matching algorithm for

general graphs might also be applied to achieve this task;

however, this is unnecessary due to the special structure of

G′ noted.

Theorem 4. Let G = (V,E = P) be non-Eulerian. Now set

E ← E ∪M∗, where M∗ is found by the FIND-MATCHING

procedure. If G is now connected, an Eulerian cycle of G
defines a minimum cost solution to P .

Proof. It is obvious that G is now Eulerian since all of the

originally odd-degree vertices in G have had their degrees

increased by one. Because G is connected, it therefore contains

an Eulerian cycle according to Theorem 2. If an Eulerian cycle

of G does not define a minimum cost solution to the PSP, this
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FIND-MATCHING (G = (V,E = P))

(1) Let V = {vx1
, vx2

, . . . , vxl
} where x1 < x2 < . . . < xl

(2) M∗ ← ∅, i← 1
(3) while (i ≤ l) do

(4) if deg(vxi
) is odd then

(5) for j ← i+ 1 to l do

(6) if deg(vxj
) is odd then

(7) M∗ ←M∗ ∪ {{vxi
, vxj
}}

(8) break

(9) i← j + 1
(10) else i← i+ 1

Fig. 5. Algorithm for achieving a minimum-weight matching M∗ on the
odd-degree vertices of G.

implies the existence of a weighted matching M whose edge

weight sum is less than M∗. However, since all vertices of

G lie on a straight line and have Euclidean distances, such a

matching can obviously not exist.

As a final step, we now need to consider the situation where

the Eulerian graph G comprises more than one component.

If this is the case, these Eulerian components will need to

be joined by adding further edges to the graph. To see how

this can be done, it is instructive to view each component

as a sub-solution to the original PSP problem P . Note that

any sub-solution (and indeed full solution) to the PSP remains

unchanged under cyclic shifts and inversions. For example,

the solution 〈(1, 2), (3, 4), (5, 6), (7, 8)〉 is equivalent to the

solution 〈(7, 8), (1, 2), (3, 4), (5, 6)〉 (due to a right cyclic

shift), and the solution 〈(8, 7), (6, 5), (4, 3), (2, 1)〉 (due to an

inversion). This means that a particular sub-solution X2 can

be inserted into another sub-solution X1 in 2 × |X1| × |X2|
different ways. We define such an operation as a splice.

In more detail, let the sub-solutions X1 = 〈. . . (xi, xi+1),
(xi+2, xi+3) . . .〉 and X2 = 〈(y1, y2), . . . , (yl−1, yl)〉. Splic-

ing these sub-solutions by inserting X2 between elements

(xi, xi+1) and (xi+2, xi+3) in X1 results in a new sub-solution

with an additional cost of

D(xi+1, y1)+D(xi+2, yl)−D(xi+1, xi+2)−D(y1, yl). (2)

Alternatively, inserting an inverted X2 in the same manner

gives a sub-solution with an additional cost

D(xi+1, yl)+D(xi+2, y1)−D(xi+1, xi+2)−D(y1, yl). (3)

In each of these cases, there are |X1| possible insertion points

for X2 in X1, and |X2| possible versions of X2 due to cyclic

shifts. This gives the 2×|X1|×|X2| possible options as stated.

Definition 6. Let Xi and Xj be two sub-solutions. A minimum

cost splice is the operation of splicing Xi and Xj such that the

minimum additional cost, denoted by ρ(Xi, Xj), is incurred.

A minimum cost splice between two sub-solutions Xi and

Xj can be calculated by simply checking all 2× |Xi| × |Xj |
possible options and taking the smallest value. The act of

performing this minimum cost splice is denoted by Xi ←
SPLICE(Xi, Xj). That is, Xj is simply copied into Xi in

the appropriate way at the correct position. As an exam-

ple, consider two sub-solutions X1 = 〈(0, 2), (2, 4), (4, 3),

MERGE-SUB-SOLUTIONS (X = {X1, X2, . . .})

(1) while |X | > 1 do

(2) Determine Xi, Xj ∈ X with minimal ρ(Xi, Xj), i < j
(3) Xi ← SPLICE(Xi, Xj)
(4) X ← X − {Xj}
(5) X ← X1

Fig. 6. Algorithm for optimally merging all subsolutions into a single,
complete solution.

(3, 2)〉 and X2 = 〈(6, 7), (7,5), (5, 6)〉. The operation X1 ←
SPLICE(X1, X2) garners an additional cost of ρ(X1, X2) = 2,

which involves applying one right cyclic shift to X2 and then

inserting it between the second and third elements of X1 to

give X1 = 〈(0, 2), (2, 4), (5,6), (6,7), (7,5), (4, 3), (3, 2)〉.
An algorithm for merging all sub-solutions into a single,

full solution to the PSP is shown in Fig. 6. Given a set of

sub-solutions X = {X1, X2, . . .}, in each iteration the pair of

sub-solutions with the minimum cost splice overall is identified

and these are spliced together appropriately. The final full

solution results when only one sub-solution remains, as shown

in Line (5) of Fig. 6. Note that this algorithm is analogous

to Kruskal’s algorithm for identifying a minimum spanning

tree [7]. This operates by taking an arbitrary edge-weighted

graph and, at each step, merging a pair of components, until

only one component (representing a minimum spanning tree)

remains. More specifically, at the outset Kruskal’s algorithm

considers each vertex of the graph as a component, and then

selects the lowest cost edge between any two components. The

components at the end points of this edge are then merged into

a single component, and the process then repeats.

From the perspective of using the multigraph G to represent

a PSP, because all vertices occur in a single row, each pair of

Eulerian components Xi, Xj ∈ G can be seen as being linked

by an edge with cost ρ(Xi, Xj). The resultant spanning tree

then describes the way in which these components are to be

merged together. In effect, however, each application of the

operation Xi ← SPLICE(Xi, Xj) is actually adding two edges

between Xi and Xj (whose total weight equals ρ(Xi, Xj)) to

ensure that the resultant component is still Eulerian.

The final overall procedure for solving the PSP, which we

call the EULER-SPLICE algorithm, is as follows:

1) Given P , form the graph G = (V,E) according to

Definition 4. If G is connected and Eulerian, return an

Eulerian cycle and end.

2) If G = (V,E) is not Eulerian, determine the matching

M∗ by executing FIND-MATCHING(G) and set E ←
E ∪M∗. If G now comprises one component, return an

Eulerian cycle of G and end.

3) Execute MERGE-SUB-SOLUTIONS(X ), where the input

X = {X1, X2, . . .} is the set of all Eulerian components

of G. Return X as the optimal solution to P .

An example application of this method is provided in Fig. 7.

Given |P| = n, observe that the FIND-MATCHING procedure

is of linear complexity O(n), as is the act of determining

the resultant Eulerian cycles via Hierholzer’s algorithm [5],

[6]. MERGE-SUB-SOLUTIONS can involve up to n iterations

of the outer while-loop, while Line (2) of the procedure is of
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complexity O(n2) due to the number of calculations that need

to be carried out in calculating the minimum ρ(Xi, Xj) across

all pairs of components Xi, Xj ∈ X . Splicing operations,

however, are of complexity O(1) if linked lists (or similar)

are used. EULER-SPLICE therefore features an overall worse

case complexity O(n3)

III. INITIAL RESULTS WITH THE TPP

From this point of the paper onwards we now focus on

algorithms for the trapezoid packing problem (TPP), making

particular use of the EULER-SPLICE method for solving the

TPSP (i.e., for determining the best item packings in individual

bins). Recall from Definition 2 that the TPP involves packing

a set of fixed height trapezoidal items U into a set of bins

such that (a) no bin is overfilled (i.e., the packing in each bin

is feasible), and (b) the number of bins used is minimised.

In general, our approach to this multi-bin problem will

use ideas stemming from the one-dimensional bin packing

problem, though suitable modifications are also needed to

cope with the trapezoidal nature of the items. Here, a feasible

candidate solution is denoted by the set S = {S1, . . . , Sk}
such that (a)

⋃

Si = U ; (b) Si ∩ Sj = ∅ (for all i 6= j); and

(c) for all Si ∈ S , the items in Si can be feasibly packed

into a single bin. Obviously, k is the variable that we seek to

reduce.

The one-dimensional bin packing problem (BPP) has been

the target of much research in the past fifty years, with a

number of different approximation algorithms and heuristics

being proposed [8]–[12]. Perhaps the simplest approximation

algorithm is the first-fit (FF) algorithm, which operates by

taking each item in U one by one in an arbitrary order and

assigning it to the lowest indexed bin into which it can be

feasibly packed, opening new bins when necessary. FF has an

asymptotic worst case ratio of 17
10

[13]. A simple improvement

on this is the first-fit descending (FFD) heuristic, which sorts

the items into descending order of size (area) before applying

FF as before, featuring an asymptotic worst case ratio of
11
9

[14]. Better still is the ratio 71
60

achieved by the more time-

consuming algorithm of Garey and Johnson [15].

The FF algorithm can also be used as a basis for the first-

fit grouping (FFG) heuristic. This involves taking an existing

feasible solution S = {S1, . . . , Sk} and forming an ordering of

the items such that items within the same bin Si (∀Si ∈ S) are

adjacent to one another.1 It is known that if such an ordering

is used with FF, the resultant solution S ′ will feature an equal

number or fewer bins than the original solution S [9]. For these

reasons, it is also known that there exists at least one item

ordering with which FF produces an optimal solution, since

such an ordering can be generated using an optimal solution

itself.

Despite its obvious overlap with the BPP, note that the above

worst case ratios do not hold for the TPP due to the (often nec-

essary) inter-item wastage that can occur within solutions. For

similar reasons, the well-known theoretical minimum number

of bins in a BPP solution, TMin = ⌈(
∑

i∈U A(i))/HW ⌉, will

1Note that k! such orderings of the bins are available here. Whenever FFG
is applied in this paper, one of these k! orderings will be selected at random.

also be less accurate, particularly for problems whose solutions

involve only a small number of items per bin. Nevertheless,

in this section we choose to look at how the FFD bin packing

heuristic, suitably modified for trapezoidal items, performs

across a large set of benchmark problem instances for the TPP.

A. Problem Instances

The TPP problem set used here was created in [1] and

comprises 1,300 problem instances intended to model real-

world truss cutting problems encountered in the construction

industry (the original inspiration for the problem). The number

of items |U | ranges from 100 to 500 and bin size W is set

to 4,200 mm, which is a standard industry size. As explained

in Section I-A, H = 2 in all cases. Item widths bi are set

to between 300 and 3600 mm using values selected uniform

randomly within this range, or so that a particular number

of “large” items (2,700–3,600 mm) and “small” items (300–

1,800 mm) are included. Projection sizes are then determined

by setting the angles of the lateral sides to between 30◦and

90◦, while ensuring that xi+yi ≤ bi for all i ∈ U . Within this

set, two kinds of problems are also included: artificial (“a”)

instances, where each item has its own unique dimensions,

and the more realistic (“r”) instances where sets of identical

items are present within each instance.2

It is noted in [1] that solutions to these problem instances

tend to feature fewer than three items per bin on average

(that is, the trapezoidal items tend to be quite long and

thin), meaning that the TPSPs encountered during a run are

often very small. To gain a wider view of performance, this

“original” instance set has therefore been modified to create

two further sets in which the central width ci of each item

i ∈ U is set to half and a quarter of their original values. The

main features of these instance sets are given in the first four

columns of Table I.

B. Tackling the Trapezoid Packing Sub-Problem (TPSP)

As we have seen, at various points during execution it is

necessary to determine whether a subset of items S ⊆ U can

be feasibly packed into a particular bin. For one-dimensional

bin packing, this involves simply checking whether the total

size (area) of the items in S is less than or equal to the bin

capacity. For the TPP this criterion also applies, though further

computation is also needed to determine whether a solution

to the TPSP exists. In their original work, Lewis et al. [1]

suggested first using the following simple checks to identify

the existence (or otherwise) of such a solution. These were said

to be sufficient for solving approximately half of the TPSPs

encountered during their experiments.

• If |S| = 1 then a feasible packing exists.

• If A(S) = HW , then it is necessary for a feasible

packing to feature no inter-item wastage; consequently,

in S there needs be an even number of occurrences of

each projection size, and there should be at least two

projections of size zero (to ensure that no wastage occurs

2A more detailed description of this generator, together with the instances
themselves, is available at [16].
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(a) PSP Instance:  

P = {{1,2}, {1,3}, {2,6}, {3,5}, {5,7}, {6,7}, {8,8}, {9,10}, {9,11}, {10,12}, {10,14}, {11,13}, {13,15}, {13,15}, {14,15}} 

(b) Use the FIND-MATCHING procedure to form an Eulerian graph (comprising three components here). 

Result: 

X1 = ((1,2),(2,6),(6,7),(7,5),(5,3),(2,1)) Cost = 0 

X2 = ((8,8)) Cost = 0 

X3 = ((9,11),(11,13),(13,15),(15,13),(15,14),(14,10),(10,12),(10,9)) Cost = 4 

(c) X1 ← SPLICE(X1, X2). Here, ρ(X1, X2) = 2. 

Result:  

X1 = ((1,2),(2,6),(6,7),(8,8),(7,5),(5,3),(2,1)) Cost = 2 

X3 = ((9,11),(11,13),(13,15),(15,13),(15,14),(14,10),(10,12),(10,9)) Cost = 4 

(d) X1 ← SPLICE(X1, X3). Here, ρ(X1, X3) = 2. 

Result: 

X1 = ((1,2),(2,6),(6,7),(8,8),(9,11),(11,13),(13,15),(15,13),(15,14),(14,10),(10,12),(10,9),(7,5),(5,3),(2,1)) Cost = 8 

   

Fig. 7. Example application of the EULER-SPLICE algorithm.

in the left and right extremes of the bin). If this is not

the case then no feasible packing exists.

• Let τi denote the minimum amount of wastage we can

hope to occur around item i ∈ S in a packing, determined

by inspecting the closest projection sizes to xi and yi in

the set S − {i}. Now let τmax = max(τi : i ∈ S). It

is obvious that if τmax > HW − A(S) then no feasible

packing exists.

In cases where these basic checks were inconclusive, Lewis

et al. [1] made use of the following GREEDY method to try

and determine a feasible packing of the items in S.

1) Make a copy of S called S′. Given S′, identify the

item i ∈ S′ with the smallest projection. Place this item

into the left-most position in the bin with the identified

projection on the left hand side, and remove i from S′.

2) Consider the size of the right projection of the right-most

item in the bin. Call this value x. Now identify the item

i ∈ S′ with a projection size y closest to x (i.e., that

minimises |x − y|). Add item i to the bin so that the y-

sized projection is nested with the projection of size x.

Remove i from S′ and repeat Step 2 until S′ = ∅.
If, on completion of these steps, the inter-item wastage was

seen to be less than or equal to HW − A(S) then a feasible

packing was known to exist. If this was not the case (the

bin was overflowing) then a further process was invoked by

Lewis et al. [1]. This went through each item in the bin from

left to right and identified whether rotating the item on its

vertical axis reduced the total amount of inter-item wastage.

If this was the case, the rotation was performed. At the end

of this process, if the inter-item wastage was still larger than

HW − A(S), then it was assumed that no feasible packing

for S existed.

Of course, since the GREEDY algorithm is only approxi-

mate, it is natural here to replace it with the exact EULER-

SPLICE method. Our implementation of EULER-SPLICE op-

erates as described in Section II but without the optional step

of edge removal. This is because the TPSPs, and therefore

individual instances of the PSP, encountered in the benchmark

problems were found to be quite small on the whole (usually

less than ten items) meaning that the overheads of this stage

usually outweighed the expense of simply applying EULER-

SPLICE to the original problem. This will not be the case for

larger PSP instances, however.

C. FFD Results

Table I compares the results gained by the FFD heuristic,

when used in conjunction with either GREEDY or EULER-

SPLICE, on the complete set of 3,900 problem instances. All

individual trials took less than 15 ms to execute.3 We see

that the FFD variant using EULER-SPLICE produces solutions

using fewer bins on average for 26 of the 30 instance sub-

classes. In 16 of the 26 cases, these differences are statistically

3Algorithms presented in this work were written in C++ and executed on
a 3.3 GHtz Windows 7 machine with 8 GB RAM. A complete version of the
code, together with a complete listing of the results from our trials can be
downloaded from www.rhydlewis.eu/resources/trapezoid.zip.
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significant, as indicated. Where significance is not observed,

note that the sample sizes are quite small due to only 20

problem instances being available.

Table I also demonstrates that solutions using TMin bins

tend to be found less frequently when |U | is large and/or when

the number of items per bin is small, as with the original

instances. This is to be expected since the FFD algorithm will

usually be less accurate with larger problem sizes, while small

numbers of items per bin tends to cause TMin to underestimate

the true optimum. We also see that the variance in the number

of bins required is higher for the “r” instances. This is because,

with smaller numbers of different item and projection sizes, it

is usually more difficult to achieve tight packings of the items.

In summary, the results provide clear evidence that, when

packing the trapezoidal items into bins, the use of an exact

method to solve the TPSP brings definite advantages over

the approximate GREEDY method. An illustration of these

improvements is shown in Fig. 8. In this example, observe

that the solutions are identical up to bin 12, but in the 13th

the EULER-SPLICE method has allowed one further item to

be added compared to GREEDY, resulting in one fewer bin

overall once all remaining items have been inserted.

IV. IMPROVING RESULTS USING EVOLUTIONARY

METHODS

In this section we improve on the results of the previous

by employing specialised evolutionary methods, which are

known to have produced some of the best-known results for

the BPP and related partitioning problems [8], [17]–[20]. Here,

we focus particularly on the issue of recombination, with

each operator being applied within a common evolutionary

framework incorporating a bespoke local search procedure.

This procedure is described in the next subsection, with

Sections IV-B and IV-C detailing the remaining elements of

the evolutionary algorithm (EA). Sections IV-D and IV-E then

describe the results of our experiments and explore how further

improvements to our methods can be achieved. Note that from

this point onwards the EULER-SPLICE algorithm as described

in Section III-B is used exclusively for solving the TPSP.

A. Local Search

The local search method employed in all of our algo-

rithms operates on a pair of feasible sub-solutions S and S ′

that, together, make up a full solution. That is, (
⋃

S∈S S) ∪
(
⋃

S′∈S′ S′) = U , and (
⋃

S∈S S) ∩ (
⋃

S′∈S′ S′) = ∅.
The following steps are applied. For each S ∈ S and S′ ∈

S ′ (considered in a random order):

1) If there exist pairs of items i, j ∈ S and i′, j′ ∈ S′ such

that A(i) + A(j) < A(i′) + A(j′) and ((S ∪ {i′, j′}) −
{i, j}) ∈ F and ((S′∪{i, j})−{i′, j′}) ∈ F , then move

items i, j from S to S′ and items i′, j′ from S′ to S.

2) If there exists a pair of items i, j ∈ S and an item i′ ∈ S′

such that A(i)+A(j) ≤ A(i′) and ((S∪{i′})−{i, j}) ∈
F and ((S′ ∪ {i, j}) − {i′}) ∈ F , then move items i, j
from S to S′ and item i′ from S′ to S.

3) If there exist items i ∈ S and i′ ∈ S′ such that A(i) <
A(i′) and ((S∪{i′})−{i}) ∈ F and ((S′∪{i})−{i′}) ∈

F , then move item i from S to S′ and item i′ from S′

to S.

4) If there exists an item i′ ∈ S′ such that (S ∪ {i′}) ∈ F
and (S′ − {i′}) ∈ F , then move item i′ from S′ to S.

Here, the notation S ∈ F signifies that all items in S can

be feasibly packed into a single bin.4 This is determined as

described in Section III-B.

The above steps are a modified version of a procedure

previously used for the BPP based on the concept of bin

dominance, defined by Martello and Toth [8]–[11]. The idea

is that items are interchanged between bins such that wastage

within bins in S decreases, while the number of items in each

bin in S remains the same or also decreases. If this is achieved,

then the bins in S can be said to have improved, while the

smaller, easier to pack, items will have been moved into bins

in S ′. The procedure operates by first attempting to swap a

pair of items from a bin in S with a pair of items from a bin

in S ′ (Step 1). Similarly, Steps 2 and 3 involve swapping a

pair of items with a single item, and then a single item with

a single item. In Step 4, attempts are then made to try and

transfer a single item from a bin in S ′ into a bin in S . If this

is possible, and |S′| = 1, this reduces the number of bins in

S ′ by one.

In our application, whenever one of the above four steps are

satisfied, the associated items are moved between the bins and

the procedure moves immediately back to Step 1. This process

continues until none of the four steps are satisfied (that is, an

entire parse of the procedure is performed with no changes

being made to any bin in S or S ′). Following this, a complete

solution is then reconstructed by executing FFG with S ′ to

get a new partial solution S ′′ (giving |S ′′| ≤ |S ′|) and then

simply setting S ← S ∪ S ′′. Note that this entire procedure

cannot increase the number of bins being used in a solution,

but it does have the potential to decrease it.

B. Recombination

In general, the ideal aim of an EA’s recombination oper-

ator is to allow different parts (building blocks) of existing

candidate solutions to be effectively combined to make new,

good-quality offspring solutions. For the BPP it is usually

the bins themselves, together with their associated items, that

are considered the relevant building blocks, as discussed, for

example, in [8], [21], [22]. However, it is not always possible

to copy complete bins of items from multiple parents into an

offspring because the items occurring in a single bin in one

parent might be spread across many bins in another parent.

Consequently, offspring solutions will often feature duplicated

or missing items, which will then need to be dealt with by

some sort of repair operator. Decisions on how many and

which bins to copy from each parent during recombination

also need to be made, which could further influence algorithm

performance.

The first recombination operator we investigate originates

from the grouping genetic algorithm (GGA) of Falkenauer [8]

and operates as follows. Given two feasible parent solutions,

4That is, F denotes the set of all item combinations that can be feasibly
packed into a single bin.
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TABLE I
INSTANCE SET CHARACTERISTICS AND RESULTS GAINED BY THE TWO FFD VARIANTS. THE LOWEST MEAN VALUES FROM THE BINS COLUMNS ARE

MARKED IN BOLD. ASTERISKS INDICATE STATISTICAL SIGNIFICANCE AT ≤ 0.05 (∗) AND ≤ 0.01 (∗∗) ACCORDING TO A TWO-TAILED PAIRED T-TEST

AND TWO-TAILED MCNEMAR’S TEST FOR THE BINS AND TMIN % COLUMNS RESPECTIVELY.

FFD with GREEDY FFD with EULER-SPLICE

Type, |U | # Inst. # Typesa TMinb Binsc TMin %d Bins TMin %

orig., a, 100 20 100 44.65 46.45 ± 6.3 0.0 46.40 ± 6.3 0.0
orig., a, 200 20 200 90.70 94.95 ± 5.4 0.0 94.95 ± 5.4 0.0
orig., a, 300 20 300 134.70 139.30 ± 3.9 0.0 139.3 ± 3.9 0.0
orig., a, 400 20 400 177.75 183.15 ± 4.5 0.0 183.10 ± 4.6 0.0
orig., a, 500 20 500 222.55 228.35 ± 3.0 0.0 228.35 ± 3.0 0.0
orig., r, 100 240 20.19 38.66 42.53 ± 28.0 1.6 ∗42.51 ± 28.0 2.1
orig., r, 200 240 20.31 75.50 82.73 ± 27.8 0.0 ∗∗82.70 ± 27.8 0.0
orig., r, 300 240 20.05 115.10 126.48 ± 27.0 0.0 ∗∗126.41 ± 27.1 0.0
orig., r, 400 240 20.65 154.44 169.81 ± 27.2 0.0 ∗∗169.69 ± 27.3 0.0
orig., r, 500 240 19.60 193.03 212.80 ± 28.6 0.0 ∗∗212.60 ± 28.6 0.0

half, a, 100 20 100 23.45 24.10 ± 4.6 35.0 24.1 ± 4.6 35.0
half, a, 200 20 200 47.45 48.60 ± 3.0 10.0 ∗48.30 ± 2.9 15.0
half, a, 300 20 300 70.55 71.70 ± 2.4 5.0 71.60 ± 2.5 10.0
half, a, 400 20 400 92.95 94.65 ± 2.3 0.0 ∗94.45 ± 2.5 0.0
half, a, 500 20 500 116.40 118.25 ± 2.4 0.0 118.15 ± 2.4 0.0
half, r, 100 240 20.19 20.52 21.30 ± 22.2 29.2 ∗∗21.23 ± 22.3 ∗∗34.6
half, r, 200 240 20.31 39.97 41.43 ± 22.2 6.3 ∗∗41.30 ± 22.2 8.3.0
half, r, 300 240 20.05 60.80 63.17 ± 22.2 1.6 ∗∗63.00 ± 22.2 2.5.0
half, r, 400 240 20.65 81.34 84.26 ± 21.6 0.0 ∗∗84.10 ± 21.6 0.0
half, r, 500 240 19.60 101.75 105.67 ± 23.4 0.0 ∗∗105.41 ± 23.4 0.0

quar., a, 100 20 100 13.00 13.30 ± 4.3 70.0 13.20 ± 4.7 80.0
quar., a, 200 20 200 25.80 26.40 ± 4.7 40.0 26.30 ± 4.5 50.0
quar., a, 300 20 300 38.40 39.15 ± 4.4 25.0 39.10 ± 4.5 30.0
quar., a, 400 20 400 50.60 51.40 ± 2.6 25.0 ∗51.20 ± 2.7 40.0
quar., a, 500 20 500 63.30 64.30 ± 4.0 5.0 64.25 ± 3.9 5.0
quar., r, 100 240 20.19 11.48 11.78 ± 20.7 70.0 ∗∗11.74 ± 20.8 ∗∗74.2
quar., r, 200 240 20.31 22.14 22.78 ± 20.1 37.1 ∗∗22.73 ± 20.1 ∗∗42.1
quar., r, 300 240 20.05 33.62 34.54 ± 20.7 22.1 ∗∗34.49 ± 20.7 24.2
quar., r, 400 240 20.65 44.80 45.95 ± 20.3 15.8 ∗∗45.87 ± 20.2 17.9
quar., r, 500 240 19.60 56.05 57.58 ± 21.2 5.0 ∗∗57.49 ± 21.2 6.2

aNumber of different item types per instance (mean across all instances).
bTMin = ⌈(

∑
i∈U

A(i))/HW ⌉ (mean across all instances).
cNumber of bins per solution (mean across all instances, plus or minus the coefficient of variation (%)).
dPercentage of instances where a solution using TMin bins was found.

Fig. 8. Example solutions produced for a 100-item “half, r” problem instance using FFD with the GREEDY (left) and EULER-SPLICE (right) algorithms.

S1 and S2, the bins of S2 are first randomly permuted. Two

bins in S2, namely S2,i and S2,j (where 1 ≤ i ≤ j ≤ |S2|),
are then randomly selected and all bins between and including

these outer bins in S2 are copied into an offspring solution S ,

together with all bins from S1. At this point, S will contain

multiple occurrences of some items, and so the operator goes

through S and deletes any bins containing duplicates that

came from parent S1 (see Fig. 9). This operation results in

an offspring solution that comprises only feasible bins, but

that could be missing some items. These are then dealt with

by a repair procedure, described below.

Our second recombination operator is a modification of

the greedy partition crossover (GPX) scheme, which was

originally proposed for the graph colouring problem [21].

Unlike the GGA operator, GPX biases the copying of fuller

bins from parents to offspring. Duplicates are also dealt with

differently by only eliminating the offending items themselves,

as opposed to entire bins. Specifically, given two feasible

parent solutions S1 and S2, the fullest bin from either parent

is first identified (breaking ties randomly). This bin is then

moved into the offspring S and, to avoid duplicates, the copied

items are also removed from the other parent. To form the next
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Fig. 9. Example application of the GGA recombination operator, where the
third and fourth bins of S2 have been chosen for insertion into S.
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Fig. 10. Example application of the GGA recombination operator. In this
case min(|S1|, |S2|) − 1 = 3 bins are formed in the offspring S, resulting
in missing items j, k, and l.

bin, the other (modified) parent is then considered and, again,

the fullest bin is moved into S , with these items also being

removed from the first parent. This process is continued by

alternating between the parents until min(|S1|, |S2|)− 1 bins

have been created in the offspring (see Fig. 10). Missing items

are again dealt with by our repair procedure.

Our third recombination operator, which we call GPX’, is

analogous to that proposed for the BPP by Quiroz-Castellanos

et al. [19]. It operates in the same manner as GPX but also uses

the GGA’s method of eliminating duplicates; hence, once a

bin has been copied from a parent to the offspring, rather than

simply removing the duplicate items from the other parent,

any bins containing duplicates are deleted. This usually leads

to a larger number of missing items compared to GPX.

Upon termination of these recombination operators, an

offspring solution S will comprise only feasible bins, but may

be missing some items. To deal with these, our repair operator

first uses FFD on the missing items to form a partial solution

S ′. The local search procedure is then applied using S and S ′

as input to construct a complete solution.

C. EA Framework

Our overall EA works as follows. Given a solution S =
{S1, . . . , Sk}, mutation operates by selecting 0 < l ≤ k bins

at random, removing these from S and inserting them into a

second set of bins S ′. The partial solutions S and S ′ are then

used as input for the local search procedure, which is used to

produce a new, complete solution.

Different values for l have previously been suggested in

the BPP literature for similar mutation operators, including

“at least three”, four, and five (see [8], [11] and [20] respec-

tively). On the other hand, Quiroz-Castellanos et al. [19] have

suggested that l should be defined as a stochastic function

based on the number of bins k and the proportion of bins not

full to capacity, though this is less appropriate for the TPP due

to the prevalence of inter-item wastage in solutions. The above

four papers also suggest strongly biasing bin selection towards

emptier ones; however, we consider this to be unnecessary

because (a) it might sometimes be advantageous to break up

a full bin, particularly if it is not part of a globally optimal

solution; and (b) in some cases, a relatively empty bin might

become very high in quality once a small number of other

items have been added to it. In our case each application of

mutation involves simply selecting a value for l according to

the distribution L ∼ 1+B(k, 3/k), which offers an acceptable

compromise.

An initial population for the EA is formed by creating one

solution via FFD, and the remainder via FF using random item

orderings. Each member of the population is then mutated to

try and improve its quality. In each iteration of the EA, two

parent solutions are selected at random from the population

and recombination is used to create a single offspring. This is

then mutated before replacing the least fit of its two parents.

The fitness of a parent solution S is calculated as

f(S) =

∑

S∈S(A(S)/(HW ))2

|S|
, (4)

with higher values being deemed fitter. Given two solutions S1
and S2, it is known that if |S1| < |S2| then f(S1) > f(S2);
consequently a global optimum for this function corresponds

to a solution with the minimum number of bins [8]. This

function is useful because, due to its more fine-grained nature,

it allows evolutionary pressure to remain for larger portions

of the run compared to simply using the number of bins as a

fitness measure. Among solutions using the same number of

bins, it also allocates higher fitness values to those whose bins

show the highest variance in spare capacity. This encourages

some bins in a solution to remain relatively empty, which could

be useful in practice if these contiguous areas of wastage were

to be used at a later stage, such as when cutting further roof

trusses for a different order. Note that exponents larger than

two may also be used within this function. This would lead to

even higher fitnesses values being awarded to solutions with

“extreme” bins (i.e., bins that are either very full, or very

empty), although the property regarding global optima stated

above no longer holds in such cases.

In extensive preliminary tests, we experimented with a

number of different selection and replacement policies, but

found that the strategy described above, whose evolutionary
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pressure exists solely due to the replacement of the weaker

parent, gave the most consistent results. We also used extended

runs of up to 1,000 seconds to test a range of different

population sizes (5, 10, 25, 50, 100, 200); however, unlike

studies with the BPP, which have often used population sizes

of 100 or more, we found that the best results, both in terms

of final solution quality and the speed of optimisation, were

found using the relatively small population size of size 10.

This suggests that good solutions are derived from repeated

applications of the EA’s operators on a small pool of solutions

as opposed to a wide sampling of the solution space.

Finally, for comparative purposes, we also implemented

the hill-climbing (HC) algorithm of Lewis et al. [1]. This

operates on a single solution initially constructed using FFD.

In each iteration the mutation operator described above is

then employed, followed by the FFG heuristic. Note that, in

[1], Lewis et al.’s original version of this algorithm used the

GREEDY method for determining item packings as opposed to

EULER-SPLICE. Our implementation can therefore be seen as

an enhancement on theirs, featuring a more connected solution

space.

D. Comparison of Results

Table II compares the quality of the results achieved by

our four algorithms across all 3,900 problem instances. In all

cases a CPU time limit of 600 seconds was used, which was

deemed adequate for providing some notion of excess time

in our trials. The number of EA iterations performed within

this time limit was found to depend heavily on the amount of

time required for each application of the local search operator,

which is the most time consuming component of the algorithm.

This tends to take longer for problem instances where |U |
is high or where there are many items per bin. As a result,

the number of EA iterations ranged from approximately 1.2

million to 57,000 on average for the 100-item and 500-item

original instances respectively. For the quarter instances, the

corresponding figures were just 70,000 and 2,500 iterations.

From Table II it can be seen that the EAs using the GGA

and GPX recombination operators produce the best solutions

overall; however, their strengths are witnessed in different

places. For the original instances, where high quality solutions

comprise a relatively small 2.4 items per bin on average, the

GGA consistently produces the best results. With the quarter

instances on the other hand, where good solutions feature an

average closer to 8.8 items per bin, the GPX shows the most

favourable behaviour. For the quarter instances, it seems that

high quality solutions are achieved by identifying subsets of

items that can be packed into a bin with very little wastage—

that is, we are interested in determining individual bins that are

well packed. This mechanism is supplied by the GPX operator,

which places a heavy bias on promoting such bins in the

population. On the other hand, for the original instances good

quality solutions occur more as a result of good combinations

of bins being identified. Here, the GGA, which features far less

bias for promoting well-filled individual bins in the population,

facilitates a wider sampling of the solution space, ultimately

allowing better results to be achieved.5 Similar observations

to these have previously been made for the graph colouring

problem, where an increased edge density of a graph usually

increases its chromatic number and, as a result, decreases

the number of vertices assigned to each colour [18], [23].

Singh and Gupta [20] have also reported the poor performance

of a GPX variant on “triplet” BPP instances (where optimal

solutions comprise just three items per bin), presumably for

similar reasons.

Table II also shows that the GPX’ and HC algorithms are

outperformed in all cases by at least one of the two remaining

methods. Though GPX’ is very similar in form to GPX, its

method of deleting entire bins containing duplicates seems to

be too destructive and, as a consequence, good building blocks

are not being propagated in the population to a sufficient level.

HC is also consistently outperformed, suggesting that the use

of a population of candidate solutions (with suitable operators)

is beneficial compared to using just one. Fig. 11 illustrates the

behaviour of the four algorithms over time. The patterns seen

in the table appear to be stable and are established early on in

the runs. This suggests that shorter or longer run times would

not drastically alter the characteristics shown in the table.

1) Population Diversity: It is also instructive to examine

the effects of the three recombination operators on population

diversity. Diversity measures for partitioning problems have

previously been proposed by Mattiussi et al. [24] and Lewis

et al. [17]; however, modifications are required with the TPP

(and indeed the BPP) due to the interchangeability of items

of identical dimensions. In more detail, given an item i ∈ U ,

let t(i) be an integer denoting its type. Two items i, j ∈ U
then have identical dimensions if and only if t(i) = t(j).
The items in Fig. 8, for example, are labelled according to

type, with bin 1 containing two type-15 items and one type-

16 item. The number of item types per instance, as listed in

the third column of Table I, is therefore |{t(i) : i ∈ U}|. It is

obvious that items of the same type can be interchanged within

a solution, but that this will have no effect on its underlying

structure. To cope with this issue of symmetry, we propose a

modification to the diversity measure of [17] as follows.

Definition 7. Given a solution S = {S1, . . . , Sk}, let PS be

a multiset of multisets, where each element of PS corresponds

to a pair of item types that are assigned to the same bin. That

is, PS = {{t(i), t(j)} : i, j ∈ S ∧ S ∈ S}.6 The distance

between two solutions, S1 and S2 is then defined according

to the Sörensen-Dice measure

d(S1,S2) =
2|PS1

∩ PS2
|

|PS1
|+ |PS2

|
, (5)

which gives the proportion of elements that occur in both PS1

and PS2
. (Note that the intersection operator used here refers

to the multiset variant.)

5Note that statistical significance is only observed with the GGA according
to the number of bins used. It is not observed in the TMin % column due
to the small sample sizes occurring as a result of TMin’s lower accuracy in
these cases.

6As an example, the left solution from Fig. 8 would result in a multi-
set containing elements {16, 15}, {16, 15}, {15, 15}, {16, 15}, {16, 15},
{15, 15}, {23, 21}, {23, 21}, {21, 21}, and so on.
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TABLE II
RESULTS ACHIEVED AT THE CUT-OFF POINT BY (A) THE GGA, GPX AND GPX’ OPERATORS UNDER A COMMON EA FRAMEWORK, AND (B) THE HC

ALGORITHM [1]. BOLD TEXT AND ASTERISKS SHOULD BE INTERPRETED AS WITH TABLE I. NOTE THAT RESULTS OF THE “A” AND “R” INSTANCES ARE

COMBINED HERE DUE TO THE ALGORITHMS’ BEHAVIOUR BEING SIMILAR FOR BOTH CLASSES.

GGA GPX GPX’ HC

Type, |U | # Inst. TMina Binsb TMin %c Bins TMin % Bins TMin % Bins TMin %

orig., a&r, 100 260 39.12 3.33 17.7 3.35 16.5 3.35 16.2 3.36 15.8
orig., a&r, 200 260 76.67 ∗∗6.17 6.5 6.24 6.2 6.23 5.8 6.21 5.4
orig., a&r, 300 260 116.61 ∗∗9.62 1.9 9.80 1.9 9.83 1.2 9.72 1.5
orig., a&r, 400 260 156.23 ∗∗12.93 1.2 13.24 0.0 13.26 0.0 13.10 0.4
orig., a&r, 500 260 195.30 ∗∗16.64 1.2 17.05 0.4 17.09 0.0 16.84 0.0

half., a&r, 100 260 20.75 0.22 78.8 0.20 80.4 0.22 79.2 0.26 74.6
half., a&r, 200 260 40.54 0.38 63.8 0.37 65.0 0.42 60.4 0.49 53.8
half., a&r, 300 260 61.55 0.73 45.4 0.73 46.5 0.82 40.0 0.88 34.6
half., a&r, 400 260 82.23 0.84 35.4 0.90 34.6 1.05 25.8 1.05 21.9
half., a&r, 500 260 102.87 ∗1.16 23.8 1.25 26.9 1.45 20.0 1.44 13.5

quar., a&r, 100 260 11.60 0.07 93.1 0.06 93.8 0.07 93.5 0.08 92.3
quar., a&r, 200 260 22.42 0.12 88.1 ∗0.08 ∗∗91.5 0.12 88.1 0.15 85.4
quar., a&r, 300 260 33.98 0.17 83.1 ∗0.14 ∗∗86.2 0.19 81.2 0.24 76.2
quar., a&r, 400 260 45.25 0.21 79.2 ∗0.17 ∗∗83.1 0.24 76.5 0.27 73.8
quar., a&r, 500 260 56.61 0.32 68.1 ∗∗0.27 ∗∗72.7 0.38 63.1 0.43 57.3

aTMin = ⌈(
∑

i∈U
A(i))/HW ⌉ (mean across all instances).

bNumber of bins beyond TMin (mean across all instances).
cPercentage of instances where a solution using TMin bins was found.
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Fig. 11. Run profiles using the |U | = 500 original and quarter instances respectively. Each line is the average across all 260 instances at each second.

Definition 8. Given a population of solutions S1, . . . ,Sp,

diversity is calculated as the mean distance between all pairs

of solutions:

D(S1, . . . ,Sp) =

∑

∀Si,Sj :1≤i<j≤p d(Si,Sj)
(

p
2

) . (6)

Note that d(S1,S2), and therefore the diversity measure

itself, ranges between 0 and 1, with larger values indicating a

higher diversity. An alternative to this method of calculation

would be to measure distance according to the number of items

that would need to be moved in order to convert one solution

into another. However, this scheme heavily depends on the way

that bins are labelled in each solution; hence, some sort of bin

relabelling scheme of the type reviewed by Coll et al. [25]

would also be required.

Figure 12 illustrates how population diversity changes dur-

ing the first 1,000 iterations of the EA under the three recom-

bination operators. For the original instances it is evident that

the two least successful operators, GPX and GPX’, maintain

higher levels of diversity, suggesting that the algorithms are

not suitably “homing in” on the better quality regions of

the solution space. Similarly, for the quarter instances it is

the GPX operator that shows a steady decrease in diversity

while the other operators maintain much higher levels. In this

case, the GGA and GPX’ operators are not helped by the

larger numbers of items per bin, which causes larger numbers

of items to become unplaced in each application, therefore

making it more difficult to transmit building blocks from one

iteration to the next. Such observations have previously been

made by Lewis and Paechter [26] who, using a timetabling

problem, demonstrate the difficulties experienced by the GGA

operator when tackling partitioning problems involving large

numbers of items per group.

E. Seeking Further Improvements

In this section we now discuss three possibilities for further

improving the results of our EA.

The first of these involves using an updated version of

the first-fit (FF) heuristic where, instead of simply ordering

the items at random, the “large” items (that is, those of area

A(i) ≥ 1
2HW ) are placed in a random order in the left-most

positions of the item permutation. This heuristic was proposed

for the BPP by Quiroz-Castellanos et al. [19], who found that

it was able to return better solutions than FF in their tests,

albeit using instances featuring high proportions of “large”

instances. Note that, with our EA, the incorporation of this

heuristic only affects the way in which the initial population

is constructed. Additionally, “large” items are only seen to

exist in the original instances, and only in small proportions.

Consequently, the incorporation of this heuristic was not seen

to improve our results in any way.
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Fig. 12. Population diversities during runs with the |U | = 500 original and quarter instances respectively. Each line is the average across all 260 instances.

A more fruitful avenue of research that has yet to be consid-

ered within the BPP (and related) literature is to consider the

way in which duplicate items are dealt with during recombina-

tion. Consider the GGA operator. Given two parent solutions

S1 = {S1,1, . . . , S1,k1
} and S2 = {S2,1, . . . , S2,k2

}, recall

that an offspring solution is constructed by (a) concatenating

all bins from S1 with l ≤ k2 bins from S2, and then (b)

removing duplicated items by deleting a subset of bins that

originally came from S1. However, note that when we have a

problem instance containing many occurrences of items of the

same type, there might be many subsets of bins that can be

eliminated to get rid of the duplicates. Indeed, these different

choices may result in variations to the number of bins that are

subsequently inherited from S1 and also the amount of repair

then needed.

Stated more precisely, let S(t) = {S
(t)
1 , . . . , S

(t)
k } be a

multiset of multisets representing a solution S according to

item type t(·). That is, S
(t)
i = {t(j) : j ∈ Si}, ∀Si ∈ S .

Without loss of generality, now assume that in applying the

GGA operator we intend to concatenate the first l bins of

a parent solution S2 to a parent solution S1. We are now

interested in establishing a subset S∗ ⊆ S
(t)
1 that covers the

multiset U = {j : j ∈ S
(t)
2,i , 1 ≤ i ≤ l}. This covering S∗ will

then specify the sets (bins) that need to be removed from S1
to cope with the issue of duplicates; additionally, the multiset

U∩(
⋃

S∗
i ) will define the missing items, which will then need

to be dealt with by the repair operator.

Note that because U ⊆
⋃k1

i=1 S
(t)
1,i , a valid covering is

achievable according to the following steps, which are to be

repeated until U = ∅. To start, let S∗ = ∅:

1) Choose S
(t)
1,i ∈ S

(t)
1 for which S

(t)
1,i ∩ U 6= ∅.

2) S∗ ← S∗ ∪ {S
(t)
1,i}.

3) U ← U − S
(t)
1,i .

4) S
(t)
1 ← S

(t)
1 − {S

(t)
1,i}.

Using this procedure, a number of different heuristics might

be used in Step 1 for influencing the type of covering that is

achieved. Most obviously, we might make a random choice,

which is what we did to produce the results in Table II. We call

this heuristic h1. A second option, h2, is to choose the S
(t)
1,i for

which |S
(t)
1,i∩U| is maximised. This operates under the assump-

tion that we are seeking to minimise |S∗|, thereby reducing the

number of bins deleted from S1 and maximising the number

of bins that are inherited from the parent solutions. (Note,

however, that the task of minimising |S∗| is actually a generali-

sation of the NP-hard set covering problem (featuring multisets

instead of sets); hence, this heuristic—whose use essentially

gives the well-known greedy algorithm for set covering—

only determines |S∗| approximately.) Other heuristic options

include choosing the S
(t)
1,i for which the corresponding bin i

has the largest amount of spare capacity (thereby encouraging

bins with large amounts of spare capacity to be eliminated) or

seeking to maximise |S∗| in order to encourage large amounts

of repair and therefore prolong population diversity. However,

these alternatives were not found to improve performance on

the whole; consequently, only h1 and h2 are considered below.

Note that the same set covering method and heuristics as

above can also be used for the two remaining recombination

operators. For GPX’ the above procedure needs to be executed

in each of the min(|S1|, |S2|) − 1 iterations of the operator.

That is, w.l.o.g., each time a bin S2,i ∈ S2 is moved into

the offspring solution, the procedure is applied using S
(t)
1

and U = S
(t)
2,i . This is also the case for GPX, though slight

modifications are also required to cope with the different way

in which duplicates are dealt with (see Section IV-B).

Table III shows the results achieved when using heuristics

h1 and h2 with the GGA and GPX operators. Note that

only the “r” instances are considered here (the heuristics are

actually equivalent with the “a” instances as they feature no

repeated items). We also leave out the GPX’ operator as it was

always outperformed by GPX, GGA, or both.

The positions of the asterisks in the table indicate that

heuristic h2 consistently improves on the results of the original

recombination operators. Thus, there seems to be an advantage

in seeking to increase the number of bins (building blocks)

inherited from the parents. This stands to reason because, when

fewer bins are inherited by an offspring, more bins will need

to be formed using the repair procedure; hence these parts will

not be subject to the refinements made in previous iterations

of the EA.

The locations of the bold text and daggers (†) in Table III

also indicate the same patterns as Table II—i.e., that the

GGA operator produces the best results overall for small-group

instances, with GPX being better for large-group instances.

As with Fig. 11, Fig. 13 also shows that these characteristics

remain relatively stable throughout the run.
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TABLE III
RESULTS ACHIEVED AT THE CUT-OFF USING HEURISTICS h1 AND h2 WITH THE GGA AND GPX OPERATORS. THE LOWEST MEAN VALUES ACROSS THE

FOUR ALGORITHMS ARE MARKED IN BOLD. FOR EACH RECOMBINATION OPERATOR, ASTERISKS INDICATE STATISTICAL SIGNIFICANCE AT ≤ 0.05 (∗)
AND ≤ 0.01 (∗∗) AS WITH TABLE I. THE † SYMBOL IS USED IN THE SAME WAY, BUT INDICATES STATISTICAL DIFFERENCE BETWEEN THE BEST RESULT

OF EACH RECOMBINATION OPERATOR.

GGA (h1) GGA (h2) GPX (h1) GPX (h2)
Type, |U | # Inst. TMina Binsb TMin %c Bins TMin % Bins TMin % Bins TMin %

orig., r, 100 240 38.66 3.47 19.2 3.47 19.2 3.49 17.9 3.48 18.3

orig., r, 200 240 75.50 6.35 7.1 †6.33 7.9 6.42 6.7 ∗∗6.37 7.5

orig., r, 300 240 115.10 10.09 2.1 ∗††10.07 2.9 10.26 2.1 ∗∗10.15 2.5

orig., r, 400 240 154.44 13.62 1.3 ∗∗††13.59 2.1 13.95 0.0 ∗∗13.75 1.3

orig., r, 500 240 195.03 17.60 1.3 ∗∗††17.55 1.7 18.02 0.4 ∗∗17.75 0.8

half., r, 100 240 20.52 0.22 78.8 0.22 79.2 0.21 79.6 0.22 79.2
half., r, 200 240 39.97 0.39 62.9 ∗∗0.35 ∗∗66.7 0.38 63.8 ∗0.35 ∗66.7

half., r, 300 240 60.80 0.76 43.3 ∗∗††0.67 ∗∗50.8 0.78 43.8 ∗∗0.71 ∗∗48.3

half., r, 400 240 81.34 0.86 35.0 ∗∗††0.74 ∗∗44.2 0.95 31.7 ∗∗0.80 ∗∗41.7

half., r, 500 240 101.75 1.20 22.9 ∗∗††1.03 ∗∗31.3 1.34 22.1 ∗∗1.14 ∗∗29.2

quar., r, 100 240 11.48 0.07 92.9 0.07 92.9 0.07 93.3 0.06 94.2

quar., r, 200 240 22.14 0.12 88.3 ∗∗0.09 ∗91.3 0.09 91.3 ∗∗††0.05 ∗∗††94.6

quar., r, 300 240 33.62 0.17 82.9 ∗0.15 85.0 0.15 85.4 ∗††0.12 ∗∗†87.9

quar., r, 400 240 44.80 0.22 78.8 ∗∗0.17 ∗∗83.8 0.18 82.1 ∗∗†0.15 ∗∗85.8
quar., r, 500 240 56.05 0.33 67.5 ∗∗0.24 ∗∗75.8 0.30 70.4 ∗∗0.23 ∗∗77.1

aTMin = ⌈(
∑

i∈U
A(i))/HW ⌉ (mean across all instances).

bNumber of bins beyond TMin (mean across all instances).
cPercentage of instances where a solution using TMin bins was found.
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Fig. 13. Run profiles using the |U | = 500 original “r” and quarter “r” instances respectively. Each line is the average across all 240 instances at each second.

A third possibility for improving the results of our EA

is to generalise the GPX operator so that q ≥ 2 parents

contribute towards the production of each offspring [27]. Here,

our suggested multi-parent operator produces offspring in the

same manner as GPX except that, in each iteration, the fullest

bin from across multiple parents is chosen to be moved into

the offspring. The intention behind this increased choice is that

fuller bins will be identified, hopefully resulting in a higher

quality offspring solution once all of its min{|Sj | : 1 ≤ j ≤
q}− 1 bins have been constructed. To prohibit too many bins

being inherited from one particular parent, a rule can also be

specified with this operator specifying that if the ith bin in an

offspring has originated from parent Sj , then no further bins

should be taken from this parent until a certain number of bins

have then been taken from other parents. In our case we set

this value to be q/2. Note in particular that GPX is therefore

an application of the multi-parent operator using q = 2.

To test this new operator we repeated our previous trials

on all problem instances using heuristic h2 together with the

following settings for population size and q: 10, 2; 10, 4;

10, 8; 20, 2; 20, 4; 20, 8; and 20, 16. For the original and

half instances we found that the first of these settings offered

the best results, with larger values for q tending to degrade

performance. Such findings are consistent with those noted in

Section IV-D, namely that for these problems too much bias

is being placed on inheriting the fullest bins as opposed to

encouraging a wider sampling of the solution space. On the

other hand, as also seen in Section IV-D, such bias is seen

to be less problematic with the quarter instances. Indeed, for

the 260 problem instances for which |U | = 500, values of

q = 4 and 6 resulted in solutions requiring 0.027 and 0.023

fewer bins on average7 compared to q = 2. However, such

improvements were not observed with the other problem sizes

in this class.

V. CONCLUSIONS

This paper has described an exact polynomial-time algo-

rithm for the pair sequencing problem, which has then been

used to solve the related trapezoid packing sub-problem. We

have also seen how this EULER-SPLICE method can be com-

bined with specialised evolutionary and local search methods

to produce high-quality results for the more general trapezoid

packing problem. Of course, EULER-SPLICE might also be

used with other bin packing methods. For example, it could

be used in conjunction with column generation techniques to

generate a large pool of feasible packings, a subset of which

7Using populations of size 10. Both differences were statistically significant
at the p ≤ 0.025 level.
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TABLE IV
PERCENTAGE OF THE 260 LARGE PROBLEM INSTANCES THAT ARE

“SOLVED” AT VARIOUS TIME LIMITS FOR THE BEST PERFORMING

ALGORITHMS.

Method & Instances 5s 10s 30s 60s 300s 600s

GGA (h2), orig., |U | = 500 88.85 91.92 96.15 97.31 99.23 99.62
GGA (h2), half, |U | = 500 71.15 77.31 84.62 86.15 92.69 94.62
GPX (h2), quart., |U | = 500 75.00 82.69 91.54 95.00 99.23 99.23

might then be selected to form an optimal solution [28]. The

EA itself might also be used to generate such a pool by

collecting information on good packings of items during a run.

This pool could then be used with an integer programming

formulation of the set covering problem as an additional post-

optimisation phase to try to make further improvements to a

solution—see, for example, the approach of Malaguti et al.

[29] for the related graph colouring problem.

In our evolutionary algorithm we have observed that recom-

bination operators showing less bias towards well-filled bins

seem better suited to problem instances where the number

of items per bin is small, whereas the opposite is true for

instances with many items per bin. We have also demonstrated

the advantages of using set-covering heuristics for encouraging

fewer bins to be destroyed during recombination, helping to

increase the amount of information passed from parents to the

offspring.

Throughout this paper we have used a fixed run-time limit of

600s in our trials; however, as Figs. 11 and 13 have illustrated,

the majority of improvements are achieved in very early stages

of runs. To demonstrate this further, Table IV reports the

quality of results achieved at different times using the best

reported algorithms on the largest problem instances of each

class. (Note that in this table an instance is considered “solved”

by the corresponding method if its solution uses the same

number of bins as the best observed value for this instance

from across all of our trials—it does not imply optimality as

such.) We see that even for these large problem instances, over

three quarters have been “solved” in less than ten seconds.

A further practical application of the TPP is in the laying

of decked flooring, where it is often preferable for decking

boards to be laid diagonally across floor joists. Often, areas of

floor will be square or rectangular in shape with boards being

laid at a 45◦ angle; hence the corresponding cutting problem

will actually be a special case of the TPP for which exact

polynomial-time algorithms could be available.

Another bin packing variant with a sub-problem related

to the TPSP is the box cutting problem, first defined by

Goulimis [30]. This problem models the task of using a

specialised machine to cut fixed-height rectangular cardboard

items from larger strips of cardboard so that the number of

larger strips (bins) used is minimised. Like the TPP, each item

in this problem features projections on its left- and right-hand

sides, in this case defining where the machine is to score the

cardboard ready for folding. However, due to the mechanics

of this machine, the scoring points on adjacent items within

a bin must be a certain minimum distance apart. As with

Definition 1 the resultant sub-problem can therefore be defined

using a set of unordered pairs of nonnegative integers P . The

task is to then seek an ordering of the elements X such that

rhs(i) + lhs(i+ 1) ≥ C, ∀i ∈ {1, . . . , n− 1} for some given

constant C. Heuristics for this sub-problem have previously

been suggested by Lewis et al. [1] and Becker et al. [31];

however, at the time of writing we are not aware of a proof

of this sub-problem’s NP-completeness.
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[27] Z. Lü and J.-K. Hao, “A memetic algorithm for graph coloring,”
European Journal of Operational Research, vol. 203, no. 1, pp. 241
– 250, 2010.
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