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Abstract—Genetic programming (GP) is a well-known evolu-
tionary computation technique, which has been successfully used
to solve various problems, such as optimisation, image analysis
and classification. Transfer learning is a type of machine learning
approach that can be used to solve complex tasks. Transfer
learning has been introduced to genetic programming to solve
complex Boolean and symbolic regression problems with some
promise. However, the use of transfer learning with genetic
programming has not been investigated to address complex image
classification tasks with noise and rotations, where GP cannot
achieve satisfactory performance, but GP with transfer learning
may improve the performance. In this paper, we propose a novel
approach based on transfer learning and genetic programming
to solve complex image classification problems by extracting
and reusing blocks of knowledge/information, which are auto-
matically discovered from similar as well as different image
classification tasks during the evolutionary process. The proposed
approach is evaluated on three texture data sets and three office
data sets of image classification benchmarks, and achieves better
classification performance than the state-of-the-art image classifi-
cation algorithm. Further analysis on the evolved solutions/trees
shows that the proposed approach with transfer learning can
successfully discover and reuse knowledge/information extracted
from similar or different problems to improve its performance
on complex image classification problems.

Index Terms—Genetic Programming, Image Classification,
Knowledge Extraction, Building Blocks, Code Fragments.

I. INTRODUCTION

MACHINE learning algorithms have been successfully
used to solve a variety of problems, such as classifi-

cation and regression. Many traditional (supervised) machine
learning models are learnt on the training data (source domain)
and applied to test data (target domain), with the assumption
that the source and target data are in the same feature space
and follow the same underlying distribution. However, data
in many real-world problems may not meet this assumption.
When the feature space or the underlying distribution changes,
the algorithm needs to re-train from scratch. In such situations,
knowledge transfer or transfer learning, which aims to utilise
the previously-acquired knowledge to solve similar problems,
is very useful for increasing the effectiveness and efficiency
in target problem solving, and has gained increasing attention
in recent years [1]. Layered learning introduced by Stone and
Veloso [2] is a subclass of transfer learning, which aims to
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address a complex learning task by decomposing it into a
hierarchy of subtask layers. The knowledge learned from the
lower layer (i.e. a simpler subtask) is used to learn the task at
higher layers (i.e. a more complex subtask).

Genetic programming (GP) is an evolutionary computation
(EC) approach in which computer programs are automatically
evolved to solve a target problem. Since GP is problem-
independent, and has a flexible representation and power-
ful search ability, it has been used to solve a variety of
machine learning tasks including symbolic regression and
classification [3]. In particular, the flexible representation in
GP, which is usually a variable-length (tree) representation,
provides a natural way of automatically finding useful knowl-
edge/information during the learning/evolutionary process.
These are often called building blocks, extracted knowledge or
blocks of knowledge [4]. Therefore, among all EC algorithms,
GP is one of the earliest and most frequently investigated
algorithms with transfer learning [5].

Image classification, which is to assign one of the prede-
fined class labels to each image, is a key task in computer
vision with a wide range of real-world applications. Image
classification often requires feature extraction, feature selec-
tion, and feature construction to form a set of (high-level)
features from the raw pixels, which can then be fed to a
classification/learning algorithm to perform classification. GP
using a tree-based representation can automatically achieve
feature extraction, feature construction, feature selection, and
classification simultaneously, so GP has been used for image
classification with good success [6], [7], [8], [9]. However,
image classification is a challenging problem, and many ex-
isting methods suffer from the issues of low classification
accuracy and a long training time. Particularly when the
images are complex, such as with different kinds of noise
and different degrees of rotation, many algorithms fail to
achieve satisfactory performance. It is worth noting that the
classification of images all of which have been rotated at
the same angle, e.g., 30◦ or 60◦, usually does not differ
from the classification of the unrotated images. However,
when the rotated images are combined with the unrotaetd
images, the classification task becomes difficult especially
when the features extracted from the images are not robust
or rotation-invariant. Transfer learning, particularly layered
learning, might be a promising approach to solving complex
image classification tasks by utilising the knowledge learnt
from simpler tasks, e.g., unrotated images without noise, to
help learn a good classification model on complex images,
e.g., images with noise and rotations.
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Transfer learning in GP has been investigated to solve
complex Boolean and symbolic regression problems with
success [10], [11], [12], [13], but there are only a few works
on GP with transfer learning for image classification [14].
Furthermore, “when to transfer” and “how to transfer” are
two key parts in GP with transfer learning. However, regard-
ing “when to transfer”, most existing GP [15] with transfer
learning methods focus on transferring knowledge only at the
initialization of the GP learning/evolution process, which does
not fully utilise the extracted useful knowledge. Regarding
“how to transfer”, existing methods [15] often transfer an
evolved tree from the source domain to the target domain as a
whole tree, which may not be promising, but the evolved tree
might be very useful if it is used as subtree to form a new
tree/solution for the target problem. Recently, Iqbal et al. [16]
presented a transfer learning method in GP that successfully
utilizes the extracted knowledge at the initialization process as
well as the mutation process in GP to learn image classification
tasks in the same domain.

A. Goal

The main aim of this study is to further investigate transfer
learning mechanisms in GP to learn image classification
problems from similar as well as different target domains. To
achieve this goal, the following objectives have been set.

• identify and extract potentially useful blocks of knowl-
edge in learning image classification tasks in a source
domain,

• reuse the extracted knowledge to solve complex image
classification tasks from similar as well as different target
domains,

• investigate the effect of different amounts of the trans-
ferred knowledge on the classification accuracy and size
of the evolved GP programs as well as on the required
training time, and

• analyse the evolved GP programs to get insights about
the reuse of extracted knowledge.

B. Organization

The rest of the paper is organized as follows. Section II
describes the necessary background in transfer learning, and
image analysis using genetic programming. In Section III,
the proposed GP with transfer learning approach is detailed.
Section IV introduces the data sets and parameter settings
used in the experimentation. In Section V, experimental results
obtained using the knowledge transfer within the same domain
are presented and compared with the baseline GP system.
Section VI describes the experimental results obtained by
reusing the extracted knowledge from a source domain to
learn image classification problems from other related and
different target domains. Section VII provides an analysis
of the newly introduced parameters in the proposed transfer
learning based GP method. Section VIII explains in detail the
reuse of extracted knowledge in the proposed approach. In
Section IX, this work is concluded and the future work is
outlined in Section IX-A.

II. BACKGROUND

In this section, a brief review of the related work on reusing
the extracted knowledge in evolutionary computation is pro-
vided. Then, the specific related work on transfer learning and
image analysis using GP is described.

A. Transfer Learning in Evolutionary Computation

Transfer learning has been widely used in machine learning
techniques [17], [18], [19]. However, it is a relatively less
explored research area in the evolutionary computation com-
munity.

Santana et al. [20] utilized different statistical measures
to extract the potentially useful information in evolutionary
algorithms. They reported that the computed measures can be
used to analyse the algorithm behavior and predict the problem
difficulty.

In [21], transfer learning was introduced into a genetic
algorithm (GA) to solve a complex problem. A proportion of
the initial population in GA for the target domain was formed
by the final solution of the GA population from the source
domain. The results have shown that GA with transfer learning
achieved better performance than without transfer learning.
Moshaiov and Tal [22] presented a transfer learning based
family bootstrapping paradigm. The evolved solutions to a
common source task were reused to create initial populations
for a family of six related target tasks. The reported results
showed that the transfer learning based initial populations
successfully evolved solutions for all the six target tasks, which
were previously not solvable by using the randomly generated
initial populations.

The reuse of learnt knowledge for an enhanced search
performance in dynamic optimization problems has been in-
vestigated by using different memory schemes [23], [24]. Feng
et al. [25] proposed a new memetic computation paradigm [26]
to transfer the learned knowledge from previously solved
problems in order to improve future evolutionary searches. The
reported results on routing problems indicated the usefulness
of knowledge transfer.

Gupta et al. [27] introduced the paradigm of evolutionary
multitasking to solve multiple optimisation problems simul-
taneously using a single population of evolving individuals.
They proposed a cross-domain optimisation technique to im-
plicitly transfer the created genetic material among different
problems. The reported results showed that the proposed
technique often converged rapidly for a number of complex
optimisation tasks. Ong and Gupta [28] described in detail the
evolutionary multitasking approach to handling various real-
world multitasking problems from different domains.

Recently, Lim et al. [29] investigated the reuse of extracted
knowledge in a novel ‘simultaneously problem learning and
evolutionary optimization’ approach. The reported results on
a composites manufacturing task showed that the reuse of
the learnt knowledge can significantly reduce the engineering
design time.

In this study, we propose a GP-based transfer learning
technique for image classification. The proposed technique
utilizes the automatic knowledge construction ability of GP to
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extract useful knowledge from only two images in each class
in the source domain, and reuse the extracted knowledge to
facilitate the learning of GP on solving more difficult image
classification tasks in various similar as well as different target
domains. The rest of this section describes the related work
on transfer learning and image analysis using GP.

B. Transfer Learning in Genetic Programming

The idea of transfer learning in GP has been investigated
to solve complex Boolean and symbolic regression problems,
where the standard monolithic GP may not find a solution due
to the large search space. Most of the existing work is layered
learning in GP to solve complex problems, which decomposed
a complex problem into subtasks and each subtask is learned
in a bottom-up fashion [2].

Jackson and Gibbons [5] used a two-layered GP approach
to solving Boolean logic problems of the even-parity and the
majority-on problem, and obtained better performance than
standard GP. Later, Gustafson and Hsu [30] introduced the
idea of layered learning in GP to solve a complex multi-agent
system task, i.e., to learn the keep-away soccer game. The task
was decomposed into two subtasks, where the final population
from the bottom layer task learning was used as the initial
population for the top layer task learning. The results showed
that GP with layered learning outperformed the conventional
GP without layered learning.

Hien et al. [11] investigated layered learning with incre-
mental sampling in GP for symbolic regression. The results
on twelve benchmark problems showed that the proposed GP
approach outperformed standard GP in terms of reducing the
training time and the complexity of the solutions. Further, to
overcome the ad-hoc parameter setting issue in [11], Hien and
Hoai [31] incorporated parameter setting techniques derived
from progressive sampling for GP with the incremental sam-
pling based layered learning for symbolic regression.

The relationship between evolution, development, and lay-
ered learning was investigated in [12] based on tree ad-
joining grammar guided GP (TAG3P) [32]. The proposed
system named DTAG3P was examined on symbolic regression
problems, Boolean even-parity problems, and ORDERTREE
problems, where the results showed that the layered learning
DTAG3P system obtained more structured and scalable solu-
tions to the problems than two single-shot learning GP sys-
tems: standard tree-based GP [4] and TAG3P [32]. However,
the DTAG3P system introduced a number of new parameters
into the TAG3P system.

Iqbal et al. [33] used transfer learning in a GP-based
learning classifier system to solve complex Boolean problems,
where the results showed that by using layered learning, the
proposed system achieved better performance than the existing
learning classifier and GP systems and solved the 135-bit
multiplexer problem for the first time. Later on, Alvarez et
al. [34] enhanced the transfer learning based classifier system
to solve the n-bit multiplexer problem.

Recently, Chen et al. [13] investigated the combination of
GP with gradient descent for transfer learning in symbolic
regression. Further, Dinh et al. [15] proposed transfer learning

in GP by using the learnt knowledge from the source domain to
initialize the population of GP on the target domain in three
different ways, which are copying the full trees, using the
sub-trees, and copying the best trees in each generation. The
results on symbolic regression problems showed that the sub-
tree transferring strategy outperformed the other two.

C. Image Analysis using Genetic Programming

Since GP has a flexible representation, GP can automatically
extract, construct and select features based on row pixels in
images [8]. GP has been widely used for image analysis [35],
[36], [37], [38], where typical works are reviewed in this
section. A detailed description of this work is beyond the
scope of this article, readers are refereed to [39], [40], [41],
[42], [43], [44], [45] for more work on EC or GP for image
analysis.

In 1996, Poli [46] showed how GP can be used for image
analysis by automatically extracting and constructing image
features. Smart and Zhang [47] developed a GP based multi-
class image recognition approach by dynamically determining
the class boundaries between different classes, which increased
the performance of GP for difficult multi-class image clas-
sification problems. Ryan et al. [48] applied a general GP
based image classification approach to the task of Stage 1
cancer detection in digital mammograms, which showed that
GP can evolve good classifiers to detect as many cancer tissue
as possible without being overly conservative (i.e. involving
too many callbacks which increase the radiologists’ workload
and patients’ stress and worry), and GP was also performed
as part of a feedback loop, to both select and help generate
better features.

Hindmarsh et al. [49] used GP to perform classification
based on a list of pre-extracted Scale-invariant Feature Trans-
form (SIFT) [50] features in order to improve the performance
over the use of SIFT features directly for object recognition.
Recently, in [51], a multi-objective GP approached was used
to automatically generate domain-adaptive global feature de-
scriptors for image classification, where a set of primitive 2-
D operators were combined to construct feature descriptors
shown by GP trees, and each tree was then evaluated based
on the classification accuracy and the tree complexity. The
results show that the proposed approach outperformed many
state-of-the-art hand-designed features and two other feature
learning techniques in terms of the classification accuracy.

Al-Sahaf et al. [8] proposed a GP-based image classification
approach to automatically evolving descriptors, i.e., a feature
vector, to perform classification, where the proposed method
was called GP-criptor. The feature vector generated in GP-
criptor is similar to local binary patterns (LBP) [52] and the
main difference is that in LBP the formulae are designed by
a domain-expert, whereas those formulae are automatically
evolved by GP in GP-criptor. Experiments on two widely-used
texture image data sets showed that the GP-criptor achieved
better performance than two recent GP-based methods, i.e., the
static range selection method and the dynamic range selection
method, and nine well-known non-GP methods, i.e., support
vector machines, naive Bayes, naive Bayes/decision trees,
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KStar, multilayer perceptron, adaptive boosting M1, decision
trees (J48), and random forest [53]. The GP-based methods
operate directly on pixel values whereas the non-GP methods
use pre-computed image features, e.g. local binary patterns,
gray-level co-occurrence matrices, and domain-independent
features.

Lensen et al. [54] showed that GP can automatically select
key regions, extract informative features, and perform clas-
sification to achieve better classification than other state-of-
the-art methods. Furthermore, the features extracted by GP is
also general to other classification methods, i.e, to maintain
or improve the performance of these methods for the tested
image classification tasks.

D. Image Analysis and Transfer Learning

The main aim of this study is to investigate the use of
knowledge transfer in GP for image classification rather than
designing a general competitor for image classification tasks.
However, for the sake of completeness, related work from the
machine learning domain is briefly discussed here.

Quattoni et al. [55] learned a sparse prototype represen-
tation using unlabeled images and a kernel function; and
reused the learnt representation for image classification. The
reported results on a news-topic prediction task showed that
the transferred representation significantly improved the image
prediction accuracy. Zhu et al. [56] proposed a heterogeneous
transfer learning framework for image classification. They
successfully utilized textual information from tagged images
to classify the Caltech-256 image data set [57].

Cireşan et al. [58] analyzed transfer learning in deep neu-
ral networks to transfer knowledge among various character
recognition tasks. They successfully transferred knowledge
from digits to letters, and from Chinese characters to Latin
letters. Kandaswamy et al. [59] trained a convolutional neural
network to classify Latin digits and reused the trained model
to classify lowercase letters. They also transferred knowledge
from Arabic digits to Latin digits, and from English hand-
written digits to English lowercase letters. Donahue et al. [60]
extracted deep convolutional activation features (DeCAF) from
a neural network trained on a large set of object recognition
tasks. The extracted features were successfully reused to learn
various generic visual recognition tasks.

Ghifary et al. [61] proposed a domain-adaptive neural
networks model that utilizes the maximum mean discrepancy
measure [62] to learn domain-invariant features in a feed-
forward neural net. Later on, Ghifary et al. [63] proposed a
multi-task auto-encoder (MTAE) algorithm to learn domain-
invariant image features from multiple data sets in an attempt
to increase domain generalization. The reported results show
that MTAE produced state-of-the-art performance in learning
various object recognition tasks.

It is worth highlighting that the typical fore-mentioned
transfer learning based methods often operate in a sparse
fashion and require either a large amount of labeled data
from source domains or unlabeled data from target domains.
However, the proposed transfer learning based GP method
operates in a pixel-by-pixel (dense) fashion, with only using

two-instance-per-class data from the source domain. This
makes it hard to fairly compare the proposed method with
some existing algorithms such as [55], [56]. In another view,
this could be potentially the strength of the proposed method
in a situation when people cannot collect many unlabeled data.

Although transfer learning in GP has shown improvements
to solve Boolean and regression problems, it has not been
widely used in image analysis. Jaśkowski et al. [64], [14]
recently proposed a GP based transfer learning method for
enabling effective code reuse to solve a set of related visual
learning tasks in a handwritten character recognition problem.
The results show that code reuse leads to better results in
terms of fitness and recognition accuracy. This work shows
the potential of transfer learning in GP for image classification
tasks.

Recently, Iqbal et al. [16], [65] introduced transfer learning
in GP-criptor [8] to extract blocks of useful knowledge from
simple texture image classification problems, and then reused
the extracted knowledge to learn complex problems. The
obtained results indicate that reusing the extracted knowledge
improves classification accuracy in learning various texture
image classification tasks in the same domain. This study aims
to further investigate transfer learning mechanisms to learn
complex image classification tasks from similar as well as
different image classification domains.

III. THE PROPOSED METHOD

This section first briefly describes the baseline method, GP-
criptor [8], which is the state-of-the-art GP method for texture
classification. In GP-criptor, each GP individual is represented
in a special tree form that facilitates the extraction and
reuse of knowledge. Following that, the proposed method of
incorporating knowledge reuse in GP-criptor, named transfer
learning GP-criptor (TLGP-criptor), is explained in detail.

A. The Baseline Method

In the baseline method [8], the given data set is divided into
two sets containing an equal number of images. One set is
used for training and the other for testing. From the training
set, two images per class are randomly selected to be used
to train/evolve a GP program. After evolving a GP program,
the images being used in the training process are passed to
the evolved GP program to generate a set of knowledge base
vectors of size equal to twice the number of classes in the given
data set. The set of knowledge base vectors is used to compute
the fitness values of GP individuals in the training process
and also serves as a knowledge base in the testing process to
help in classifying the unseen images. In short, the training
process produced two outputs: an evolved program and a
set of knowledge base vectors. During the testing process,
each image from the test set is passed to the evolved GP
program and a feature vector is generated. Finally, the-Nearest-
Neighbor (1NN) [66] classifier is applied to classify the image
by using the generated feature vector and the set of knowledge
base vectors.

It is to be noted that GP-criptor uses only two images
per class in the training process to save computational time.
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Fig. 1. The process of feature vector generation using GP-criptor [8].

Therefore, to evolve better GP individuals, during the train-
ing, the typically used fitness measure of just counting the
correct classified images is not suitable. In order to better
differentiate images from different classes in GP-criptor, the
fitness measure has been designed to include a component of
distance-based measure in addition to the counting of correctly
classified images. The distance measure used is Czekanowski
Coefficient [67], which is one of the widely used measures
in computer vision. Czekanowski Coefficient determines the
distance between two vectors [68], and is formally defined as:

Dis (~u,~v) = 1−
2
(∑E

i=1 min (~ui, ~vi)
)

∑E
i=1 ~ui +

∑E
i=1 ~vi

(1)

where ~u and ~v are the two vectors, the number of elements
in a vector is E (the two vectors are of identical length, i.e.,
E = |~u| = |~v|), and the ith element of ~u and ~v is, respectively,
~ui and ~vi. For details of the fitness function used, interested
readers are referred to the original paper [8].

GP-criptor operates directly on raw pixel values of an
image. A sliding window, of a specific size, is used to
scan the input image, pixel by pixel, from left to right and
from top to bottom. The pixel values (denoted by Pi, where
0 ≤ i < window size) falling within the window are used
as terminal values in a GP program. For example, a sliding
window of size 5 × 5 is being used to scan an image shown
in Fig. 1. Therefore, the GP terminals in this example are
denoted as P0, P1, P2, ..., P24; where P0 corresponds to the
top left pixel value in the sliding window (i.e. 50 in the shown
scenario) and P24 to the right bottom pixel value (i.e. 198 in
the shown scenario).

The function set used is {ADD, SUB, MUL, DIV, CODE},
where CODE (described below) is always the root node of a
tree generated in GP-criptor. The length of a feature vector
generated in GP-criptor is always equal to 2n where n is
the number of children of the CODE node. The process to
generate a feature vector using GP-criptor is shown in Fig. 1.
The system computes values V1, V2, ..., Vn. Next the CODE
operator generates a binary code by converting each computed
value to either 0 or 1 using the following rule: if the computed
value is greater than zero then set it to 1, otherwise set it to 0.
Then the generated binary code is converted to decimal, which
is used to increment the corresponding bin (denoted as b0, b1,
..., b2n−1 ) in the feature vector, e.g., in the shown scenario,
bin b6 will be incremented.

B. The New Method

This section describes the motivation and novelty of knowl-
edge extraction and reuse/transfer in the new method called

TLGP-criptor. In this work, we will identify and extract useful
knowledge, in the form of code fragments [33], [34], from
learning simpler image classification problems, and then reuse
the extracted knowledge to learn complex, e.g., rotated and
noisy, problems of the same domain. We will also investigate
the effectiveness of reusing the extracted knowledge to solve
image classification problems from other similar as well as
very different domains.

The overall proposed approach for extracting and reusing
knowledge to solve image classification problems is depicted
in Fig. 2. First of all, GP-criptor is applied to learn an
initial image classification task. When the training process is
completed in GP-criptor, potentially useful code fragments are
extracted (described below) from the evolved GP population.
These extracted code fragments are used in TLGP-criptor
to learn the next image classification task. Similarly, when
the training process is completed in TLGP-criptor, potentially
useful code fragments are extracted from the evolved GP
population to be used to learn other image classification tasks
using TLGP-criptor.

TLGP-criptor will use the same fitness function and evalu-
ation process as used in the baseline method (i.e. GP-criptor).
However, the generation and evolution of GP programs will be
modified by incorporating the ability of knowledge transfer in
the GP process. The flowchart shown in Fig. 3 describes the
modifications incorporated in the GP process to extract and
reuse knowledge in TLGP-criptor, which are the main differ-
ence between GP-criptor and TLGP-criptor. Specifically, the
extracted code fragments are used to generate GP individuals
in the initial GP population, and to mutate a GP individual in
the mutation process. The rest of this section explains these
new mechanisms in detail.

1) Identification and extraction of useful knowledge: As
depicted in Fig. 1, each child c of the root node in a GP
program evolved in GP-criptor is actually a mathematical
expression, which is evaluated to a value Vc by applying
to pixel values of an input image falling within the sliding
window. Each computed value Vc is converted to 0 or 1 and
used in the construction of a feature vector. For example, an
evolved GP program using GP-criptor is shown in Fig. 4. This
GP program consists of the following eight expressions:

• (DIV P4 P6),
• (ADD P5 P5),
• (DIV P1 (MUL P8 P4)),
• (SUB P6 (MUL P3 (MUL P1 (DIV P7 P1)))),
• (ADD P5 P2),
• (SUB P6 P1),
• (DIV P7 P8), and
• (ADD P0 P0)

Therefore, we consider each child of the root node a
potentially useful code fragment or block of knowledge. Once
the training process is completed, we calculate average fitness
of the whole population of GP programs in the last generation.
Then we select GP programs that have fitness value better than
or equal to the average fitness value of the whole population.
Code fragments of the selected GP programs are extracted and
stored to be reused to learn complex problems of the same as
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Fig. 2. The proposed approach for extracting and reusing knowledge to solve image classification problems. Here n denotes the number of classification
tasks.
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Fig. 3. A flowchart shows how transfer learning is integrated into the GP process.

CODE

DIV

P4 P6

ADD

P5 P5

DIV

P1 MUL

P8 P4
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P6 MUL

P3 MUL

P1 DIV

P7 P1

ADD

P5 P2

SUB

P6 P1

DIV

P7 P8

ADD

P0 P0

Fig. 4. An example of a GP program generated by GP-criptor.

well as different domains. It is to be noted that in this study
the extracted code fragments are not unique.

2) Reusing the extracted knowledge: The extracted code
fragments are used to generate the initial GP populations as
well as to mutate GP programs in learning complex problems
of the domain. The reuse of extracted knowledge is explained
below.

Program generation: In GP-criptor, each child of the root
node in a GP program in the initial population is a randomly
generated subtree. However, in TLGP-criptor it is either an
extracted code fragment with probability µI , or a randomly
generated subtree with probability 1−µI . This is described in
Algorithm 1. It is to be noted that the code fragments being
reused may be modified in a crossover operation to evolve,

Algorithm 1: TLGP-criptor Initial Program
Data: The number of children n of the root node in the GP

program p to be generated.
Result: A newly generated GP program p.

1 initialize GP program p
2 initialize root node’s children p.children with length n
3 for i = 1 to n do
4 if RandomNumber[0, 1) < µI then
5 cf ← randomly select an extracted code fragment
6 else
7 cf ← randomly generate a new subtree
8 end
9 p.children[i]← cf

10 end
11 return p

hopefully, better GP individuals.
New mutation operator: The baseline GP-criptor method

uses the standard GP mutation operation. In GP-criptor, the
mutation operation randomly selects a subtree in a GP program
and replaces it with a randomly generated new subtree. In
TLGP-criptor, a GP program is mutated either by randomly
selecting a child of the root node and replacing it with an
extracted code fragment with probability µM , or using the
standard GP mutation operation (as used in GP-criptor) with
probability 1− µM . The new mutation operation is described
in Algorithm 2.

It is to be noted that Algorithm 2 is used to mutate a
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Algorithm 2: TLGP-criptor Mutation Operation
Data: A GP program p to be mutated.
Result: The mutated GP program p.

1 n← number of children of the root node in p
2 if RandomNumber[0, 1) < µM then
3 i← RandomNumber[1, n]
4 cf ← randomly select an extracted code fragment
5 p.children[i]← cf
6 else
7 t1← randomly select a subtree in p
8 t2← randomly generate a new subtree
9 replace t1 in p with t2

10 end
11 return p

GP individual, which has been (pre)selected from the GP
population, for mutation, with a certain probability that is
usually set to 0.19. It is also worth noting that the new
mutation operation still maintains the diversity, to a certain
extent, by using the standard mutation mechanism (as used in
GP-criptor) with probability 1− µM .

It is worth noting that typical machine learning methods for
knowledge transfer are trained in a semi-supervised fashion,
i.e., involving unlabeled data from the target domain or from
both the source and the target domains [18], [60], [69], [70],
[71], [72]. TLGP-criptor, however, is fully-supervised, with
using only two instances from each class for training. This
makes it hard to compare TLGP-criptor with many existing
algorithms. In another view, this could be potentially the
strength of TLGP-criptor in a situation when we even cannot
collect many unlabeled data.

IV. EXPERIMENT DESIGN

The proposed transfer learning based method, TLGP-criptor,
is tested using three texture image data sets and an office
data set. Results are compared with the baseline method,
GP-criptor. The effectiveness of transfer learning in TLGP-
criptor is measured using the mean classification accuracy in
various source and target domain configurations. The rest of
this section describes the data sets, parameter settings, and
different experimental configurations used in this study.

A. Data Sets

In this study, experiments have been conducted using
three widely used texture image classification data sets, i.e.,
Kylberg [73], Brodatz [74], and Outex [75]; and a more
challenging office data set that consists of three different image
domains, i.e., amazon, dslr, and webcam [76].

In the Kylberg data set, each instance is a gray-scale image
of size 576 × 576 pixels. To reduce the computational cost,
each image is resized to 115× 115 pixels in this work. There
are total 28 classes in the Kylberg data set, as shown in Fig. 5.
The instances of the Kylberg data set are divided into two
groups based on the orientation, i.e., with rotation and without
rotation. There are 160 image instances in each class of the
unrotated group. On the other hand, the rotated group consists
of 1920 instances where each image is rotated at successive

30◦ angles. Fig. 6 shows the unrotated cushion1 image from
the Kylberg data set and its 11 rotated variations.

Each class of the Brodatz data set has a single gray-scale
instance of size 640×640 pixels and there are total 112 classes.
We use 20 randomly selected classes and re-sample the single
instance of each class to 84 sub-images (each of size 64 ×
64 pixels). Each image in the rotated version is rotated at
successive 30◦ angles, resulting in total 1008 instances.

The Outex data set without rotation, OutexTC00000, con-
tains 24 classes where each class consists of 20 gray-scale
images of size 128×128 pixels. On the other hand, the rotated
version of the Outex data set, OutexTC00010, consists of 180
instances in each class, where each image is rotated at 5◦, 10◦,
15◦, 30◦, 45◦, 60◦, 75◦ and 90◦ angles.

For the noise experiments, the additive white Gaussian noise
was added in each unrotated data set in order to examine
the effectiveness of transfer learning in noisy problems. For
Gaussian distribution, the standard deviation σ was increased
from 10−4 to 101 in 20 stpdf with linearly spaced exponents,
i.e., the 20 noise levels are equally spaced in a log10 scale.
Fig. 7 shows the original cushion1 image from the Kylberg
data set and its 20 noisy variations. It is worth noting that in
the last six noisy images in Fig. 7, the texture of the cushion1
image has totally disappeared due to a severe level of noise.
For the sake of completeness, we will investigate the effect of
knowledge reuse at that severe level of noise, however, we do
not expect any major improvement in classification accuracy.

The office data set consists of three domains, i.e., amazon,
dslr and webcam, where each domain contains 31 categories
of office images. In the original office data set, images of
different categories have different sizes. In this study, all the
images have been resized to 200× 200. The amazon domain
consists of medium resolution images of products downloaded
from www.amazon.com. The dslr domain consists of high
resolution images captured with a digital single-lens reflex
(dslr) camera in realistic environments. The webcam domain
consists of low resolution images recorded with a simple
webcam. Fig. 8 shows some exemplary images of back pack
from each domain of the office data set. It is worth noting
that images in the amazon domain have more variations in
shape and size than the other two domains. These variations
can make it difficult for GP-criptor to generate a general
GP individual in the amazon domain using only two image
instances per class.

B. Parameter Settings

The GP platform provided by the Evolutionary Computation
Java-based software (ECJ) [77] is used to implement the
baseline method, i.e., GP-criptor as well as the proposed
transfer learning based method, i.e., TLGP-criptor.

In this paper, parameter settings are similar to the settings
used in the baseline method [8], which are described here. As
processing images at pixel level is a time consuming task in
general, the number of GP individuals in a GP population
is set to only 100 to save computational time. The initial
GP population is generated using the ramped half-and-half
method. In order to maintain the population diversity, we
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blanket1 blanket2 canvas1 ceiling1 ceiling2 cushion1 floor1

floor2 grass1 lentils1 linseeds1 oatmeal1 pearlsugar1 rice1

rice2 rug1 sand1 scarf1 scarf2 screen1 seat1

seat2 sesameseeds1 stone1 stone2 stone3 stoneslab1 wall1

Fig. 5. Examples of images from the Kylberg data set.

Fig. 6. Original cushion1 image from the Kylberg data set (top left) and its 11 variations, each with a successive 30◦ rotation, from left to right and top to
bottom.

use the tournament selection strategy with a tournament size
set to 7. The probabilities of using mutation, crossover, and
reproduction operations are 0.19, 0.80, and 0.01 respectively.
The elitism is used with ratio 0.01, i.e., the best one individual
from the GP population of 100 individuals is passed to the next
generation. The tree depth of an evolved program is confined
between the levels 2 and 10. The evolutionary process stops
under two conditions: (a) when an ideal individual is found, or
(b) when the maximum number of generations is reached. The
size of sliding window throughout the various experiments is
set equal to 3 × 3 pixels and the number of children of the
CODE node is set equal to 8. The probability µI of reusing
the extracted code fragments to generate an initial GP tree,
as described in Algorithm 1, is initially set to 0.5 in order
to use the learned and the new genetic material with the
same probability. Similarly, the probability µM of reusing the
extracted code fragments to mutate a GP tree, as described in
Algorithm 2, is initially set to 0.5. Subsequently, we analyse
these parameters using different values in the experimental
study.

C. Experiment Configurations

In this study, the unrotated Kylberg, Brodatz, and Outex
data sets are denoted with Ky, Br and Ou; and the rotated
versions with KyR (which comprises images of 12 different
rotation angles), BrR (12 different rotation angles), and OuR
(9 different rotation angles), respectively.

The effectiveness of transfer learning within the same do-
main is measured using the original texture data sets (without
rotation and noise) as source domains and various rotated
and noisy versions of the original texture data sets as target
domains. We used various combinations of rotated versions of
the texture data sets: (1) standalone single-rotation, data set r,
where r denotes a rotation angle, e.g., KyR 120 denotes the
KyR data set that contains all images rotated at 120◦, (2) unro-
tated plus single-rotation, data set 000 r, e.g., KyR 000 120
denotes the KyR data set that contains all images rotated at
120◦ as well as the unrotated images, and (3) unrotated plus
incremental rotations, data set upto r, e.g., KyR upto 120
denotes the KyR data set that contains all images rotated at
30◦, 60◦, 90◦, and 120◦ as well as the unrotated images. Note
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Fig. 7. Original cushion1 image from the Kylberg data set (top left) and its 20 noisy variations, from left to right and top to bottom. Each noisy version has
an increased level of noise with σ from 10−4 to 101.

amazon

dslr

webcam

Fig. 8. Some exemplary back pack images from each domain of the office data set, i.e., amazon, dslr, and webcam.

that KyR upto 330, BrR upto 330 and OuR upto 90 are the
same as KyR, BrR and OuR, respectively.

The usefulness of knowledge transfer in cross-domain im-
age classification problems is also thoroughly investigated.
To this end, knowledge is extracted from one texture/office
domain and reused to learn another texture/office domain. In
addition, reuse of knowledge from a texture domain to an
office domain is also investigated.

Further, various experiments have been conducted to analyse
the amount of knowledge to be transferred relative to the clas-
sification performance and size of the evolved GP programs.

As used in the baseline method [8], for each experiment
in this study, we divide the given data set into two (i.e.
training and test) pools containing an equal number of images.
The training set is formed by randomly selecting only two
images from each class of the training pool. Consequently, the
typically used process of 30 independent runs for a stochastic
method is repeated 10 times using different images in the
training set. Both mean and standard deviations statistics are
computed and reported for the test set.

To analyze the results, the Wilcoxon signed rank test is
applied on the classification accuracy obtained in the test set
to determine whether there was any statistically significant

difference with a confidence interval of 95%, which is denoted
by bold face in the result tables presented in the following
sections.

V. RESULTS I - KNOWLEDGE TRANSFER WITHIN THE
SAME PROBLEM DOMAIN

This section presents results of transferring knowledge
within the same problem domain, e.g., extracting knowledge
from the unrotated Kylberg data set and reusing the extracted
knowledge to learn a rotated version of the Kylberg data set.

It is to be noted that the mean classification accuracy in
learning the unrotated data sets is the same for both GP-criptor
and TLGP-criptor (i.e. 87.26 ± 0.48 in Ky, 94.72 ± 0.56 in Br,
and 94.97 ± 0.47 in Ou) as there is no extracted knowledge to
be used by TLGP-criptor. The initial population and mutation
(which are the main differences) are identical in both methods
for this case. However, after learning the unrotated data sets,
potentially useful code fragments have been extracted that are
to be used by TLGP-criptor to learn various rotated and noisy
versions of image classification problems.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TEVC.2017.2657556

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 10

TABLE I
THE ACCURACIES (%) ON THE TEST SETS FOR THE ROTATED DATA SETS

(MEAN ± STANDARD DEVIATION).

Data Set GP-criptor TLGP-criptor
KyR 48.81 ± 2.09 56.01 ± 1.39
BrR 55.27 ± 2.15 61.52 ± 1.32
OuR 65.10 ± 1.39 69.13 ± 0.89

TABLE II
THE ACCURACIES (%) ON THE TEST SETS FOR THE UNROTATED DATA

SETS (MEAN ± STANDARD DEVIATION).

Method Ky Br Ou
GP-criptor 87.26 ± 0.48 94.72 ± 0.56 94.97 ± 0.47

TLGP-criptor 87.26 ± 0.48 94.72 ± 0.56 94.97 ± 0.47
CLBC 76.67 ± 4.05 63.62 ± 2.52 72.79 ± 2.87

DRLBP 86.26 ± 1.14 83.17 ± 2.49 84.96 ± 1.79
DeCAF 94.01 ± 1.14 97.14 ± 1.09 93.58 ± 1.37

A. Overall Results

Table I shows the mean classification accuracy and standard
deviation obtained in learning the rotated data sets using GP-
criptor and TLGP-criptor. It has shown that transfer learning
has significantly improved the classification performance of
TLGP-criptor over GP-criptor in learning the three rotated data
sets.

1) Knowledge Transfer in Initialisation vs Mutation: In the
proposed method, the knowledge transfer is done in two steps,
i.e., the initialization and the mutation. In order to investigate
whether the knowledge transfer in the two steps is necessary,
we applied TLGP-criptor without knowledge transfer in the
mutation on KyR, BrR, and OuR. The obtained results (i.e.
54.84 ± 1.30 in KyR, 60.64 ± 1.47 in BrR, and 68.53 ±
0.80 in OuR) show that the performance of TLGP-criptor is
degraded. However, it is still statistically significantly better
than the performance of GP-criptor. Subsequently, TLGP-
criptor’s results shown in rest of this article have been obtained
using the knowledge transfer in both the initialization and the
mutation steps.

2) Comparison with Other Methods: A main goal of this
paper is to investigate whether introducing knowledge transfer
into GP-criptor can significantly improve the classification
performance, and this goal has been achieved. In this sub
section, we also “compare” GP-criptor and TLGP-criptor with
the state-of-the-art descriptors for image classification. The
state-of-the-art image descriptors are: completed local binary
count (CLBC) [78], dominant rotated local binary patterns
(DRLBP) [79], and deep convolutional activation features
(DeCAF) [60]. Since these methods are all designed to be
robust to rotation, we also include a new version of GP-
criptor considering rotation invariance, GP-criptorri [80], in
the comparison on the rotated images. As the design goals
of these image descriptors are different, a direct comparison
of the absolute classification results of different methods in
Table II and Table III might not be totally fair and it is not
the goal of this paper, but such a comparison can provide
some indicator on which method should be used in different
scenarios.

As can be seen from the results shown in Table II, for
non-rotated images on Ky, Br and Ou, GP-criptor (or TLGP-

TABLE III
THE ACCURACIES (%) ON THE TEST SETS FOR THE ROTATED DATA SETS

(MEAN ± STANDARD DEVIATION).

Method KyR BrR OuR
GP-criptor 48.81 ± 2.09 55.27 ± 2.15 65.10 ± 1.39

TLGP-criptor 56.01 ± 1.39 61.52 ± 1.32 69.13 ± 0.89
CLBC 76.58 ± 3.77 70.84 ± 3.19 75.53 ± 2.24

DRLBP 74.05 ± 2.07 69.65 ± 2.40 63.97 ± 2.57
DeCAF 85.05 ± 2.02 90.37 ± 1.35 76.91 ± 2.67

GP-criptorri 88.5 ± 1.4 92.5 ± 1.1 86.8 ± 1.9

criptor) did very well, outperformed CLBC and DRLBP in
all cases, and performed slightly better than DeCAF on Ou.
However, DeCAF performed better than all on Ky and Br.
These results indicate that for classifying non-rotated images
DeCAF is a better choice.

For rotated images, the GP-criptorri method performed
much better than all other state-of-the-art methods as shown
in Table III. Accordingly, when classifying rotated texture
images, GP-criptorri should be chosen as a priority. In the
future, we will investigate how knowledge transfer can fur-
ther improve the performance of GP-criptorri. This study
is focused on investigating the proposed knowledge transfer
mechanisms in GP-criptor.

B. Kylberg Data Set with Single and Multiple Rotations

The left part of Table IV shows the mean classification
accuracy and standard deviation obtained in learning the
rotated version of KyR having only one rotation at a time. It is
observed that the classification performance of GP-criptor in
learning the standalone single-rotation version is similar to the
original unrotated version, as expected. However, reusing the
extracted code fragments from Ky data set, transfer learning
has significantly improved the classification performance of
TLGP-criptor in learning the standalone single-rotation version
of KyR.

The middle part of Table IV shows the mean classification
accuracy and standard deviation obtained in learning the
rotated version containing single-rotation plus the original
unrotated images. As this rotated version is more complex
than the standalone single-rotation version, the classification
performance of GP-criptor decreased from approximately 87%
to approximately 63%. In this rotated version, transfer learning
again significantly improves the classification performance of
TLGP-criptor over the baseline GP-criptor method for all
cases.

The right part of Table IV shows the mean classification
accuracy and standard deviation obtained in learning the
Kylberg data set with incremental rotations. In this data set,
code fragments are extracted from Ky to learn KyR upto 030,
then code fragments are extracted from KyR upto 030 to learn
KyR upto 060, and so on. The incremental reuse of extracted
knowledge in TLGP-criptor has shown noticeable improve-
ment in learning Kylberg rotated data set. The performance of
TLGP-criptor is improved from 56.01± 1.39 to 62.07± 0.98
in learning the whole rotated data set. The statistical analysis
shows that the improvement is statistically significant in all of
the rotated versions.
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TABLE IV
THE ACCURACIES (%) ON THE TEST SETS FOR THE KYR DATA SET WITH SINGLE AND MULTIPLE ROTATIONS (MEAN ± STANDARD DEVIATION). THE

CLASSIFICATION ACCURACY IN LEARNING THE KY DATA SET WAS 87.26 ± 0.48.

Data Set GP-criptor TLGP-criptor Data Set GP-criptor TLGP-criptor Data Set GP-criptor TLGP-criptor
KyR 030 87.19 ± 0.60 89.07 ± 0.38 KyR 000 030 63.87 ± 1.50 68.10 ± 0.76 KyR upto 030 63.87 ± 1.50 68.10 ± 0.76
KyR 060 87.99 ± 0.72 89.30 ± 0.40 KyR 000 060 59.41 ± 1.96 64.04 ± 0.88 KyR upto 060 56.64 ± 1.44 61.21 ± 0.75
KyR 090 87.73 ± 0.62 89.15 ± 0.38 KyR 000 090 60.09 ± 1.23 63.52 ± 1.12 KyR upto 090 51.87 ± 1.89 58.64 ± 0.72
KyR 120 87.51 ± 0.73 89.28 ± 0.46 KyR 000 120 58.35 ± 1.51 63.19 ± 1.10 KyR upto 120 47.92 ± 1.37 56.21 ± 0.98
KyR 150 87.88 ± 0.74 89.43 ± 0.34 KyR 000 150 64.47 ± 1.55 67.80 ± 0.97 KyR upto 150 46.59 ± 1.69 54.53 ± 1.09
KyR 180 87.93 ± 0.54 89.12 ± 0.34 KyR 000 180 75.97 ± 0.86 78.69 ± 0.88 KyR upto 180 45.07 ± 1.88 54.75 ± 0.98
KyR 210 87.51 ± 0.63 89.19 ± 0.46 KyR 000 210 62.83 ± 1.42 66.93 ± 1.03 KyR upto 210 48.34 ± 1.75 57.05 ± 1.01
KyR 240 87.81 ± 0.73 89.35 ± 0.32 KyR 000 240 58.70 ± 1.51 62.98 ± 1.27 KyR upto 240 46.92 ± 2.15 57.03 ± 0.76
KyR 270 87.78 ± 0.77 89.18 ± 0.34 KyR 000 270 59.33 ± 1.77 63.71 ± 1.03 KyR upto 270 44.85 ± 1.86 56.84 ± 1.05
KyR 300 87.47 ± 0.62 89.22 ± 0.37 KyR 000 300 59.53 ± 1.41 63.46 ± 0.90 KyR upto 300 47.07 ± 2.24 57.24 ± 0.86
KyR 330 87.91 ± 0.58 89.30 ± 0.42 KyR 000 330 66.89 ± 1.49 70.02 ± 0.64 KyR upto 330 48.81 ± 2.09 62.07 ± 0.98

C. Brodatz Data Set with Single and Multiple Rotations
The left part of Table V shows the mean classification

accuracy and standard deviation obtained in learning the
rotated version of Br (BrR) having only one rotation at a time.
It is observed that reusing the extracted code fragments from
Br data set, transfer learning has improved the classification
performance of TLGP-criptor over GP-criptor.

The middle part of Table V shows the mean classification
accuracy and standard deviation obtained in learning the
rotated version containing single-rotation plus the original
unrotated images. In this rotated version, the classification
performance of GP-criptor decreased from approximately 96%
to approximately 78%.

The right part of Table V shows the mean classification
accuracy and standard deviation obtained in learning the BrR
data set with incremental rotations. The incremental reuse of
extracted knowledge in TLGP-criptor has shown noticeable
improvement in learning the BrR data set. The performance
of TLGP-criptor is improved from 61.52±1.32 to 73.88±0.87
in learning the whole rotated data set. The statistical analysis
shows that the improvement is significant in all of the rotated
versions.

D. Outex Data Set with Single and Multiple Rotations
The left part of Table VI shows the mean classification

accuracy obtained in learning the rotated version of OuR
having only one rotation at a time. It is observed that reusing
the extracted code fragments from Ou, transfer learning has
improved the classification performance of TLGP-criptor in
learning the standalone single-rotation version of OuR. The
statistical analysis shows that this improvement is significant
in all of the rotated versions, except OuR 010 and OuR 015.

The middle part of Table VI shows the mean classification
accuracy obtained in learning the rotated version containing
single-rotation plus the original unrotated images. It is ob-
served that in this data set the classification accuracy of GP-
criptor noticeably decreased when the rotation was greater or
equal to 15◦. In this rotated version, transfer learning has sta-
tistically significantly improved the classification performance
of TLGP-criptor over the baseline GP-criptor method.

The right part of Table VI shows the mean classification
accuracy and standard deviation obtained in learning the ro-
tated version of the Outex data set with incremental rotations.
The incremental reuse of extracted knowledge in TLGP-
criptor has shown noticeable improvement in learning the OuR

data set. The performance of TLGP-criptor is improved from
69.13 ± 0.89 to 72.27 ± 0.79 in learning the whole rotated
data set. The statistical analysis shows that the improvement
is statistically significant.

E. Kylberg, Brodatz, and Outex Data Sets with Noise

After successful application of knowledge reuse in various
rotated versions of three texture data sets, we investigated the
effectiveness of knowledge reuse in presence of different levels
of noise in a data set. To this end, we added the additive white
Gaussian noise in the unrotated texture data sets, i.e., Ky, Br,
and Ou.

Table VII shows the mean classification accuracy and
standard deviation obtained in learning the unrotated data
sets with various noise levels. In the first 10 noise levels,
GP-criptor showed robustness to noise and maintained the
classification performance to a non-noisy level. After that, its
performance gradually decreased. At the last six noise levels,
the performance is noticeably decreased (as expected) because
the severe noise destroyed the textures as shown in the last
six noisy images of the cushion1 image in Fig. 7. Similar
to the rotated versions, TLGP-criptor showed improvement
in classification accuracy in noisy data sets. The statistical
analysis shows that the improvement is statistically significant
for a reasonable amount of noise that maintains the texture of
the input image.

F. Summary

In summary, the proposed technique of transfer learning
in GP has shown significant improvement in learning various
complex texture image classification problems. It is observed
that in learning rotated versions that contain previously seen
images, TLGP-criptor has shown substantial improvement.
Specifically, in the incremental learning of rotated images,
the performance improvement TLGP-criptor was noticeably
significant over the baseline GP-criptor method. Further, for
small amount of noise, transfer learning has also shown
improvement.

VI. RESULTS II - CROSS DOMAIN KNOWLEDGE
TRANSFER

In the previous section, extracted knowledge was used
within the same image data sets with different rotations and
different levels of noise, which improved the classification

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TEVC.2017.2657556

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 12

TABLE V
THE ACCURACIES (%) ON THE TEST SETS FOR THE BRR DATA SET WITH SINGLE AND MULTIPLE ROTATIONS (MEAN ± STANDARD DEVIATION). THE

CLASSIFICATION ACCURACY IN LEARNING THE BR DATA SET WAS 94.72 ± 0.56.

Data Set GP-criptor TLGP-criptor Data Set GP-criptor TLGP-criptor Data Set GP-criptor TLGP-criptor
BrR 030 97.02 ± 0.35 97.66 ± 0.29 BrR 000 030 81.39 ± 1.38 84.16 ± 0.73 BrR upto 030 81.39 ± 1.38 84.16 ± 0.73
BrR 060 96.06 ± 0.39 96.63 ± 0.22 BrR 000 060 74.44 ± 1.09 76.73 ± 0.89 BrR upto 060 71.98 ± 1.33 77.93 ± 1.07
BrR 090 95.01 ± 0.42 96.07 ± 0.36 BrR 000 090 76.30 ± 1.27 79.02 ± 0.87 BrR upto 090 64.19 ± 1.93 74.97 ± 0.82
BrR 120 96.75 ± 0.33 97.18 ± 0.23 BrR 000 120 72.17 ± 1.28 74.67 ± 0.85 BrR upto 120 59.30 ± 2.46 72.58 ± 0.70
BrR 150 97.05 ± 0.37 97.45 ± 0.24 BrR 000 150 78.62 ± 1.46 81.34 ± 0.71 BrR upto 150 58.50 ± 1.99 71.72 ± 1.22
BrR 180 94.62 ± 0.48 95.31 ± 0.31 BrR 000 180 90.47 ± 0.70 92.28 ± 0.43 BrR upto 180 58.10 ± 2.14 72.86 ± 0.93
BrR 210 97.58 ± 0.29 97.94 ± 0.20 BrR 000 210 77.87 ± 1.21 81.01 ± 0.88 BrR upto 210 57.91 ± 1.85 73.99 ± 0.86
BrR 240 97.39 ± 0.37 97.85 ± 0.19 BrR 000 240 74.03 ± 1.28 76.60 ± 0.71 BrR upto 240 56.18 ± 1.61 73.33 ± 0.98
BrR 270 94.25 ± 0.47 95.40 ± 0.40 BrR 000 270 76.30 ± 0.91 78.65 ± 0.98 BrR upto 270 54.93 ± 2.35 73.95 ± 0.89
BrR 300 96.49 ± 0.38 97.06 ± 0.31 BrR 000 300 73.80 ± 1.12 76.88 ± 0.81 BrR upto 300 54.20 ± 2.44 72.69 ± 0.93
BrR 330 96.88 ± 0.33 97.32 ± 0.19 BrR 000 330 82.75 ± 1.24 84.74 ± 0.95 BrR upto 330 55.27 ± 2.15 73.88 ± 0.87

TABLE VI
THE ACCURACIES (%) ON THE TEST SETS FOR THE OUR DATA SET WITH SINGLE AND MULTIPLE ROTATIONS (MEAN ± STANDARD DEVIATION). THE

CLASSIFICATION ACCURACY IN LEARNING THE OU DATA SET WAS 94.97 ± 0.47.

Data Set GP-criptor TLGP-criptor Data Set GP-criptor TLGP-criptor Data Set GP-criptor TLGP-criptor
OuR 005 94.97 ± 0.48 95.39 ± 0.29 OuR 000 005 94.59 ± 0.44 95.49 ± 0.31 OuR upto 005 94.59 ± 0.44 95.49 ± 0.31
OuR 010 95.75 ± 0.43 95.74 ± 0.33 OuR 000 010 92.37 ± 0.53 93.83 ± 0.39 OuR upto 010 94.02 ± 0.42 95.55 ± 0.38
OuR 015 95.83 ± 0.43 95.84 ± 0.37 OuR 000 015 88.39 ± 0.94 89.85 ± 0.59 OuR upto 015 92.89 ± 0.66 94.65 ± 0.38
OuR 030 96.19 ± 0.57 96.75 ± 0.37 OuR 000 030 77.86 ± 1.17 80.03 ± 0.80 OuR upto 030 85.21 ± 0.98 88.74 ± 0.38
OuR 045 96.24 ± 0.55 97.09 ± 0.35 OuR 000 045 73.78 ± 1.18 75.90 ± 0.79 OuR upto 045 80.03 ± 0.97 84.78 ± 0.65
OuR 060 95.05 ± 0.46 95.64 ± 0.38 OuR 000 060 72.07 ± 0.99 74.20 ± 0.83 OuR upto 060 75.52 ± 1.29 80.60 ± 0.71
OuR 075 95.16 ± 0.38 95.53 ± 0.30 OuR 000 075 71.20 ± 1.04 73.98 ± 0.58 OuR upto 075 70.37 ± 1.63 76.39 ± 0.76
OuR 090 95.07 ± 0.42 95.45 ± 0.40 OuR 000 090 72.37 ± 1.21 75.45 ± 0.70 OuR upto 090 65.10 ± 1.39 72.27 ± 0.79

TABLE VII
THE ACCURACIES (%) ON THE TEST SETS FOR THE UNROTATED NOISY DATA SETS (MEAN ± STANDARD DEVIATION).

Noise Level Ky Br Ou
(σ) GP-criptor TLGP-criptor GP-criptor TLGP-criptor GP-criptor TLGP-criptor
0.0001 87.26 ± 0.48 88.60 ± 0.44 94.72 ± 0.56 95.92 ± 0.23 94.97 ± 0.47 95.52 ± 0.31
0.0002 87.26 ± 0.48 88.60 ± 0.44 94.72 ± 0.56 95.92 ± 0.23 94.97 ± 0.47 95.52 ± 0.31
0.0003 87.26 ± 0.48 88.60 ± 0.44 94.72 ± 0.56 95.92 ± 0.23 94.97 ± 0.47 95.52 ± 0.31
0.0006 87.20 ± 0.74 88.57 ± 0.34 94.78 ± 0.55 95.85 ± 0.35 95.15 ± 0.39 95.55 ± 0.20
0.0011 87.18 ± 0.62 88.50 ± 0.47 94.64 ± 0.46 95.85 ± 0.30 95.19 ± 0.43 95.59 ± 0.32
0.0021 87.18 ± 0.54 88.70 ± 0.27 94.85 ± 0.55 95.95 ± 0.34 95.34 ± 0.35 95.55 ± 0.31
0.0038 87.27 ± 0.61 88.59 ± 0.45 94.79 ± 0.46 95.93 ± 0.25 95.18 ± 0.41 95.61 ± 0.21
0.0070 87.48 ± 0.54 88.73 ± 0.35 94.89 ± 0.61 95.87 ± 0.32 94.74 ± 0.40 95.20 ± 0.30
0.0127 87.46 ± 0.54 88.80 ± 0.37 94.94 ± 0.35 95.75 ± 0.34 93.64 ± 0.47 94.25 ± 0.32
0.0234 87.35 ± 0.66 88.60 ± 0.40 94.59 ± 0.47 95.41 ± 0.35 91.44 ± 0.49 92.33 ± 0.60
0.0428 86.92 ± 0.49 88.15 ± 0.43 93.30 ± 0.62 94.37 ± 0.35 85.96 ± 0.84 86.96 ± 0.80
0.0785 83.15 ± 0.77 84.29 ± 0.52 91.25 ± 0.64 92.28 ± 0.50 68.04 ± 1.55 67.05 ± 1.12
0.1438 71.68 ± 1.35 73.60 ± 1.03 86.07 ± 1.02 86.75 ± 0.84 35.52 ± 2.02 34.74 ± 1.66
0.2637 43.04 ± 1.70 44.22 ± 1.29 67.66 ± 1.05 69.53 ± 0.73 17.18 ± 0.71 17.22 ± 0.62
0.4833 11.74 ± 0.87 12.84 ± 0.61 44.94 ± 0.81 47.00 ± 0.84 14.66 ± 0.38 14.72 ± 0.45
0.8859 5.68 ± 0.19 5.76 ± 0.20 30.42 ± 0.94 31.07 ± 0.73 14.47 ± 0.45 14.50 ± 0.55
1.6238 4.81 ± 0.12 4.82 ± 0.14 19.89 ± 0.59 19.74 ± 0.60 14.41 ± 0.49 14.52 ± 0.44
2.9764 4.79 ± 0.13 4.79 ± 0.14 14.32 ± 0.61 14.35 ± 0.48 14.39 ± 0.52 14.40 ± 0.38
5.4556 4.67 ± 0.13 4.69 ± 0.16 10.90 ± 0.44 10.53 ± 0.46 14.35 ± 0.59 14.49 ± 0.46

10.0000 4.75 ± 0.13 4.77 ± 0.11 8.45 ± 0.46 8.37 ± 0.31 14.30 ± 0.37 14.36 ± 0.41

accuracy of the proposed method over the baseline method.
However, cross-domain reuse of the extracted knowledge is
not necessarily to be beneficial in all scenarios. If the source
domain and the target domain are negatively related, the
transferred knowledge might degrade the performance in the
target domain.

In order to investigate whether the extracted knowledge is
useful for learning other image data sets than the one from
which it was extracted, we conducted the following three sets
of experiments to reuse knowledge: (1) from a texture domain
to another texture domain, (2) from an office domain to another
office domain, and (3) from a texture domain to an office
domain. It is anticipated that the reuse of extracted knowledge
in (1) and (2) will be more beneficial than that in (3) as the
source and target domains in the former are more related than

that in the latter.

A. Knowledge Transfer among Texture Domains

We conducted the following six experiments to extract and
reuse knowledge among different source and target domains
from three texture data sets: Ky → BrR, Ky → OuR, Br →
KyR, Br → OuR, Ou → KyR, and Ou → BrR. The obtained
results are shown in Table VIII along with the results of
transferring knowledge within the same domain (as shown in
Table I).

It is observed that the cross-domain transfer of extracted
knowledge in TLGP-criptor has achieved a similar improve-
ment in the classification accuracy as within the same domain.
This shows that the extracted code fragments are domain
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TABLE VIII
THE ACCURACIES (%) ON THE TEST SETS FOR CROSS DOMAIN

KNOWLEDGE TRANSFER USING DIFFERENT TEXTURE DATA SETS AS
SOURCE AND TARGET DOMAINS (MEAN ± STANDARD DEVIATION).

KyR BrR OuR
48.81 ± 2.09 55.27 ± 2.15 65.10 ± 1.39
Ky → KyR Ky → BrR Ky → OuR

56.01 ± 1.39 61.20 ± 1.38 68.79 ± 1.08
Br → KyR Br → BrR Br → OuR

55.76 ± 1.09 61.52 ± 1.32 68.33 ± 0.76
Ou → KyR Ou → BrR Ou → OuR

56.73 ± 0.86 61.52 ± 1.52 69.13 ± 0.89

TABLE IX
THE ACCURACIES (%) ON THE TEST SETS FOR CROSS DOMAIN

KNOWLEDGE TRANSFER USING DIFFERENT SOURCE AND TARGET
DOMAINS FROM THE OFFICE DATA SET (MEAN ± STANDARD DEVIATION).

amazon dslr webcam
07.72 ± 0.52 36.91 ± 2.04 33.00 ± 0.96

amazon → amazon amazon → dslr amazon → webcam
N. A. 33.65 ± 1.55 28.80 ± 1.81

dslr → amazon dslr → dslr dslr → webcam
09.51 ± 0.70 N. A. 34.45 ± 1.32

webcam → amazon webcam → dslr webcam → webcam
09.81 ± 0.51 40.56 ± 1.04 N. A.

independent. It is worth noting that the gain in classification
improvement achieved in learning KyR from Ou is more than
the gain achieved by reusing the knowledge from Ky. These
findings indicate not only that it is feasible to reuse/transfer
knowledge among different related problem domains, but
also that more gain could be obtained in this way than the
knowledge reuse within the same domain.

B. Knowledge Transfer among Office Domains

In order to investigate the effectiveness of the proposed
approach in learning more challenging image classification
problems other than the texture benchmarks, we conducted
a set of experiments using the office data set [76].

Table IX shows results obtained using different source and
target domains, i.e., amazon → dslr, amazon → webcam, dslr
→ amazon, dslr → webcam, webcam → amazon, webcam →
dslr.

It is observed that reusing the extracted knowledge in
TLGP-criptor significantly improved the classification accu-
racy in learning the office data set except amazon → dslr and
amazon → webcam. The amazon domain consists of images
mostly having more than one object in a single image. Further,
it is found that there are some discrepancies in the amazon
domain, e.g., a laptop image in the back pack images. Due to
these difficulties and using only two images per class in the
training process, the classification accuracy of the baseline GP-
criptor method is very small in the amazon domain as shown
in the first row in Table IX. The poor performance of GP-
criptor in the amazon domain resulted in poor code-fragments
to be used to learn amazon → dslr and amazon → webcam,
hence no improvement in the classification accuracy.

In order to investigate the effect of using more than two
images per class in GP-criptor, we conducted three additional
experiments on the amazon domain for 5, 10, and 15 images

TABLE X
THE ACCURACIES (%) ON THE TEST SETS FOR CROSS DOMAIN

KNOWLEDGE TRANSFER FROM A TEXTURE DATA SET TO THE OFFICE DATA
SET (MEAN ± STANDARD DEVIATION).

amazon dslr webcam
07.72 ± 0.52 36.91 ± 2.04 33.00 ± 0.96

KBO → amazon KBO → dslr KBO → webcam
10.88 ± 0.94 44.09 ± 0.97 37.95 ± 1.03

per class. It improved the classification accuracy to 12.56 ±
2.49, 20.21 ± 2.36, and 28.12 ± 2.27 using 5, 10, and 15
images per class respectively. Further improvement is possible
by using an increased population size of GP individuals.
However, this is beyond the scope of this study.

C. Knowledge Transfer from Texture to Office Domains

Furthermore, we performed a set of experiments to investi-
gate the usefulness of knowledge transfer among very different
problem domains. To this end, we combined three texture data
sets, i.e., Ky, Br, and Ou into a single large data set, denoted
by KBO. Then, we conducted the following three experiments
to transfer knowledge from the texture domain to the office
domain: KBO → amazon, KBO → dslr, KBO → webcam.
The obtained results are shown in Table X.

It is observed that the reuse of knowledge from the com-
bined texture data set to learn different office domains resulted
in an improvement in the classification accuracy that is no-
ticeably greater than the classification accuracy obtained by
reusing the knowledge within different office domains. This
might be due to the fact that the texture data sets are simpler
than the office data set, so, better code fragments learned in
the former improved performance in the latter. This finding
suggests that it is beneficial to first learn easy tasks and then
reuse the learned knowledge to solve more complex tasks.

It is worth noting that the reuse of knowledge in cross-
domain experiments might cause problems when users have no
prior knowledge about the negative relations between source
domains and target domains. However, there was no evidence
of negative transfer in all experiments conducted in this study.
It is anticipated that the inherent adaptiveness of GP has
automatically eliminated negatively transferred knowledge via
evolutionary principles.

VII. PARAMETER ANALYSIS

In previous sections, we used the extracted knowledge in the
initialization step with probability µI , and in the mutation step
with probability µM where both µI and µM were empirically
set equal to 0.5. It is worth noting that in this study the code
fragments being reused were not kept static in order to avoid
overfitting. These code fragments were allowed to be modified
in the crossover operation and to be replaced in the mutation
operation with new code fragments.

In this section, we experimentally analyze the effect of
probability µI and µM on the classification accuracy and
size of the evolved GP programs as well as on the required
training time in TLGP-criptor. To this end, we conducted 100
experiments, with µI and µM ranging from 0.1 to 1.0, over

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TEVC.2017.2657556

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 14

the BrR data set. The obtained results are shown in Table XI,
Table XII, and Table XIII.

It is observed that TLGP-criptor produced significantly
better classification accuracy than GP-criptor for any value
of µI and µM as shown in Table XI. Further, an increase
in the value of µI , mostly, results in an increase in the
classification accuracy of TLGP-criptor, as shown in each
column of Table XI. However, the accuracy does not increase
much when µI > 0.7. The parameter µM exhibits almost a
similar behavior in terms of classification accuracy for any
value from 0.1 to 1.0, as shown in each row of Table XI.

On the other hand, an increase in the value of µI , mostly,
results in an increase in the size of the evolved GP programs
in TLGP-criptor as shown in each column of Table XII. The
parameter µM , exhibits almost a similar behavior in terms of
the size of evolved GP solutions for any value from 0.1 to 1.0,
as shown in each row of Table XII.

The results shown in Table XIII indicate that the required
training time for TLCP-criptor is usually independent of any
value of µI and µM . The training time required by TLGP-
criptor to learn BrR, mostly, lies between 4.50 to 5.00 minutes,
which is slightly less than the time required by GP-criptor, i.e.,
5.02 ± 0.89 minutes.

From Table XI and Table XII, it seems that the value of µI
in the range of 0.5 to 0.7 is an acceptable tradeoff between
the classification accuracy and the size of the evolved program.
Further, µM can be set equal to µI (such as 0.5) so that in
TLGP-criptor only a single new parameter (say, µ) is required
instead of two.

VIII. ANALYSIS OF EVOLVED GP PROGRAMS

In this section, we discuss the effectiveness of reusing the
extracted knowledge in the proposed approach. To this end,
we first analyze an exemplary GP program evolved using the
baseline GP-criptor method, and then another GP program
evolved using the proposed TLGP-criptor method.

A. An Exemplary Program Evolved using GP-criptor

An exemplary GP program evolved on the KBO data set
using the baseline GP-criptor method is shown in Fig. 9. This
program has achieved 87.44% accuracy on the test set. It is
observed that the third, sixth, and seventh bits of the code are
generated by applying the subtraction operator on values of
two pixels; whereas to generate the other bits more operators
are required along with the subtraction operator. This finding
about more frequent appearance of the subtraction operator
in an evolved GP program is consistent with observations
reported in the baseline paper that this operator has the
potential to flip the code value from positive to negative and
vice versa [8].

A closer inspection of children of the CODE node in Fig. 9
reveals that the baseline GP-criptor method implicitly reused
different code fragments to evolve a good GP individual. For
example, the third, sixth, and seventh children, i.e., (SUB P4
P5), (SUB P4 P8), and (SUB P4 P0), have the same
operator (i.e. SUB) and the same first operand (i.e. P4);
they only differ in the second operand. Similarly, the first

CODE

ADD

P2 ADD

P2 MUL

P0 SUB

P7 P2

SUB

P8 SUB

P5 SUB

P1 P6

SUB

P4 P5

ADD

P7 SUB

P7 MUL
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P7 MUL

P0 DIV

P0 P3

SUB

P7 MUL
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P7 P2

SUB

P4 P8

SUB

P4 P0

SUB

P8 SUB

P6 P2

(CODE (ADD P2 (ADD P2 (MUL P0 (SUB P7 P2)))) (SUB P8 (SUB P5 (SUB P1 P6)))
(SUB P4 P5) (ADD P7 (SUB P7 (MUL P0 (ADD P7 (SUB P7 (MUL P0 (DIV P0 P3)))))))
(SUB P7 (MUL P0 (SUB P7 P2))) (SUB P4 P8) (SUB P4 P0) (SUB P8 (SUB P6 P2)))

Fig. 9. A program evolved by GP-criptor on the KBO data set (test accuracy
is 87.44%).

and fifth children share the code fragment (MUL P0 (SUB
P7 P2)). The third and eighth children share the code
fragments (SUB P8 (SUB ... ...)); and the fourth and
fifth children share the code fragment (SUB P7 (MUL P0
...)). Further, it is observed that a code fragment is being
reused within the same child, e.g., the code fragment (SUB
P7 (MUL P0 ...)) in the fourth child.

This implicit reuse of different code fragments can be
due to the following two reasons: (1) Such code fragments
are occurring frequently in multiple GP individuals and the
crossover operator combined them together in a single GP
individual like the one shown in Fig. 9, and (2) Such code
fragments are being generated, frequently, by the mutation
operator in the same GP individual. The possibility of the
second reason is less likely to occur than the first reason.
In either case, these findings support our intuition that to
extract the potentially useful knowledge (in the form of code
fragments) in learning simple tasks and reuse the extracted
knowledge to learn more complex tasks can (potentially)
improve the classification performance.

B. An Exemplary Program Evolved using TLGP-criptor

In TLGP-criptor, we reuse the extracted code fragments (i.e.
children of the CODE node) from the evolved GP programs
that have fitness value better than or equal to the average
fitness of the final population. Some exemplary code fragments
extracted in learning the KBO data set by GP-criptor are
shown in Fig. 10. Fig. 11 shows a program evolved by TLGP-
criptor on the webcam data set by reusing the extracted code
fragments from the KBO data set. This program has achieved
45.93% accuracy on the test set. The frequent appearance of
the subtraction operator SUB is observed again in the extracted
code fragments shown in Fig. 10 as well as in the evolved
program shown in Fig. 11.

A closer inspection of the evolved program using TLGP-
criptor reveals two important aspects of the reuse of the
extracted knowledge: (1) The extracted code fragments are
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TABLE XI
THE EFFECT ON CLASSIFICATION ACCURACY FOR USING DIFFERENT VALUES OF µI AND µM IN TLGP-CRIPTOR TO LEARN BRR. THE CLASSIFICATION

ACCURACY OBTAINED USING GP-CRIPTOR TO LEARN BRR IS 55.27± 2.15.

µI
µM

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.1 58.01 ± 1.84 58.31 ± 1.80 58.77 ± 1.70 58.99 ± 1.41 59.27 ± 1.28 59.71 ± 1.71 59.66 ± 1.64 59.83 ± 1.40 59.60 ± 1.84 59.82 ± 1.45
0.2 59.24 ± 1.62 60.38 ± 1.53 59.59 ± 1.35 60.17 ± 1.35 59.98 ± 1.18 60.34 ± 1.30 60.72 ± 1.30 61.04 ± 1.28 60.55 ± 1.33 61.01 ± 1.36
0.3 59.54 ± 1.49 60.18 ± 1.57 59.90 ± 1.77 60.21 ± 1.50 60.80 ± 1.53 60.67 ± 1.60 60.76 ± 1.63 61.06 ± 1.28 61.11 ± 1.42 61.60 ± 1.61
0.4 60.66 ± 1.54 60.83 ± 1.35 61.26 ± 1.45 61.69 ± 1.10 61.42 ± 1.59 61.57 ± 1.53 61.40 ± 1.24 61.43 ± 1.39 61.50 ± 1.37 61.60 ± 1.23
0.5 60.98 ± 1.31 61.19 ± 1.32 61.56 ± 1.24 61.54 ± 1.66 61.52 ± 1.32 62.26 ± 1.13 61.59 ± 1.23 61.34 ± 1.31 61.68 ± 1.16 61.69 ± 1.33
0.6 61.22 ± 1.08 61.45 ± 1.34 61.45 ± 1.07 61.58 ± 1.33 61.78 ± 1.18 61.58 ± 0.88 61.80 ± 1.05 61.93 ± 1.10 61.86 ± 1.23 61.83 ± 1.02
0.7 61.36 ± 1.26 61.26 ± 1.25 61.84 ± 1.08 62.17 ± 1.14 61.77 ± 1.12 62.09 ± 1.54 62.01 ± 1.18 61.80 ± 1.07 61.87 ± 1.21 62.55 ± 1.11
0.8 61.89 ± 1.39 61.67 ± 1.24 62.28 ± 1.28 62.12 ± 1.48 62.06 ± 1.05 62.21 ± 1.31 62.42 ± 1.42 62.15 ± 1.32 62.20 ± 1.37 62.65 ± 1.42
0.9 62.15 ± 1.22 62.11 ± 1.18 62.19 ± 1.32 61.93 ± 1.50 61.97 ± 1.21 62.53 ± 1.53 62.62 ± 1.43 62.33 ± 1.32 62.60 ± 1.57 62.65 ± 1.38
1.0 62.20 ± 1.24 62.56 ± 0.94 62.50 ± 1.19 62.59 ± 1.11 62.61 ± 1.28 62.69 ± 1.36 62.86 ± 0.93 62.56 ± 1.06 62.94 ± 1.31 62.97 ± 1.60

TABLE XII
THE EFFECT ON SIZE OF THE EVOLVED GP SOLUTION FOR USING DIFFERENT AMOUNT OF EXTRACTED KNOWLEDGE IN TLGP-CRIPTOR TO LEARN BRR.

THE SIZE OF THE EVOLVED GP SOLUTION OBTAINED USING GP-CRIPTOR TO LEARN BRR IS 61.37± 4.66.

µI
µM

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.1 64.69 ± 2.96 64.27 ± 3.10 65.05 ± 3.35 65.16 ± 2.99 65.57 ± 3.55 65.81 ± 3.13 66.73 ± 3.06 66.85 ± 3.00 65.77 ± 2.91 65.40 ± 3.48
0.2 65.51 ± 3.83 66.27 ± 2.78 66.59 ± 3.54 66.19 ± 3.36 65.87 ± 3.65 66.55 ± 3.48 66.05 ± 3.42 67.11 ± 3.35 67.30 ± 3.05 67.77 ± 3.26
0.3 67.62 ± 3.60 66.30 ± 3.41 66.78 ± 3.40 67.11 ± 2.81 67.33 ± 3.37 66.49 ± 4.15 67.11 ± 3.19 66.92 ± 2.79 67.19 ± 3.17 67.32 ± 2.82
0.4 66.86 ± 3.38 68.53 ± 3.27 67.11 ± 2.96 67.57 ± 3.30 67.83 ± 3.39 67.39 ± 2.94 67.03 ± 3.99 67.33 ± 3.01 67.98 ± 3.06 68.55 ± 2.58
0.5 67.95 ± 2.40 66.66 ± 3.17 68.13 ± 2.89 67.77 ± 3.29 67.96 ± 3.97 68.31 ± 3.77 67.76 ± 2.79 67.39 ± 3.10 67.95 ± 3.25 67.39 ± 3.07
0.6 68.17 ± 3.28 67.73 ± 3.49 67.79 ± 3.68 67.87 ± 4.16 68.42 ± 3.68 67.16 ± 3.14 68.70 ± 3.21 67.01 ± 2.99 68.91 ± 2.91 68.47 ± 3.53
0.7 68.93 ± 3.19 68.41 ± 2.60 68.30 ± 3.29 68.40 ± 3.11 68.10 ± 2.43 68.94 ± 3.42 70.64 ± 3.07 68.37 ± 2.68 68.37 ± 3.30 69.29 ± 4.30
0.8 68.73 ± 3.72 68.04 ± 2.85 68.33 ± 2.46 69.63 ± 3.14 68.56 ± 3.30 68.87 ± 2.64 69.63 ± 3.84 69.23 ± 4.01 68.50 ± 3.64 68.76 ± 3.23
0.9 69.36 ± 3.48 68.85 ± 3.72 69.01 ± 3.56 69.32 ± 2.74 68.82 ± 3.23 69.18 ± 2.94 69.05 ± 3.33 69.15 ± 2.77 69.25 ± 3.13 69.49 ± 3.45
1.0 67.77 ± 3.20 69.01 ± 3.20 69.11 ± 3.91 69.84 ± 3.52 69.71 ± 2.85 69.65 ± 3.00 69.30 ± 3.13 68.49 ± 2.86 69.65 ± 2.88 69.37 ± 3.56

TABLE XIII
THE EFFECT ON TRAINING TIME TO LEARN BRR USING DIFFERENT AMOUNT OF EXTRACTED KNOWLEDGE IN TLGP-CRIPTOR. THE TRAINING TIME

REQUIRED BY GP-CRIPTOR TO LEARN BRR IS 5.02± 0.89 MINUTES.

µI
µM

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.1 6.12 ± 0.60 4.54 ± 0.52 4.42 ± 0.39 4.29 ± 0.08 4.61 ± 0.70 5.58 ± 0.88 4.55 ± 0.55 4.28 ± 0.08 4.58 ± 0.51 4.95 ± 0.67
0.2 4.47 ± 0.36 4.66 ± 0.61 4.33 ± 0.06 4.47 ± 0.40 4.29 ± 0.08 4.74 ± 0.65 4.52 ± 0.43 4.47 ± 0.40 4.82 ± 0.70 4.36 ± 0.08
0.3 4.35 ± 0.09 4.37 ± 0.13 4.46 ± 0.15 4.52 ± 0.54 4.37 ± 0.07 4.66 ± 0.63 4.83 ± 0.69 4.70 ± 0.54 4.86 ± 0.74 4.54 ± 0.23
0.4 4.54 ± 0.42 4.79 ± 0.75 4.73 ± 0.60 4.48 ± 0.24 4.50 ± 0.43 4.34 ± 0.06 4.72 ± 0.71 4.59 ± 0.45 4.40 ± 0.06 4.57 ± 0.59
0.5 4.38 ± 0.06 4.44 ± 0.22 4.37 ± 0.07 4.37 ± 0.07 4.64 ± 0.60 4.38 ± 0.08 4.77 ± 0.63 4.36 ± 0.07 4.50 ± 0.40 4.40 ± 0.04
0.6 4.75 ± 0.63 4.73 ± 0.59 4.73 ± 0.61 4.68 ± 0.44 4.76 ± 0.64 4.82 ± 0.79 4.55 ± 0.15 4.52 ± 0.15 4.83 ± 0.60 4.86 ± 0.79
0.7 4.65 ± 0.28 4.45 ± 0.12 4.62 ± 0.53 4.50 ± 0.25 4.57 ± 0.43 4.57 ± 0.39 4.59 ± 0.48 4.75 ± 0.68 4.89 ± 0.75 4.74 ± 0.58
0.8 5.13 ± 0.95 4.44 ± 0.06 4.44 ± 0.09 4.59 ± 0.45 4.88 ± 0.71 4.72 ± 0.59 4.45 ± 0.06 4.65 ± 0.58 4.47 ± 0.08 4.47 ± 0.08
0.9 4.61 ± 0.47 4.65 ± 0.46 4.60 ± 0.57 4.80 ± 0.74 4.42 ± 0.08 4.67 ± 0.55 4.77 ± 0.60 4.48 ± 0.09 4.65 ± 0.50 4.75 ± 0.58
1.0 5.03 ± 0.69 4.98 ± 0.72 4.88 ± 0.76 4.68 ± 0.67 4.80 ± 0.68 4.60 ± 0.44 4.63 ± 0.51 4.64 ± 0.46 4.46 ± 0.06 5.18 ± 0.78
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Fig. 10. Exemplary code fragments extracted in learning the KBO data set
by GP-criptor.

being reused in TLGP-criptor as a whole and in parts as
well to generate new code fragments. For example, the first
extracted code fragment (SUB P4 P8) is used as a whole to
generate the last two children of the CODE node in the evolved
program shown in Fig. 11. Similarly, the sixth child of this
program is generated using a part of the second extracted code

fragment (SUB P7 (MUL P7 (SUB P3 P6))), and the
second, third, and fifth children are reusing parts of the fourth
extracted code fragment. (2) The structure of the extracted
code fragments, i.e., the order in which different operators
have been used in an extracted code fragment, is observed in
the newly generated code fragments in the evolved program.
For example, the second and fourth children of the CODE node
in Fig. 11 are reusing the structure of the third extracted code
fragment, i.e., the sequence of operators (SUB SUB DIV
SUB). Further, nested reuse of structure SUB DIV SUB is
observed in the second child of the CODE node.

In summary, the idea of reusing the learned code fragments
in TLGP-criptor was to avoid learning the potentially good
code fragments from scratch. The reuse of extracted knowl-
edge significantly improved the classification performance of
TLGP-criptor over the baseline GP-criptor method.

IX. CONCLUSIONS

The main goal of this work was to propose and implement
a novel algorithm for transfer learning in GP to learn complex
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CODE

SUB

P5 P0

SUB

P0 SUB

P5 DIV

P7 SUB

P0 SUB

P5 DIV

P7 SUB

P5 P0

SUB

P0 ADD

P8 DIV

P3 SUB

P7 P5

DIV

P4 SUB

P0 SUB

P5 SUB

P3 DIV

P3 SUB

P7 P5

ADD

P3 SUB

P0 ADD

P8 DIV

P3 SUB

P7 P5

SUB

P3 P6

SUB

P2 SUB

P4 P8

MUL

P8 SUB

P4 P8

(CODE (SUB P5 P0) (SUB P0 (SUB P5 (DIV P7 (SUB P0 (SUB P5 (DIV P7 (SUB P5
P0))))))) (SUB P0 (ADD P8 (DIV P3 (SUB P7 P5)))) (DIV P4 (SUB P0 (SUB P5 (SUB
P3 (DIV P3 (SUB P7 P5)))))) (ADD P3 (SUB P0 (ADD P8 (DIV P3 (SUB P7 P5)))))
(SUB P3 P6) (SUB P2 (SUB P4 P8)) (MUL P8 (SUB P4 P8)))

Fig. 11. A program evolved by TLGP-criptor on the webcam data set by
reusing the extracted knowledge from the KBO data set (test accuracy is
45.93%).

image classification tasks. This goal has been successfully
achieved by incorporating the idea of transfer learning in an
existing state-of-the-art GP method, which works very well
on image classification tasks without noise and rotations. The
proposed approach was designed to use the idea of transfer
learning to extract blocks of knowledge in the form of code
fragments when learning simple problems, and then reuse them
to learn more complex tasks, i.e., various rotated and noisy
versions of the original images. Further, the extracted knowl-
edge was also reused to learn various complex images in other
related as well as different image domains. The experiments
on six image classification benchmarks of varying difficulty
showed that the proposed approach of transfer learning in
GP has significantly improved the classification performance
over the baseline method. Further analysis on the evolved GP
trees/solutions showed that the extracted code fragments from
simpler problems are general and useful for generating a good
initial population to provide a better starting point for GP.
The extracted code fragments are also helpful for constructing
better GP trees during the evolutionary process, which is the
main reason why the proposed approach can improve the
performance of GP on complex image classification tasks.

This work confirms the ability of GP in discovering and
extracting useful knowledge from a simple task to help learn
a complex task. Deep analysis in this work shows that the
extracted knowledge is useful either as code fragments or as
a structure of code fragments when solving complex image
classification problems. The obtained results indicate that the
proposed method has the ability to transfer the extracted
knowledge to a similar domain as well as to different domains.
In all experiments conducted in this study, no negative effect
has been observed, which (i.e. negative effect) is usually
expected in cross-domain transfer. It is anticipated that the in-
herent adaptiveness of GP, like other evolutionary approaches,
has automatically eliminated negatively transferred knowledge
via evolutionary principles. In the future, more rigorous meth-

ods will be considered that explicitly account for transfer
characteristics.

A. Future Work

This is an early, but promising, approach to incorporating
transfer learning in GP for complex image classification, which
opens a door for this field and many future directions can be
explored. For example, the current baseline method is using
raw image pixels as input while future transfer learning based
approaches can utilise the ability of GP in feature extrac-
tion/construction/selection to further improve the performance.

It is also worth extending the idea of extracting and reusing
blocks of knowledge in traditional GP so that it can be applied
to a wide range of tasks. One such possible extension is to
reuse the extracted knowledge to populate a node in a GP tree.
Traditionally, a node in a GP tree is populated by creating each
child of the node from a symbol in the given set of terminals
T or the set of functions F . To reuse the extracted knowledge,
a child should be created either by selecting an extracted
code fragment (or a randomly selected subtree from that code
fragment) with probability µP , or by selecting a symbol from
T and F (as used in standard GP) with probability 1− µP .

Similarly, the extracted knowledge can be used to mutate
a GP tree in the traditional GP. In standard GP, the mutation
operation randomly selects a subtree in a GP program and re-
places it with a randomly generated new subtree. To reuse the
extracted knowledge, a GP program can be mutated either by
replacing the selected subtree with an extracted code fragment
(or a randomly selected subtree from that code fragment) with
probability µM , or by replacing with a randomly generated
new subtree (as used in standard GP) with probability 1−µM .
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evolution toward new parameter free image registration methods,” IEEE
Transactions on Evolutionary Computation, vol. 17, no. 4, pp. 545–557,
2013.

[46] R. Poli, “Genetic Programming for Image Analysis,” in Proceedings of
the 1st Annual Conference on Genetic Programming, 1996, pp. 363–368.

[47] W. R. Smart and M. Zhang, “Classification strategies for image classifi-
cation in genetic programming,” in Proceedings of the 18th International
Conference on Image and Vision Computing New Zealand. Massey
University, 2003, pp. 402–407.

[48] C. Ryan, J. Fitzgerald, K. Krawiec, and D. Medernach, “Image classifi-
cation with genetic programming: Building a stage 1 computer aided
detector for breast cancer,” in Handbook of Genetic Programming
Applications. Springer, 2015, pp. 245–287.

[49] S. Hindmarsh, P. Andreae, and M. Zhang, “Genetic programming for
improving image descriptors generated using the scale-invariant feature
transform,” in Proceedings of the 27th International Conference on
Image and Vision Computing New Zealand. ACM, 2012, pp. 85–90.

[50] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International journal of computer vision, vol. 60, no. 2, pp. 91–110,
2004.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TEVC.2017.2657556

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 18

[51] L. Shao, L. Liu, and X. Li, “Feature learning for image classification
via multiobjective genetic programming,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 25, no. 7, pp. 1359–1371, 2014.

[52] B. Yang and S. Chen, “A comparative study on local binary pattern
(LBP) based face recognition: LBP histogram versus LBP image,”
Neurocomputing, vol. 120, pp. 365–379, 2013.

[53] M. Zhang, V. Ciesielski, and P. Andreae, “A Domain-Independent
Window Approach to Multiclass Object Detection Using Genetic Pro-
gramming,” EURASIP Journal on Advances in Signal Processing, vol.
2003, no. 8, pp. 841–859, 2003.

[54] A. Lensen, H. Al-Sahaf, M. Zhang, and B. Xue, “Genetic Programming
for Region Detection, Feature Extraction, Feature Construction and
Classification in Image Data,” in Proceedings of the 19th European
Conference on Genetic Programming, ser. Lecture Notes in Computer
Science, vol. 9594. Springer, 2016, pp. 49–64.

[55] A. Quattoni, M. Collins, and T. Darrell, “Transfer Learning for Image
Classification with Sparse Prototype Representations,” in IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2008, pp. 1–8.

[56] Y. Zhu, Y. Chen, Z. Lu, S. J. Pan, G.-R. Xue, Y. Yu, and Q. Yang,
“Heterogeneous Transfer Learning for Image Classification,” in AAAI
Conference on Artificial Intelligence, 2011, pp. 1304–1309.

[57] G. Griffin, A. Holub, and P. Perona, “Caltech-256 Object Category
Dataset,” California Institute of Technology, Tech. Rep. 7694, 2007.
[Online]. Available: http://authors.library.caltech.edu/7694
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